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NONPARAMETRIC SPECTRAL ANALYSIS WITH APPLICATIONS
TO SEIZURE CHARACTERIZATION USING EEG TIME SERIES
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Understanding the seizure initiation process and its propagation pat-
tern(s) is a critical task in epilepsy research. Characteristics of the pre-
seizure electroencephalograms (EEGs) such as oscillating powers and high-
frequency activities are believed to be indicative of the seizure onset and
spread patterns. In this article, we analyze epileptic EEG time series using
nonparametric spectral estimation methods to extract information on seizure-
specific power and characteristic frequency [or frequency band(s)]. Because
the EEGs may become nonstationary before seizure events, we develop meth-
ods for both stationary and local stationary processes. Based on penalized
Whittle likelihood, we propose a direct generalized maximum likelihood
(GML) and generalized approximate cross-validation (GACV) methods to es-
timate smoothing parameters in both smoothing spline spectrum estimation
of a stationary process and smoothing spline ANOVA time-varying spectrum
estimation of a locally stationary process. We also propose permutation meth-
ods to test if a locally stationary process is stationary. Extensive simulations
indicate that the proposed direct methods, especially the direct GML, are sta-
ble and perform better than other existing methods. We apply the proposed
methods to the intracranial electroencephalograms (IEEGs) of an epileptic
patient to gain insights into the seizure generation process.

1. Introduction. Roughly 1% of the population in developed nations suffers
from epilepsy. Of these about 30% have medically refractory epilepsy, where the
most devastating feature is seizure. The only hope for relieving these patients from
the disabling seizures is resective surgery, while the surgical success rate varies
between less than 25% to 70% depending on how well the seizure initiation zone
could be removed or the seizure propagation path could be disconnected [Schiller,
Cascino and Sharbrough (1998)]. Therefore, a better understanding of the seizure
initiation process and its propagation patterns is crucial to the success of a surgery.
Epileptic patients usually undergo presurgical evaluations where they are moni-
tored over time with EEGs recorded by electrodes placed at different locations of
the brain called channels. The locations of the EEG channels are believed to give
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the best coverage of the epileptogenic zone, determined by the neurosurgeons.
While EEGs from 128 or 256 channels are recorded, only a few of them cover
the origin or critical path of the seizure generation. Therefore, the identification
of the seizure focus and its spread patterns would improve clinical judgement on
where to resect that would render the patients seizure free. Characteristics of the
pre-seizure (“pre-ictal”) EEGs including oscillating powers and high-frequency
activities are believed to be indicative of the seizure onset and spread patterns.
They behave differently from those characteristics of the baseline (“inter-ictal”)
EEGs [Winterhalder et al. (2003)].

Spectral analysis of EEG time series plays a central role in epilepsy research.
Due to the large heterogeneity in pathology between patients, seizure-specific char-
acterization has to be initially performed within each subject. Identifying seizure-
specific power changes and seizure-characteristic frequency band(s) is a key step
of this endeavor and the main focus of this paper. Methods proposed in this paper
provide a systematic tool for this key step. As shown in the simulations, the pro-
posed direct GML and GACV methods are more robust and efficient than existing
methods.

Spectral analysis is an important field in time series analysis [Brillinger (1981),
Shumway (2000)]. The spectrum is often used to describe the power distribu-
tion and stochastic variation of a time series. For stationary time series, harmonic
trends and power evolution can be explained by the spectrum at different frequen-
cies. It is well known that stationarity does not always hold for EEG time series
[Lopes da Silva (1978)]. Locally stationary processes have been proposed to ap-
proximate the nonstationary time series [Dahlhaus (1997), Ombao et al. (2002),
Guo et al. (2003)]. The time-varying spectrum of a locally stationary time series
characterizes changes of the stochastic variation over time that may reflect impor-
tant patterns of biological activity. In particular, our spectral analysis of the EEGs
can be used to aid the clinical judgement in two ways: first, due to the one-to-one
correspondence between the spectrum and the variance of the EEG time series,
changes in brain power before, during and after a seizure can be characterized by
the estimated time-varying spectra of the pre-ictal and inter-ictal EEGs; second
and more importantly, from a signal processing point of view, the phase infor-
mation between two or more channels reveals whether the signals are synchro-
nized, and at what frequencies (or frequency bands) if they are. This information
provides an important marker of seizure initiation and localization [Mormann et
al. (2003)]. By comparing the pre-seizure time-varying spectrum with that of the
baseline (seizure-free) segments within a channel, the channel-specific seizure-
characteristic frequencies can be identified (if such characteristics exist). If the
seizure-specific frequency band(s) in one channel overlaps with that in another
channel, then there will likely be the signal coupling between the two locations.
Resecting either of the location would help to reduce surgical failure. However if
the frequency band(s) do not overlap, then there may be across-frequency interac-
tions that associated with the seizure propagation patterns [Mormann et al. (2000)].



