A probabilistic ergodic decomposition result

Albert Raugi
IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
E-mail: raugi@univ-rennes1.fr

Received 14 April 2008; accepted 1 September 2008

Abstract

Let (X, \mathfrak{X}, μ) be a standard probability space. We say that a sub- σ-algebra \mathfrak{B} of \mathfrak{X} decomposes μ in an ergodic way if any regular conditional probability ${ }^{\mathfrak{B}} P$ with respect to \mathfrak{B} and μ satisfies, for μ-almost every $x \in X, \forall B \in \mathfrak{B},{ }^{\mathfrak{B}} P(x, B) \in\{0,1\}$. In this case the equality $\mu(\cdot)=\int_{X} \mathfrak{B}^{\mathcal{B}} P(x, \cdot) \mu(\mathrm{d} x)$, gives us an integral decomposition in " \mathfrak{B}-ergodic" components.

For any sub- σ-algebra \mathfrak{B} of \mathfrak{X}, we denote by $\overline{\mathfrak{B}}$ the smallest sub- σ-algebra of \mathfrak{X} containing \mathfrak{B} and the collection of all sets A in \mathfrak{X} satisfying $\mu(A)=0$. We say that \mathfrak{B} is μ-complete if $\mathfrak{B}=\overline{\mathfrak{B}}$.

Let $\left\{\mathfrak{B}_{i}: i \in I\right\}$ be a non-empty family of sub- σ-algebras which decompose μ in an ergodic way. Suppose that, for any finite subset J of $I, \bigcap_{i \in J} \overline{\mathfrak{B}_{i}}=\overline{\bigcap_{i \in J} \mathfrak{B}_{i}}$; this assumption is satisfied in particular when the σ-algebras $\mathfrak{B}_{i}, i \in I$, are μ-complete. Then

 we prove that the sub- σ-algebra $\bigcap_{i \in I} \mathfrak{B}_{i}$ decomposes μ in an ergodic way.Résumé. Soit (X, \mathfrak{X}, μ) un espace probabilisé standard. Nous disons qu'une sous-tribu \mathfrak{B} de \mathfrak{X} décompose ergodiquement μ si toute probabilité conditionnelle régulière ${ }^{\mathfrak{B}} P$ relativement à \mathfrak{B} et μ, vérifie, pour μ-presque tout $x \in X, \forall B \in \mathfrak{B},{ }^{\mathfrak{B}} P(x, B) \in\{0,1\}$. Dans ce cas l'égalité $\mu(\cdot)=\int_{X} \mathfrak{B}^{P}(x, \cdot) \mu(\mathrm{d} x)$, nous donne une décomposition intégrale en composantes " \mathfrak{B}-ergodiques."

Pour toute sous-tribu \mathfrak{B} de \mathfrak{X}, nous notons $\overline{\mathfrak{B}}$ la plus petite sous-tribu de \mathfrak{X} contenant \mathfrak{B} et tous les sous-ensembles mesurables de X de μ-mesure nulle. Nous disons que la tribu \mathfrak{B} est μ-complète si $\mathfrak{B}=\overline{\mathfrak{B}}$.

Soit $\left\{\mathfrak{B}_{i}: i \in I\right\}$ une famille non vide de sous-tribus de \mathfrak{X} décomposant ergodiquement μ. Supposons que, pour toute partie finie J de $I, \bigcap_{i \in J} \overline{\mathfrak{B}_{i}}=\overline{\bigcap_{i \in J} \mathfrak{B}_{i}}$; cette hypothèse est satisfaite si les tribus $\mathfrak{B}_{i}, i \in I$, sont μ-complètes. Alors la sous-tribu $\bigcap_{i \in I} \mathfrak{B}_{i}$ décompose ergodiquement μ.

MSC: 28A50; 28D05; 60A10
Keywords: Regular conditional probability; Disintegration of probability; Quasi-invariant measures; Ergodic decomposition

1. Introduction

There are several versions of ergodic decomposition theorems in the literature (cf. [3,4,6-8]) which give an integral decomposition of a probability measure μ, on a standard measurable space, in ergodic components. Most of these decompositions are based on abstract results like Choquet's theorem. A probabilistic approach which can prove to be more convenient due to the properties of the conditional expectation (see [2]) is the following. Let (X, \mathfrak{X}, μ) be a standard Borel probability space. Let \mathfrak{B} be a sub- σ-algebra of \mathfrak{X}. We denote by ${ }^{\mathfrak{B}} P$ a regular conditional probability of \mathfrak{B} and μ. We say that \mathfrak{B} decomposes μ in an ergodic way if for μ-almost every $x \in X, \forall B \in \mathfrak{B},{ }^{\mathfrak{B}} P(x, B) \in\{0,1\}$. In this case, the equality $\mu(\mathrm{d} x)=\int_{X} \mathfrak{B} P(x, \cdot) \mu(\mathrm{d} x)$ gives us an integral decomposition in \mathfrak{B}-ergodic components.

In $[7,8]$ Shimomura proves that the intersection of a decreasing sequence of separable sub- σ-algebras of \mathfrak{X} decomposes μ in an ergodic way. He also gives an example of a standard probability space and a suitable sub- σ-algebra for which the above decomposition is not ergodic.

Let $\left\{\mathfrak{B}_{i}: i \in I\right\}$ be a non-empty family of sub- σ-algebras which decompose μ in an ergodic way. Suppose that, for any finite subset J of $I, \bigcap_{i \in J} \overline{\mathfrak{B}_{i}}=\overline{\bigcap_{i \in J} \mathfrak{B}_{i}}$. The aim of this paper is to prove that the sub- σ-algebra $\bigcap_{i \in I} \mathfrak{B}_{i}$ decomposes μ in an ergodic way.

2. Preliminaries

It is not necessary to work with standard Borel spaces. We only need probability space for which any sub- σ-algebra has regular conditional probabilities. In this section we recall some results about this property. On a standard Borel space (X, \mathfrak{X}), it is well known that, for any probability measure μ and any sub- σ-algebra \mathfrak{B} of \mathfrak{X}, there exists a regular conditional probability with respect to μ and \mathfrak{B}.

Definition 2.1. A σ-algebra on a set X is called separable if it is generated by a countable sub-algebra.
Proposition 2.2. Let (X, \mathfrak{X}) be a measurable space with a separable σ-algebra \mathfrak{X}. Then two positive σ-finite measures are equal if they coincide on a countable algebra generating \mathfrak{X}.

Definition 2.3. A class \mathcal{C} of subsets of X is said to be compact if,for any sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathcal{C} with an empty intersection $\bigcap_{n \in \mathbb{N}} C_{n}$, there exists a natural integer p such that $\bigcap_{n=0}^{p} C_{n}=\varnothing$.

