
The Annals of Applied Statistics
2008, Vol. 2, No. 4, 1194–1216
DOI: 10.1214/08-AOAS174
© Institute of Mathematical Statistics, 2008

INTERPRETING SELF-ORGANIZING MAPS THROUGH
SPACE–TIME DATA MODELS1

BY HUIYAN SANG, ALAN E. GELFAND, CHRIS LENNARD,
GABRIELE HEGERL AND BRUCE HEWITSON

Texas A&M University, Duke University, University of Cape Town,
University of Edinburgh and University of Cape Town

Self-organizing maps (SOMs) are a technique that has been used with
high-dimensional data vectors to develop an archetypal set of states (nodes)
that span, in some sense, the high-dimensional space. Noteworthy applica-
tions include weather states as described by weather variables over a region
and speech patterns as characterized by frequencies in time. The SOM ap-
proach is essentially a neural network model that implements a nonlinear
projection from a high-dimensional input space to a low-dimensional array
of neurons. In the process, it also becomes a clustering technique, assign-
ing to any vector in the high-dimensional data space the node (neuron) to
which it is closest (using, say, Euclidean distance) in the data space. The
number of nodes is thus equal to the number of clusters. However, the pri-
mary use for the SOM is as a representation technique, that is, finding a set of
nodes which representatively span the high-dimensional space. These nodes
are typically displayed using maps to enable visualization of the continuum
of the data space. The technique does not appear to have been discussed in
the statistics literature so it is our intent here to bring it to the attention of the
community. The technique is implemented algorithmically through a train-
ing set of vectors. However, through the introduction of stochasticity in the
form of a space–time process model, we seek to illuminate and interpret its
performance in the context of application to daily data collection. That is,
the observed daily state vectors are viewed as a time series of multivariate
process realizations which we try to understand under the dimension reduc-
tion achieved by the SOM procedure.

The application we focus on here is to synoptic climatology where the goal
is to develop an array of atmospheric states to capture a collection of distinct
circulation patterns. In particular, we have daily weather data observed in the
form of 11 variables measured for each of 77 grid cells yielding an 847 × 1
vector for each day. We have such daily vectors for a period of 31 years
(11,315 days). Twelve SOM nodes have been obtained by the meteorologists
to represent the space of these data vectors. Again, we try to enhance our
understanding of dynamic SOM node behavior arising from this dataset.
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1. Introduction. Self-organizing maps (SOMs) are a technique that has been
used with high-dimensional data vectors to develop an archetypal set of states
(nodes) that span, in some sense, the high-dimensional space. First developed by
Kohonen (1995), the technique has subsequently found application to automatic
speech recognition, analysis of electrical signals from the brain, data visualization
and meteorology. See, for example, Ferrandez et al. (1997), Tamayo et al. (1999),
Kaski (1997) and Crane and Hewitson (2003), respectively.

The SOM approach is essentially a neural network model that implements
a nonlinear projection from a high-dimensional input space to a low-dimensional
array of neurons. In the process, it also becomes a clustering technique, assigning
to any vector in the high-dimensional data space the node/neuron (reference vec-
tor) to which it is closest (using, say, Euclidean distance) in the data space. The
number of nodes is thus equal to the number of clusters. However, the primary use
for the SOM is as a representation technique, that is, finding a set of nodes which
representatively span the high-dimensional space. These nodes are typically dis-
played using maps to enable visualization of the continuum of the data space.
Hence, the approach should not be viewed as an “optimal” clustering technique;
in particular, in application it is expected to produce roughly equal cluster sizes.

A SOM algorithm is usually implemented in three stages. First, a specified num-
ber of nodes is selected and the values of the components for each node are ini-
tialized, typically selecting random values. Second, iterative training is performed
where the nodes are adjusted in response to a set of training vectors so that the
nodes approximately minimize an integrated distance criterion. The last stage of
the SOM technique is visualization where each node’s reference vector is pro-
jected in some fashion to a lower dimensional space and plotted as a map (perhaps
several maps). Customary projection creates a set of neurons in two-dimensional
space which arise as a deformation of a regular lattice. For a given training set, the
frequency of occurrence of each node can be calculated as well as the average er-
ror at each node, the latter interpreted as a measure of coherence around the node.
With regard to implementation, the number of nodes is arbitrary.

In any event, it is not our contribution here to criticize the SOM approach or
to compare it with other clustering procedures. Rather, in practice, the procedure
is implemented in a purely algorithmic manner, ignoring any spatial or tempo-
ral structure which may be anticipated in the training set. Our contribution is to
attempt to incorporate structural dependence, through the introduction of stochas-
ticity in the form of a space–time process model. As a result, we hope to illuminate
and interpret the performance of the SOM procedure in the context of application
to daily data collection. That is, the observed daily state vectors are viewed as
a time series of multivariate spatial process realizations. Working with the origi-
nal high-dimensional data renders formal modeling infeasible. Instead, we try to
achieve this understanding through the dimension reduction achieved by the SOM
procedure.
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The application we focus on here is to synoptic climatology as introduced by
Hewitson and Crane (2002), where the goal is to develop an array of atmospheric
states to capture a collection of distinct circulations. There has been some litera-
ture on estimating synoptic states with the purpose of downscaling climate models.
For example, Hughes, Guttorp and Charles (1999) and Bellone, Hughes and Gut-
torp (2000) propose nonhomogeneous hidden Markov models (NHMM) which
relate precipitation occurrences and amounts at multiple rain gauge stations to
broad-scale atmospheric circulation patterns. In particular, both papers assume that
occurrences and precipitation amounts at each rain gauge are conditionally inde-
pendent given the current synoptic weather state, that is, all the spatial dependence
between rain gauges is induced by the synoptic weather state. See, also, the recent
work of Vrac, Stein and Hayhoe (2007) in this regard.

In this paper we work with daily weather data observed in the form of 11 vari-
ables measured for each of 77 grid cells yielding an 847 × 1 vector for each day.
We have such daily vectors for a period of 31 years (11,315 days). Twelve SOM
nodes have been obtained by the meteorologists to represent the space of these data
vectors. Fuller detail is provided in Section 3. We also note that a broader view of
the use for a SOM in climatology is for inference at longer than daily time scales.