1434 L. QIN AND Y. WANG

FIG. 1. IEEG segments from two channels of an epileptic patient. The upper panels show 5 minute
preseizure segments with the seizure’s onset at the 5th minute. The lower panels show 5 minute
baseline segments collected hours away from the seizure. The sampling rate is 200 Hertz. The total
number of time points is 60,000 for each segment.

As in most epileptic EEG studies, we analyze the intracranial EEGs (IEEGs)
as the recordings have less artifacts. Figure 1 shows 5-minute IEEG segments
from a patient with medicine-resistant mesial temporal lobe epilepsy right before
a seizure’s clinical onset (upper panel) and at baseline (lower panel) extracted at
least four hours before the seizure’s onset. The data were collected by the EEG Lab
of University of Pennsylvania [D’Alessandro et al. (2001)]. It is visually unclear
what the seizure-specific frequency band and its time-varying patterns are for both
channels. We will describe analyses of this data in Section 5.

It is well known that the periodograms is an unbiased, but not consistent, es-
timator of the spectrum. Therefore, periodogram smoothing is a popular tool
for nonparametric spectra estimation. Smoothing techniques including kernel
smoother [Lee (1997), Ombao et al. (2001), Hannig and Lee (2004)], smooth-
ing spline [Wahba (1980), Pawitan and O’Sullivan (1994), Guo et al. (2003)], re-
gression spline [Kooperberg, Stone and Truong (1995)], local polynomial [Fan
and Kreutzberger (1998)] and wavelet [Gao (1997)] have been applied to ob-
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tain consistent estimators. One may smooth periodograms directly [Lee (1997),
Ombao et al. (2001), Hannig and Lee (2004)], smooth logarithmic periodograms
[Wahba (1980), Guo et al. (2003)], or use Whittle likelihood [Pawitan and
O’Sullivan (1994), Guo et al. (2003)]. In this paper, we consider smoothing spline
estimation based on the Whittle likelihood.

It is well-recognized that the choice of smoothing parameters is crucial to the
performance of the smoothing methods. Many methods have been developed for
kernel smoother [Lee (1997), Ombao et al. (2001), Hannig and Lee (2004)] and
smoothing spline [Wahba (1980), Pawitan and O’Sullivan (1994)]. Generalized
cross-validation (GCV), generalized maximum likelihood (GML) and unbiased
risk (UBR) criteria can be used to select the smoothing parameter when fitting
smoothing spline models on the logarithms scale [Wahba (1990)]. The logarith-
mic transformation is the first order approximation which is less efficient than the
Whittle likelihood [Pawitan and O’Sullivan (1994), Fan and Kreutzberger (1998),
Guo et al. (2003)]. For fitting smoothing splines using penalized Whittle likeli-
hood, Pawitan and O’Sullivan (1994) developed a criterion based on an estimate
of the risk function for the selection of the smoothing parameter. Guo et al. (2003)
used an indirect GML method to select the smoothing parameter. The indirect ap-
proach does not guarantee convergence and may have inferior performance than
direct methods (Section 4).

We develop new direct data-driven methods for selecting smoothing parameters
in the estimation of a spectral density and tests for the hypothesis that a locally
stationary process is stationary. The rest of the paper is structured as follows. We
present direct GML and GACV methods for stationary processes in Section 2.
We develop direct GML method, GACV method and stationarity tests for locally
stationary processes in Section 3. The simulation study is summarized in Section 4.
The analysis of IEEG time series is presented in Section 5. We conclude with some
remarks in Section 6.

2. Stationary processes.

2.1. Notation. Let Xt , t = 0,±1,±2, . . . , be a stationary time series with
mean zero and covariance function γ (u) = E(XtXt+u). The second-order prop-
erties of Xt are equivalently described by the spectrum

f (ω) =
∞∑

u=−∞
γ (u) exp(−i2πωu), ω ∈ [0,1],(1)

where the imaginary unit i2 = −1.
Let X0,X1, . . . ,XT −1 be a finite sample of the stationary process and

yk = T −1

∣∣∣∣∣
T −1∑
t=0

Xt exp(i2πkt/T )

∣∣∣∣∣
2

, k = 0, . . . , T − 1,(2)
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be the periodogram at frequency ωk = k/T . Our goal is to estimate f based on
observations in the form {(ωk, yk), k = 0, . . . , T − 1}. Under standard mixing con-
ditions [Brillinger (1981)]

yk ≈ f (ωk)χ
2
k,dk

/dk,(3)

where χ2
k,dk

are independent Chi-square random variables with degree of freedom
dk = 1 for k = 0 and k = T/2 (if T is even) and dk = 2 for 1 ≤ k ≤ T/2 − 1. As
[Pawitan and O’Sullivan (1994) and Guo et al. (2003)], for simplicity, the slight
difference in degrees of freedom will be ignored and all degrees of freedom are set
to two.

