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Abstract. We study the asymptotics of the even moments of solutions to a stochastic wave equation in spatial dimension 3 with
linear multiplicative spatially homogeneous Gaussian noise that is white in time. Our main theorem states that these moments grow
more quickly than one might expect. This phenomenon is well known for parabolic stochastic partial differential equations, under
the name of intermittency. Our results seem to be the first example of this phenomenon for hyperbolic equations. For comparison,
we also derive bounds on moments of the solution to the stochastic heat equation with the same linear multiplicative noise.

Résumé. Nous étudions le comportement asymptotique des moments pairs de la solution d’une équation des ondes stochastique en
dimension spatiale 3 avec bruit gaussien multiplicatif linéaire spatiallement homogène et blanc en temps. Notre résultat principal
affirme que ces moments croissent plus rapidement qu’attendu. Ce phénomène est bien connu dans le cadre d’équations aux
dérivées partielles stochastiques paraboliques, sous le nom d’ “intermittence.” Nos résultats mettent en évidence ce phénomène
pour la première fois dans le cadre d’équations hyperboliques. Afin de comparer les deux situations, nous établissons aussi des
bornes sur les moments de la solution d’une équation de la chaleur stochastique avec le même bruit multiplicatif linéaire.

MSC: Primary 60H15; secondary 37H15; 35L05

Keywords: Stochastic wave equation; Stochastic partial differential equations; Moment Lyapunov exponents; Intermittency; Stochastic heat
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1. Introduction

This paper studies intermittency properties of the solution to the following (semi-)linear stochastic wave equation in
spatial dimension d = 3, with random potential Ḟ :

∂2

∂t2
u(t, x) = �u(t, x) + u(t, x)Ḟ (t, x),

u(0, x) ≡ u0,
∂

∂t
u(0, x) ≡ ũ0, (1.1)

where t ∈ R+, x ∈ R
3, � denotes the Laplacian on R

3 and u0, ũ0 ∈ R and u0, ũ0 > 0. The process Ḟ is the formal
derivative of a Gaussian random field, white in time and correlated in space, whose covariance function formally
satisfies

E
[
Ḟ (t, x)Ḟ (s, y)

] = δ0(t − s)f (x − y).
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In this equation, δ(·) denotes the Dirac delta function, and f : Rd → R+ is continuous on R
d , satisfying certain

standard conditions that are specified in Section 2.
Next we summarize the concept of intermittency. This idea arose in physics, and different authors give it different

meanings. Physicists say that a system is intermittent if its solution is dominated by a few large peaks. On the math-
ematical side Zeldovich, Molchanov and coauthors [12,14,17,18] formulated the following definition and developed
the idea in the context of linear parabolic s.p.d.e.’s. For x ∈ R

d and n ∈ N, we define the upper and lower (moment)
Lyapunov exponents of u(t, x) to be

λ̄n = lim sup
t→∞

logE[|u(t, x)|n]
t

,

λn = lim inf
t→∞

logE[|u(t, x)|n]
t

.

In principle, the upper and lower Lyapunov exponents depend on x, but because our initial functions v0 and ṽ0 are
constant and the random potential Ḟ is spatially homogeneous, it turns out that there is no dependence on x. In case the
upper and lower Lyapunov exponents agree, we write the common value as λn and call it the nth (moment) Lyapunov
exponent.

The reader can easily deduce from Jensen’s or Hölder’s inequalities that if the Lyapunov exponents exist, then

λ1 ≤ λ2

2
≤ λ3

3
≤ · · · . (1.2)

We know that equality holds in Jensen’s or Hölder’s inequalities if and only if the random variable involved is constant.
Intermittency should mean that as a function of x, u(t, x) is far from constant and consists of “high peaks and low
valleys.” From this informal reasoning, we are led to say that the solution u(t, x) is intermittent if

λ1 <
λ2

2
<

λ3

3
< · · · . (1.3)

The fact that these inequalities do imply the existence of high peaks is established by Cranston and Molchanov [4] in
the case of the stochastic heat equation.

We do not establish the existence of Lyapunov exponents and therefore intermittency for u(t, x) in the sense
of (1.3). However, we prove strict inequalities in the sense of (1.3) for the upper and lower Lyapunov exponents of
even order. This suggests that some form of the intermittency phenomenon is present in our hyperbolic s.p.d.e. (1.1).