Definition 2.4. Let (X, \mathfrak{X}, μ) be a probability space. Let \mathcal{C} be a compact subclass of \mathfrak{X}. We say that \mathcal{C} is μ approximating if

$$
\forall A \in \mathfrak{X} \quad \mu(A)=\sup \{\mu(C): C \in \mathcal{C}, C \subset A\} .
$$

Definition 2.5. Let (X, \mathfrak{X}, μ) be a probability space. Let \mathfrak{B} be a sub- σ-algebra of \mathfrak{X}. We call regular conditional probability with respect to \mathfrak{B} and μ a map P from $X \times \mathfrak{X}$ to $[0,1]$ such that:
(i) for any $x \in X, P(x, \cdot)$ is a probability measure on \mathfrak{X}.
(ii) for any $A \in \mathfrak{X}$, the map $x \in X \mapsto P(x, A)$ is a version of the conditional expectation $\mathbb{E}_{\mu}\left[1_{A} \mid \mathfrak{B}\right]$; that is, this map is \mathfrak{B}-measurable and, for any $B \in \mathfrak{B}$,

$$
\int_{X} 1_{A}(x) 1_{B}(x) \mu(\mathrm{d} x)=\int_{X} P(x, A) 1_{B}(x) \mu(\mathrm{d} x) .
$$

Then for any non-negative (or bounded) \mathfrak{X}-measurable function f, the function Pf defined by $P f(x)=\int_{X} f(y) \times$ $P(x, \mathrm{~d} y)$ (expectation of f with respect to the probability $P(x, \cdot))$ is a version of the conditional expectation $\mathbb{E}_{\mu}[f \mid \mathfrak{B}]$.

Theorem 2.6 ([5], corollaire Proposition V-4-4). Let (X, \mathfrak{X}, μ) be a probability space with a separable σ-algebra \mathfrak{X} containing a μ-approximating compact class.

Then, for any sub- σ-algebra \mathfrak{B} of \mathfrak{X} there exists a regular conditional probability with respect to \mathfrak{B} and μ.
Remarks. Let (X, \mathfrak{X}, μ) be a probability space with a separable σ-algebra \mathfrak{X} containing a μ-approximating compact class. Let \mathfrak{B} be a sub- σ-algebra of \mathfrak{X}.

1. If P and Q are two regular conditional probabilities with respect to \mathfrak{B} and μ then, for μ-almost every $x \in X$, the probability measures $P(x, \cdot)$ and $Q(x, \cdot)$ are equal.
2. If P is a regular conditional probability with respect to \mathfrak{B} and μ, then for any $B \in \mathfrak{B}$, we have, for μ-almost every $x \in X$,

$$
P(x, B)=E_{\mu}\left[1_{B} \mid \mathfrak{B}\right](x)=1_{B}(x)=\delta_{x}(B) \in\{0,1\},
$$

where δ_{x} is the Dirac measure at the point x.
When the σ-algebra \mathfrak{B} is separable, from Proposition 2.2 we can permute "for any $B \in \mathfrak{B}$ " and "for μ-almost every $x \in X$."
3. Let $\overline{\mathfrak{B}}$ be the smallest sub- σ-algebra containing \mathfrak{B} and the collection of all sets A in \mathfrak{X} satisfying $\mu(A)=0$. One sees easily that any regular conditional probability with respect to \mathfrak{B} and μ is a regular conditional probability with respect to $\overline{\mathfrak{B}}$ and μ. For two sub- σ-algebras \mathfrak{B}_{1} and \mathfrak{B}_{2} of \mathfrak{X}, the sub- σ-algebra $\overline{\mathfrak{B}}_{1} \cap \overline{\mathfrak{B}}_{2}$ is not necessarily equal to $\overline{\mathfrak{B}_{1} \cap \mathfrak{B}_{2}}$; consequently $\mathbb{L}^{2}\left(X, \overline{\mathfrak{B}}_{1} \cap \overline{\mathfrak{B}}_{2}, \mu\right)$ is not necessarily equal to $\mathbb{L}^{2}\left(X, \overline{\mathfrak{B}_{1} \cap \mathfrak{B}_{2}}, \mu\right)$.

3. Main results

Throughout this section, we assume that (X, \mathfrak{X}, μ) is a probability space with a separable σ-algebra \mathfrak{X} containing a μ-approximating compact class. The preceding Remark 2 leads us to introduce the following definition.

Definition 3.1. We say that a sub- σ-algebra \mathfrak{B} of \mathfrak{X} decomposes μ in an ergodic way if one (and thus all) regular conditional probability ${ }^{\mathfrak{B}} P$ with respect to \mathfrak{B} and μ satisfies, for μ-almost every $x \in X, \forall B \in \mathfrak{B},{ }^{\mathfrak{B}} P(x, B) \in\{0,1\}$.

From the preceding Remarks 2 and 3 it follows that:

- Any separable sub- σ-algebra of \mathfrak{X} decomposes μ in an ergodic way.
- If $\overline{\mathfrak{B}}$ decomposes μ in an ergodic way then so does \mathfrak{B}. (Any regular conditional probability ${ }^{\mathfrak{B}} P$ with respect to \mathfrak{B} and μ is a regular conditional probability with respect to $\overline{\mathfrak{B}}$ and μ. If $\overline{\mathfrak{B}}$ decomposes μ in an ergodic way then, for μ-almost every $x \in X,{ }^{\mathfrak{B}} P(x, B) \in\{0,1\}$ for any $B \in \overline{\mathfrak{B}}$ and a fortiori for any $B \in \mathfrak{B}$. Which proves that \mathfrak{B} decomposes μ in an ergodic way.)

Lemma 3.2. Let \mathfrak{B} be a sub- σ-algebra of \mathfrak{X}, and let ${ }^{\mathfrak{B}} P$ be a regular conditional probability with respect to \mathfrak{B} and μ. Then, for μ-almost every $x \in X$, we have the probability equalities

$$
{ }^{\mathfrak{B}} P(y, \cdot)={ }^{\mathfrak{B}} P(x, \cdot) \quad \text { for }{ }^{\mathfrak{B}} P(x, \cdot) \text {-almost every } y \in X
$$

and consequently for any $B \in \mathfrak{B}$, we have for μ-almost every $x \in X$,

$$
\forall A \in \mathfrak{X} \quad \int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{B}} P(x, \mathrm{~d} y)=\int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y)^{\mathfrak{B}} P(x, \mathrm{~d} y) .
$$

The following proposition tells us that the sub- σ-algebra \mathfrak{B} of \mathfrak{X} decomposes μ in an ergodic way if and only if, in the last equalities, we can permute "for any $B \in \mathfrak{B}$ " and "for μ-almost every $x \in X$."

Proposition 3.3. Let \mathfrak{B} be a sub- σ-algebra of \mathfrak{X}, and let ${ }^{\mathfrak{B}} P$ be a regular conditional probability with respect to \mathfrak{B} and μ.

Then the two following assertions are equivalent:
(i) \mathfrak{B} decomposes μ in an ergodic way;
(ii) For μ-almost every $x \in X,{ }^{\mathfrak{B}} P$ is a regular conditional probability with respect to \mathfrak{B} and ${ }^{\mathfrak{B}} P(x, \cdot)$.