The format of the paper is as follows. In Section 2 we provide a brief review of
the SOM theory and implementation. In Section 3 we detail the motivating dataset
and some exploratory data analysis. In Section 4 we present a collection of models
to investigate. Section 5 addresses model fitting issues, while Section 6 considers
model selection and results. Section 7 offers some summary discussion.

2. A review of SOM theory and implementation. A self-organizing map
(SOM) is a neural network model and algorithm that implements a nonlinear pro-
jection from a high-dimensional space of input vectors to a low-dimensional ar-
ray of neurons. That is, input vectors are assigned to nodes (or neurons). Nodes
have two positions, one in the high-dimensional space, say, in a subset of Rd ,
one in the low-dimensional visualization space, typically taken to be a defor-
mation of a regular lattice in two-dimensional space. For a given set of nodes
{w1,w2, . . . ,wM} in the high-dimensional space, an array index taking values in
{j = 1,2, . . . ,M} is defined, for each x ∈ Rd , as c(x, {wm}) = j if d(x,wj ) =
min1≤m≤M d(x,wm) for some distance d (usually Euclidean). The theoretical ob-
jective of the SOM is to minimize, over all choices of {wm,m = 1,2, . . . ,M},∫

g(d(x,wc(x,{wm})))p(x) dx, where g(·) is a monotone function and p(x) is the
density function for the random input vectors in Rd . Solution to this vector
quantization problem is generally intractable. We note that if we confine x to
a bounded rectangular subset of Rd and if p(x) is assumed uniform over this
subset, then, at the optimal {wm}, c will be equally likely to take on each of
its M possible values. Hence, with a sample of x’s from this uniform distrib-
ution, we expect equal numbers of the x’s to be assigned to each of the index
values, that is, to each of the nodes. A special version which seeks to minimize
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∫ ∑
m h(wc(x,{wm}),wm)g(d(x,wm))p(x) dx, where h is a smoothing kernel, is

customarily used. It lacks a closed form solution, but an approximate solution can
be obtained iteratively using stochastic approximation [see Kohonen et al. (1996)]
as we describe below.

We now offer a bit more detail on the nature of a SOM algorithm. In practice,
the SOM procedure consists of three stages. Let {xi ∈ Rd}, i = 1,2, . . . , n, denote
the input training vectors. In our case, d = 847 reflecting the daily 847-element
climate records from 1970 to 2000. SOMs seek to “optimally” place a specified
number of nodes, M , again denoted by wm ∈ Rd,m = 1,2, . . . ,M . In the SOMs
literature (and, as the default in the publicly available software package cited be-
low) the suggested number of nodes is 5

√
n. In our application, with n ≈ 10,000,

this would suggest roughly M = 500 nodes. However, climatologists categorize
far fewer types of circulation patterns; for our South African data, they conclude
that M = 12 is adequate. With 500 nodes, a two-dimensional representation of-
fers the best prospects for visualization. However, with our 12 nodes describing 11
variables over an 11 × 7 grid, we can create more appropriate maps. For example,
for each variable, we can provide 12 panels, each panel a map over the geographic
space.

We describe two versions of the iterative training algorithm procedure of the
SOM technique as follows:

• Initialization stage: given M , the node vectors are initialized with random val-
ues.

• Iterative training (Version 1):
– At step t , randomly choose an input vector x(t) from the training set {xi} for

i = 1, . . . , n.
– Compute the distance (e.g., Euclidean) between x(t) and each of the node

vectors wm. Identify the winning node wc(x(t)) whose node vector is closest to
the input vector, that is, ‖wc(x(t)) −x(t)‖ ≤ ‖wm −x(t)‖ for m ∈ {1,2, . . . ,M}.

– Every node has its vector adjusted according to the following equation:

w(t+1)
m = w(t)

m + α(t)K
(
m,c

(
x(t)))(x(t) − w(t)

m

)
,

where K(m,c(x(t))) is called the neighborhood function, and α(t) is called
the learning rate, which is usually a decreasing function of step t . One ex-
ample of K(m,c(x(t))) is the Gaussian kernel K(m,c(x(t))) = exp{−‖w(t)

m −
wc(x(t))‖2/2σ 2}. A simpler choice is a so-called “bubble” function, that is,
a uniform over the neighborhood (Voronoi tessellation) of wc(x(t)), zero else-
where.

Usually, the SOM training is performed in two phases. A relatively large
initial learning rate is used in the first phase and a smaller learning rate is used
in the second phase. This updating suggests that nodes close to the winner
node, as well as the winner itself, update their vectors closer to x(t) in the
input data space. Vectors associated with far away output nodes do not change
significantly.
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– Repeat the above steps until the nodes converge. (Convergence is vaguely
defined and is usually taken as the default in the software.)

• Iterative training (Version 2):
– At step t , for each input vector xi for i = 1, . . . , n, compute the distance

(e.g., Euclidean) between xi and each of the node vectors w(t)
m . Identify the

winning node c(i) whose node vector is most similar to the input vector, that
is, ‖w(t)

c(i) − xi‖ ≤ ‖w(t)
m − xi‖ for m ∈ {1,2, . . . ,M}.

– Every node has its vector adjusted according to the following equation:

w(t+1)
m =

∑
i=1:n hm,c(i)(t)xi∑
i=1:n hm,c(i)(t)

,

where hm,c(i)(t) is the neighborhood function around the winning node c(i).
One example is hm,c(i)(t) = α(t)K(m, c(i))(t), where, again, K(m,c(i)) is

the Gaussian neighborhood kernel K(m,c(i)) = exp{−‖w(t)
m −w(t)

c(i)‖2/2σ 2}.
Here, α(t) is called the learning rate and is usually a decreasing function of
step t .

Again, the SOM training is performed in two phases. Again, a relatively
large initial learning rate is used in the first phase and a smaller learning rate
is used in the second phase. In this updating, the contribution (weight) of a
particular training vector to each node only depends on the distance between
the corresponding winning node of this training vector and each of the other
nodes. hm,c(i) can be viewed as a smoothing function such that nodes close to
the winner node as well as the winner itself update their vectors closer to the
training vector in the input data space.

