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CONTROLLED STRATIFICATION FOR QUANTILE ESTIMATION
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In this paper we propose and discuss variance reduction techniques for
the estimation of quantiles of the output of a complex model with random
input parameters. These techniques are based on the use of a reduced model,
such as a metamodel or a response surface. The reduced model can be used
as a control variate; or a rejection method can be implemented to sample the
realizations of the input parameters in prescribed relevant strata; or the re-
duced model can be used to determine a good biased distribution of the input
parameters for the implementation of an importance sampling strategy. The
different strategies are analyzed and the asymptotic variances are computed,
which shows the benefit of an adaptive controlled stratification method. This
method is finally applied to a real example (computation of the peak cladding
temperature during a large-break loss of coolant accident in a nuclear reac-
tor).

1. Introduction. Quantile estimation is of fundamental importance in statis-
tics as well as in practical applications [Law and Kelton (1991)]. A main challenge
in quantile estimation is that the number of observations can be limited. This is the
case when the observations correspond to the output of expensive numerical simu-
lations. Variance reduction techniques specifically designed for this problem have
been proposed and implemented. These techniques usually involve importance
sampling [Glynn (1996)], correlation-induction [Avramidis and Wilson (1998)]
and control variates [Hsu and Nelson (1987), Hesterberg and Nelson (1998)]. In
this paper we focus our attention on variance reduction techniques based on the
use of an auxiliary variable. For the problem of the quantile estimation of a com-
puter code output, the auxiliary variable is the output of a reduced model, which
is coarse but cheap from the computational time point of view. We will show how
to use it to find convenient parameters for the stratified and importance sampling
techniques [Rubinstein (1981)].

Quantiles form a class of performance measures. Quantile estimation for a real-
valued random variable (r.v.) Y aims at determining the level y such that the
likelihood that Y takes a value lower than y is some prescribed value. We as-
sume that Y has an absolutely continuous cumulative distribution function (cdf)
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F(y) = P(Y ≤ y) and a continuously differentiable probability density (pdf) p(y).
We look for an estimation of the α-quantile yα defined by F(yα) = α.

In this paper we assume that Y = f (X) is the real-valued output of a com-
puter code f that is CPU time expensive and whose input parameters are random
and modeled by the random vector X ∈ R

d with known distribution. With the ad-
vance of computing technology and numerical methods, the design, modeling and
analysis of computer code experiments have been the subject of intense research
during the last two decades [Sacks et al. (1989), Fang, Li and Sudjianto (2006)].
The problem of low or high quantile estimation (smaller than 10% and larger than
90%) can be resolved by classical sampling techniques such as the simple Monte
Carlo or Latin hypercube techniques. These Monte Carlo methods can give impre-
cise quantile estimate (with large variance) if they are performed with a limited
number of code runs, say, of the order of 200 [David (1981)]. An alternative ap-
proach is, to calculate a tolerance limit rather than a percentile by using Wilk’s
formula [Nutt and Wallis (2004)]. It provides with a low number of code runs, less
than 200, say, a majoring value of the desired percentile with a given confidence
level (e.g., 95%). But the variance of this tolerance limit is larger than that of the
empirical estimate, for the same number of code runs.

Another well known approach for the uncertainty analysis of complicated com-
puter models consists in replacing the complex computer code by a reduced model,
called metamodel or response surface [Fang, Li and Sudjianto (2006)]. However,
a low or high quantile estimate from a metamodel tends to be substantially dif-
ferent from the full computer model quantile because the metamodel is usually
constructed by smoothing of the computer model output. Recently, some authors
have taken advantage of one particular type of metamodel: the Gaussian process
model [Sacks et al. (1989)], which gives not only a predictor (the mean) of a com-
puter experiment but also a local indicator of prediction accuracy (the variance).
In this context, Oakley (2004), Vazquez and Piera Martinez (2008) and Ranjan,
Bingham and Michailidis (2008) have developed sequential procedures to choose
design points and to construct an accurate Gaussian process metamodel, specially
near the regions of interest, where the quantile lies. Rutherford (2006) proposes
to use geostatistical conditional simulation techniques to obtain many realizations
of the Gaussian process, which in turn can give a quantile estimate. However, all
these techniques are based on the construction of a Gaussian process model which
can be difficult, albeit possible [Jones, Schonlau and Welch (1998), Schonlau and
Welch (2005), Marrel et al. (2008)], in the high-dimensional context (d > 10).
Moreover, in industrial practice, a metamodel may already be available that comes
from a previous study or from a simplified physical model. This is the situation
we have in mind. We do not concentrate our effort on the construction of a more
accurate metamodel, but on the use of a given reduced model.

In our work we deal with this situation in which a reduced model is available,
in the form of a metamodel fr , which is a coarse approximation of the computer
model f . The quality of the metamodel may not be known; the metamodel may be
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a simplified version of the computer code (a one-dimensional version for a three-
dimensional problem, a response surface determined during another study, . . .); its
input variables may be a subset of the input variables for the computer code f . The
full computer model f is assumed to be very computationally expensive, while the
evaluation of the metamodel fr and the generation of the input r.v. X are assumed
to be very fast (essentially free). Therefore, the focus of this paper is on how to
exploit the metamodel to obtain better control variates, stratification or importance
sampling than could be obtained without it. In the real example we address in
Section 5 (computation of the peak cladding temperature of the nuclear fuel during
a large-break loss of coolant accident in a nuclear reactor), the CPU time for each
call of the function f is 20 minutes, while the metamodel fr is a linear function
and the input r.v. X is a collection of d = 53 independent real-valued r.v. with
normal and log-normal distributions. In this example, we also study the relevance
of using more complex and powerful metamodels, such as the popular Gaussian
process model.

The usual practice of quantile estimation is to construct an estimator of the cdf
of Y first, then to deduce an estimator of the α-quantile of Y . In absence of the
control variate, the standard method is the following one. The estimation is based
on a n-sample (Y1, . . . , Yn), that is to say, a set of n independent and identically
distributed r.v. with the pdf p(y) of Y . The empirical estimator (EE) of the cdf
of F is

F̂EE(y) = 1

n

n∑
i=1

1Yi≤y,(1)

which leads to the standard estimator of the α-quantile

ŶEE(α) = inf{y, F̂EE(y) > α} = Y(�αn�),(2)

where �x� is the integer ceiling of x and Y(k) is the kth order statistics. Refined
versions of this result based on interpolation and smoothing methods can be found
in the literature [Dielman, Lowry and Pfaffenberger (1994)]. The empirical estima-
tor ŶEE(α) has a bias and a variance of order 1/n [David (1981)]. The empirical
estimator is asymptotically normal,

√
n
(
ŶEE(α) − yα

) n→∞−→ N (0, σ 2
EE), σ 2

EE = α(1 − α)

p2(yα)
.(3)

We remark that the reduced variance σ 2
EE is usually larger when a larger quantile

is estimated (the pdf at yα is then very small).
The outline of the paper is as follows. First we describe quantile estimation by

control variate in Section 2. Section 3 presents an original controlled stratification
method. Then, a controlled importance sampling strategy is analyzed in Section 4.
A real example is addressed in Section 5.
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2. Quantile estimation by Control Variate (CV). In this section we present
the well-known variance reduction techniques based on the use of Z = fr(X) as
a control variate. The quantiles zα of Z are assumed to be known, as well as any
expectation E[g(Z)] of a function of Z. We mean that these quantities can be com-
puted analytically, or they can be estimated by standard Monte Carlo estimations
with an arbitrary precision, since only the reduced model fr is involved.