2.2. Smoothing spline estimation. We model the logarithm of the spectrum
g = log(f ) using a periodic spline space [Wahba (1990)]

W2(per) =
{
g :g and g′ are abs. cont.,

(4)

g(0) = g(1), g′(0) = g′(1),

∫ 1

0
(g′′(ω))2 dω < ∞

}
.

W2(per) = {1} ⊕ W 0
2 (per), where {1} is the one-dimensional space consisting of

all constant functions, and W 0
2 (per) is a reproducing kernel Hilbert space with re-

producing kernel R1(ω1,ω2) = −B4([ω1 − ω2])/24, [ω1 − ω1] is the fractional
part of ω1 − ω2 and B4(ω) = (ω − 0.5)4 − (ω − 0.5)2/2 + 7/240 [Wahba (1990),
Gu (2002)]. We note that [Wahba (1980) and Pawitan and O’Sullivan (1994)] es-
sentially used the same model space with solutions approximated using cepstral
coefficients.

Because g(ω) is symmetric about ω = 0.5, it suffices to estimate g(ω) for ω ∈
[0,0.5]. As in Wahba (1980) and Pawitan and O’Sullivan (1994), we use all yk’s
even though yk = yT −k . This is to allow periodic smoothing. Let gk = g(ωk).
Based on (3), we estimate g as the minimizer of the following penalized Whittle
likelihood [Gu (2002)]

T −1∑
k=0

{gk + yk exp(−gk)} + T λ

∫ 1

0
{g′′(ω)}2 dω,(5)

where λ is a smoothing parameter balancing the goodness-of-fit and the smooth-
ness of the function g.

For a fixed λ, the solution to (5) can be represented as [Wahba et al. (1995),
Gu (2002)]

ĝ(ω) = d +
T −1∑
k=0

ckR1(ωk,ω).(6)

We compute coefficients d and ck’s iteratively using the iterative reweighted pe-
nalized least squares (IRPLS) method [McCullagh and Nelder (1989), Wahba
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et al. (1995)]. Specifically, at each iteration, we compute the working variable
zk = g̃k + yk exp(−g̃k) − 1 and weight wk = 1 where tilde indicates current esti-
mates. Note that, as [Pawitan and O’Sullivan (1994)], we use the Fisher scoring
method instead of the Newton–Raphson method employed in Wahba et al. (1995),
Gu (2002) and Liu, Tong and Wang (2006). Our experience indicates that the
Fisher scoring method is more stable in this situation. One may select λ using
the GCV, GML or UBR criterion at each iteration of the above IRPLS procedure
[Wahba et al. (1995)]. However, such an indirect approach may lead to nonconver-
gence of the algorithm (Section 4).

2.3. Direct GML and GACV methods. We simply introduce the direct GML
and GACV criteria in this section. Derivations can be found in supplementary ma-
terials.

Consider the following prior for g:

G(ω) = α + (T λ)−(1/2)W(ω),(7)

where α∼N(0, a), W(ω) is a Gaussian process independent of α with E{W(ω)} =
0 and E{W(ω1)W(ω2)} = R1(ω1,ω2). [Gu (1992)] showed that, as a → ∞,
the posterior distribution of G(ω) can be approximated by a Gaussian distribu-
tion with posterior mean equals the spline estimate ĝ. This connection between
smoothing splines and Bayesian models has been exploited to develop methods
for selecting smoothing parameters for estimating variance functions [Liu, Tong
and Wang (2006)] and constructing confidence intervals [Gu (1992), Wahba et
al. (1995)]. We use this connection to develop a direct GML criterion for select-
ing λ.

Let y = (y0, . . . , yT −1)
′, g = (g0, . . . , gT −1)

′, S = (1, . . . ,1) be a vector
of size T , � = {R1(ωi,ωj )}Ti,j=1, (Q1Q2)(R

′,0′)′ be the QR decomposi-
tion of S, and UDU ′ be the spectral decomposition of Q′

2�Q2 where D =
diag(δ1, . . . , δT −1) and δν are eigenvalues. Let ĝk = ĝ(ωk), uk = 1 − yk exp(−ĝk),
ĝ = (ĝ0, . . . , ĝT −1)

′, uc = (u0, . . . , uT −1)
′, yc = ĝ − uc and z = (z1, . . . , zT −1)

′ =
U ′Q′

2yc. Ignoring some constants, the negative log marginal likelihood of y can
be approximated by

GML(λ) =
T −1∑
k=0

{ĝk + yk exp(−ĝk)} − 1

2
uc

′uc

(8)

+ 1

2

T −1∑
ν=1

{
ln(δν/T λ + 1) + z2

ν

δν/T λ + 1

}
.

The GML criterion (8) is new to the estimation of the spectrum. We mini-
mize (8) to find an estimate of λ which is referred to as the direct GML estimate.
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As in Lin et al. (2000), consider the comparative Kullback–Leibler criterion

CKL(g, ĝ) = 2

T

T −1∑
i=0

{exp(gi − ĝi) + ĝi}.(9)

The CKL criterion cannot be used directly to select the smoothing parameters since
it depends on the true log-spectrum. We need a proxy for this criterion. Let ĝ(−i)

be the estimate of g without the ith observation yi , that is, ĝ(−i) is the minimizer
of the penalized Whittle likelihood

∑
k 
=i

{gk + yk exp(−gk)} + T λ

∫ 1

0
{g′′(ω)}2 dω.