– Repeat the above steps until the nodes converge.
• The final stage seeks to achieve visualization. When the number of nodes is

large, visualization is most easily presented in two dimensions beginning with
either a rectangular or hexagonal lattice of nodes. The iterative updating of
the nodes eventually leads to a distortion of the lattice. (See Figure 4 and
related discussion below.) An approach which is incorporated into the stan-
dard SOMs software (cited below) is the Sammon mapping scheme [Sammon
(1969)]. Note that the goal here is “clustering” components of the vectors to
achieve a two-dimensional representation, not clustering of the training vec-
tors. In order to equalize the contributions of each of the components in the
high-dimensional vectors with regard to classification, centering and scaling is
recommended as pre-processing of the data. In our case this is certainly needed
since the climate variables are measured over very different scales. Returning
to the Sammon projection method, the basic idea is to arrange all the nodes on
a 2-dimensional plane in such a way that the distances between the nodes in a
2-dimensional space resemble the distances in the original vector space as de-
fined by some metric as faithfully as possible. Given the distance matrix D with
element di,j being the distance between node i and node j according to some
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metric (e.g., Euclidean distance), our goal is to find Om in R2 for each node m

for m = 1, . . . ,M to minimize an error function E defined by the following

cost function: E = 1∑∑
j>i di,j

∑
i

∑
j>i

(di,j−‖Oi−Oj‖)2

di,j
. Note that the O’s need

a “center” to locate them. Also, the projections can be implemented at each
iteration to see stability, hence convergence, as well as to assess interpretation.

A software package for implementing SOMs is available (http://www.cis.hut.fi/
research/som-research/). For more detailed explanation of the SOM procedure,
see the references and guidelines at this publicly available software website.

As a final comment on visualization, in our application below, with M small and
data associated with spatial locations, we can create maps in geographic space, as
proposed above.

3. The dataset and some exploratory data analysis. The weather in a local
region is conditional on the nature of the synoptic state of the atmosphere. Relat-
ing the synoptic scale characteristics to local scale responses requires the reduction
of a large number of variables into a smaller set of data that still, in some sense,
represent the original data. This goal motivated the use of the SOM technology. In
this application we use daily multivariate weather data over a specified time period
to produce generalized weather circulations. These are then easily visualized as an
array of archetypal synoptic circulations that span the continuum of the data. In so
doing, daily synoptic atmospheric data are categorized into a prescribed number
of archetypal synoptic (circulation) modes characteristic of a specified time pe-
riod. South African weather systems have been categorized into six to eight main
“types” of circulation [Tyson and Preston-Whyte (2000)]. On testing various SOM
sizes, a 12-node SOM was selected which was deemed to adequately represent all
the expected synoptic types.

The SOM was trained using gridded (2.5◦ × 2.5◦), daily mean atmospheric
fields constructed from six-hourly National Center for Environmental Predic-
tion/National Center for Atmospheric Research (NCEP/NCAR) global reanalysis
data [see Kalnay et al. (1996)]. Data were extracted for a domain with 11 × 7 grid
cells over southern Africa whose latitudinal and longitudinal extent (25◦S to 40◦S;
10◦E to 34.5◦E) captures synoptic circulation patterns from the sub-tropics to the
mid-latitudes. The following 11 variables were chosen as training data: mean sea
level pressure, 500 hectopascal (hPa) geopotential height level, relative and spe-
cific humidities at the surface and at 700 hPa, daily maximum temperature at
the surface, U- and V-wind components at the surface and at 700 hPa. Each of
these variables was first standardized using the mean and the standard deviation of
its corresponding 11 × 7 cell time series. These standardized variables were then
used to create an 847-element vector (11 × 11 × 7) which described the daily at-
mospheric state. The time period from 1970 to 2000 was used, which resulted in
11,315 daily records that were used to train the SOM. (The eight extra days in the
included leap years were not included in the analysis for computational purposes,

http://www.cis.hut.fi/research/som-research/
http://www.cis.hut.fi/research/som-research/
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FIG. 1. Projected locations of SOM nodes in 2-dimensional space.

but these would not significantly alter the results.) Each of the 11 climate variables
was standardized separately to preserve the local gradients in each field.

The twelve resulting SOM nodes are labeled with their locations in two-
dimensional space in Figure 1. This figure is intended to suggest that nodes near to
each other are associated with somewhat similar synoptic states and that transition
in SOM nodes is most likely to be to a neighboring node.

To clarify the visualization, the SOM of sea level pressure (SLP) is presented in
Figure 2. It is used to assess the characteristic surface circulation associated with
each node as it most clearly demonstrates the general synoptic circulation as well
as associated regional weather patterns. Elaborating further, we briefly detail the
features of the synoptic types captured by the 12 SOM nodes. South Africa is a
semi-arid environment and can very generally be divided into summer and winter
rainfall regions. Summer rainfall occurs over the interior of the country as a re-
sult of convective processes and winter rains over the south-western and southern
coastal regions as a result of the passage of cold fronts. The SOM results show the
majority (80%) of summer days map to nodes 5, 6, 8 and 9 and to a lesser degree
nodes 3 and 12. These nodes are associated with characteristic summer circulation
features. On the right-hand side of the SOM, a sub-tropical low pressure system
is situated over the northern part of the domain which bring rainfall to the interior
of the country. In nodes 8, 9 and 12 a high pressure system is located at relatively
high latitudes to the south of the domain which pushes frontal systems southward
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FIG. 2. Sea level pressure (Pascals) associated with each node.

and results in dry summers over the western parts of the country and introduces
moisture to the eastern and central parts. In node 5 a linkage between the tropical
low and mid-latitude circulation forms a tropical-temperate trough which results
in rainfall over a large part of the interior of the country. The majority of win-
ter days (over 70%) map to nodes on the left-hand side of the SOM (nodes 1, 4,
7, 10). To the south of the country, these nodes are associated with the west-east
progression of mid-latitude cyclones (cold fronts) across the south of the country
which bring rainfall to the south and south-western parts of the country and very
cold temperatures, especially over the interior. Over the interior of the country,
the sub-tropical low has moved northward and is replaced by a high pressure sys-
tem which dominates the circulation resulting in cold, dry conditions. In nodes 7
and 10 a high pressure system brings cold, polar air into the country once the cold
front has moved past. A typical winter synoptic sequence would be a progression
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FIG. 3. Upper air specific humidity anomaly field associated with each node.

from node 1 to node 4 to node 7 to node 10 over the period of about 2–3 days. Most
spring days map to nodes 3, 10, 11, 12 and most autumn days map to nodes 1, 3
and 12. These nodes represent both summer and winter circulations expected in a
transitional season.