In this case, for any sub- σ-algebra \mathfrak{C} of \mathfrak{B} and any regular conditional probability ${ }^{\mathfrak{C} P}$ with respect to \mathfrak{C} and μ, for μ-almost every $x \in X,{ }^{\mathfrak{B}} P$ is a regular conditional probability with respect to \mathfrak{B} and ${ }^{\mathfrak{C}} P(x, \cdot)$; that is, for μ-almost every $x \in X$,

$$
\forall(A, B) \in \mathfrak{X} \times \mathfrak{B} \quad \int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y){ }^{\mathfrak{C}} P(x, \mathrm{~d} y)=\int_{X} 1_{A}(y) 1_{B}(y){ }^{\mathfrak{C}} P(x, d y) .
$$

Moreover, this assertion is true for any sub- σ-algebra \mathfrak{C} of \mathfrak{X} such that, for μ-almost every $x \in X$,

$$
\mathfrak{C} P^{\mathfrak{B}} P(x, \cdot) \stackrel{\text { def }}{=} \int_{X}{ }^{\mathfrak{C}} P(x, \mathrm{~d} y)^{\mathfrak{B}} P(y, \cdot)={ }^{\mathfrak{C}} P(x, \cdot) .
$$

This last property is satisfied when \mathfrak{C} is a sub- σ-algebra of \mathfrak{B}.

Theorem 3.4. Let (X, \mathfrak{X}, μ) be a probability space with a separable σ-algebra \mathfrak{X} containing a μ-approximating compact class. Let $\left\{\mathfrak{B}_{i}: i \in I\right\}$ be a non-empty family of sub- σ-algebras which decompose μ in an ergodic way. We suppose that, for any finite subset J of $I, \bigcap_{i \in J} \overline{\mathfrak{B}_{i}}=\overline{\bigcap_{i \in J} \mathfrak{B}_{i}}$.

Then the sub- σ-algebra $\bigcap_{i \in I} \mathfrak{B}_{i}$ decomposes μ in an ergodic way.

4. Proof of the results

Throughout this section, we assume that (X, \mathfrak{X}, μ) is a probability space with a separable σ-algebra \mathfrak{X} containing a μ-approximating compact class. For any sub- σ-algebra \mathfrak{B} of \mathfrak{X}, we denote by ${ }^{\mathfrak{B}} P$ a regular conditional probability with respect to \mathfrak{B} and μ.

4.1. Proof of Lemma 3.2

Let $A \in \mathfrak{X}$. The functions $g(x)={ }^{\mathfrak{B}} P(x, A)$ and $(g(x))^{2}$ are \mathfrak{B}-measurable. Therefore, for μ-almost every $x \in X$,

$$
{ }^{\mathfrak{B}} P g(x)=\mathbb{E}_{\mu}[g \mid \mathfrak{B}](x)=g(x) \quad \text { and } \quad \mathfrak{B} P g^{2}(x)=g^{2}(x)=\left({ }^{\mathfrak{B}} P g(x)\right)^{2} .
$$

From the Cauchy-Schwarz equality it follows that, for μ-almost every $x \in X$,

$$
{ }^{\mathfrak{B}} P(x, A)=g(x)=g(y)={ }^{\mathfrak{B}} P(y, A) \quad \text { for }{ }^{\mathfrak{B}} P(x, \cdot) \text {-almost every } y \in X .
$$

The first assertion of the lemma is then a consequence of Proposition 2.2.
For any $B \in \mathfrak{B}$ and for μ-almost every $y \in X$,

$$
{ }^{\mathfrak{B}} P(y, B)=\mathbb{E}_{\mu}\left[1_{B} \mid \mathfrak{B}\right](y)=1_{B}(y) .
$$

As $\mu(\mathrm{d} y)=\int_{X}{ }^{\mathfrak{B}} P(x, \mathrm{~d} y) \mu(\mathrm{d} x)$, for μ-almost every $x \in X$,

$$
1_{B}(y)={ }^{\mathfrak{B}} P(y, B) \quad \text { for }{ }^{\mathfrak{B}} P(x, \cdot) \text {-almost every } y \in X .
$$

Hence, for any $A \in \mathfrak{X}$ and for μ-almost every $x \in X$,

$$
\begin{align*}
\int_{X} 1_{A}(y) 1_{B}(y){ }^{\mathfrak{B}} P(x, \mathrm{~d} y) & =\int_{X} 1_{A}(y){ }^{\mathfrak{B}} P(y, B){ }^{\mathfrak{B}} P(x, \mathrm{~d} y) \\
& =\int_{X} 1_{A}(y){ }^{\mathfrak{B}} P(x, B){ }^{\mathfrak{B}} P(x, \mathrm{~d} y) \quad \text { (first assertion) } \\
& ={ }^{\mathfrak{B}} P(x, A){ }^{\mathfrak{B}} P(x, B) \\
& =\int_{X}{ }^{\mathfrak{B}} P(x, A) 1_{B}(y){ }^{\mathfrak{B}} P(x, \mathrm{~d} y) \\
& =\int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y){ }^{\mathfrak{B}} P(x, \mathrm{~d} y) \quad \text { (first assertion). } \tag{1}
\end{align*}
$$

The Proposition 2.2 allows us to permute "for any $A \in \mathfrak{X}$ " and "for μ-almost every $x \in X$."

4.2. Proof of Proposition 3.3

Let X_{0} be a measurable subset of X such that $\mu\left(X_{0}\right)=1$ and for any $x \in X_{0}$,

$$
{ }^{\mathfrak{B}} P(y, \cdot)={ }^{\mathfrak{B}} P(x, \cdot) \quad \text { for }{ }^{\mathfrak{B}} P(x, \cdot) \text {-almost every } y \in X .
$$

(i) \Rightarrow (ii) If the σ-algebra \mathfrak{B} decomposes μ in an ergodic way, then there exists a measurable subset X_{1} of X such that $\mu\left(X_{1}\right)=1$ and for any $x \in X_{1}$,

$$
\forall B \in \mathfrak{B} \quad{ }^{\mathfrak{B}} P(x, B) \in\{0,1\} .
$$

For $x \in X_{0} \cap X_{1}$, we have for any $(A, B) \in \mathfrak{X} \times \mathfrak{B}$,

$$
\int_{X} 1_{A}(y) 1_{B}(y){ }^{\mathfrak{B}} P(x, \mathrm{~d} y)={ }^{\mathfrak{B}} P(x, A)^{\mathfrak{B}} P(x, B)=\int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y){ }^{\mathfrak{B}} P(x, \mathrm{~d} y),
$$

which shows that, for any $x \in X_{0} \cap X_{1},{ }^{\mathfrak{B}} P$ is a regular conditional probability with respect to \mathfrak{B} and ${ }^{\mathfrak{B}} P(x, \cdot)$.
(ii) \Rightarrow (i) Assume there exists a measurable subset X_{2} of X such that $\mu\left(X_{2}\right)=1$ and for any $x \in X_{2}$,

$$
\forall A \in \mathfrak{X} \quad{ }^{\mathfrak{B}} P(y, A)=\mathbb{E}_{\mathfrak{B} P(x, \cdot)}\left[1_{A} \mid \mathfrak{B}\right](y) \quad \text { for }{ }^{\mathfrak{B}} P(x, \cdot) \text {-almost every } y \in X .
$$