One motivation for studying (1.1) is its similarity to the parabolic Anderson model studied in [2] and in many
subsequent papers (see, for instance, [1,4,5,10,11,15]). Another comes from the following idea. The right-hand side of
the wave equation usually represents elastic forces (the Laplacian term) plus a forcing term, according to Newton’s law
which states that the acceleration ∂2u/∂t2 equals the force. We can easily imagine that the force might be random, and
the strength of the randomness could depend on the solution u. This would lead to a term of the form h(u(t, x))Ḟ (t, x)

for some function h. If we use a linear approximation, h(u) ≈ h0u, we are left with Eq. (1.1).
For the hyperbolic equation (1.1), one would expect the intermittency property (1.3) to translate into a different

sample path behavior than the “high-peak” picture that is valid for the stochastic heat equation. Indeed, the heat
equation has monotonicity properties of solutions that are not present in the wave equation. For the wave equation,
one would rather expect intermittency to translate into very large oscillations of the sample paths. Making this picture
precise is a research project.

The main results of this paper are stated in Theorems 3.2 and 4.1, and the reader can look ahead to see the assump-
tions. Here, we give the implications of those theorems for the upper and lower Lyapunov exponents.

Theorem 1.1. There exist constants C1,C2 > 0 such that the following holds. Firstly, for n ∈ N, under the assump-
tions of Theorem 3.2,

λ̄n

n
≤ C1n

1/3.
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Secondly, for n ∈ N even, under the assumptions of Theorem 4.1,

λn

n
≥ C2n

1/3.

In other words, a kind of intermittency holds for the even Lyapunov exponents, in the sense that when divided
by n, the even upper and lower exponents grow like n1/3, and equality must fail infinitely many times in (1.2). In fact,
if the Lyapounov exponents do exist, then strict inequalities will hold in (1.2) except possibly for a finite number of
equalities (see [2], Theorem III.1.2).

In order to prove this theorem, it is first necessary to give a rigorous meaning to the s.p.d.e. (1.1). For this, we use
the extension of Walsh’s martingale measure stochastic integral developed by the first author in [6], and the associated
integral formulation of (1.1). The second key ingredient is a formula for the moments of the solution to (1.1), analogous
to the Feynman–Kac formula. Indeed, for the parabolic s.p.d.e. considered in [2], this formula plays a central role. For
the stochastic wave equation (1.1), the authors, together with R. Tribe, have developed a more general Feynman–Kac-
type formula that leads to an expression for the moments of u(t, x) (see [8]). These formulas are recalled in Section 2
and used in Sections 3 and 4. Finally, in Section 5, we use the same Feynman–Kac-type formula of [8] to obtain
bounds on the moments of the solution to the stochastic heat equation with linear multiplicative noise, improving
some estimates of [2] which were obtained for discrete space.

Remark 1.2. Our methods should also apply to the one- and two-dimensional wave equations, for which the funda-
mental solutions are nonnegative functions S(t, x) with

∫
S(t, x)dx = t . However, they will not apply directly to the

stochastic wave equation in dimensions d ≥ 4, in which the fundamental solution is a Schwarz distribution which is
not a signed measure. Some results on moments of the solution to the stochastic wave equation in high dimensions are
contained in [3].

2. Existence, uniqueness and moments of the solution

We begin by giving a formal definition of the Gaussian noise Ḟ . Let D(Rd+1) be the space of Schwartz test functions
(see [13]). On a given probability space (Ω, F ,P ), we define a Gaussian process F = (F (ϕ),ϕ ∈ D(Rd+1)) with
mean zero and covariance functional

E
[
F(ϕ)F (ψ)

] =
∫

R+
dt

∫
Rd

dx

∫
Rd

dy ϕ(t, x)f (x − y)ψ(t, y).

Since this is a covariance, it is well known (see [13], Chapter VII, Theorem XVII), that f must be symmetric and
be the Fourier transform of a non-negative tempered measure μ on R

d , termed the spectral measure: f = F μ. In
this case, F extends to a worthy martingale measure M = (Mt(B), t ≥ 0, B ∈ Bb(R

d)) in the sense of [16], with
covariation measure Q defined by

Q
([0, t] × A × B

) = 〈
M(A),M(B)

〉
t
= t

∫
Rd

dx

∫
Rd

dy 1A(x)f (x − y)1B(y),

and dominating measure K = Q (see [6,7]). By construction, t 	→ Mt(B) is a continuous martingale and

F(ϕ) =
∫

R+×Rd

ϕ(t, x)M(dt, dx),

where the stochastic integral is as defined in [16].
For d = 3, the fundamental solution of the wave equation is the measure defined by

S(t) = 1

4πt
σt , (2.1)
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for any t > 0, where σt denotes the uniform surface measure (with total mass 4πt2) on the sphere B(0, t) of radius t .
In particular,

S
(
t,R

3) = t. (2.2)

Hence, in the mild formulation of Eq. (1.1), Walsh’s classical stochastic integration theory developed in [16] does not
apply. In this paper, we use the extension of the stochastic integral developed in Dalang [6].