Figure 3 is also presented in order to show a so-called 30 year climatology.
It provides the departures, at grid cell level, from the 30 year mean (anomalies)
of upper air specific humidity fields of each of the nodes. The anomaly map for
specific humidity is more visually informative than the unadjusted map. Specific
humidity in the upper atmosphere is used because it has been shown to be an im-
portant component for rainfall in the region in both summer and winter [Cavazos
and Hewitson (2005)]. Over the interior of the country in the nodes representative
of summer circulations, the high negative anomalies demonstrate the high mois-
ture content in the atmosphere which (with other meteorological factors) result in
wet summers. The high positive anomalies over the interior seen in the nodes as-
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TABLE 1
(Left) Frequency of occurrence of each node over the entire study period, for example,

935(4) indicates that the total number of occurrences of node 4 is 935; (right) Frequency of
occurrence of each node during 1970–1979 and 1990–1999, for example, (278,281)(5) indicates

that the number of occurrence of node 5 during 1970–1979 is 278,
and that number is 281 during 1990–1999

1070(10) 859(11) 1017(12)

989(7) 920(8) 910(9)

935(4) 869(5) 857(6)

1043(1) 776(2) 1070(3)

(340,344)(10) (320,268)(11) (336,327)(12)

(291,324)(7) (308,278)(8) (341,266)(9)

(291,291)(4) (278,281)(5) (290,286)(6)

(283,339)(1) (242,273)(2) (330,373)(3)

sociated with winter circulations indicate a lack of moisture in the atmosphere and
dry winters. The opposite can be seen for the winter rainfall regions.

Undertaking some preliminary exploratory data analysis, a first investigation is
to explore the frequencies of occurrence of each node, hence of the synoptic cli-
mate systems. Table 1 (left) provides a histogram showing the frequencies of daily
observations mapped to each node over the entire study period, from which we
observe fairly evenly distributed percentage frequency of occurrence for each syn-
optic node and no particular archetype is found dominant over the study period.
This is an anticipated result of the SOM algorithm as clarified in Section 2. As a
crude look to infer temporal behavior of the synoptic climate states, Table 1 (right)
compares the histogram of frequency of occurrence during 1970 to 1979 along
with that during 1990 to 1999. Some evidence of temporal shifting in the distri-
bution of incidences over the study area is seen. For example, nodes 1, 2 and 3
occur more frequently during 1990 to 1999 compared with the 1970s. Table 2
(left) shows the frequency distribution of occurrence for each node in the sum-
mer season (December, January, February). It is clear that the climate archetype
which corresponds to nodes 5, 6, 8 and 9 dominates during the summer period. As
shown in Table 2 (right), the dominant climate archetypes transfer to another type
of circulation in winter (June, July, August). Now, we see high frequency of SOM
nodes 1, 4, 7 and 10. We may also use SOM arrays to examine short term (e.g.,
daily) temporal evolution of synoptic events. The frequencies of daily transitions
from each node to other nodes are calculated and shown in Table 3, which reveals a

TABLE 2
(Left) Frequency of occurrence of each node during summer; (right) Frequency of occurrence

of each node during winter

63(10) 149(11) 256(12)

86(7) 389(8) 416(9)

71(4) 402(5) 401(6)

56(1) 189(2) 312(3)

503(10) 198(11) 159(12)

463(7) 81(8) 56(9)

494(4) 59(5) 42(6)

530(1) 143(2) 124(3)
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TABLE 3
Empirical transition probabilities. Each 4 by 3 sub-table in the following 4 by 3 array shows a set of

transition probabilities. The array and sub-tables are arranged in the same way as in Table 1

0.244 0.180 0.107 0.051 0.148 0.278 0.007 0.025 0.246
0.144 0.064 0.032 0.036 0.097 0.134 0.008 0.029 0.204
0.091 0.035 0.018 0.024 0.063 0.058 0.002 0.026 0.184
0.043 0.024 0.019 0.015 0.027 0.069 0.009 0.045 0.216

0.166 0.104 0.045 0.040 0.071 0.114 0.002 0.012 0.076
0.227 0.080 0.022 0.043 0.201 0.170 0.005 0.042 0.211
0.190 0.038 0.013 0.035 0.136 0.086 0.016 0.120 0.254
0.079 0.022 0.013 0.033 0.038 0.034 0.015 0.066 0.180

0.163 0.071 0.020 0.045 0.077 0.059 0.008 0.028 0.064
0.207 0.066 0.007 0.061 0.183 0.086 0.013 0.056 0.074
0.224 0.034 0.003 0.089 0.166 0.072 0.021 0.135 0.183
0.174 0.016 0.014 0.087 0.047 0.028 0.049 0.133 0.236

0.212 0.043 0.007 0.106 0.088 0.026 0.050 0.061 0.041
0.186 0.039 0.007 0.072 0.107 0.017 0.018 0.040 0.018
0.170 0.012 0.004 0.086 0.115 0.012 0.030 0.081 0.039
0.283 0.025 0.013 0.228 0.116 0.028 0.093 0.259 0.269

somewhat clockwise cyclic evolution (with regard to Figure 1) of the weather sys-
tems. For example, SOM node group 9 displays preferential transition to group 6,
while SOM node group 6 tends to most prefer transition to group 3. In Section 4
we elaborate this analysis by introducing formal time series modeling to interpret
the SOM arrays.