Then for $x \in X_{0} \cap X_{2}$, we have, for any $B \in \mathfrak{B}$,

$$
{ }^{\mathfrak{B}} P(x, B)={ }^{\mathfrak{B}} P(y, B)=\mathbb{E}_{\mathfrak{B} P(x, \cdot)}\left[1_{B} \mid \mathfrak{B}\right](y)=1_{B}(y) \quad \text { for }{ }^{\mathfrak{B}} P(x, \cdot) \text {-almost every } y \in X .
$$

Hence the assertion (i).
To prove the last assertion of the proposition we need the following lemma.
Lemma 4.1. Let \mathfrak{B} and \mathfrak{C} be two sub- σ-algebras of \mathfrak{X} such that $\mathfrak{C} \subset \mathfrak{B}$. Then for μ-almost every $x \in X$, we have the probability equalities

$$
{ }^{{ }^{\mathfrak{C}} P}{ }^{\mathfrak{B}} P(x, \cdot)={ }^{\mathfrak{B}} P{ }^{\mathfrak{C}} P(x, \cdot)={ }^{\mathfrak{C}} P(x, \cdot) .
$$

Proof. For any $A \in \mathfrak{X}$, we have the classical μ-almost everywhere equalities

$$
\mathbb{E}_{\mu}\left[\mathbb{E}_{\mu}\left[1_{A} \mid \mathfrak{B}\right] \mid \mathfrak{C}\right]=\mathbb{E}_{\mu}\left[\mathbb{E}_{\mu}\left[1_{A} \mid \mathfrak{C}\right] \mid \mathfrak{B}\right]=\mathbb{E}_{\mu}\left[1_{A} \mid \mathfrak{C}\right]
$$

Moreover, if f and g are non-negative (or bounded) measurable functions, we know that: $f=g \mu$-a.e. $\Rightarrow \mathbb{E}_{\mu}[f \mid \mathfrak{B}]=$ $\mathbb{E}_{\mu}[g \mid \mathfrak{B}] \mu$-a.e. It follows that, for any $A \in \mathfrak{X}$,

$$
{ }^{\mathfrak{C}} P{ }^{\mathfrak{B}} P(x, A)={ }^{\mathfrak{B}} P{ }^{\mathfrak{C}} P(x, A)={ }^{\mathfrak{C}} P(x, A) \quad \text { for } \mu \text {-almost every } x \in X .
$$

Then the result follows from Proposition 2.2.

Assume (ii), for μ-almost every $z \in X$, we have: for any $(A, B) \in \mathfrak{X} \times \mathfrak{B}$,

$$
\int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{B}} P(z, \mathrm{~d} y)=\int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y)^{\mathfrak{B}} P(z, \mathrm{~d} y)
$$

As $\mu(\mathrm{d} z)=\int_{X}{ }^{\mathfrak{C}} P(x, \mathrm{~d} z) \mu(\mathrm{d} x)$, for μ-almost every $x \in X$ and ${ }^{\mathfrak{C}} P(x, \cdot)$-almost every $z \in X$, for any $(A, B) \in \mathfrak{X} \times \mathfrak{B}$,

$$
\int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{B}} P(z, \mathrm{~d} y)=\int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y)^{\mathfrak{B}} P(z, \mathrm{~d} y) .
$$

Integration by ${ }^{\mathfrak{C}} P(x, \mathrm{~d} z)$ gives us, for μ-almost every $x \in X$,

$$
\forall(A, B) \in \mathfrak{X} \times \mathfrak{B} \quad \int_{X} 1_{A}(y) 1_{B}(y){ }^{\mathfrak{C}} P^{\mathfrak{B}} P(x, \mathrm{~d} y)=\int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y){ }^{\mathfrak{C}} P^{\mathfrak{B}} P(x, \mathrm{~d} y) .
$$

Then the result follows from Lemma 4.1.

4.3. Proof of Theorem 3.4

Case of two σ-algebras

We need the following result.
Theorem 4.2. Let $(\Omega, \mathfrak{F}, \mathbb{P})$ be a probability space. Let $\mathfrak{F}_{1}\left[\right.$ resp. $\left.\mathfrak{F}_{2}\right]$ be a sub- σ-algebra of \mathfrak{F}; we call $P_{1}\left[\right.$ resp. $\left.P_{2}\right]$ the operator of conditional expectation relative to $\mathfrak{F}_{1}\left[\right.$ resp. $\left.\mathfrak{F}_{2}\right]$ on the space $\mathbb{L}^{1}(\Omega, \mathfrak{F}, \mathbb{P})$.

Then, for $f \in \mathcal{L}^{1}(\Omega, \mathfrak{F}, \mathbb{P})$, the sequences of functions

$$
\left(\frac{1}{n} \sum_{k=0}^{n-1}\left(P_{1} P_{2}\right)^{k} f\right)_{n \geq 1} \text { and }\left(\frac{1}{n} \sum_{k=0}^{n-1}\left(P_{2} P_{1}\right)^{k} f\right)_{n \geq 1}
$$

converge \mathbb{P}-almost everywhere and in norm $\mathbb{L}^{1}(\mathbb{P})$ towards $\mathbb{E}_{\mathbb{P}}\left[f \mid \overline{\mathfrak{F}}_{1} \cap \overline{\mathfrak{F}}_{2}\right]$.
Proof. It's a consequence of the classical ergodic theorem of E. Hopf (see [5], Proposition V-6-3). To identify the limit we note that: $P_{2} P_{1}$ is the dual operator of $P_{1} P_{2}$ and, as the operators P_{1} and P_{2} are idempotent, the common limit is P_{1} - and P_{2}-invariant (see also [1]).

Let \mathfrak{B}_{1} and \mathfrak{B}_{2} be two sub- σ-algebras of \mathfrak{X} decomposing μ in an ergodic way which satisfy $\overline{\mathfrak{B}_{1}} \cap \overline{\mathfrak{B}_{2}}=\overline{\mathfrak{B}_{1} \cap \mathfrak{B}_{2}}$. We set $\mathfrak{C}=\mathfrak{B}_{1} \cap \mathfrak{B}_{2}$.

The above theorem tells us that, for any $f \in \mathcal{L}^{1}(X, \mathfrak{X}, \mu)$ the sequence of functions $\left(\frac{1}{n} \sum_{k=0}^{n-1}\left({ }^{\mathfrak{B}_{1}} P^{\mathfrak{B}_{2} P}\right)^{k} f\right)_{n \geq 1}$ converges μ-a.e. and in $\mathbb{L}^{1}(\mu)$-norm towards ${ }^{{ }^{C}} P f={ }^{\mathfrak{C}} P f$.

As $\mu(\cdot)=\int_{X}{ }^{C} P(x, \cdot) \mu(\mathrm{d} x)$, it follows that, for any $f \in \mathcal{L}^{1}(X, \mathfrak{X}, \mu)$ and for μ-almost every $x \in X$, the sequence of functions $\left(\frac{1}{n} \sum_{k=0}^{n-1}\left(\mathfrak{B}_{1} P \mathfrak{B}_{2} P\right)^{k} f\right)_{n \geq 1}$ converges ${ }^{\mathfrak{C}} P(x, \cdot)$-a.e. towards ${ }^{\mathfrak{C}} P f$.