2.1. Estimation of the distribution function. A Control Variate (CV) estimator
of F(y) with the real-valued control variate Z has the form

F̂CV(y) = F̂EE(y) − C
(
ĝn − E[g(Z)]),(4)

where the function g : R → R has to be chosen by the user [Nelson (1990)] and
ĝn = 1

n

∑n
i=1 g(Zi). The optimal parameter C is the correlation coefficient be-

tween g(Z) and 1Y≤y whose value is unknown in practice. Therefore, the esti-
mated parameter Ĉ is used instead. It is defined as the slope estimator obtained
from a least-squares regression of 1Yj≤y on g(Zi):

Ĉ =
∑n

j=1(1Yj≤y − F̂EE(y))(g(Zj ) − ĝn)∑n
j=1(g(Zj ) − ĝn)2 .

As shown by Hesterberg (1993), the estimator F̂CV(y) with the estimated parame-
ter Ĉ can be rewritten as the weighted average

F̂CV(y) =
n∑

j=1

Wj 1Yj≤y(5)

with

Wj = 1

n
+ (ĝn − E[g(Z)])(ĝn − g(Zj ))∑n

i=1(g(Zi) − ĝn)2 .

Note that
∑n

j=1 Wj = 1. If g(z) = 1z≤zα , then E[g(Z)] = α, ĝn = N0/n with

N0 =
n∑

i=1

1Zi≤zα and Wj = α

N0
1Zj≤zα + 1 − α

n − N0
1Zj>zα .(6)

As shown by Davidson and MacKinnon (1992), the estimator (5) is equivalent to
the maximum likelihood estimator for probabilities. By using standard results for
the convergence of Monte Carlo estimators [Nelson (1990)], one finds

√
n
(
F̂CV(y) − F(y)

) n→∞−→ N (0, σ 2
CV),

(7)
σ 2

CV = F(y)
(
1 − F(y)

)
(1 − ρ2

I ),

where ρI is the correlation coefficient between 1Y≤y and 1Z≤zα :

ρI = P(Y ≤ y,Z ≤ zα) − αF(y)√
F(y)(1 − F(y))

√
α − α2

.(8)
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This result can be compared to the corresponding central limit theorem in absence
of control, which claims that the empirical estimator F̂EE defined by (1) is asymp-
totically normal,

√
n
(
F̂EE(y) − F(y)

) n→∞−→ N (0, σ 2
EE), σ 2

EE = F(y)
(
1 − F(y)

)
.

Comparing with (7) reveals an asymptotic variance reduction of 1 − ρ2
I .

2.2. Quantile estimation. Our goal is now to estimate the α-quantile of Y

by using the CV estimator of the cdf of Y . We consider the order statistics
(Y(1), . . . , Y(n)) with the weights W(i) defined by (6) sorted according to the Y(i).
Using the estimator (5) of the cdf of Y , the CV estimator of the α-quantile is

ŶCV(α) = Y(K), K = inf

{
j,

j∑
i=1

W(i) > α

}
.(9)

Applying standard results for the variance reduction for Monte Carlo methods
[David (1981)], one finds that this estimator is asymptotically normal with the
reduced variance σ 2

CV,

√
n
(
ŶCV(α) − yα

) n→∞−→ N (0, σ 2
CV), σ 2

CV = α(1 − α)

p2(yα)
(1 − ρ2

I ),(10)

where p is the pdf of Y and ρI is the correlation coefficient between 1Y≤yα and
1Z≤zα :

ρI = P(Y ≤ yα,Z ≤ zα) − α2

α − α2 .

Comparing (10) with (3) reveals a variance reduction by the factor 1 − ρ2
I . As

expected, the stronger Y and Z are correlated, the larger the variance reduction
is. It is not easy to build an estimator of the reduced variance σCV, because this
requires to estimate the pdf p(yα). However, it is possible to build an estimator of
the correlation coefficient ρI , which controls the variance reduction. This estimator
is the empirical correlation coefficient ρ̂I defined by

ρ̂I =
∑n

j=1(1Yj≤y − F̂EE(y))(1Zj≤zα − Ĝn(zα))√∑n
j=1(1Yj≤y − F̂EE(y))2

√∑n
j=1(1Zj≤zα − Ĝn(zα))2

|
y=ŶCV(α)

(11)

with Ĝn(zα) = 1
n

∑n
i=1 1Zi≤zα .

2.3. The optimal CV estimator. In the previous section the control variate
function is g(z) = 1z≤zα , which allows both an easy implementation and a sub-
stantial variance reduction. In general, the variance reduction obtained with the
CV estimator (4) depends on the correlation coefficient between 1Y≤y and the
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control g(Z). The optimal control, which maximizes the correlation coefficient, is
obtained with the function [Rao (1973)]

g∗(z) = P(Y ≤ y|Z = z).(12)

This function is usually unknown, otherwise it could be possible to compute ana-
lytically the cdf F(y) by taking the expectation of g∗(Z), and solve numerically
the equation F(y) = α to get the quantile. However, this result gives the prin-
ciple of refined CV methods using approximations of the optimal control func-
tion g∗. Continuous approximations have been proposed, that are however diffi-
cult to implement in practice [Hastie and Tibshirani (1990)]. Discrete approxima-
tions have been presented, which have been shown to be very efficient and easy
to implement. We now describe the discrete method proposed by Hesterberg and
Nelson (1998). Let us choose m + 1 cutpoints 0 = α0 < α1 < · · · < αm = 1, and
denote by −∞ = zα0 < zα1 < · · · < zαm = ∞ the corresponding quantiles of Z.
The intervals (zαj−1, zαj

] will be used as strata to construct a stepwise constant
approximation of the optimal control. This construction is based on the straight-
forward expansion of the cdf of Y :

F(y) =
m∑

j=1

Pj (y)(αj − αj−1),(13)

where Pj (y) is the conditional probability

Pj (y) = P(Y ≤ y|Z ∈ (zαj−1, zαj
]).(14)

The quantiles of Z are known, so the estimation of F(y) is reduced to the estima-
tions of the conditional probabilities. The Poststratified Sampling (PS) estimator
of F(y) is

F̂PS(y) =
m∑

j=1

P̂j (y)(αj − αj−1),

where

P̂j (y) =
∑n

i=1 1Zi∈(zαj−1 ,zαj
]1Yi≤y∑n

i=1 1Zi∈(zαj−1 ,zαj
]

.

The PS estimator can be written as a weighted average of 1Yj≤y as well. It can also
be interpreted as a CV estimator with gj (Z) = 1Z≤zαj

, j = 1, . . . ,m, as control
variates. Its variance is

Var(F̂PS(y)) = 1

n

m∑
j=1

(αj − αj−1)[Pj (y) − P 2
j (y)] + O

(
1

n2

)
.(15)

Using Gaussian examples, Hesterberg and Nelson (1998) have shown that the opti-
mal variance reduction (the one achieved with g∗) can be almost achieved with the
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discrete approximation with two or three strata. Based on numerical simulations,
the authors recommend to choose the cutpoint α1 = α for the PS strategy with two
strata. They also apply the strategy with three strata on some particular examples.
In the next section we will show that we can go beyond the variance reduction ob-
tained with the optimal control g∗(Z) or its approximations by using the reduced
model in a different way.

3. Quantile estimation by Controlled Stratification (CS). The use of a re-
duced model to estimate directly the quantiles may be not efficient. Indeed, as
mentioned in the introduction, the reduced model is usually a metamodel or a re-
sponse surface that has been calibrated to mimic the response of the complete
model f (X) for typical realizations of X, and not to predict the response f (X) for
exceptional realizations of X. This is precisely what is sought when the purpose
is to estimate quantiles. Besides, it is very difficult to give an estimate of the error
when only the reduced model is used to estimate the quantiles.