4. SOM modeling.

4.1. Dimension reduction. The daily climate reference data consist of an
847 × 1 vector for each day within a 31-year period, which raises methodolog-
ical and computational challenges when we attempt to interpret them in high di-
mension. In fact, since the 847 × 1 vector arises as an 11-dimensional vector at
each of 77 grid units, it is clear that we are monitoring a multivariate space–time
data process. We do not seek to model this process directly, a very challenging
task to develop and, likely, infeasible to fit. Rather, we seek to understand this
process in terms of the SOM nodes that have been created. We will take advantage
of the dimension reduction provided by the SOM procedure to, instead, model
the induced collection of two-dimensional locations across time. As we remarked
earlier, the SOM algorithm ignores time and space in creating the nodes. By intro-
ducing a space–time process model, we seek to enhance behavioral interpretation
for the set of SOM nodes. The result of the SOM algorithm yields, in our case,
twelve nodes, each with an associated two-dimensional location (Figure 1). We
now seek to project the 11,315 daily state vectors onto this space of locations.
Many schemes are available to accomplish this; there is no “best” one. We choose
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to map daily high-dimensional reference data onto a 2-dimensional surface using
high-dimensional pairwise distances along with the 2-dim coordinates of the SOM
nodes. For each daily state vector, the Euclidean distances between it and each of
the nodes are calculated in high-dimensional space. Then, for each daily vector,
nodes are ranked by their distances to the vector. We next introduce a greedy space
searching technique that maps each daily vector onto a 2-dimensional surface. To
be specific, a 2-dimensional point within a finite bounded region is selected as
the projection if the ranks of the Euclidean distances in two dimensions to each
node using this point agree with the ranks between the vector and the nodes in
high-dimensional space. Evidently, there may be no point in 2-dimensional space
which satisfies this condition, so we seek agreement in ranking starting from the
smallest distance. Also, for a given high-dimensional point, such mapping may
yield multiple mapped positions that provide the same extent of agreement in terms
of rank distance agreement. In that situation, we averaged the coordinates of the
multiple positions to ensure the uniqueness of the mapped position. Such an algo-
rithm is easy to code and easily handles 11,315 points in 847-dimensional space.
In Section 4.2 we focus on modeling the 2-dimensional coordinates derived us-
ing this method. Other projection approaches utilizing alternative, possibly global,
optimization criteria are certainly available, though they may be difficult to imple-
ment. However, the modeling approach we develop in Section 4.2 can be applied
to the results of any projection strategy.

4.2. Modeling specifications. The projection method described in Section 4.1
is performed on the daily referenced data from 1970–2000 to yield 2-dimensional
mapped coordinates which are plotted in Figure 4 along with the coordinates of

FIG. 4. Mapped coordinates in the 2-dimensional space for each of the 11,315 days.
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the SOM nodes. We can see that the two-dimensional space is naturally partitioned
into 12 tessellations, each attached to a SOM node. Of course, Figure 4 gives no
information regarding the temporal sequence of the points.

However, let st = (xt , yt )
′ denote the coordinates in 2-dims for day t , t =

1, . . . , T . Before beginning the time series analysis, it is natural to examine the
autocorrelation in this bivariate time series. We ran a standard vector autoregres-
sion software package for lags 1 up to 50. The plot (not shown in the interest of
space) finds an adjusted AIC value of 7.88 for the AR(1) model, 7.81 for the AR(2)
model and reaches its minimum at 7.76 for the AR(24) model. So, while there may
be some evidence of longer range dependence in the series, the relative decrease
in the model choice criterion is very small; AR(1) models may be good enough.
Moreover, with interest in studying transition probabilities, in the sequel we work
exclusively with AR(1) specifications. Under 12 nodes this still yields 144 tran-
sition probabilities. For the AR(2), we arrive at 1728 transition probabilities, too
many to estimate well and to display.

We start the analysis with a bivariate random walk Gaussian model

st+1 = st + εt+1,

where εt follows a bivariate Gaussian distribution centered at 0 with a 2 × 2 co-
variance matrix �. Under this model, the conditional Gaussian probability density
functions of the coordinates at each time step are completely determined by the
coordinates at the previous time step along with the covariance matrices. For us,
the bivariate random walk model plays the role of a straw man. If the SOM nodes
effectively capture synoptic weather states, there should be some structure to the
daily transitions in the st ’s. In other words, the algorithm yielding the SOM nodes
is applied to spatially-referenced explanatory climate variables observed over time
and, therefore, we would expect behavior with a more mechanistic description than
purely random movement of the daily states in two dimensions. In this regard, de-
note Y′ = (s2, . . . , sT ), X′ = (s1, . . . , sT −1). Then, the conditional maximum like-
lihood estimator (MLE) of � is

� = (Y − X)′(Y − X)/(T − 1).

A very general form of bivariate time series model is the following:

st+1 = A(st , t)st + η(st , t) + εt+1,(1)

where A(st , t) is a 2 × 2 unknown matrix containing autoregression coefficients
that are allowed to vary in space and time, the values of which are specified by
location and time at the preceding step. η(st , t) enters (1) as an adjustment to the
autoregressive component and can also be specified as a function of the preceding
location and time. Again, error terms ε2, . . . ,εT are independently identically dis-
tributed N(0,�) representing unstructured noise or pure error in the model. The
model in (1) provides a very flexible specification in the form of a locally affine
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transition model. In fact, it is also very challenging to fit. We are convinced that,
even with more than 11,000 days of data, the data cannot support or identify such
a general model; we can not achieve a well-behaved MCMC fitting algorithm.
Hence, we turn to some model simplifications. We begin with specifications on
A(st , t):

• The first is a constant transformation matrix model A(st , t) = A yielding

st+1 = Ast + εt+1.(2)

This is a simple case of vector autoregressive (VAR) models, which have been
widely used in multiple time series analysis [see, e.g., Sims (1972) and Enders
(2003)].

• We next consider a spatially-varying transformation matrix. It is most conve-
nient to assign a distinct transformation matrix to each of the tessellations in-
duced by the SOM nodes as described above. Let Al be the transformation ma-
trix when st ∈ �l , where �l is tessellation l, for l = 1,2, . . . ,L. Let Zl be a
binary indicator, that is, Zl(st ) = 1 if st ∈ �l , and 0 otherwise. Then,

A(st , t) =
L∑

l=1

AlZl(st ).(3)

This specification allows us to study regional change in the linear transforma-
tion.