We call X_{0} a measurable subset of X, such that $\mu\left(X_{0}\right)=1$ and for any $x \in X_{0}$, for $i \in 1,2, \mathfrak{B}_{i} P$ is a regular conditional probability with respect to \mathfrak{B}_{i} and ${ }^{\mathfrak{C}} P(x, \cdot)$ (Proposition 3.3).

The same theorem tells us that, for any $x \in X_{0}$ and for any $f \in \mathcal{L}^{1}\left(X, \mathfrak{X},{ }^{\mathfrak{C}} P(x, \cdot)\right)$, the sequence of functions $\left(\frac{1}{n} \sum_{k=0}^{n-1}\left({ }^{\mathfrak{B}_{1}} \widetilde{\mathfrak{B}}_{2} P\right)^{k} f\right)_{n \geq 1}$ converge ${ }^{\mathfrak{C}} P(x, \cdot)$-a.e. and in $\mathbb{L}^{1}\left({ }^{\mathfrak{C}} P(x, \cdot)\right)$-norm towards $\mathbb{E}_{\mathscr{C}_{P(x,)}}\left[f \mid \widetilde{\mathfrak{B}_{1}} \cap \widetilde{\mathfrak{B}_{2}}\right]$ where, for $i=1$ or $2, \widetilde{\mathfrak{B}_{i}}$ is the ${ }^{\mathfrak{C}} P(x, \cdot)$-completed σ-algebra of \mathfrak{B}_{i}.

Let \mathcal{X} be a countable subalgebra of \mathfrak{X} generating \mathfrak{X}. From above and Lemma 3.2, it follows that, for μ-almost any $x \in X$, for any $A \in \mathcal{X}$,

$$
\text { for }{ }^{\mathfrak{C}} P(x, \cdot) \text {-almost every } y \in X, \quad{ }^{\mathfrak{C}} P(x, A)={ }^{\mathfrak{C}} P(y, A)=\mathbb{E}_{\mathfrak{C}_{P(x, \cdot)}}\left[1_{A} \mid \widetilde{\mathfrak{B}_{1}} \cap \widetilde{\mathfrak{B}_{2}}\right](y) .
$$

We deduce that, for μ-almost every $x \in X$,

$$
\forall(A, C) \in \mathcal{X} \times\left(\widetilde{\mathfrak{B}_{1}} \cap \widetilde{\mathfrak{B}_{2}}\right) \quad \int_{X} 1_{A}(y) 1_{C}(y){ }^{\mathfrak{C}} P(x, \mathrm{~d} y)=\int_{X} \mathfrak{C}^{\mathfrak{C}} P(y, A) 1_{C}(y)^{\mathfrak{C}} P(x, \mathrm{~d} y) .
$$

These equalities extend to the couples $(A, C) \in \mathfrak{X} \times\left(\widetilde{\mathfrak{B}_{1}} \cap \widetilde{\mathfrak{B}_{2}}\right)$ (Proposition 2.2).
Since $\mathfrak{C}=\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \subset \widetilde{\mathfrak{B}_{1}} \cap \widetilde{\mathfrak{B}_{2}}$, the above equalities show that, for μ-almost every $x \in X,{ }^{\mathfrak{C}} P$ is a regular conditional probability with respect to \mathfrak{C} and ${ }^{\mathfrak{C}} P(x, \cdot)$. From the Proposition 3.3, the σ-algebra \mathfrak{C} decomposes μ in an ergodic way.

Case of a sequence of σ-algebras
Let $\left(\mathfrak{B}_{n}\right)_{n \geq 1}$ be a sequence of sub- σ-algebras of \mathfrak{X} which decompose μ in an ergodic way and satisfy the hypothesis of Theorem 3.4.

For any $n \geq 2$, we have

$$
\overline{\bigcap_{1 \leq i \leq n}} \mathfrak{B}_{i} \subset \overline{\bigcap_{1 \leq i \leq n-1} \mathfrak{B}_{i}} \cap \overline{\mathfrak{B}_{n}} \subset \bigcap_{1 \leq i \leq n} \overline{\overline{\mathfrak{B}}_{i}}
$$

From our hypothesis, it follows that

$$
\overline{\bigcap_{1 \leq i \leq n} \mathfrak{B}_{i}}=\bigcap_{1 \leq i \leq n} \overline{\mathfrak{B}_{i}}
$$

and consequently

$$
\overline{\bigcap_{1 \leq i \leq n} \mathfrak{B}_{i}}=\overline{\bigcap_{1 \leq i \leq n-1} \mathfrak{B}_{i}} \cap \overline{\mathfrak{B}_{n}}=\bigcap_{1 \leq i \leq n} \overline{\mathfrak{B}_{i}}
$$

We set

$$
\forall n \geq 1 \quad \mathfrak{C}_{n}=\bigcap_{k=1}^{n} \mathfrak{B}_{k} \quad \text { and } \quad \mathfrak{C}=\bigcap_{k \geq 1} \mathfrak{B}_{k} .
$$

From the case treated previously, we prove by induction that, for any $n \geq 1$, the σ-algebra \mathfrak{C}_{n} decomposes μ in an ergodic way. From Proposition 3.3, for μ-almost every $x \in X$,

$$
\forall(A, C) \in \mathfrak{X} \times \mathfrak{C}_{n} \quad \int_{X} 1_{A}(y) 1_{C}(y)^{\mathfrak{C}} P(x, \mathrm{~d} y)=\int_{X}{ }^{\mathfrak{C}_{n}} P(y, A) 1_{C}(y)^{\mathfrak{C}} P(x, \mathrm{~d} y)
$$

The decreasing martingale theorem implies that, for any $A \in \mathfrak{X}$ and for μ-almost every $x \in X, \mathbb{E}_{\mu}\left[1_{A} \mid \mathfrak{C}_{n}\right](x) \underset{n \rightarrow+\infty}{\longrightarrow}$ $\mathbb{E}_{\mu}\left[1_{A} \mid \mathfrak{C}\right](x)$. Consequently, for any $A \in \mathfrak{X}$ and for μ-almost every $x \in X, \mathfrak{C}_{n} P(x, A) \underset{n \rightarrow+\infty}{\longrightarrow} P(x, A)$.

As $\mu(\cdot)=\int_{X}{ }^{\mathfrak{C}} P(x, \cdot) \mu(\mathrm{d} x)$, it follows that: for any $A \in \mathfrak{X}$ and for μ-almost every $x \in X$,

$$
\text { for } \mathfrak{C}^{\mathfrak{C}} P(x, \cdot) \text {-almost every } y \in X, \quad \mathfrak{C}_{n} P(y, A) \underset{n \rightarrow+\infty}{\longrightarrow} P(y, A) \text {. }
$$

While limiting itself to elements C of \mathfrak{C}, the dominated convergence theorem implies that, for any $A \in \mathfrak{X}$ and for μ-almost every $x \in X$,

$$
\forall C \in \mathfrak{C} \quad \int_{X} 1_{A}(y) 1_{C}(y){ }^{\mathfrak{C}} P(x, \mathrm{~d} y)=\int_{X}{ }^{\mathfrak{C}} P(y, A) 1_{C}(y){ }^{\mathfrak{C}} P(x, \mathrm{~d} y) .
$$

Now from Proposition 2.2, we can permute "for any $A \in \mathfrak{X}$ " and "for μ-almost every $x \in X$," which shows that \mathfrak{C} decomposes μ in an ergodic way.