Let ĝ
(−i)
k = ĝ(−i)(ωk). The leaving-out-one cross-validation estimate of the CKL

criterion is

CV(λ) = 2

T

T −1∑
i=0

{
yi exp

(−ĝ
(−i)
i

) + ĝi

}
.(10)

The function CV(λ) may be used to select the smoothing parameter. However,
the computation is usually expensive. An approximation of CV(λ) is

GACV(λ) =
T −1∑
i=0

{yi exp(−ĝi) + ĝi}
(11)

+ trH

T − trW 1/2
0 HW

1/2
0

T −1∑
i=0

yi exp(−ĝi){yi − exp(ĝi)},

where H = (W +nλ�)−1V , W = diag(y1 exp(−ĝ1)/2, . . . , yn exp(−ĝn)/2), � =
Q2(Q

′
2�Q2)

+Q′
2, + represents the Moore–Penrose generalized inverse, V =

diag(exp(−ĝ1)/2, . . . , exp(−ĝn)/2) and W0 = diag(exp(ĝ1), . . . , exp(ĝn)). Equa-
tion (11) is referred to as the GACV criterion and a GACV estimate of λ is the
minimizer of this criterion.

3. Locally stationary processes.

3.1. Local periodograms. Let Xt, t = 0, . . . , T − 1, be a finite sample of the
following mean zero locally stationary process [Guo et al. (2003)]:

Xt =
∫ 1

0
A(ω, t/T ) exp(i2πωt) dZ(ω),(12)

where Z(ω) is a zero-mean stochastic process on [0, 1] and A(ω,u) denotes a
transfer function with continuous second order derivatives for (ω,u) ∈ [0,1] ×
[0,1].
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The time-dependent spectrum f (ω,u) = ‖A(ω,u)‖2 is assumed to be a smooth
function in both ω and u. For estimation, local periodograms are calculated on
some pre-defined time-frequency grids. Specifically, the time domain is partitioned
into J disjoint blocks [bj , bj+1) where 0 = b1 < b2 < · · · < bJ < bJ+1 = 1. Let
uj = (bj + bj+1)/2 and ωk’s be K frequencies in [0,1]. Then the local peri-
odograms are calculated as

Îkj = Î (ωk, uj ) =
|∑bj+1−1

t=bj
Xt exp(i2πωkt)|2

|bj+1 − bj | ,(13)

k = 1, . . . ,K, j = 1, . . . , J.

Guo et al. (2003) suggested that the block size should be in the order of T 1/2 and
showed that the estimation is not very sensitive to the choices of sizes for the time
and frequency grids. We investigate the impact of these choices in our simulations.

3.2. SS ANOVA estimation. As in Guo et al. (2003), we model logarithm of
the time-dependent spectrum g(w,u) = logf (ω,u) using the SS ANOVA model

g(ω,u) = β1 + β2(u − 0.5) + s1(ω) + s2(u) + s3(ω,u) + s4(ω,u),(14)

where β2(u − 0.5) and s2(u) are linear and smooth main effects of time, s1(ω) is
the smooth main effect of frequency, and s3(ω,u) and s4(ω,u) are linear-smooth
and smooth-smooth interactions between frequency and time. Let γ = (ω,u) and
� = (γ i )

n
i=1 be the selected time-frequency grid with corresponding log-local pe-

riodograms y = (y1, . . . , yn) = (log(Î11), . . . , log(ÎKJ )) where n = KJ . We esti-
mate g as the minimizer of the penalized Whittle likelihood

n∑
i=1

{gi + yi exp(−gi)} + n

4∑
r=1

λr‖Prg‖2,(15)

where gi = g(γ i ), λr ’s are smoothing parameters and Pr is the projection operator
onto the subspace corresponding to sr , r = 1, . . . ,4. Let λr = λ/θr . The solution
to (15) is [Gu (2002)]

ĝ(γ ) = d1 + d2(u − 0.5) +
n∑

i=1

ci

4∑
r=1

θrRr(γ i ,γ ),(16)

where R1(ω1,ω2) was defined in Section 2, R2(u1, u2) = B2(u1)B2(u2)/4 −
B4([ω1 − ω2])/24, R3((ω1, u1), (ω2, u2)) = R1(ω1,ω2)(u1 − 0.5)(u2 − 0.5),
R4((ω1, u1), (ω2, u2)) = R1(ω1,ω2)R2(u1, u2), and B2(u) = (u − 0.5)2 − 1/12.
Again, for fixed λr ’s, coefficients d1, d2 and ci ’s can be computed using the IR-
PLS procedure. Guo et al. (2003) selected λr ’s at each iteration using the GML
method. Again, the indirect approach may lead to nonconvergence and inferior
performance (Section 4).
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3.3. Direct GML and GACV methods. We simply introduce the direct GML
and GACV criteria in this section. Derivations can be found in supplementary ma-
terials.