• One of the important questions we seek to address in our climate study is
whether there is a change in circulation patterns. That is, we assume the same
collection of synoptic states continues to operate over time. However, temporal
change would be manifested by a change in incidence rates of the states and
thus would be modeled using time varying transition matrices. Let Bm be the
transformation matrix when t ∈ �m, where �m are disjoint time blocks, that is,⋃M

m=1 �m = {1, . . . , T }. Let Vm(t) = 1 if t ∈ �m, and 0 otherwise. Now,

A(st , t) =
M∑

m=1

BmVm(t).(4)

Expression (4) enables us to study temporally varying linear transformation over
suitable time scales, for example, months, quarters or years.

• A spatially and temporally varying structure can be extended from the specifi-
cations described above in the form

A(st , t) = ∑
l,m

Dm,lZl(st )Vm(t).(5)

Special cases of (5) include separable forms in space and time, for example,
Dm,l = BmAl or Dm,l = AlBm. The former provides spatial transition followed
by temporal transition, the latter vice versa.
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The modeling in (3), (4) and (5) works at the aggregated spatial and tem-
poral scale. Similarly, we could add spatially and temporally aggregated inter-
cepts. In particular, we could introduce η(st , t) = η, η(st , t) = ∑L

l=1 ηlZl(st ), or
η(st , t) = ∑M

m=1 ηmVm(t). However, we view the role of the η(st , t)’s as introduc-
ing point level refinement to aggregated level affine transformations. We do so by
introducing a bivariate spatial Gaussian realization intended to provide spatially
dependent adjustments to the linear transformation specification. The adjustment
at time t is η(st ), yielding the model

st+1 = A(st , t)st + η(st ) + εt+1.(6)

We propose a coregionalization model for the bivariate Gaussian process realiza-
tion in the spirit of Gelfand et al. (2004). Let w(s) = (w1(s),w2(s))′, where w1(s)
and w2(s) are uncorrelated spatial processes, each with zero mean and unit vari-
ance. Coregionalization constructs a bivariate spatial process by linear transforma-
tion of these two independent univariate processes, that is, η(s) = (η1(s), η2(s))′ =
Q(w1(s),w2(s))′, where Q is a 2 × 2 unknown coregionalization matrix and can
be taken as lower triangular without loss of generality, that is, Q = (q11 0

q12 q22

)
. An

unusual aspect of the employment of this bivariate specification is that it provides
a spatial surface to smooth all locations in the region while the observations are, in
fact, a time series of locations. In other words, this bivariate spatial process is cre-
ated for observed locations at multiple time points rather than multiple locations
observed at the same time. The process realization reflects the spatial variation un-
explained by the autoregressive component, regardless of the specific times of the
observations.

The model in (6) is now completely specified. However, recall that we work
with 11,315 days, hence 11,315 locations in total. The joint distribution of the col-
lection of 11,315 η(s)’s introduces an 11,315 × 11,315 covariance matrix. To han-
dle this dimension, we employ a version of the predictive process model described
in Banerjee et al. (2008). Briefly, we consider a set of “knots” S∗ = {s∗

1, . . . , s∗
m},

which forms a subset of the study region in 2-dimensional space. The bivariate
Gaussian process above would yield w∗ = [w(s∗

i )]mi=1 ∼ MV N(0,C∗(θ)) as its re-
alizations over S∗, where C∗(θ) = [C(s∗

i , s∗
j ; θ)]mi,j=1 is the corresponding m × m

covariance matrix. The predictive process model is defined as

w̃(s) = E[w(s)|w∗] = cT (s; θ)C∗−1(θ)w∗,(7)

where c(s; θ) = [C(s, s∗
j ; θ)]mj=1. In fact, w̃(s) is a Gaussian process with

covariance function C̃(s, s′; θ) = c∗T (s; θ)C∗−1(θ)c∗(s′, θ), where c∗(s; θ) =
[C(s0, s∗

j ; θ)]mj=1. The realization of w̃(s) on any collection of sites is the inter-
polated predictions conditional upon the realization of w(s) over S∗. To work with
this process, we only need to work with w∗

1, w∗
2 and the associated pair of m × m

correlation matrices.
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5. Model fitting issues. VAR models are well discussed in the literature [see,
e.g., Lütkepohl (1993) and Zivot and Wang (2006)]. Analysis within the Bayesian
paradigm is presented in, for example, Sims and Zha (1998), Sun and Ni (2004).
We employ MCMC to fit the various submodels of (6) described in the previous
section. In fact, we first discuss the computational issues in fitting the proposed
models without spatial adjustment. Then we turn to issues in fitting the models
with such adjustment.

5.1. Fitting models without spatial adjustment. For those proposed models
without spatial adjustment, we illustrate the MCMC fitting procedure for model
st+1 = ∑L

l=1 AlZl(st )st + εt+1.
Denote Z(st ) = (Z1(st ), . . . ,ZL(st )), xt = (Z(st )⊗ s′

t ), Y′ = (s2, . . . , sT ), X′ =
(x1, . . . ,xT −1), ε′ = (ε2, . . . ,εT ), �′ = (A′

1, . . . ,A′
L). Here Y and ε are (T −1)×

2 matrices, � is a 2L × 2 matrix of unknown transformation parameters, xt is a
1 × 2L row vector and X is a (T − 1) × 2L matrix of observations. Then the VAR
model can be written as

Y = X� + ε.

The MLE’s of � and � are obtained by maximizing

L(�,�) = 1

|�|(T −1)/2 exp

{
−1

2

T −1∑
t=1

(st+1 − xt�)�−1(st+1 − xt�)′
}

= 1

|�|(T −1)/2 etr
{
−1

2
(Y − X�)�−1(Y − X�)′

}
,

where etr(·) = exp(trace(·)). We obtain MLE’s of � and � as �̂M = (X′X)−1X′Y
and �̂M = (Y − X�̂M)′(Y − X�̂M)/(T − 1).