2.1. Existence and uniqueness

The following assumption is needed (see [6], Theorem 11 and Example 6) for Eq. (1.1) to have a solution.

Assumption A. The spectral measure μ of the Gaussian process F satisfies∫
R3

μ(dξ)

1 + ‖ξ‖2
< ∞.

We term a solution to (1.1) a jointly measurable and adapted process (u(t, x), (t, x) ∈ R+ × R
3) that satisfies the

stochastic integral equation

u(t, x) = w(t, x) +
∫ t

0

∫
Rd

S(t − s, x − y)u(s, y)F (ds,dy), (2.3)

where w(t, x) is the solution to the homogeneous (and deterministic) wave equation(
∂2

∂t2
− �

)
w(t, x) = 0, w(0, x) ≡ u0,

∂

∂t
w(0, x) ≡ ũ0. (2.4)

In particular,

w(t, x) = u0 + t ũ0 (2.5)

so w does not depend on x.
The following proposition is proved in [6].

Proposition 2.1. Fix T > 0. If Assumption A holds, then (2.3) has a unique square-integrable solution (u(t, x),

(t, x) ∈ R+ × R
3). Moreover, this solution is L2-continuous and for all T > 0 and p ≥ 0,

sup
0≤t≤T

sup
x∈R3

E
[∣∣u(t, x)

∣∣p]
< ∞.

Hölder continuity of (u(t, x)) is studied in [9].

2.2. The probabilistic representation of second moments

Following [8], we present a kind of Feynman–Kac formula for the second moments of our solutions. Instead of
Brownian motion, our underlying process moves with speed 1 and changes directions at random times.

Let X̃t = X0 + tΘ0, where Θ0 is chosen according to the uniform probability measure on ∂B(0,1). In particular,
t 	→ X̃t is uniform motion in the randomly chosen direction Θ0, with starting point X0 to be specified.

Let Θ̃i , i = 1,2, . . . be i.i.d. copies of Θ0, and let X̃(i) = (X̃
(i)
t , t ≥ 0), i ≥ 1, be defined by X̃

(i)
t = tΘ̃i , so that

they are i.i.d. copies of (X̃t , t ≥ 0). Let N = (N(t), t ≥ 0) be a rate 1 Poisson process independent of the (X̃(i)). Let
0 < τ1 < τ2 < · · · be the jump times of (N(t)) and set τ0 ≡ 0. Define a process X = (Xt , t ≥ 0) as follows:

Xt = X0 + X̃
(1)
t for 0 ≤ t ≤ τ1,
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and for i ≥ 1,

Xt = Xτi
+ X̃

(i+1)
t−τi

for τi < t ≤ τi+1.

We use Px to denote a probability under which, in addition, X0 = x with probability one. Informally, the process X

follows X̃(1) during the interval [0, τ1], then follows X̃(2) started at Xτ1 during [τ1, τ2], then X̃(3) started at Xτ2 during
[τ2, τ3], etc.

Using two independent i.i.d. families (X̃
(i,1)· , i ≥ 1) and (X̃

(i,2)· , i ≥ 1) that are independent of the Poisson
process N , construct, as for X above, two processes X1 = (X1

t , t ≥ 0) and X2 = (X2
t , t ≥ 0) which renew them-

selves at the same set of jump times τi of the process N , and which start, under Px1,x2 , at x1 and x2 respectively.
Expectation relative to Px1,x2 is denoted Ex1,x2 [·].

Taking (2.2) into account, the following result is proved in [8] Theorem 4.3.

Theorem 2.2. Let u(t, x) be the solution of (2.3) given in Proposition 2.1. Then

E
[
u(t, x)u(t, y)

] = etEx,y

[
w

(
t − τN(t),X

1
τN(t)

)
w

(
t − τN(t),X

2
τN(t)

)

×
N(t)∏
i=1

(
(τi − τi−1)

2f
(
X1

τi
− X2

τi

))]

(where, on {N(t) = 0}, the product is defined to take the value 1).