The preceding proof shows the following corollary which improves Shimomura's result.
Corollary 4.3. Let $\left(\mathfrak{B}_{i}\right)_{i \in \mathbb{N}}$ be a sequence of sub- σ-algebras of \mathfrak{X}. If for any $n \in \mathbb{N}$ the σ-algebra $\bigcap_{i=0}^{n} \mathfrak{B}_{i}$ decomposes μ in an ergodic way, then the intersection $\bigcap_{i \in \mathbb{N}} \mathfrak{B}_{i}$ decomposes μ in an ergodic way.

Case of an uncountable family of σ-algebras
We need the following lemmas.

Lemma 4.4. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a separable Hilbert space. Let $\left\{V_{i}: i \in I\right\}$ a noncountable family of closed vector subspaces of \mathcal{H}. Then there exists a countable subset J of I such that $\bigcap_{i \in I} V_{i}=\bigcap_{i \in J} V_{i}$.

Proof. We easily see that the orthogonal complement V^{\perp} of $V=\bigcap_{i \in I} V_{i}$ in \mathcal{H} is equal to $\overline{\operatorname{Vect}\left(\bigcup_{i \in I} V_{i}^{\perp}\right)}$ (the closure of the subspace generated by $\left.\bigcup_{i \in I} V_{i}^{\perp}\right)$. We choose a dense sequence of vectors $\left(u_{n}\right)_{n \geq 1}$ of $\operatorname{Vect}\left(\bigcup_{i \in I} V_{i}^{\perp}\right)$ in V^{\perp}. The Schmidt orthonormalization process allows us to extract a maximal orthonormal system; that is, an Hilbert basis $\left(e_{n}\right)_{n \geq 1}$ de V^{\perp}. For any $p \geq 1, e_{p}$ is a finite linear combination of vectors from $\left\{u_{n}: n \geq 1\right\}$; each u_{n} is itself a finite linear combination of vectors of $\bigcup_{i \in I} V_{i}^{\perp}$. Therefore, there exists a countable subset J of I such that, $\forall p \geq$ $1, e_{p} \in \operatorname{Vect}\left(\bigcup_{i \in J} V_{i}^{\perp}\right)$. Hence $V^{\perp}=\overline{\operatorname{Vect}\left(\bigcup_{i \in J} V_{i}^{\perp}\right)}$ and $V=\bigcap_{i \in J} V_{i}$.

Lemma 4.5. Let \mathfrak{B} be a sub- σ-algebra of \mathfrak{X} which decomposes μ in an ergodic way. Let \mathfrak{C} be a sub- σ-algebra of \mathfrak{B} such that, for any bounded \mathfrak{B}-measurable function f, there exists a bounded \mathfrak{C}-measurable function g satisfying $f=g \mu$-a.e.

Then \mathfrak{C} decomposes μ in an ergodic way.
Proof. From Proposition 3.3, for μ-almost every $x \in X,{ }^{\mathfrak{B}} P$ is a regular conditional probability with respect to \mathfrak{B} and ${ }^{\mathfrak{C}} P(x, \cdot)$, that is,

$$
\forall(A, B) \in \mathfrak{X} \times \mathfrak{B} \quad \int_{X} 1_{A}(y) 1_{B}(y){ }^{\mathfrak{C}} P(x, \mathrm{~d} y)=\int_{X}{ }^{\mathfrak{B}} P(y, A) 1_{B}(y){ }^{\mathfrak{C}} P(x, \mathrm{~d} y) .
$$

In these equalities, we have to replace ${ }^{\mathfrak{B}} P(y, A)$ by ${ }^{\mathfrak{C}} P(y, A)$. From Proposition 2.2 , we can restrict our equalities to $A \in \mathcal{X}$ a separable sub-algebra of \mathfrak{X} generating \mathfrak{X}.

Let f be a bounded \mathfrak{B}-measurable function. There exists a bounded \mathfrak{C}-measurable function g such that $f=g$ μ-a.e. Then we have, μ-a.e.,

$$
\mathbb{E}_{\mu}[f \mid \mathfrak{B}]=f=g=\mathbb{E}_{\mu}[g \mid \mathfrak{C}]=\mathbb{E}_{\mu}[f \mid \mathfrak{C}] .
$$

It follows that, for μ-almost every $y \in X$,

$$
\forall A \in \mathcal{X} \quad{ }^{\mathfrak{B}} P(y, A)={ }^{\mathfrak{C}} P(y, A) .
$$

Now from $\mu(\mathrm{d} y)=\int_{X}{ }^{\mathfrak{C}} P(x, \mathrm{~d} y) \mu(\mathrm{d} x)$ we deduce that, for μ-almost every $x \in X$, for ${ }^{\mathfrak{C}} P(x, \cdot)$-almost every $y \in X$,

$$
\forall A \in \mathcal{X} \quad \mathfrak{B}^{\mathfrak{B}} P(y, A)={ }^{\mathfrak{C}} P(y, A)
$$

and consequently, for μ-almost every $x \in X$,

$$
\forall(A, B) \in \mathcal{X} \times \mathfrak{B} \quad \int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{C}} P(x, \mathrm{~d} y)=\int_{X} \mathfrak{C}^{\mathfrak{C}} P(y, A) 1_{B}(y)^{\mathfrak{C}} P(x, \mathrm{~d} y) .
$$

Hence the result.
Lemma 4.6. Let $\left\{\mathfrak{B}_{n}: n \in \mathbb{N}^{*}\right\}$ be a sequence of sub- σ-algebras of \mathfrak{X} satisfying, for any $n \geq 2, \bigcap_{1 \leq k \leq n} \overline{\mathfrak{B}_{k}}=$ $\overline{\bigcap_{1 \leq k \leq n} \mathfrak{B}_{k}}$.

$$
\text { Then } \bigcap_{n \geq 1} \overline{\mathfrak{B}_{k}}=\overline{\bigcap_{n \geq 1} \mathfrak{B}_{k}} \text {. }
$$

Proof. Let $f \in \mathcal{L}^{1}(X, \mathfrak{X}, \mu)$. From the decreasing martingale theorem, we have, μ-almost everywhere,

$$
\begin{align*}
\mathbb{E}_{\mu}\left[f \mid \bigcap_{k \geq 1} \overline{\mathfrak{B}_{k}}\right] & =\lim _{n \rightarrow+\infty} \mathbb{E}_{\mu}\left[f \mid \bigcap_{1 \leq k \leq n} \overline{\mathfrak{B}_{k}}\right]=\lim _{n \rightarrow+\infty} \mathbb{E}_{\mu}\left[f \mid \overline{\bigcap_{1 \leq k \leq n} \mathfrak{B}_{k}}\right] \\
& =\lim _{n \rightarrow+\infty} \mathbb{E}_{\mu}\left[f \mid \bigcap_{1 \leq k \leq n} \mathfrak{B}_{k}\right]=\mathbb{E}_{\mu}\left[f \mid \bigcap_{k \geq 1} \mathfrak{B}_{k}\right] . \tag{2}
\end{align*}
$$

Hence the result.
Consider the separable Hilbert space $\mathbb{L}^{2}(X, \mathfrak{X}, \mu)$. It is well known that, for each sub- σ-algebra \mathfrak{B} of \mathfrak{X}, the space $\mathbb{L}^{2}(X, \mathfrak{B}, \mu)$ is identified to a closed subspace of $\mathbb{L}^{2}(X, \mathfrak{X}, \mu)$ and the conditional expectation relative to \mathfrak{B} is identified to the orthogonal projection onto this closed subspace.