Bayesian model fitting is completed by assigning prior distributions on the un-
known parameters of interest. Denote φ = vec(�), that is, the vector obtained by
concatenating the entries in �. We assign φ with a flat prior. We consider a nonin-
formative Jeffreys prior for �, which, in our case, is π(�) ∝ 1

|�|3/2 .
Given �, we can directly sample φ from its conditional distribution given by

π(φ|�,Y) ∼ MV N
(
vec(�̂M),� ⊗ (X′X)−1)

.

Conditional on φ, � is updated using an Inverse Wishart ((T − 1)�̂(�̂M),

T − 2L).

5.2. Fitting models with spatial adjustment. For the models with spatial ad-
justment, for convenience, we adopt an exponential correlation function for each
of the two parent processes, hence bringing in two decay parameters θ1 and θ2.1

1We would not anticipate sensitivity in the bivariate predicted η surfaces to the choice of correla-
tion function.
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A uniform prior is assigned for each of θ1 and θ2 and updated using Metropo-
lis steps. For the coregionalization matrix Q, we assign truncated normal priors
with positive support for the diagonal entries, and a normal prior for the off-
diagonal entry. The entries in Q are updated from normal distributions conditional
on the other parameters. Samples of W∗(b)

1 and W∗(b)
2 are generated in blocks

from their multivariate normal posterior distributions, which in turn yield sam-
ples of w̃(s)(b) = cT (s; θ (b))C∗−1(θ (b))w∗(b). Substantial gains in computational
efficiency are achieved by working with W∗ at a relatively small number of knots.

Each of the proposed models enables one day ahead prediction, that is, the pos-
terior predictive distribution of location at time t +1 given location, say, s̃ at time t .
This is implemented by composition; a posterior draw of the parameters in what-
ever version of (6) we fit, setting st = s̃, enables a predictive draw for the location
at time t + 1. Posterior samples, s̃(b) enable a density estimate for the transition
distribution at any time and given any location. In addition, these models enable
inference about the “transition distance,” ‖st+1 − st‖, in 2-dimensional space.

In fact, again using posterior predictive samples, these models allow us to in-
duce inference for categorical analysis at tessellation level. The probability of tran-
sitioning from s̃ to tessellation l can be straightforwardly estimated as well as the
12 × 12 transition matrix from SOM node to SOM node (we omit details). This
model-based estimate can be compared with the empirical estimate presented in
Section 3 (Figure 3). Evidently, we can learn about the movement of the daily
state vectors at any spatial scale in 2-dimensions. Working at the scale of the tes-
sellations enables us to inform about circulation among synoptic weather states
defined by the SOM nodes.

6. Model comparison and model results. Given the various possible model
specifications detailed in Section 3, our first analysis goal would appear to be
model comparison. We consider three criteria. First, we compare models in terms
of one step ahead prediction performance. For each observation st at t , samples of
st+1 are drawn from the posterior predictive distribution as described above. Pos-
terior means are adopted as the point estimates of the predicted positions for each
of t = 2 to t = T . The root mean square predictive errors (RMSPE) are computed
to assess the predictive performance for each model

R̂MSPE =
√√√√ 1

T − 1

T∑
i=2

‖ŝt − st‖2,(8)

where ŝt is the mean of the posterior samples {ŝ(b)
t } for b = 1,2, . . . ,B .

A second comparison among models is to study the proportion of times the true
locations lie in their associated 95% predictive interval under each model. This
coverage proportion is denoted by r̂ . A third model selection criterion which is
easily calculated from the posterior samples is the deviance information criterion
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TABLE 4
Performance of several VAR models using root mean square predictive errors (RMSPE), the

deviance information criterion (DIC) and the empirical coverage probability r̂ . A(tessellation)

denotes regionally varying A as described in (3), A(year) denotes annually varying A as described
in (4), η(quarter) denotes quarterly varying A which is constant as year within each quarter.

η(quarter∗) denotes quarterly varying A which is also changing as year, A(tessellation,quarter)
denotes A as described in (5) and η(spatial) denotes spatially varying adjustment as

described in (6)

Model specification RMSPE DIC (×105) r̂

Model 0: st+1 = st + ε 11.419 1.6403 0.929
Model 1: st+1 = Ast + ε 9.226 1.5353 0.944
Model 2: st+1 = A(tessellation)st + ε 9.125 1.5317 0.943
Model 3: st+1 = A(tessellation)st + η(quarter) + ε 8.943 1.5238 0.939
Model 4: st+1 = A(quarter)st + ε 9.215 1.5337 0.942
Model 5: st+1 = A(quarter)st + η + ε 9.205 1.5337 0.941
Model 6: st+1 = A(quarter)st + η(year) + ε 9.190 1.5297 0.947
Model 7: st+1 = A(quarter∗)st + ε 9.088 1.5378 0.948
Model 8: st+1 = A(year)st + ε 9.224 1.5361 0.944
Model 9: st+1 = A(tessellation, year)st + ε 8.777 1.5407 0.956

Model 10: st+1 = A(tessellation,quarter)st + ε 8.920 1.5247 0.940
Model 11: st+1 = Ast + η(spatial) + ε 9.214 1.5421 0.934

(DIC) [Spiegelhalter et al. (2002)]. DIC is a generalization of the AIC and BIC
criteria; smaller values of DIC correspond to preferred models.

Table 4 summarizes the RMSPE, DIC score, and r̂ for a collection of models
as indicated. (When time is included it is either blocked quarterly or annually.)
Based upon the model fitting to more than 11,000 data points and using a large
number of posterior samples (10,000), we are comfortable with the number of
significant digits provided. First, all of the proposed autoregressive models are
apparently superior to the random walk model in terms of predictive performance
and DIC scores. Second, disappointingly, the models including spatial adjustment
show no evidence of improving performance on data fitting and prediction; there
appears to be little spatial dependence left in the autoregression residuals. Further
disappointment emerges in the similarity of performance of these models; we can
do better than a random walk model, but can not find any interesting spatial or
temporal structure.