2.3. Moments of order n

Theorem 2.2 extends to higher moments as follows. Let Pn denote the set of unordered pairs from Ln = {1, . . . , n}
and for ρ ∈ Pn, we write ρ = {ρ1, ρ2}, with ρ1 < ρ2. Note that card (Pn) = n(n − 1)/2. Let (N·(ρ), ρ ∈ Pn) be
independent rate 1 Poisson processes. For A ⊆ Pn, let Nt(A) = ∑

ρ∈A Nt(ρ). This defines a Poisson random measure
such that for fixed A, (Nt (A), t ≥ 0) is a Poisson process with intensity card(A). Let σ1 < σ2 < · · · be the jump times
of (Nt (Pn), t ≥ 0), and let Ri = {Ri

1,R
i
2} be the pair corresponding to time σi.

For � ∈ Ln, let P (�) ⊆ Pn be the set of pairs that contain �, so that card(P (�)) = n − 1. Let τ �
1 < τ�

2 < · · · be the
jump times of (Nt (P (�)), t ≥ 0). We write Nt(�) instead of Nt(P (�)). Note that

∑
ρ∈Pn

Nt (ρ) = Nt(Pn) = 1

2

∑
�∈Ln

Nt (�). (2.6)

We now define the motion process needed. For � ∈ Ln and i ≥ 0, let (X̃
�,(i)
t , t ≥ 0) be i.i.d. copies of the uniform

motion process (X̃t ) defined in Section 2.2. Set

X�
t =

{
X�

0 + X̃
�,(1)
t , 0 ≤ t ≤ τ �

1 ,

X�

τ�
i

+ X̃
�,(i+1)

t−τ�
i

, τ �
i < t < τ�

i+1.

In particular, at time σi , the two processes X
Ri

1· and X
Ri

2· change directions, while the other motions do not. For an
illustration of these motions, see [8], Section 5.

It will be useful to define X�
t for certain t < 0. For given (t1, x1), . . . , (tn, xn), under the measure P(t1,x1),...,(tn,xn),

we set

X�
t = X̃

�,(0)
t+t�

for −t� ≤ t ≤ 0.

Finally, we set τ �
0 = −t�. Taking 2.2 into account, the following theorem is established in [8], Theorem 5.1.
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Theorem 2.3. The nth product moments are given by

E
[
u(t, x1) · · ·u(t, xn)

]

= etn(n−1)/2E(0,x1),...,(0,xn)

[
Nt (Pn)∏

i=1

f
(
X

Ri
1

σi
− X

Ri
2

σi

)

×
∏

�∈Ln

Nt (�)∏
i=1

(
τ �
i − τ �

i−1

) ·
∏

�∈Ln

w
(
t − τ �

Nt (�)
,X�

τNt (�)

)]
. (2.7)

3. Upper bounds on the moments

In this section, we shall work under the following assumption.

Assumption B. The covariance function f is bounded (hence uniformly continuous and attains its maximum at 0).
We let α = f (0).

Note that under Assumption B, the spectral measure μ satisfies f (0) = μ(R3) < ∞, and so Assumption A is also
satisfied.

3.1. Second moments

In this subsection, we show that t 	→ E[(u(t, x))2] grows at most at an exponential rate. The method is specific to the
second moment, and is much simpler that what will be needed for higher moments, which are dealt with in the next
section.

Proposition 3.1. Under Assumptions A and B, there is C < ∞ such that for all t ∈ R+ and x, y ∈ R
3,

∣∣E[
u(t, x)u(t, y)

]∣∣ ≤ C(u0 + t ũ0)
2 exp

(
t (2α)1/3). (3.1)

Proof. By Theorem 2.2, (2.5) and Assumption B,

∣∣E[
u(t, x)u(t, y)

]∣∣ ≤ (u0 + t ũ0)
2et h(t),

where

h(t) = Ex,y

[
N(t)∏
i=1

(
α(τi − τi−1)

2)].