In this section we exploit the existence of a reduced model Z = fr(X) in a dif-
ferent manner than the CV strategy. The idea of the previous section was to use
the reduced model as a control variate, or equivalently, post-stratification, without
modifying the sampling. The idea of this section is to use it in order to imple-
ment nonproportional stratified sampling in which we do modify the sampling by
rejection. The rough idea is to generate many realizations of X, to evaluate the
corresponding reduced responses fr(X), and to accept/reject the realizations de-
pending on the responses fr(X). The complete model f will be used only with the
accepted realizations. We can therefore enforce the numbers of realizations of X

such that fr(X) lie in prescribed intervals, and increase the numbers of realizations
in the more important intervals.

3.1. Estimation of the distribution function. Let us choose m + 1 cutpoints
0 = α0 < α1 < · · · < αm = 1 and denote by −∞ = zα0 < zα1 < · · · < zαm = ∞ the
corresponding quantiles of Z. As noted in the previous section, the cdf of Y can
be expanded as (13), so the estimation of F(y) is reduced to the estimations of the
conditional probabilities Pj (y) defined by (14). Let us fix a sequence of integers
N1, . . . ,Nm such that

∑m
j=1 Nj = n, where n is the total number of simulations

using the complete model f . For each j , we use the rejection method to sam-
ple Nj realizations of the input r.v. (X

(j)
i )i=1,...,Nj

, such that the reduced output

r.v. Z
(j)
i = fr(X

(j)
i ) lies in the interval (zαj−1, zαj

]. For each of these Nj realiza-

tions, the output Y
(j)
i = f (X

(j)
i ) is computed. The conditional probability Pj (y)

can be estimated by

P̂j (y) = 1

Nj

Nj∑
i=1

1
Y

(j)
i ≤y

,
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which gives the CS estimator of F(y),

F̂CS(y) =
m∑

j=1

P̂j (y)(αj − αj−1).(16)

The estimator F̂CS(y) is unbiased and its variance is

Var(F̂CS(y)) =
m∑

j=1

(αj − αj−1)
2

Nj

[Pj (y) − P 2
j (y)].(17)

If the number m of strata is fixed, if (βj )j=1,...,m is a sequence of positive real
numbers such that

∑m
j=1 βj = 1, and if we choose Nj = [nβj ], where [x] is the

integer closest to x, then the estimator F̂CS(y) is asymptotically normal:
√

n
(
F̂CS(y) − F(y)

) n→∞−→ N (0, σ 2
CS),

(18)

σ 2
CS =

m∑
j=1

(αj − αj−1)
2

βj

[Pj (y) − P 2
j (y)].

We first try to estimate the complete cdf F(y) for all y ∈ R.
When Z is independent of Y (which means that there is no control), then we

have Pj (y) = F(y) and

Var(F̂CS(y)) =
[

m∑
j=1

(αj − αj−1)
2

Nj

]
× [F(y) − F(y)2].(19)

If we use a proportional allocation in the strata βj = αj − αj−1, then Nj = [(αj −
αj−1)n] and we find that the variance of the CS estimator is, modulo the rounding
errors, equal to 1

n
[F(y)−F(y)2], which is the variance of the empirical estimator.

When the r.v. Z is an increasing function of Y (i.e., to say, Z controls com-
pletely Y ), then we obtain

Var(F̂CS(y)) = (αj0 − αj0−1)
2

Nj0

[pj0(y) − pj0(y)2] ≤ (αj0 − αj0−1)
2

4Nj0

,

where j0 is such that y ∈ (yαj0−1, yαj0
]. If we choose equiprobable strata αj = j/m

and proportional sampling βj = 1/m, then Var(F̂CS(y)) ≤ 1/(4mn). The variance
of the CS estimator has therefore been reduced by a factor of the order of 1/m.

Let us now look for the estimation of the tail of cdf F(y), in the region where
F(y) 
 1 − δ with 0 < δ � 1. If Z and Y have positive correlation, then it is clear
that we should allocate more simulation points in the tail of the reduced model Z,
so as to increase the number of realizations that are potentially relevant.

As an example, we can choose m = 4, α1 = 1/2, α2 = 1 − 2δ, α3 = 1 − δ,
Nj = n/4 for j = 1, . . . ,4. Note that this particular choice allocates n/2 points in
the tail of the cdf of Z, where z1−2δ < Z.
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If Z and Y are independent, then equation (19) shows that this strategy involves
an increase of the variance of the estimator by a factor 2: Var(F̂CS(y)) 
 2δ/n

compared to the empirical estimator Var(F̂EE(y)) 
 δ/n.
If Z and Y are so strongly correlated that the probability of the joint event

Z ≤ z1−2δ and Y > y1−δ is negligible, then equation (19) shows that this strategy
involves a variance reduction by a factor smaller than 2δ: Var(F̂CS(y)) ≤ 2δ2/n.
This means that the variance reduction can be very substantial in the case where
the variables Y and Z are correlated.

3.2. Quantile estimation. Here we consider the problem of the estimation of
the α-quantile of Y , with α close to 1. From the previous results, we can propose
the estimator of the α-quantile of Y given by

ŶCS(α) = inf{y, F̂CS(y) > α},
where F̂CS(y) is the CS estimator of the cdf of Y . The estimator ŶCS(α) is asymp-
totically normal,

√
n
(
ŶCS(α) − yα

) n→∞−→ N (0, σ 2
CS),

σ 2
CS =

∑m
j=1

(αj−αj−1)
2

βj
[Pj (yα) − P 2

j (yα)]
p2(yα)

.

If Z and Y are positively correlated, then it is profitable to allocate more points in
the cdf tail of Z, so as to increase the number of potentially relevant realizations.

In the following we carry out numerical simulations on a toy example in which
n = 200 and α = 0.95. We apply the CS method with m = 4 strata described here
above (α1 = 0.5, α2 = 0.9, α3 = 0.95, Nj = n/4 for j = 1, . . . ,4). We under-
line that this example is very simple and the reduced model could certainly be
improved. In particular, a Gaussian process approach would provide a very good
approximation with a few tens of simulations (see Section 5). The reduced model
for this toy example has in fact been chosen so as to have approximately the same
quality (in terms of correlation coefficients ρ and ρI ) as the one we expect in
the case of the real example addressed in Section 5. Our first objective here is to
validate the CS strategy on this toy example for which we can check the CS esti-
mations in terms of bias and standard deviation. Our second objective is to show
that it can give good results with the parameters n = 200 and α = 0.95 even in
the case in which ρI is relatively small, which is the context of the real example
addressed in Section 5.

Toy example. 1D function. Let us consider the following configuration. X is
assumed to be a Gaussian r.v. with mean zero and variance one. The functions f

and fr are given by

fr(x) = x2, f (x) = 0.95x2[1 + 0.5 cos(10x) + 0.5 cos(20x)].(20)
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FIG. 1. (a): Pdf of Y = f (X) and Z = fr (X) for X ∼ N (0,1), obtained with 5107 Monte Carlo
simulations. (b): Estimation of the α-quantile of the r.v. Y = f (X) from a n-sample, with α = 95%
and n = 200. The three histograms are obtained from three series of 104 experiments. The theoretical
quantile is yα = 3.66. The mean of the 104 empirical estimations is 3.86 and their standard deviation
is 0.83. The mean of the 104 CV estimations is 3.74 and their standard deviation is 0.744. The mean
of the 104 CS estimations is 3.63 and their standard deviation is 0.381.