Consider the following prior for g:

G(γ ) = α1 + α2(u − 0.5) + (nλ)−(1/2)
4∑

r=1

θ1/2
r Wr(γ ),(17)

where α = (α1, α2)
′ ∼ N(0, aI ), Wr(γ )’s are Gaussian processes independent

of α with E{Wr(γ )} = 0 and E{Wr(γ )Wr(ζ )} = Rr(γ , ζ ).
Let g = (g1, . . . , gn)

′, S = {1, ui − 0.5}ni=1, �θ = {∑4
r=1 θrRr(γ i ,γ j )}ni,j=1,

(Q1Q2)(R
′,0′)′ be the QR decomposition of S, and UDU ′ be the spectral de-

composition of Q′
2�θQ2 where D = diag(δ1, . . . , δn−2) and δν are eigenval-

ues. Let ĝi = ĝ(γ i ), ui = 1 − yi exp(−ĝi), ĝ = (ĝ1, . . . , ĝn)
′, uc = (u1, . . . , un)

′,
yc = ĝ − uc, and z = (z1, . . . , zn−2)

′ = U ′Q′
2yc. Ignoring some constants, an ap-

proximation to the negative log marginal likelihood of y is

GML(λ, θ) =
n∑

i=1

{ĝi + yi exp(−ĝi)} − 1

2
uc

′uc

(18)

+ 1

2

n−2∑
ν=1

{
ln(δν/nλ + 1) + z2

ν

δν/nλ + 1

}
,

where θ = (θ1, . . . , θ4)
′. Note that δν’s and zν ’s depend on θ . The direct GML

estimates of the smoothing parameters (λ, θ) are the minimizers of (18).
The comparative Kullback–Leibler criterion and its cross-validation estimate

are defined similarly as those in Section 2.3. Then an approximation to the cross-
validation estimate of the CKL criterion is

GACV(λ, θ) =
n∑

i=1

{yi exp(−ĝi) + ĝi}
(19)

+ trH

n − trW 1/2
0 HW

1/2
0

n∑
i=1

yi exp(−ĝi){yi − exp(ĝi)},

where H = (W + nλ�)−1V , W = diag(y1 exp(−ĝ1)/2, . . . , yn exp(−ĝn)/2),
� = Q2(Q

′
2�θQ2)

+Q′
2, V = diag(exp(−ĝ1)/2, . . . , exp(−ĝn)/2) and W0 =

diag(exp(ĝ1), . . . , exp(ĝn)). The GACV estimates of the smoothing parameters
(λ, θ) are the minimizer of (19).

3.4. Permutation tests for stationarity. It is often of interest to test if a locally
stationary process is stationary:

H0 :h(u) = 0 for all u vs. H1 :h(u) 
= 0 for some u,



SEIZURE CHARACTERIZATION USING EEG TIME SERIES 1441

where h(u) = β2(u−0.5)+s2(u)+s3(ω,u)+s4(ω,u). The model under H1 is the
full SS ANOVA model (14). Denote the model under H0, g(ω,u) = β1 + s1(ω),
as the reduced model. Let ĝF and ĝR be estimates of g under the full and reduced
models, respectively. Let DF = ∑n

i=1{ĝF
i + yi exp(−ĝF

i ) − logyi − 1} and DR =∑n
i=1{ĝR

i + yi exp(−ĝR
i ) − logyi − 1} be deviances under the full and reduced

models. We construct two statistics:

S1 = DR − DF ,

S2 =
∫ 1

0

∫ 1

0
{ĝF (ω,u) − ĝR(ω,u)}2 dωdu,

where S1 corresponds to the Chi-square statistics commonly used for generalized
linear models, and S2 computes the L2 distance between ĝF and ĝR . We reject H0
when these statistics are large. The null distributions of these statistics are un-
known. Under H0, g does not depend on u. Therefore, we can use permutation
to compute null distributions. Specifically, we generate permutation samples by
shuffling time grid, compute two statistics for each permutation sample, and com-
pute p-values as the proportion of statistics based on permutation samples which
are larger than those based on the original data. Small scale simulations in the
supplemental materials indicate that the permutation tests perform well.