Using the strong Markov property at the first jump time τ1 of N(t) and letting F1 = σ(τ1,X
1
τ1

,X2
τ1

), we see that

h(t) = E[1{N(t)=0}] + E

[
1{N(t)>0}

(
ατ 2

1

)
E

[
N(t)∏
i=2

(
α(τi − τi−1)

2)∣∣∣∣F1

]]

= e−t + α

∫ t

0
s2h(t − s)e−s ds

= e−t + α

∫ t

0
(t − s)2h(s)e−(t−s) ds.
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Letting g(t) = et h(t), we see that

g(t) = 1 + α

∫ t

0
(t − s)2g(s)ds.

Therefore, g(0) = 1 and

g′(t) = 2α

∫ t

0
(t − s)g(s)ds.

It follows that g′(0) = 0 and

g′′(t) = 2α

∫ t

0
g(s)ds.

Therefore, g′′(0) = 0 and

g′′′(t) = 2αg(t).

The general solution of this ordinary differential equation is

g(t) = c1et (2α)1/3 + c2e−t (2α)1/3/2 sin

(
(2α)1/3

√
3

2
t

)

+ c3e−t (2α)1/3/2 cos

(
(2α)1/3

√
3

2
t

)
,

and c1, c2 and c3 are determined by the initial conditions g(0) = 1, g′(0) = 0 and g′′(0) = 0. Therefore, (3.1) holds. �

3.2. Higher moments

In this section, we obtain upper bounds on higher moments and, in particular, establish the following theorem.

Theorem 3.2. Under Assumptions A and B, there exists a universal constant C < ∞ such that for all n ≥ 2, t ∈ R+
and x ∈ R

3,∣∣E[
un(t, x)

]∣∣ ≤ C(u0 + t ũ0)
n exp

(
Cα1/3n4/3t

)
.

The main technical effort is contained in the following lemma, which uses the notation of Section 2.3.

Lemma 3.3. There is a universal constant C < ∞ such that for all n ≥ 2, t ∈ R+ and x ∈ R
3,

etn(n−1)/2E(0,x),...,(0,x)

[ ∏
�∈Ln

Nt (�)∏
i=1

(
α1/2(τ �

i − τ �
i−1

))] ≤ C exp
(
Cα1/3n4/3t

)
.

Assuming this lemma for the moment, we prove Theorem 3.2.

Proof of Theorem 3.2. We use Theorem 2.3 with x1 = · · · = xn = x. From (2.7), Assumption B and (2.5), we find
that

∣∣E[
un(t, x)

]∣∣ ≤ (u0 + t ũ0)
netn(n−1)/2E(0,x),...,(0,x)

[
αNt (Pn)

∏
�∈Ln

Nt (�)∏
i=1

(
τ �
i − τ �

i−1

)]
.



Intermittency properties 1157

Use (2.6) to rewrite this as

(u0 + t ũ0)
netn(n−1)/2E(0,x),...,(0,x)[Zn,t ],

where

Zn,t =
∏

�∈Ln

Nt (�)∏
i=1

(
α1/2(τ �

i − τ �
i−1

))
, (3.2)

then apply Lemma 3.3 to conclude the proof of Theorem 3.2. �

Proof of Lemma 3.3. First, we recall the arithmetic–geometric inequality, namely, for positive numbers a1, . . . , ak ,

(
k∏

�=1

a�

)1/k

≤
∑k

�=1 a�

k
. (3.3)

Let Zn,t be as in (3.2) and set

νn =
(

n

2

)
= n(n − 1)

2
, (3.4)

so that Nt(Pn) is a Poisson random variable with parameter tνn. For k ∈ N, given that Nt(Pn) = k, the number of
factors in the product that defines Zn,t is 2k, by (2.6), so by (3.3),

E(0,x),...,(0,x)

[
Zn,t |Nt(Pn) = k

] ≤
(

1

2k

∑
�∈Ln

Nt (�)∑
i=1

(
α1/2(τ �

i − τ �
i−1

)))2k

≤
(

α1/2nt

2k

)2k

.

Therefore,

E(0,x),...,(0,x)[Zn,t1{Nt (Pn)=k}] ≤
(

α1/2nt

2k

)2k

P
{
Nt(Pn) = k

}

=
(

α1/2nt

2k

)2k

e−νnt (νnt)
k

k! .

Using Stirling’s approximation k! � √
2πkke−k

√
k, we get, for k ≥ k0, where k0 > 1 is a universal constant, that

k!(2k)2k ≥
√

2π

2
kke−k

√
k(2k)2k

≥
√

2π

2
k3k22ke−k

√
k

=
√

2π

2
√

3

(
e2k3−3k22k

)(
(3k)3ke−3k

√
3k

)

≥ c0

(
e2k22k

33k

)
(3k)!