The quantiles of Z = fr(X) are given by zα = [�−1((1 + α)/2)]2, where � is
the cdf of the N (0,1)-distribution. The quantiles of Y are not known analytically,
as can be seen in the plot of the pdf of Y in Figure 1(a), obtained by a series
of 5 107 Monte Carlo simulations. By using these Monte Carlo simulations, we
have evaluated the theoretical 0.95-quantile of Y : y0.95 = 3.66, and the correlation
coefficient between Y and Z: ρ = 0.84. The efficiency of the CS method is related
to the value of the indicator correlation coefficient ρI , which can be computed
from the simulations and (11): ρI = 0.62. We compare the CS estimator with the
empirical estimator and the CV estimator of the α-quantile (Figure 1(b)). One can
observe that the quantile is poorly predicted by the empirical estimator, slightly
better predicted by the CV estimator, while the CS estimator seems more efficient.

3.3. Adaptive controlled stratification (ACS). We first show that there exists
an optimal choice for the allocation of the simulation points in the strata. Let us
consider the CS estimation of the cdf of Y as described in Section 3.1. Let us fix
y ∈ R. The CS estimator (16) of F(y) is asymptotically normal and its reduced
variance σ 2

CS is given by (18). In fact, if the rounding errors are neglected, σ 2
CS/n

is the variance of the CS estimator F̂CS(y) for any n by (17).
We note that, if we choose to allocate the simulation points proportionally in

the strata, that is, we choose βj = αj − αj−1, then the reduced variance of the
CS estimator is equivalent to the reduced variance of the PS estimator (15). The
important point is that this proportional allocation is not efficient, as we now show.

If the number m of strata is fixed, as well as the cutpoints (αj )j=0,...,m and the
total number n of simulations, then it is possible to choose the numbers of simula-
tions [βjn] per stratum so as to minimize the variance of the CS estimator. It is well
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known that an optimal allocation policy for standard stratification exists [Fishman
(1996), Glasserman, Heidelberger and Shahabuddin (1998)]. Here we show that
an optimal allocation policy exists for CS, in which the strata are determined by
the metamodel. By denoting qj = (αj −αj−1)

2[Pj (y)−P 2
j (y)], the minimization

problem

arg min
β

{
m∑

j=1

qj

βj

}
, with the constraints βj ≥ 0,

m∑
j=1

βj = 1

has the unique solution

β∗
j = q

1/2
j∑m

l=1 q
1/2
l

, j = 1, . . . ,m.

With this optimal choice the reduced variance of the CS estimator F̂CS(y) is

σ 2
OCS =

{
m∑

j=1

(αj − αj−1)[Pj (y) − P 2
j (y)]1/2

}2

.(21)

Note that the optimal allocation β∗
j depends on y in general, which means that it is

not possible to propose an allocation that is optimal for the estimation of the whole
cdf of Y . However, we can observe the following:

(1) If the control is weak, then Pj (y) depends weakly on y, and the optimal
allocation is then β∗

j = αj − αj−1.
(2) If the control is strong, then we should allocate more simulations in the

strata (zαj−1, zαj
] around F(y).

For instance, let us assume a very strong control, in the sense that Z = ψ(Y ) is
an increasing function of Y . Then

Pj (y) = P(Y ≤ y|Z ∈ (zαj−1, zαj
]) = P

(
Y ≤ y|Y ∈ (ψ−1(zαj−1),ψ

−1(zαj
)])

is equal to 1 if zαj
≤ ψ(y) [i.e., αj ≤ F(y)] and to 0 if zαj−1 > ψ(y) [i.e., αj−1 >

F(y)]. In these two cases, qj and the optimal β∗
j are zero, and all simulations

should be allocated in the stratum (zαj0−1, zαj0
], for which αj0−1 < F(y) ≤ αj0 .

Of course, the very strong control assumed here is not realistic, but this example
clearly illustrates the optimal allocation of simulations in the different strata.

We now know that there exists an optimal allocation of the n simulations in
the m strata. This allocation depends on the Pj (y), which are the quantities that
we want to estimate. We can therefore propose an adaptive procedure:

(1) First apply the CS method with ñ = nγ simulations, γ ∈ (0,1), and an a
priori choice of the βj . We then obtain a first estimation of the conditional proba-
bilities Pj (y):

P̃j (y) = 1

[βj ñ]
[βj ñ]∑
i=1

1
Y

(j)
i ≤y

.
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(2) Estimate the optimal allocation β∗
j by

β̃j = (αj − αj−1)[P̃j (y) − P̃j (y)2]1/2∑m
l=1(αl − αl−1)[P̃l(y) − P̃l(y)2]1/2

.

(3) Carry out the n − ñ last simulations by allocating the simulations in each
stratum in order to achieve the estimated optimal number [nβ̃j ] for all j .

(4) Estimate Pj (y) and F(y) by

P̂j (y) = 1

[β̃j n]
[β̃j n]∑
i=1

1
Y

(j)
i ≤y

, F̂ACS(y) =
m∑

j=1

P̂j (y)(αj − αj−1).

The ACS estimator is unbiased conditionally on β̃j > 0 for the j ’s such that
β∗

j > 0. The probability of the complementary event is of the order of exp(−cñ)

which can be usually neglected. The ACS estimator F̂ACS(y) is asymptotically
normal,

√
n
(
F̂ACS(y) − F(y)

) n→∞−→ N (0, σ 2
ACS),

(22)

σ 2
ACS =

{
m∑

j=1

(αj − αj−1)[Pj (y) − P 2
j (y)]1/2

}2

.

The expression of the reduced variance σ 2
ACS is the same as (21), which is the

one of the CS estimator with the optimal allocation β∗
j . The difference is that the

variance σ 2
ACS/n is only reached asymptotically as n → ∞ in the case of the ACS

estimator, while the variance is σ 2
OCS/n for all n in the case of the CS estimator

with the optimal allocation. Note that the convergence of the ACS estimator is
ensured whatever the choice of the positive a priori numbers βj . In practice, a good
a priori choice will speed up the convergence.

We now present an asymptotic analysis of the variance reduction for the CV,
PS, CS and ACS methods in the case of m = 2 strata.

In the PS method, or in the CS method if we choose the proportional allocation
βj = αj − αj−1, the reduced variance in (18) is

σ 2
PS = F(y)

(
1 − F(y)

)[1 − ρ2
I ],(23)

where ρI is the correlation coefficient between 1Y≤y and 1Z≤zα defined by (8). σ 2
PS

is also the reduced variance of the CV estimator (7). Hesterberg and Nelson (1998)
have already noticed that the PS and CV estimators are equivalent. In the ACS
method, the expression of the reduced variance σ 2

ACS in (22) is

σ 2
ACS = F(y)

(
1 − F(y)

)
K2,
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K = α

[
1 + ρI

(
(1 − α)(1 − F(y))

αF (y)

)1/2]1/2[
1 − ρI

(
(1 − α)F (y)

α(1 − F(y))

)1/2]1/2

+ (1 − α)

[
1 + ρI

(
αF(y)

(1 − α)(1 − F(y))

)1/2]1/2

×
[
1 − ρI

(
α(1 − F(y))

(1 − α)F (y)

)1/2]1/2

.

If we assume that the correlation coefficient ρI is small, then we get the following
expansion with respect to ρI :

σ 2
ACS = F(y)

(
1 − F(y)

)[
1 − ρ2

I

8F(y)(1 − F(y))
+ O(ρ3

I )

]
.(24)

These results show that the CV, PS, CS and ACS methods involve a variance re-
duction of the same order when the goal is to estimate the cdf around the median
F(y) ∼ 1/2. However, when the goal is to estimate the cdf tail F(y) ∼ 0 or 1, the
ACS method gives a larger variance reduction. Of course, the CS method with a
nearly optimal allocation policy gives the same performance as the ACS method,
but the implementation of this method requires some a priori information on the
correlation between Y and Z to guess the correct allocation, while the ACS method
finds it.