Let $\left\{\mathfrak{B}_{i}: i \in I\right\}$ be an uncountable family of μ-complete sub- σ-algebras which decompose μ in an ergodic way and satisfy the hypothesis of Theorem 3.4. From the Lemmas 4.4 and 4.6 , there exists a countable subset J of I such that

$$
\mathbb{L}^{2}\left(X, \bigcap_{i \in I} \mathfrak{B}_{i}, \mu\right) \subset \bigcap_{i \in I} \mathbb{L}^{2}\left(X, \mathfrak{B}_{i}, \mu\right)=\bigcap_{i \in J} \mathbb{L}^{2}\left(X, \mathfrak{B}_{i}, \mu\right)=\mathbb{L}^{2}\left(X, \bigcap_{i \in J} \mathfrak{B}_{i}, \mu\right)
$$

It follows that for any $f \in \mathcal{L}^{2}\left(X, \bigcap_{i \in I} \mathfrak{B}_{i}, \mu\right)$ there exists a function $g \in \mathcal{L}^{2}\left(X, \bigcap_{i \in J} \mathfrak{B}_{i}, \mu\right)$ such that $f=g$, μ-a.e. According to the case treated previously, we know that the sub- σ-algebra $\bigcap_{i \in J} \mathfrak{B}_{i}$ decomposes μ in an ergodic way. Then the result follows from Lemma 4.5.

5. Examples and applications

1. Let $(X, \mathfrak{X}, \mu$) be a probability space with a separable σ-algebra \mathfrak{X} containing a μ-approximating compact class. Let τ be an invertible bi-measurable transformation of (X, \mathfrak{X}) such that μ is quasi-invariant for the action of τ. We consider the sub- σ-algebra $\mathfrak{J}=\mathfrak{J}_{\tau}$ of \mathfrak{X} defined by $\mathfrak{J}=\left\{B \in \mathfrak{X}: \tau^{-1}(B)=B\right\}$. Then the following result is well known.

Proposition 5.1. The σ-algebra \mathfrak{J} decomposes μ in an ergodic way.
Proof. An idea of the proof is the following. We consider the contraction T of $\mathbb{L}^{1}(X, \mathfrak{X}, \mu)$ defined by

$$
T f(x)=f \circ \tau^{-1}(x) \frac{\mathrm{d}(\tau(\mu))}{\mathrm{d}(\mu)}(x) .
$$

Replacing τ by τ^{-1} we obtain the inverse operator T^{-1}.
From the Chacon-Ornstein ergodic theorem, one proves [2] that, with obvious notations: for any $f \in \mathcal{L}^{1}(X, \mathfrak{X}, \mu)$ and for μ-almost every $x \in X$,

$$
\sum_{k=-n}^{n} T^{k} f(x) / \sum_{k=-n}^{n} T^{k} 1(x) \underset{n \rightarrow+\infty}{\longrightarrow}{ }^{\mathfrak{J}} P f(x)
$$

One sees easily that there exists a measurable subset X_{0} of X such that $\mu\left(X_{0}\right)=1$ and for any $x \in X_{0}$ the probability ${ }^{\jmath} P(x, \cdot)$ is τ-quasi-invariant with $\frac{\mathrm{d}\left(\tau^{\top} P(x, \cdot)\right)}{\mathrm{d}^{\jmath} P(x, \cdot)}=\frac{\mathrm{d}(\tau \mu)}{\mathrm{d} \mu}$.

Then the same ergodic theorem tells us that, for any $x \in X_{0}$, for any $f \in \mathcal{L}^{1}\left(X, \mathfrak{X},{ }^{\mathfrak{J}} P(x, \cdot)\right)$ and for ${ }^{\mathfrak{}} P(x, \cdot)$-almost every $y \in X$,

$$
\sum_{k=-n}^{n} T^{k} f(y) / \sum_{k=-n}^{n} T^{k} 1(y) \underset{n \rightarrow+\infty}{\longrightarrow} \mathbb{E}_{\mathfrak{W} P(x,)}[f \mid \mathfrak{J}](x)
$$

As in the first case of Theorem 3.4, we prove that for μ-almost every $x \in X,{ }^{\mathfrak{J}} P$ is a regular conditional probability with respect to \mathfrak{J} and $\mathfrak{J} P(x, \cdot)$. The result follows from Proposition 3.3.

In [3], Greshchonig and Schmidt consider the case of a Borel action of a locally compact second countable group G on a standard probability space (X, \mathfrak{X}, μ); that is, a group homomorphism $g \mapsto \tau_{g}$ from G into the group $\operatorname{Aut}(X)$ of Borel automorphisms of X such that the map $(g, x) \mapsto \tau_{g} x$ from $G \times X$ to X is Borel and μ is quasi-invariant under each $\tau_{g}, g \in G$. They prove that the σ-algebra $\bigcap_{g \in G} \mathfrak{J}_{\tau_{g}}$ decomposes μ in an ergodic way.

The Theorem 3.4 makes it possible to find and improve this result.
Corollary 5.2. Let $\left\{\tau_{i}: i \in I\right\}$ be a non-empty family of Borel automorphisms of X. Then the sub- σ-algebra $\bigcap_{i \in I} \mathfrak{J}_{\tau_{i}}$ of \mathfrak{X} decomposes μ in an ergodic way.

Proof. Taking into account the Proposition 5.1, it is enough to show that, for any finite subset J of $I, \bigcap_{i \in J} \overline{\mathfrak{J}_{\tau_{i}}}=$ $\overline{\bigcap_{i \in J} \mathfrak{J}_{i}}$.