4. Simulations.

4.1. Simulations for stationary processes. We first conduct simulations to
evaluate the performance of the direct GML and GACV methods for spectral den-
sity estimation of stationary processes. We simulate data from two processes used
in Wahba (1980) and Pawitan and O’Sullivan (1994):

1. AR(3): Xt = 1.4256Xt−1 − 0.7344Xt−2 + 0.1296Xt−3 + εt ,
2. MA(4): Xt = εt − 0.3εt−1 − 0.6εt−2 − 0.3εt−3 + 0.6εt−4,

where εt
i.i.d.∼ N(0,1). We consider two sample sizes, T = 128 and T = 256, for

each process. For each setting, we repeat simulation 1000 times.
To compare with the method in Wahba (1980), we fit cubic periodic splines to

the logarithmic transformed periodograms zk = log(yk) + ck where ck = 0.57721
for k 
= 0 and k 
= T/2 and ck = 0.30135 for k = 0 or k = T/2. We use the GML
method to select the smoothing parameter on the logarithmic scale. Other methods
such as GCV have also been tested and the comparative results remain the same. To
compare with the method in Pawitan and O’Sullivan (1994), we fit a cubic periodic
spline model using the penalized likelihood (5) with the smoothing parameter λ

selected as the minimizer of

RE(λ) =
T −1∑
k=0

(ĝk − vk)
2 + 2 tr{H(λ)},(20)
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where vk = ĝk +yk exp(−ĝk)−1 and H(λ) is the smoother matrix at convergence
of the IRPLS procedure with the fixed λ. The criterion (20) is a direct adaption
of (12) in Pawitan and O’Sullivan (1994). vk’s need to be calculated with λ close
to the optimal choice. Pawitan and O’Sullivan (1994) suggested a two-step proce-
dure: first choose λ that minimizes RE(λ) using vk = ĝk + yk exp(−ĝk) − 1 and
denote the resulting estimates as ĝkp , and then choose λ that minimizes RE(λ)

using vk = ĝkp + yk exp(−ĝkp) − 1. We use the same two-step procedure with a
uniform (on a logarithmic scale) grid search over the range e−25 ≤ λ ≤ e−1. As
Pawitan and O’Sullivan (1994), 5 values are used in the first step and 50 values are
used in the second step.

For each simulation replication, we compute the mean squared error as

MSEm = 1

T

T −1∑
k=0

(ĝk − gk)
2,

where m represents the method employed to estimate g. m = LS, IM, DM, DV
and PO, respectively, represent the method in Wahba (1980), the indirect GML
method, the direct GML method, the GACV method and the method in Pawitan
and O’Sullivan (1994). The indirect GML method selects λ at each iteration of the
IRPLS procedure using the GML criterion.

For the indirect GML method, several replications failed to converge (Ta-
ble 1). The GACV method failed to converge in one replication. None of the
other methods has this problem. The boxplots of MSEs are shown in Figures 2
and 3. As Pawitan and O’Sullivan (1994), we compute the relative efficiencies
MSEm/MSEDM for m = LS, IM, DV and PO. The medians of these relative effi-
ciencies are listed in Table 1. From Figures 2 and 3, the MSEs based on the LS,
IM, DV and PO methods have heavier tails than those from the DM method. Thus

TABLE 1
Median (first row for each T ) and mean (second row for each T ) relative efficiencies

(relative to the DM method)

AR3 MA4

T LS IM DV PO LS IM DV PO

128 1.51 1.22 (2) 1.41 1.08 1.30 10.37 (7) 1.77 1.03
1.82 20.06 3.70 1.45 1.41 10.83 2.29 1.12

256 1.49 1.19 (4) 1.19 1.06 1.33 11.80 (11) 1.09 (1) 0.99
1.83 16.87 3.13 1.45 1.43 13.76 1.44 1.05

Numbers in the parentheses are the number of replications out of 1000 simulation replications that
the indirect GML and GACV methods failed to converge.
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FIG. 2. Boxplots of MSEs on logarithm scale for the AR3 process.

the mean relative efficiencies can be much bigger than medians (Table 1). We con-
clude that the direct GML is stable and has the best overall performance. Even
though involving a somewhat ad hoc two-step procedure, the PO method performs
well. One problem with the PO method is that it sometimes undersmooth the spec-
trum. The LS method is less efficient. The indirect GML method sometimes fails
to converge and performs very badly for the MA4 process. The GACV method oc-
casionally fails to converge due to numerical problems. Its performance is inferior
to the direct GML when it converges. This is especially true in the case when n is

FIG. 3. Boxplots of MSEs on logarithm scale for the MA4 process.
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small where GACV has many large MSEs due to undersmoothing, a phenomenon
has been previously observed for the GCV method [Wahba and Wang (1993)]. We
have conducted simulations with other stationary processes and sample sizes. The
comparative results remain the same.