The expressions that we have just derived also give indications for the choice
of the cutpoint α. Indeed, the variance reduction is all the larger as the correlation
coefficient ρI is larger. For instance, if we assume that Z = ψ(Y ) is an increasing
function of Y , which models a very strong control, then one finds

ρI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
α(1 − F(y))

(1 − α)F (y)

]1/2

, if zα < ψ(y),[
(1 − α)F (y)

α(1 − F(y))

]1/2

, if zα ≥ ψ(y).

As a function of α, this function is maximal when α = F(y). This shows that, if
the goal is to estimate the cdf of Y around some y, then it is interesting to choose
α = F(y).

We can also revisit the asymptotic analysis of the variance reduction for the CV,
PS, CS and ACS methods in the case of a large number m of strata. In the PS
method and in the CS method with the proportional allocation βj = αj − αj−1,
the reduced variance is (18). If the conditional probability P(Y ≤ y|Z) has a con-
tinuous density g∗ with respect to the Lebesgue measure, then (18) is a Riemann
sum that has the following limit as m → ∞:

σ 2
PS = E[P(Y ≤ y|Z) − P(Y ≤ y|Z)2] = F(y) − E[P(Y ≤ y|Z)2].
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This is actually the reduced variance of the optimal CV estimator, when the optimal
control function g∗ defined by (12) is used. In the ACS method, the expression of
the reduced variance σ 2

ACS is (22), which has the following limit as m → ∞:

σ 2
ACS = E

[(
P(Y ≤ y|Z) − P(Y ≤ y|Z)2)1/2]2

.

The Cauchy–Schwarz inequality clearly shows that the variance reduction is larger
for the ACS method than for the optimal CV method using the optimal control
function g∗.

Whatever the value of m ≥ 2, we can also use the Cauchy–Schwarz inequality
to check that the reduced variance for the PS method (or for the CS method with
the proportional allocation)

σ 2
PS =

m∑
j=1

(αj − αj−1)[Pj (y) − P 2
j (y)]

is always larger than the reduced variance (22) for the ACS method.
Finally, it is relevant to estimate the additional computational cost of controlled

stratification compared to empirical estimation. It is of the order of (Nr − n)TX +
NrTfr , where Nr is the number of evaluations of fr and X, TX is the computa-
tional time for the generation of a realization of the input r.v. X, and Tfr is the
computational time for the call of the function fr . For the CS method with the
allocation βj , we have

E[Nr ] = n

m∑
j=1

βj

αj − αj−1
≤ n

minj (αj − αj−1)
,

where the last inequality holds uniformly in β . Besides, Nr has fluctuations of
the order of

√
n. The same estimate holds true for the ACS method. In the real

example we have in mind (in which the computational time for the function f is
20 minutes), this additional cost is negligible.

3.4. Quantile estimation by adaptive controlled stratification. In this section
we use the ACS strategy to estimate the α-quantile of Y , with α close to 1. We
propose the following procedure:

(1) First apply the CS method with ñ = nγ simulations, γ ∈ (0,1), and with an
a priori allocation policy βj , so that a first estimate of the conditional probabilities
Pj (y) can be obtained:

P̃j (y) = 1

[βj ñ]
[βj ñ]∑
i=1

1
Y

(j)
i ≤y

.

The corresponding estimators of the cdf and the α-quantile of Y are

F̃ (y) =
m∑

j=1

(αj − αj−1)P̃j (y), Ỹα = inf{y, F̃ (y) > α}.
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(2) Estimate the optimal allocation β∗
j for the estimated α-quantile Ỹα by

β̃j = (αj − αj−1)[P̃j (Ỹα) − P̃j (Ỹα)2]1/2∑m
l=1(αl − αl−1)[P̃l(Ỹα) − P̃l(Ỹα)2]1/2

.(25)

(3) Carry out the n − ñ final simulations by allocating the simulations in each
stratum in order to achieve the estimated optimal number [β̃j n].

(4) Estimate Pj (y) and F(y) by

P̂j (y) = 1

[β̃j n]
[β̃j n]∑
i=1

1
Y

(j)
i ≤y

, F̂ACS(y) =
m∑

j=1

P̂j (y)(αj − αj−1).

The ACS estimator of the α-quantile yα is

ŶACS(α) = inf{y, F̂ACS(y) > α}.
The estimator ŶACS(α) is asymptotically normal,

√
n
(
ŶACS(α) − yα

) n→∞−→ N (0, σ 2
ACS),

σ 2
ACS = {∑m

j=1(αj − αj−1)[Pj (yα) − P 2
j (yα)]1/2}2

p2(yα)
.

To summarize, we have found the following expressions of the reduced variance
for the different methods:

• for the empirical estimator,

σ 2
EE = α(1 − α)

p2(yα)
.

• for the PS estimator or for the CV estimator with the proportional allocation
βj = αj − αj−1 [see (10)],

σ 2
PS = α(1 − α)

p2(yα)
× (1 − ρ2

I ).

• for the ACS estimator with two strata separated by α

σ 2
ACS = α(1 − α)

p2(yα)
×

(
1 − ρ2

I

8α(1 − α)
+ O(ρ3

I )

)
.

Here ρI is the correlation coefficient between 1Y≤yα and 1Z≤zα given by (11). This
shows that the CV, PS, CS and ACS methods give variance reductions of the same
order when the goal is to estimate quantiles close to the median α ∼ 1/2. However,
when the goal is to estimate large quantiles α ∼ 0 or 1, the ACS method is much
more efficient.
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3.5. Simulations. We now present a series of numerical simulations that il-
lustrate the theoretical results presented in this paper. These examples are simple
and they are used to validate the ACS method when n = 200, α = 0.95 and the
reduced model has poor quality (i.e., ρI is small). We will address in Section 5 a
real example in which these conditions hold.

Toy example. 1D function. Let us revisit the toy example based on the 1D
function (20) and look for the α-quantile of Y with α = 95%. We compare the
performances of the empirical estimator (2), the CV estimator (9) with the control
variate Z, and the ACS estimator. The ACS method is first implemented with two
strata [0, α1] and (α1,1] with the cutpoint α1 = α. We use ñ = 2n/10 simulations
for the estimation (25) of the optimal allocation, with n/10 simulations in each
stratum. The results extracted from a series of 10000 simulations are summarized
in Table 1. Note that the ACS method allocates 85% of the simulations in the
stratum [0,0.95], and 15% in the stratum (0.95,1]. This shows that we deal with
a configuration where the number of simulations in the stratum (0.95,1] has to be
increased compared to the expected value in the case where there is no control,
where only 5% of the simulations should be allocated in the stratum (0.95,1].

We have also implemented the ACS method with 3 strata [0, α1], (α1, α2],
(α2,1], with cutpoints α1 = 0.85 and α2 = 0.95. We use 3n/10 simulations for
the evaluation (25) of the optimal allocation, with n/10 simulations in each of the
three strata. The results extracted from a series of 10000 simulations are presented
in Table 1. The variance reduction for the ACS method with three strata is very im-
portant. The standard deviation of the ACS estimator is 3 times smaller compared
to the empirical estimator of the CV estimator. Note that the optimal allocation
should attribute a fraction β1 < 0.1 to the first stratum, but the number 0.1 cannot
be lowered due to the fact that n/10 simulations in the first stratum [0, α1] were
already used in the first step of the estimation.