Let f be a $\bigcap_{i \in J} \overline{\mathfrak{J}_{\tau_{i}}}$-measurable function. We set $X_{0}=\bigcap_{i \in J}\left\{f \circ \tau_{i}=f\right\}$; we have $\mu\left(X_{0}\right)=1$.
We call G the algebraic subgroup of $\operatorname{Aut}(X)$ generated by the Borel automorphisms $\left\{\tau_{i}: i \in J\right\} ; G$ is a countable subset of $\operatorname{Aut}(X)$. The subset $X_{1}=\bigcap_{s \in G} s X_{0}$ of X_{0} belongs to $\bigcap_{i \in J} \mathfrak{J}_{\tau_{i}}$ and $\mu\left(X_{1}\right)=1$. Then the function $g=f 1_{X_{1}}$ is $\bigcap_{i \in J} \mathfrak{J}_{\tau_{i}}$-measurable and $f=g \mu$-a.e. Which shows that f is $\widehat{\bigcap_{i \in J} \mathfrak{J}_{\tau_{i}}}$-measurable.
2. Let $(X, \mathfrak{X}, \mu, \tau)$ be a dynamical system with a polish space and a not necessarily invertible transformation. We denote by $(Y, \mathfrak{F}, \lambda, \eta)$ the natural extension of our dynamical and by π the natural projection of Y onto X. With obvious notations, one sees easily that f is $\mathfrak{J}_{\eta} \cap \pi^{-1}(\mathfrak{X})$-measurable (resp. $\overline{\mathfrak{J}_{\eta}} \cap \overline{\pi^{-1}(\mathfrak{X})}$-measurable) if and only if there exists $g \in \mathfrak{J}_{\tau}$ such that $f=g \circ \pi$ (resp. $f=g \circ \pi \lambda$-a.e.). It follows that

$$
\overline{\mathfrak{J}_{\eta}} \cap \overline{\pi^{-1}(\mathfrak{X})}=\overline{\mathfrak{J}_{\eta} \cap \pi^{-1}(\mathfrak{X})} .
$$

We know that the σ-algebra \mathfrak{J}_{η} decomposes λ in an ergodic way. The σ-algebra $\pi^{-1}(\mathfrak{X})$ is separable. Therefore the σ-algebra $\mathfrak{C}=\mathfrak{J}_{\eta} \cap \pi^{-1}(\mathfrak{X})$ decomposes λ in an ergodic way.

Let P be a regular conditional probability with respect to \mathfrak{J}_{τ} and μ. Let Q be a regular conditional probability with respect to \mathfrak{C} and λ. For any $A \in \mathfrak{X}$ and $C \in \overline{\mathfrak{J}}_{\tau}$ we have:

$$
\int_{X} P(x, A) 1_{C}(x) \mu(\mathrm{d} x)=\int_{X} 1_{A}(x) 1_{C}(x) \mu(\mathrm{d} x)
$$

and therefore

$$
\begin{align*}
\int_{Y} P(\pi(y), A) 1_{C}(\pi(y)) \lambda(\mathrm{d} y) & =\int_{Y} 1_{A}(\pi(y)) 1_{C}(\pi(y)) \lambda(\mathrm{d} y) \\
& =\int_{Y} \mathbb{E}_{\lambda}\left[1_{A} \circ \pi \mid \mathfrak{C}\right](y) 1_{C}(\pi(y)) \lambda(\mathrm{d} y) \\
& =\int_{Y} Q\left(y, \pi^{-1}(A)\right) 1_{C}(\pi(y)) \lambda(\mathrm{d} y) \tag{3}
\end{align*}
$$

Which proves, via the Proposition 2.2, that

$$
\text { for } \lambda \text {-almost every } y \in Y, \quad P(\pi(y), \cdot)=Q\left(y, \pi^{-1}(\cdot)\right)
$$

and the σ-algebra \mathfrak{J}_{τ} decomposes μ in an ergodic way.
3. Let P be a transition probability on a measurable space (X, \mathfrak{X}) with a separable σ-algebra \mathfrak{X} containing a μ-approximating compact class.

We denote by Π the set of P-invariant probability measures on (X, \mathfrak{X}) :

$$
\pi \in \Pi \quad \Leftrightarrow \quad \int_{X} f(x) \pi P(\mathrm{~d} x)=\int_{X} P f(x) \pi(\mathrm{d} x)=\int_{X} f(x) \pi(\mathrm{d} x)
$$

for any non-negative or bounded measurable function f on X. We assume that $\Pi \neq \varnothing$.
For any $\pi \in \Pi$, we denote by \mathfrak{B}_{π} the sub- σ-algebra of \mathfrak{X} defined by:

$$
\mathfrak{B}_{\pi}=\left\{A \in \mathfrak{X}: P 1_{A}=1_{A} \pi \text {-a.e. }\right\}
$$

and we set $\mathfrak{B}=\bigcap_{\pi \in \Pi} \mathfrak{B}_{\pi}$.
Let $\pi \in \Pi$. Let f be a bounded \mathfrak{B}_{π}-measurable function on X. The function g, defined by

$$
g(x)=\liminf \frac{1}{n} \sum_{k=0}^{n-1} P^{k} f(x),
$$

satisfies $g=f \pi$-a.e. and $P g \leq g$. From the latter inequality, it follows that, for any $\sigma \in \Pi, P g=g \sigma$-a.e. and g is \mathfrak{B}-measurable. We deduce that $\mathfrak{B}_{\pi}=\mathfrak{B} \pi$-a.e.

From the Hopf theorem ([3], Proposition V-6-3), for any $f \in \mathcal{L}^{1}(X, \mathfrak{X}, \pi)$, the sequences of functions

$$
\left(\frac{1}{n} \sum_{k=0}^{n-1} \frac{\mathrm{~d}\left((f \pi) P^{k}\right)}{\mathrm{d} \pi}\right)_{n \geq 1} \quad \text { and } \quad\left(\frac{1}{n} \sum_{k=0}^{n-1} P^{k} f\right)_{n \geq 1}
$$

converge π-almost everywhere and in norm $\mathbb{L}^{1}(\pi)$ towards $\mathfrak{B}_{\pi} P f={ }^{\mathfrak{B}} P f$. As in Example 1, one deduces that \mathfrak{B} decomposes π in an ergodic way.

Acknowledgments

I wish to thank B. Bekka and S. Gouëzel for helpful discussions and the referees for their careful reading and valuable comments.

References

[1] D. L. Burkholder and Y. S. Chow. Iterates of conditional expectations operators. Proc. Amer. Math. Soc. 12 (1961) 490-495. MR0142144
[2] J.-P. Conze and A. Raugi. On the ergodic decomposition for a cocycle. Preprint, 2007. (pdf version "ReducErg.pdf" in personal university site.)
[3] G. Greschonig and K. Schmidt. Ergodic decomposition of quasi-invariant probability measures. Colloq. Math. 84/85 (2000) 495-514. MR1784210
[4] J. Kerstan and A. Wakolbinger. Ergodic decomposition of probability laws. Z. Wahrsch. Verw. Gebiete 56 (1981) no. 3 399-414. MR0621119
[5] J. Neveu. Bases Mathématiques du Calcul des Probabilités. Masson, Paris, 1964. MR0198504
[6] K. Schmidt. A probabilistic proof of ergodic decomposition. Sankhyā Ser. A 40 (1978) no. 1 10-18. MR0545459
[7] H. Shimomura. Ergodic decomposition of quasi-invariant measures. Publ. Res. Inst. Math. Sci. 14 (1978) no. 2 359-381. MR0509194
[8] H. Shimomura. Remark to the ergodic decomposition of measures. Publ. Res. Inst. Math. Sci. 26 (1990) no. 5 861-865. MR 1082320