We offer several thoughts in this regard. Perhaps the projection to a two-
dimensional space which yields our bivariate time series has removed the inter-
esting structure. In particular, the spatially varying covariate information associ-
ated with the 11 climate variables was used to create the projected locations in
two dimensions; it is not available to explain the bivariate time series. Moreover,
the spatial dependence, that is, induced in the two-dimensional space may have
little to do with the spatial structure in the geographic space of the original 11
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space–time processes. Finally, climatologists would assert that the SOM which
was created is not intended for short term weather prediction; in capturing climate
states, the SOM might be more appropriate for assessing regional climate change
over a longer temporal scale (see Section 6). So, while our modeling goal here was
to learn about spatial and temporal structure in the created SOM (and, what fol-
lows below indicates that there is still a story to tell), to learn about the space time
structure in the original daily data a different dimension-reduction strategy might
be more appropriate.

In any event, Model 9, which has transformation matrix A specified as tessella-
tion and year, has the lowest prediction error in terms of RMSPE.2 In addition, the
r̂ for Model 9 is quite close to 0.95, as desired. As a result, we summarize results
based on Model 9. Table 5 provides the posterior means for several parameters
of interest and the corresponding 95% credible intervals under Model 9. We no-
tice that estimates for the elements in � take large values, suggesting substantial
unexplained variances in the SOM array. Again, this reflects our lack of covari-
ate information but also comments upon the utility of SOMs for one-step ahead
prediction of weather states.

Following the discussion in Section 5, we provide some illustrations of the in-
duced categorical analysis at the scale of the tessellations. Figure 5 shows the his-
tograms of transition distance for each of the 12 tessellations in the year 2000,
which suggests possible regional heterogeneity in the distribution of transition dis-
tance. In fact, synoptic weather in South Africa may display node-specific magni-
tude in volatility. For instance, SOM node group 2 which is expected in a transi-
tional season, on average, tends to have higher transition distances than SOM node
group 5 associated with characteristic summer circulation features. And this phe-
nomenon might reveal high climate volatility associated with SOM node group 2
and relatively low climate volatility associated with SOM node group 5. Model 9

TABLE 5
Posterior means and 95% credible intervals of Atessellation1,year2000 and �

Mean 0.025% 0.975% SE

a11 0.604 0.151 1.033 0.237
a12 0.168 −0.220 0.618 0.226
a21 −0.199 −0.739 0.409 0.286
a22 −0.028 −0.678 0.503 0.289
�11 40.394 39.212 41.457 0.566
�12 17.572 16.544 18.648 0.531
�22 68.441 66.429 70.297 0.961

2We might speculate that annual blocking captures an El Nino effect.
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FIG. 5. Histograms of transition distances for each SOM group.

enables us to make inference of the transition matrices, as well as the correspond-
ing estimated errors year by year. The estimated transition matrix is shown in Ta-
ble 6 for the year 2000, which again supports the findings on the clockwise cyclic

TABLE 6
Estimated mean of the transition matrix in 2000. Each 4 by 3 sub-table in the following 4 by 3 array

shows a set of transition probabilities. The array and sub-tables are arranged in the same way as
in Table 1

0.144 0.169 0.150 0.042 0.205 0.458 0.003 0.022 0.162
0.081 0.100 0.081 0.017 0.060 0.104 0.003 0.036 0.231
0.059 0.074 0.048 0.011 0.035 0.040 0.005 0.048 0.249
0.030 0.037 0.026 0.004 0.011 0.013 0.004 0.041 0.194

0.177 0.108 0.040 0.027 0.085 0.159 0.008 0.035 0.106
0.161 0.087 0.025 0.031 0.100 0.146 0.012 0.063 0.161
0.148 0.073 0.016 0.035 0.107 0.119 0.017 0.091 0.194
0.103 0.049 0.012 0.029 0.077 0.085 0.019 0.094 0.200

0.139 0.106 0.041 0.057 0.128 0.130 0.008 0.027 0.060
0.132 0.095 0.031 0.055 0.119 0.094 0.013 0.053 0.112
0.133 0.092 0.024 0.057 0.115 0.070 0.019 0.086 0.177
0.107 0.076 0.023 0.043 0.081 0.052 0.024 0.124 0.297

0.187 0.064 0.013 0.089 0.082 0.041 0.014 0.024 0.025
0.197 0.055 0.008 0.116 0.091 0.033 0.028 0.054 0.053
0.203 0.050 0.006 0.145 0.097 0.026 0.049 0.103 0.098
0.168 0.042 0.005 0.165 0.091 0.024 0.085 0.227 0.240
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evolution of the weather systems. The trajectories of transition probabilities can
be aligned in each row for 31 consecutive years, from which we can examine the
temporal behavior of the transition probabilities in synoptic climate states. As an
illustration, Figure 6 plots the trajectories of three selected transition probabilities.
For the general synoptic state associated with SOM node 1, the persistence proba-
bility reached above 0.35 in 1986 and then dropped below 0.15 in the subsequent
year. The transition probability from SOM node group 11 to SOM node group 12
roughly remained at a stationary level during the 1970s, then dramatically fell be-
low 0.15 in 1983. It appears to be evolving with a more volatile trajectory since
the late 1980’s, finally reaching a peak which is above 0.35 in 2000.

FIG. 6. Transition probabilities from 1970–2000.
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7. Discussion. The use of SOMs has made considerable inroads in the mete-
orology community with regard to developing synoptic weather states to describe
the collection of available weather patterns across a region. Since the SOM tech-
nology represents high-dimensional vectors in two-dimensional space, we consid-
ered vector AR models to try to better understand the temporal evolution of SOM
nodes. We have demonstrated that, while these SOMs may adequately span the
high-dimensional space of daily weather data vectors, they reveal little interesting
spatial or temporal structure with regard to forecasting weather states.

Finally, we offer a potentially useful remark. The inability of the SOM to predict
short term temporal evolution of these states does not imply that the SOM will not
be useful for the projection of future climate. If we assume that the SOM nodes
describe regional weather well and that the same weather states continue to operate
in the future, we may be able to forecast climate change in the form of a less
uniform incidence of the different states than we currently see (Tables 1 and 2).
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