TABLE 1
Estimation of the α-quantile with α = 0.95, n = 2000, yα = 3.66

Method Quantity Mean Standard deviation

Empirical estimation ŶEE(α) 3.66 0.33

CV estimation ŶCV(α) 3.65 0.29

ACS method with 2 strata β̃1 0.86 0.02
[0,0.95], (0.95,1] ŶACS(α) 3.65 0.28

ACS method with 3 strata β̃1 0.10 0.02
[0,0.85], (0.85,0.95], (0.95,1] β̃2 0.58 0.02

β̃3 0.32 0.01
ŶACS(α) 3.65 0.12
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TABLE 2
Estimation of the α-quantile with α = 0.95, n = 200, yα = 3.66

Method Quantity Mean Standard deviation

Empirical estimation ŶEE(α) 3.88 0.83

CV estimation ŶCV(α) 3.73 0.74

ACS method with 3 strata β̃1 0.14 0.16
[0,0.85], (0.85,0.95], (0.95,1] β̃2 0.55 0.11

β̃3 0.31 0.06
ŶACS(α) 3.62 0.38

The previous simulations were carried out with the sample size n = 2000. In
such a case, the ACS method is robust, in the sense that the choice of the number ñ

of simulations devoted to the estimation of the optimal allocation is not critical.
When n is smaller, such as n = 200, then the choice of ñ becomes critical: if ñ

is too small, then the estimation of the optimal allocation may fail during the first
step of the ACS method; if ñ is too large, then n − ñ may be too small and it may
be impossible to allocate the estimated optimal number of simulations to each
stratum during the second step of the ACS method. We have applied the ACS
method with n = 200 to the example 1, and it turns out that the ACS method with
ñ = n/10 is still efficient. However, we cannot claim that this will be the case
for all applications. The results obtained from a series of 10000 simulations are
summarized in Table 2. The standard deviations of the estimations of the βj ’s are
much larger than in the case n = 2000, but the quality of the estimation of the
optimal allocation is just good enough to allow for a significant variance reduction
for the quantile estimation. The standard deviation of the ACS estimator is here 2
times smaller compared to the empirical estimator or the CV estimator. If n = 100,
then the ACS method fails (in the sense that some simulations give β̃1 = 0), and
the CS method with an allocation of the simulation points prescribed by the user
should be chosen.

4. Quantile estimation with Controlled Importance Sampling (CIS). We
consider the same problem as in the previous sections. In this section we show that
the reduced model can be used to help design a biased distribution of the input
r.v. X in order to implement an efficient importance sampling (IS) strategy. The
standard IS method consists in simulating the n-sample of the r.v. X according to
a biased distribution, and to multiply the output by a likelihood ratio to recover an
unbiased estimator. In the case in which the biased distribution favors the occur-
rence of the event of importance, the variance of the estimator can be drastically
reduced compared to the standard empirical Monte Carlo estimator. Adaptive ver-
sions of the IS procedure have been proposed and studied, whose principle is to
estimate first a “good” biased distribution that is to say, a distribution that properly
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favors the occurrence of the event of importance, before using this biased distribu-
tion as in the standard IS estimation. We will propose an estimator of the cdf of Y

first, then an estimator of the α-quantile of Y , by a controlled importance sam-
pling (CIS) procedure. In this procedure, the reduced model fr and the associated
r.v. Z = fr(X) are used to determine the biased distribution, while the complete
model f is used to perform the estimation.

4.1. Estimation of the distribution function. An IS estimator of the cdf of Y =
f (X) is

F̂IS(y) = 1

n

n∑
i=1

1f (Xi)≤y

qori(Xi)

q(Xi)
, Xi ∼ q,(26)

where qori is the original pdf of X and q is the biased pdf chosen by the user. In
practice, it can be useful to use a variant in which the denominator n in (26) is re-
placed by

∑n
i=1 qori(Xi)/q(Xi), in order to enforce F̂IS(y) → 1 as y → ∞. Other

alternatives can be found in Hesterberg (1995). The estimator F̂IS(y) converges
almost surely to F(y) when n → ∞. In fact, the estimator F̂IS(y) is unbiased as
soon as the support of the original pdf qori is included in the support of the biased
pdf q . The variance of (26) is given by

Var[F̂IS(y)] = 1

n

(∫ 1f (x)≤yqori(x)2

q(x)
dx − F(y)2

)
.(27)

The IS can involve a dramatic variance reduction compared to the standard em-
pirical estimator if the biased pdf q is properly chosen. The variance of F̂IS(y)

is minimal [Rubinstein (1981)] when the biased pdf is taken to be equal to the
optimal pdf defined by

q∗(x) = 1f (x)≤yqori(x)∫
1f (x′)≤yqori(x′) dx′ .(28)

This result cannot be directly used to perform the simulations because the nor-
malizing constant of the optimal pdf is the quantity that is sought. However, this
remark gives the basis of an adaptive procedure where the optimal density is esti-
mated.

The parametric approach for the adaptive IS approach is the following one. We
first choose a family of pdfs Q = {qγ ;γ ∈ 
} and we then try to estimate the
parameter γ . In this section we assume that the family of pdfs Q is parameterized
by the first two moments: γ = (λ,C) :λ ∈ R

d is the expectation and C ∈ Md(R)

is the covariance matrix of X when the pdf of X is qγ .
The strategy to determine the best biased density in the family Q is based on

the following remark. The theoretical optimal density is q∗ and it is given by (28).
The expectation and covariance matrix of the random vector X under q∗ are

λ∗ =
∫

x1f (x)≤yqori(x) dx∫
1f (x)≤yqori(x) dx

and C∗ =
∫

xxt1f (x)≤yqori(x) dx∫
1f (x)≤yqori(x) dx

− λ∗λ∗t
.(29)
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The idea is to choose in the family Q the pdf qγ which has expectation λ∗ and
covariance matrix C∗, that is to say, we choose the pdf qγ ∗ with γ ∗ = (λ∗,C∗).

The problem is now reduced to the estimation of λ∗ and C∗. If we assume that
the reduced model is so cheap that we can use as many simulations based on fr as
desired, then we can estimate λ∗ and C∗ by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ̂ =
∑ñ

i=1 Xi1Zi≤yqori(Xi)/q0(Xi)∑ñ
i=1 1Zi≤yqori(Xi)/q0(Xi)

,

Ĉ =
∑ñ

i=1 XiX
t
i1Zi≤yqori(Xi)/q0(Xi)∑ñ

i=1 1Zi≤yqori(Xi)/q0(Xi)
− λ̂λ̂t ,

Xi ∼ q0,(30)

where q0 is an a priori pdf chosen by the user. If no a priori information is avail-
able, then the choice q0 = qori is natural. The estimators λ̂ and Ĉ are well defined
on

⋃ñ
i=1{Zi ≤ y}. For completeness, we can set λ̂ = 0 and Ĉ = Id on the com-

plementary event, whose probability is of the form exp(−cñ). As ñ → ∞, the
estimators λ̂ and Ĉ converge almost surely to

λ∗
r =

∫
x1fr (x)≤yqori(x) dx∫
1fr (x)≤yqori(x) dx

and C∗
r =

∫
xxt1fr (x)≤yqori(x) dx∫

1fr (x)≤yqori(x) dx
− λ∗

r λ
∗
r
t
,

which are close to λ∗ and C∗ if fr is a good enough reduced model. The variance
of the CIS estimator of F(y) using the biased pdf determined by the metamodel
is (27) with q = qγ ∗

r
, γ ∗

r = (λ∗
r ,C

∗
r ). F̂CIS is asymptotically normal,

√
n
(
F̂CIS(y) − F(y)

) n→∞−→ N (0, σ 2
CIS),

σ 2
CIS =

∫ 1f (x)≤yqori(x)2

qγ ∗
r
(x)

dx − F(y)2.

Note that the selected biased pdf depends on y. Indeed, it is not possible to
propose a biased pdf that is efficient for all values of y. This is not surprising,
since the principle of the IS method is to favor the realizations that probe a specific
region of the state space that is important for the target function whose expectation
is sought (here, x �→ 1f (x)≤y ).