= c0ζ
3k (3k)!,
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where c0 = 1
4
√

3
and ζ is a universal positive constant. It follows that for k ≥ k0,

E(0,x),...,(0,x)[Zn,t1{Nt (Pn)=k}] ≤ e−νnt

c0(3k)!
(
ζ−12−1/3α1/3n4/3t

)3k

and

etn(n−1)/2E(0,x),...,(0,x)[Zn,t ] ≤ 1 +
k0−1∑
k=1

(α1/3n4/3t)3k

k!(2k)2k

+ 1

c0

∞∑
k=0

1

(3k)!
(
ζ−12−1/3α1/3n4/3t

)3k

≤ C exp
(
Cα1/3n4/3t

)
,

provided the universal constant C is chosen large enough. This proves Lemma 3.3. �

4. Lower bounds on the moments

In this section, we will work under the following assumption.

Assumption C. The covariance function f has the following property: there exist δ > 0 and α0 > 0 such that for
‖x‖ < 2δ, f (x) ≥ α0.

Theorem 4.1. Under Assumptions A and C, there exists a universal constant c > 0 such that for all even n ≥ 2,
x ∈ R

3 and t > 0,

E
[
un(t, x)

] ≥ (u0 + t ũ0)
n exp

(
cα

1/3
0 n4/3t

)
.

Remark 4.2. Without Assumption C, the inequality E[un(t, x)] ≥ (u0 + t ũ0)
n holds for all t ≥ 0. Indeed, by (2.7),

E
[
un(t, x)

] ≥ etn(n−1)/2E(0,x),...,(0,x)

[
1{Nt (Pn)=0}(u0 + t ũ0)

n
] = (u0 + t ũ0)

n.

Proof of Theorem 4.1. Fix x ∈ R
3. Given y ∈ R

3, let C(x, y) denote the solid cone with vertex at y whose axis
passes through x and y and consisting of those z ∈ R

3 such that (y − z) · (y − x) ≥ cos(π
4 )‖y − z‖‖y − x‖. Let δ > 0

be as in Assumption C. An elementary geometric argument (see Fig. 1) shows that if ‖y − x‖ ≤ δ, z ∈ C(x, y) and
‖y − z‖ ≤ δ, then ‖z − x‖ ≤ δ.

Let t > 0. Consider the event

D(t) =
n⋂

�=1

{
X�

τ�
i

+ Θ̃�,(i) ∈ C
(
x,X�

τ�
i

)
, i = 1, . . . ,Nt (�)

}
.

Informally, on the event D(t) and under P(0,x),...,(0,x), each motion process X�· starts at x, moves away from x to X�

τ�
1
,

but then “comes back in the general direction of x” repeatedly, since the variable Θ�,(i) falls in the cone C(x,X�

τ�
i

).

By the observation above, we note that if τ �
i+1 − τ �

i ≤ δ, for i = 1, . . . ,Nt (�), and � = 1, . . . , n, then ‖XRi
j

σi
− x‖ ≤ δ,

i = 1, . . . ,Nt (Pn), j = 1,2 and, in particular,

∥∥X
Ri

1
σi

− X
Ri

2
σi

∥∥ ≤ 2δ, P(0,x),...,(0,x)-a.s. (4.1)
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Fig. 1. A projection of the cone C(x, y).

Let m = m(t) ∈ N, and set k = m
δ

n
2 . Let � = δt

2(m+1)
, and, for j = 1, . . . , m

δ
, let tj = j tδ

2(m+1)
and Ij = [aj , bj ], where

aj = tj − �/4 and bj = tj + �/4, so that the length of Ij is �
2 = δt

4(m+1)
and Ij and Ij+1 are separated by an interval

of length aj+1 − bj = �/2.
Let

C(k,n, t) =
m/δ⋂
j=1

Gj(n, k),

where

Gj(n, k) =
{
Nbj

(Pn) − Naj
(Pn) = n

2

}
∩ {

Nbj
(�) − Naj

(�) = 1, � = 1, . . . , n
}
.