4.2. Simulations for locally stationary processes. To investigate the perfor-
mance of the direct GML and GACV methods for locally stationary processes,
and compare them with the LS and indirect GML methods, we simulate locally
stationary time series from two time-varying spectra:

1. LS1: g(ω,u) = 4 + sin(2πu) + log{1.25 − cos(2πω)}.
2. LS2: g(ω,u) = 5 − 8(ω − 0.5)2 + sin{2π exp(u)} + 0.01(ω − 0.5)2 ×

sin{2π exp(u)}.
Similarly to [Guo and Dai (2006)], the time series Xt, t = 0, . . . , T − 1, are simu-
lated based on the following relationship:

Xt =
T −1∑
k=0

exp{g(k/T , t/T )} exp(2πkti/T )Zk,(21)

where Zk = Z(k/T ) are mutually independent random variables distributed as
complex Normal with mean zero and variance 1/T . Zk = ZT −k when k/T 
=
0,0.5, or 1. When k/T = 0,0.5, or 1, Zk = Z(k/T ) are mutually independent
random variables distributed as real Normal with mean zero and variance 1/T .
We consider two sample sizes, T = 1024 and T = 2048, for each locally station-
ary process. To assess the impact of block sizes, we consider three time-frequency
grids: (K,J ) = (64,16), (K,J ) = (32,32) and (K,J ) = (16,64). For each set-
ting, we repeat simulation 100 times.

We compute the mean squared error as

MSEm =
K∑

k=1

J∑
j=1

(ĝkj − gkj )
2/(KJ),

where m = LS, IM, DM and DV which correspond to the method based on log-
arithmic transformation, the indirect GML method in [Guo et al. (2003)] and the
direct GML method and the GACV method.

The boxplots of MSEs are shown in Figures 4 and 5. Table 2 lists median rela-
tive efficiencies and the number of replications that the indirect GML and GACV
methods failed to converge. The comparative results are similar to those in the sta-
tionary case: the indirect GML and GACV methods may fail to converge and the
direct GML is stable and has the best performance. When converged, the GACV
has comparable performance to the direct GML method. However, the GACV
method takes much longer to compute. Therefore, the direct GML method is rec-
ommended. The estimation is not very sensitive to the choices of block sizes. We
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FIG. 4. Boxplots of MSEs on logarithm scale for the LS1 process. Numbers in the x-axis labels
resent three settings of time-frequency grids: 1 for (64,16),2 for (32,32) and 3 for (16,64).

have conducted simulations with other sample sizes and block sizes. The compar-
ative results remain the same.

5. The IEEG analysis. Figure 1 shows the IEEGs of 5-minute preseizure and
baseline segments from two channels. These two channels recorded IEEGs from
adjacent electrodes in the mesial temporal lobe of the brain believed to be most
relevant to the seizure. Therefore, we expect to see close connections in the power
and frequency activities between both channels. The important clinical questions
are: (1) does the characteristic frequencies change over time during the pre-ictal

FIG. 5. Boxplots of MSEs on logarithm scale for the LS2 process. Numbers in the x-axis labels
resent three settings of time-frequency grids: 1 for (64,16),2 for (32,32) and 3 for (16,64).
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TABLE 2
Median relative efficiencies (relative to the DM method)

LS1 LS2

T (K,J ) LS IM DV LS IM DV

1024 (64,16) 1.49 1.14 (4) 0.98 1.49 1.27 (13) 1.02 (1)

(32,32) 1.55 1.10 (6) 0.91 1.38 1.22 (13) 1.06 (1)

(16,64) 1.47 1.14 (11) 0.99 1.39 1.21 (10) 1.18

2048 (64,16) 1.48 1.17 (6) 1.05 1.50 1.33 (12) 1.07 (1)

(32,32) 1.51 1.13 (5) 1.12 (1) 1.53 1.28 (8) 1.18 (1)

(16,64) 1.56 1.19 (3) 0.95 (1) 1.53 1.16 (10) 1.26 (1)

Numbers in parentheses are the number of replications out of 100 simulation replications that the
indirect GML and GACV methods failed to converge.

stage of the seizure as compared to the baseline in each channel? and (2) are such
frequencies common across both channels? We answer these questions by analyz-
ing the IEEGs using our estimation procedure.

We assume that the IEEG segments are locally stationary. To remove artifacts,
we first normalize the raw IEEG recordings by subtracting their across-channel
means. Each segment is then partitioned into 64 time blocks. Thirty-two equally-
spaced frequency points are selected to calculate the local periodograms. Specifi-
cally, the time-frequency grids for the calculation are (ωk, uj ) = (k/33, (938×j −
468.5)/60000) for k = 1, . . . ,32, j = 1, . . . ,63 and (ωk, u64) = (k/33,0.9925)

for k = 1, . . . ,32. Figure 6 shows the SS ANOVA estimates of time-varying spec-
tra for both the baseline and preseizure segments of the two channels. The direct
GML method is used for all fits in this section. Because the sampling rate is 200 HZ
and the spectrum is symmetric around 100 HZ, we can only assess power changes
in frequency bands ([0 HZ–100 HZ]). It appears that the baseline spectrum does
not vary much over time.

For channel 1, the p-values for testing stationarity based on two statistics are
0.81 and 0.73 for the baseline segment and 0.01 and 0.01 for the preseizure seg-
ment. For channel 2, the p-values are 0.31 and 0.16 for the baseline segment and 0
and 0.0067 for the preseizure segment. We conclude that for this data set, the
processes far away from the seizure’s clinical onset can be regarded as station-
ary while the processes close to the seizure’s clinical onset is nonstationary. As
expected the pre-ictal spectra have similar shapes, indicating the possible connec-
tivity between the power evolutions of the two adjacent channels.