4.2. Quantile estimation. In this subsection we look for the α-quantile of Y .
The CIS strategy consists in determining a biased pdf that is efficient for the esti-
mation of the expectation

E[1fr (X)≤zα ] =
∫

1fr (x)≤zαqori(x) dx = α,(31)

where fr is the reduced model and zα is the α-quantile of Z, which is assumed to
be known. The determination of a biased pdf q that minimizes the IS estimator of
the quantity (31) will give a pdf that probes the important regions for the estimation
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of the α-quantile of Z, and also of the α-quantile of Y if the reduced model is
correlated to the complete computer model.

As in the previous subsection, we will look for the biased pdf in a family Q
of pdfs qγ parameterized by the first two moments γ = (λ,C). By using only the
reduced model, we estimate the parameter γ with the estimator (30) with y = zα .
Next we apply the IS estimator (26) of the cdf of Y by using the complete model
and the biased density qγ̂ , γ̂ = (λ̂, Ĉ). Finally, the estimator of the α-quantile is

ŶCIS(α) = inf{y, F̂IS(y) > α}. It is asymptotically normal,
√

n
(
ŶCIS(α) − yα

) n→∞−→ N (0, σ 2
CIS),

σ 2
CIS = 1

p2(yα)

(∫ 1f (x)≤yαqori(x)2

qγ ∗
r
(x)

dx − α2
)
.

In the case where the reduced model is not so cheap, adaptive IS strategies can
be used with the reduced model to estimate the parameters of the biased density
[Oh and Berger (1992)]: roughly speaking, at generation k, the parameter γk is
estimated by using a standard IS strategy using the biased pdf γk−1 obtained during
the computations of the previous generation.

4.3. Simulations. Let us consider the case where X = (X1,X2) is a random
vector with independent Gaussian entries with zero mean and variance one. The
functions f and fr are given by

fr(x) = |x1|x1 + x2,(32)

f (x) = 0.95|x1|x1[1 + 0.5 cos(10x1) + 0.5 cos(20x1)]
(33)

+ 0.7x2[1 + 0.4 cos(x2) + 0.3 cos(14x2)].
The pdf of Y = f (X) and Z = fr(X) are plotted in Figure 2(a). By using Monte
Carlo simulations, we have evaluated the correlation coefficient between Y and
Z: ρ = 0.90. From (11), we have also evaluated the indicator correlation co-
efficient: ρI = 0.64. The empirical estimator and the CIS estimator of the α-
quantile of Y are compared in Figure 2(b). The family Q consists of the set of
two-dimensional Gaussian pdfs parameterized by their means and covariance ma-
trices. The comparison is also made with the CV estimator and the CS estimator
and it appears that the variance of the CIS estimator is significantly smaller than
the one of the other estimators.

CIS is the best strategy in this example. However, CIS (in the present version)
is successful only when one unique important region exists in the state space. For
instance, in the case of the 1D function treated in the previous sections (where there
are two equally important regions far away from each other due to the parity of the
function f ), the CIS strategy fails in the sense that the algorithm to determine the
biased pdf does not converge. The use of mixed pdf models should be considered
to overcome this limitation and will be the subject of further research.
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FIG. 2. (a): Pdf of Y = f (X1,X2) and Z = fr (X1,X2) for X1,X2 ∼ N (0,1). (b): Estimation of
the α-quantile of Y from a n-sample, with α = 0.95 and n = 200. The four histograms are obtained
from four series of 5000 experiments. The mean of the empirical estimations is 2.83 and their stan-
dard deviation is 0.52. The mean of the CV estimations is 2.74 and their standard deviation is 0.38.
The mean of the CS estimations is 2.71 and their standard deviation is 0.25. The mean of the CIS
estimations is 2.77 and their standard deviation is 0.21. The theoretical quantile (obtained from a
series of 5 107 simulations) is yα 
 2.75.

5. Application to a nuclear safety problem. In this section we apply the
controlled stratification and controlled importance sampling methodologies on a
complex computer model used for nuclear reactor safety. It simulates a hypo-
thetic thermal-hydraulic scenario: a large-break loss of coolant accident for which
the quantity of interest is the peak cladding temperature. This scenario is part of
the Benchmark for Uncertainty Analysis in Best-Estimate Modeling for Design,
Operation and Safety Analysis of Light Water Reactors [Petruzzi et al. (2004)]
proposed by the Nuclear Energy Agency of the Organisation for Economic Co-
operation and Development (OCDE/NEA). It has been implemented on the com-
puter code Cathare of the Commissariat à l’Energie Atomique (CEA). In this
exercise the 0.95-quantile of the peak cladding temperature has to be estimated
with less than 250 computations of the computer model. The CPU time is twenty
minutes for each simulation. The complexity of the computer model lies in the
high-dimensional input space: 53 random input parameters (physical laws essen-
tially, but also initial conditions, material properties and geometrical modeling) are
considered, with normal and log-normal distributions. This number is rather large
for the metamodel construction problem.

Screening and linear regression strategy. To simplify the problem, we ap-
ply first a screening technique, based on a supersaturated design [Lin (1993)]
with 30 numerical experiments. This leads to the determination of the five most
influential input parameters (UO2 conductivity X19, film boiling heat transfer co-
efficient X44, axial peaking factor X9, critical heat flux X42 and UO2 specific
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heat X20). Then a stepwise regression procedure has been applied on the 30 exper-
iments to obtain five additional input parameters and a linear regression procedure
allows us to obtain a coarse linear metamodel of degree one:

fr(X) = 660.3 − 61.79X2 + 6.141X6 + 589.9X9 + 80.82X11 − 404.5X19

+ 264.2X20 − 27.06X35 + 6.161X37 − 255.7X42 − 31.99X44.

Note that the present strategy for the metamodel construction is relatively basic
and not devoted to maximize ρI . Other strategies based on L1 penalization tech-
niques such as Lasso (least absolute shrinkage and selection operator) could be
considered to fit the regression model [Tibshirani (1996), Hastie, Tibshirani and
Friedman (2001)].

Controlled stratification. A first test with controlled stratification with 200
simulations was performed, which gave the following quantile estimation: 928◦C
with a bootstrap-estimated standard deviation of 7◦C, while the quantile estimation
from the metamodel is 932◦C. A second test with controlled stratification with 200
simulations was performed, which gave the following quantile estimation: 929◦C
with a bootstrap-estimated standard deviation of 10◦C.

Controlled importance sampling. A biased distribution for the 10 important
parameters of the metamodel has been obtained as follows. The original distribu-
tions of these independent parameters are normal or log-normal. We have consid-
ered a parametric family of biased pdfs with the same forms as the original ones,
and we have selected their means and variances by (30) with y = zα and q0 equals
to the original pdf. A first test with controlled importance sampling with 200 simu-
lations was performed, which gave the following quantile estimation: 929◦C with
a bootstrap-estimated standard deviation of 10◦C, while the quantile estimation
from the metamodel is 932◦C. A second test with controlled importance sampling
with 200 simulations was performed, which gave the following quantile estima-
tion: 924◦C with a bootstrap-estimated standard deviation of 8◦C.

Empirical estimation. A test sample of 1000 additional computations (with
input parameters chosen randomly) was then carried out. We have first used this
random sample to check the quality of the metamodel. We have found that ρ =
0.66, R2 = 0.09 and ρI = 0.54, which shows that the metamodel has poor quality
(as it could have been expected). We also used the random sample to get empirical
estimations of the quantile. For the full sample n = 1000 the empirical quantile
estimation is 928◦C with a standard deviation of 6◦C. For n = 200 the empirical
quantile estimation is 926◦C with a standard deviation of 12◦C. It thus appears
that the controlled stratification estimator and the controlled importance sampling
estimator performed with 230 simulations (30 for the screening and 200 for the
controlled estimation) have better performances than the empirical estimator with
200 simulations, and have performances close to the empirical estimator with 1000
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simulations. This shows that controlled stratification and controlled importance
sampling can be used to substantially reduce the variance of quantile estimation,
in the case in which a small number of simulations is allowed but a reduced cheap
model is available, even if this reduced model has poor quality.

Gaussian process (Gp) strategies. In order to compare our approach (crude
initial screening step before controlled stratification step) to a strategy including
a more involved metamodel construction step, we propose to show some results
obtained with a Gp approach [Sacks et al. (1989), Schonlau and Welch (2005)].

• First, we perform a numerical experimental design of 200 Cathare code simu-
lations. We choose a maximin Latin hypercube sampling design, well adapted
to the Gp model construction [Fang, Li and Sudjianto (2006)]. This difficult
fit (due to the high dimensionality and small database) can be realized thanks
to the algorithm of Marrel et al. (2008), specifically devoted to this situation.
The obtained Gp model contains a linear regression part (including 15 input
variables) and a generalized exponential covariance part (including 7 input vari-
ables). We use the test sample of 1000 additional computations to check the
predictor quality of this new metamodel: ρ = 0.84, R2 = 0.70 and ρI = 0.73.
As expected, the quality of this Gp model is much higher than the crude one.
However, a brute-force Monte Carlo estimation (with 106 computations) of the
0.95-quantile using the predictor of this metamodel gives 917◦C, which under-
estimates the “true” quantile (928◦C). A better strategy, which could be applied
in a future work, would be to choose sequentially the specific design points to
improve the Gp fit around the quantile, as in Oakley (2004).

• As a second comparison, we propose to perform the controlled stratification
process with the predictor of a Gp model. We fit a Gp model with a smaller
number of runs than the previous one, keeping other runs for the controlled strat-
ification step. We choose a maximin Latin hypercube sampling design with 100
design points. Below this sampling size, Gp fitting becomes unfeasible because
of the large dimensionality of our problem (53 input variables). The obtained Gp
model contains a linear regression part (including 7 input variables) and a gen-
eralized exponential covariance part (including 6 input variables). The quality
of this Gp model is measured via the test sample and gives ρ = 0.82, R2 = 0.66
and ρI = 0.37. The Gp predictivity is rather good but, compared to the pre-
vious one, the ρI value shows a strong deterioration around the 0.95-quantile
(the Gp model 0.95-quantile is 912◦C). Using the predictor of this Gp model,
the controlled stratification with 200 simulations gives the following quantile
estimation: 917◦C with a standard deviation of 9◦C. This relatively poor and bi-
ased result confirms the importance of ρI in the controlled stratification process:
quantile estimation with a coarse metamodel (linear model of degree one with
R2 = 0.09), but adequate near the quantile region, gives better results than quan-
tile estimation with a refined metamodel (Gp model with R2 = 0.66), but inad-
equate near the quantile region.
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TABLE 3
Estimation of the 0.95-quantile for the nuclear safety problem. Gp(100) [resp., Gp(200)] is the Gp
model estimated from 100 (resp., 200) design points. Mm(30) is the metamodel fr estimated from

30 numerical experiments

Method Quantile Standard deviation
estimation estimated by bootstrap

EE from code (n = 1000) 928 6
EE from code (n = 200) 926 12

EE from Mm(30) (n = 106) 932 ∼ 0
EE from Gp(100) (n = 106) 912 ∼ 0
EE from Gp(200) (n = 106) 917 ∼ 0

CS with Mm(30) test 1 (n = 200) 928 7
CS with Mm(30) test 2 (n = 200) 929 10

CS with Gp(100) (n = 200) 917 9

CIS test 1 (n = 200) 929 10
CIS test 2 (n = 200) 924 8

Table 3 summarizes all the results we have shown in this section. Other experi-
ments, that will be shown in a future paper, have been made to compare different
choices about the strata (number and locations).

6. Conclusion. In this paper we have proposed and discussed variance reduc-
tion techniques for estimating the α-quantile of a real-valued r.v. Y in the case in
which:

• the r.v. Y = f (X) is the output of a CPU time expensive computer code with
random input X,

• the auxiliary r.v. Z = fr(X) can be used at essentially free cost, where fr is a
metamodel that is a coarse approximation of f .

Our goal was to exploit the metamodel to obtain better control variates, stratifica-
tion or importance sampling than could be obtained without it.

First, we have presented already known variance reduction techniques based
on the use of Z as a control variate (CV). The CV methods allow a variance
reduction of the quantile estimator by associating to each of the n simulations
Yi = f (Xi) weights that depend on Zi = fr(Xi). In the CV methods, n realiza-
tions (Xi)i=1,...,n are generated and the corresponding n outputs f (Xi) and fr(Xi)

are computed.
Second, we have developed an original controlled stratification (CS) method,

that consists in accepting/rejecting the realizations of the input X based on the val-
ues of fr(X). A large number of realizations of the input X and a large number of
evaluations of fr are used, compared to the CV methods, but the number of eval-
uations of the complete model f is fixed. In the adaptive controlled stratification
(ACS) method, the realizations of the random input Xi are sampled in strata deter-
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mined by the reduced model fr , and the number of simulations allocated to each
stratum is optimized dynamically. The variance reduction can be very substantial.
By a theoretical analysis of the asymptotic variance of the estimator and by nu-
merical simulations, we have found that, if n is large enough, the ACS method is
the most efficient one. Note that the a priori choice of the parameters for the CS
and ACS strategies (choice of ñ, m and βj ) plays no role in the asymptotic regime
n → ∞. However, for n = 200, for instance, it plays a primary role. In this paper a
toy example with a metamodel that has the same quality (in terms of correlation co-
efficients) as the one we have in the real example has been used to validate the para-
meters of the CS strategy. For the time being, we have the feeling that it is the only
reasonable strategy when n is not large enough to apply the asymptotic results.

Third, a controlled importance sampling (CIS) strategy has been analyzed,
where the biased pdf for the CIS estimator is estimated by intensive simulations us-
ing only the reduced model. The variance reduction can be significant. However,
an important condition in the present version is that only one important region
exists in the state space. The use of mixed pdf models should be considered to
overcome this limitation.

The methods presented in this paper suppose the availability of a reduced model
or a metamodel. If it is not available, then the construction of a metamodel us-
ing linear regression strategies or Gaussian process strategies or L1-penalization
strategies is necessary. However, it seems to be sufficient to have a crude approx-
imation of the computer model. In industrial practice, it is often the case due to
the nonlinear effects, the high dimensionality of the inputs and the limited num-
bers of computer experiments [Fang, Li and Sudjianto (2006), Volkova, Iooss and
Van Dorpe (2008)]. We can note also that a great advantage of these methods is
that it is very easy to carry out the simulations on a parallel computer, with as
many nodes as calls of the complex code f . One possible investigative way to
improve our quantile estimation strategies for the applications would be to opti-
mize the number of runs devoted to the metamodel construction and the number of
runs devoted to the quantile estimation. Furthermore, the computer runs of the first
step of the ACS method can also serve to update the metamodel; then this refined
metamodel can be used in the second step. A further improvement would be to
update the metamodel fr as one obtains more values of f (at least occasionally)
during the second step. However, this strategy goes against the parallelization of
the method and one should be cautious and conservative in order to avoid bias, but
it is certainly an interesting direction of research.

The different tests performed on our industrial application have shown that the
metamodel quality has to be sufficient near the quantile region. The quality cri-
terion ρI has been identified as a good measure of the potential performance of
the controlled stratification process. Another quantile estimation technique, the se-
quential construction of a Gaussian process model [Oakley (2004), Ranjan, Bing-
ham and Michailidis (2008)], is devoted to optimizing the metamodel construction
near the quantile region. As a perspective of our work, we will try to apply this
technique to our high-dimensional application.
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