To find significant changes of the preseizure power spectra from those of the
baseline segments, we compute 95% Bayesian confidence intervals for the esti-
mated preseizure power spectra using the same method described in Wahba et
al. (1995). We also compute the difference in estimated power spectra between
preseizure and baseline IEEGs. At a particular point of time and frequency, the
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FIG. 6. Time-varying spectra estimates (in log scale) for the preseizure segments (upper panels)
and the baseline segments (lower panels) of the 5-minute IEEG segments from channel 1 (left) and
channel 2 (right).

difference is deemed significant if the estimated baseline power spectrum is out-
side the 95% confidence interval. Figure 7 shows the contour plots of estimated
power spectra differences for time-frequency regions where the differences are
significant.

In channel 1, a high-frequency power discharge (at [75 HZ–100 HZ]) was
recorded during approximately −300 to −280 seconds before the seizure; then
a power build-up was captured for the next 85 seconds at [10 HZ–40 HZ], fol-
lowed by another significant power decrease at both high and low frequency ends
([75 HZ–100 HZ] and <5 HZ). However, the channel 2 IEEGs recorded significant
power discharges as a broad band activity ([75 HZ–100 HZ] and [20 HZ–40 HZ])
5 minutes before the seizure. Interestingly, in this channel power increased around
the same time as channel 1 (−270 to −150 seconds), but at lower frequencies
(<10 HZ). This phenomenon implies that the short term power build up may be
regarded as a warning signal of the coming seizure.

For both channels, the common frequency band for decreased power is within
[75 HZ–100 HZ]. While there are no common frequencies at which the power
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FIG. 7. Contour plots for the significant differences in power spectra between the preseizure IEEGs
and baseline IEEGs (defined by subtracting the spectra estimates of the baseline segments from those
of the preseizure segments). The positive differences (solid lines) and negative differences (dashed
lines) indicate significant increases and significant decreases in power at 5% significance level. For
both channels, the common frequency band for power discharge is within [75 HZ–100 HZ], occurred
as early as 5 minutes before its onset, while the simultaneous power build-up between −270 and
−150 seconds happened at different frequencies ([10 HZ–40 HZ] for channel 1 and <10 HZ for
channel 2).

increase occurred, the across-frequency interaction between the two channels ap-
peared during −270 to −150 seconds. By further studying the within-frequency
(at [75 HZ–100 HZ]) and across-frequency (between [10 HZ–40 HZ] and [0 HZ–
10 HZ]) signal coupling, the seizure origination and propagation path may be in-
ferred, which would eventually allow preventive action or surgical resection to take
place at the right location to prevent a future seizure. Our results conform with re-
cent findings in the literature. Specifically, high-frequency oscillations are usual
suspects of the electrical activities for the epileptic brain, which may be important
markers for epileptic network function ([80 HZ–500 HZ]) [Worrell et al. (2004)],
and γ -band ([25 HZ–60 HZ]) activity may be associated with a reliable warning
of the seizure [Aksenova, Volkovych and Villa (2007)].
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6. Discussion. We have developed methods and software for smoothing
spline and SS ANOVA spectrum estimation of stationary and locally stationary
processes. These methods are recommended since they are stable and perform
better than other existing methods. The risk estimation method by Pawitan and
O’Sullivan (1994) may also be extended to the SS ANOVA spectrum estimation
of locally stationary processes. It is unlikely that such an extension will perform
better than the direct GML method. For a stationary process, similar permutation
tests can be constructed to test if its spectrum is a constant which amounts to a
white noise series [Fan and Zhang (2004)].

Our analyses have successfully picked up the important time-varying behav-
iors of the power and frequency components of the IEEG channels, which may
be indicative of the seizure onset and propagation patterns [Worrell et al. (2004),
Mormann et al. (2003), Mormann et al. (2000), Schiller, Cascino, Busacker and
Sharbrough (1998)]. Future analyses would include adopting the technique for
multiple channels and multiple seizures. With the aid of clinical judgements from
neurologists and neurosurgeons, seizure propagation patterns may eventually be
uncovered.

Even though we emphasize the application to the spectral analysis of EEG time
series, our methods are general with a wide range of applications including neu-
rological cognition studies. And they may be applied to understand the periodic
secretion patterns of hormone time series and assess the spectral properties of the
magnetoencephalography (MEG) time series.
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SUPPLEMENTARY MATERIAL

Derivation of the direct GML criterion permutation test of stationarity:
SOM for nonparametric spectral analysis (DOI: 10.1214/08-AOAS185SUPP;
.pdf). The supplementary material [see Qin and Wang (2008)] contains derivation
of the direct GML criterion, derivation of the GACV criterion, simulations for
permutation tests of stationarity and R code for spectrum estimation.
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