Notice that on C(k,n, �), Nt(Pn) = m
δ

n
2 = k, and during each time interval Ij , each process X�· changes direction

exactly once. In particular, on C(k,n, t),

δt

4(m + 1)
≤ τ �

i+1 − τ �
i ≤ δt

m + 1
, i = 0, . . . ,m, (4.2)

so τ �
i+1 − τ �

i ≤ δ if m is large enough.
Let νn be defined as in (3.4). Then, by the fact that w(s, y) = v0 + t ṽ0 and the observation (4.1) above, for m (or k)

large, Theorem 2.3 implies that

E
[
un(t, x)

] ≥ (v0 + t ṽ0)
neνntE(0,x),...,(0,x)

[
1D(t)1C(k,n,t)α

Nt (Pn)
0 Z̃n,t

]
, (4.3)

where

Z̃n,t =
∏

�∈Ln

Nt (�)∏
i=1

(
τ �
i − τ �

i−1

)
.

Let γ = P {y + Θ0 ∈ C(0, y)} > 0 (which does not depend on y). The right-hand side above is bounded below by

eνntαk
0γ 2kE

[
Z̃n,t1C(k,n,t)|Nt(Pn) = k

]
P

{
Nt(Pn) = k

}
= (v0 + t ṽ0)

n (α0γ
2νnt)

k

k! E
[
Z̃n,t1C(k,n,t)|Nt(Pn) = k

]
. (4.4)
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By (4.2),

E
[
Z̃n,t1C(k,n,t)|Nt(Pn) = k

] ≥
(

δt

4(m + 1)

)2k

P
(
C(k,n, t)|Nt(Pn) = k

)

≥
(

ctn

k

)2k

P
(
C(k,n, t)|Nt(Pn) = k

)
, (4.5)

where c = 1
8 .

We now estimate the conditional probability P(C(k,n, t)|Nt(Pn)). Given Nt(Pn) = k, the jump times (σ1, . . . , σk)

have the same distribution as the order statistics of a sequence of k uniform random variables with values in [0, t],
and the pairs (R1, . . . ,Rk) form a uniform random vector with values in (Pn)

k , which is independent of (σ1, . . . , σk).
Therefore, the (mixed discrete/continuous) probability density function of the random vector(

σ1, . . . , σk,R
1, . . . ,Rk

)
is

P
{
σ1 ∈ dx1, . . . , σk ∈ dxk, R1 = ρ1, . . . ,Rk = ρk

} = k!
tk

dx1 · · · dxk

1

νk
n

,

if ρ1, . . . , ρk ∈ Pn and x1 < · · · < xk , and equals 0 otherwise.
The event G1(n, k) occurs if and only if a1 ≤ σ1 < · · · < σn/2 ≤ b1 and the n

2 pairs R1, . . . ,Rn/2 form an ordered
partition of {1, . . . , n}. Notice that there are(

n

2,2, . . . ,2

)
= n!

2n/2

such partitions, and a similar characterisation holds for the other Gj(n, k). Therefore,

P
(
C(k,n, t)|Nt(Pn)

) = k!
tkνk

n

∫ b1

a1

dx1

∫ b1

x1

dx2 · · ·
∫ b1

x(n/2)−1

dxn/2

· · ·
∫ bm/δ

am/δ

dxk−(n/2)+1

∫ bm/δ

xk−(n/2)+1

dxk−(n/2)+2 · · ·
∫ bm/δ

xk−1

dxk

(
n

2,2, . . . ,2

)m/δ

.

Each group of n
2 integrals is equal to the volume of a simplex in R

n/2, which is (1/(n/2)!)(�/2)n/2. Therefore,

P
(
C(k,n, t)|Nt(Pn)

) = k!
tkνk

n

(
1

(n/2)!
(

�

2

)n/2)m/δ(
n

2,2, . . . ,2

)m/δ

. (4.6)

We note that m
δ

= 2k
n

and

1

(n/2)!
(

n

2,2, . . . ,2

)
= 2−n/2 n!

(n/2)! .

According to Stirling’s approximation, there is n0 ∈ N such that for all n ≥ n0,

n! ≥ nne−n
√

n and (n/2)! ≤ 6(n/2)n/2e−n/2
√

n/2.

Let

c̃ = inf
2≤n≤n0

n!
nne−n

√
n
, C̃ = sup

2≤n≤n0

(n/2)!
6(n/2)n/2e−n/2

√
n/2

.
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Letting c denote the universal constant c = 1
6 ∧ c̃

C̃
, we see that

1

(n/2)!
(

n

2,2, . . . ,2

)
≥ c2−n/2 nne−n

√
n

(n/2)n/2e−n/2
√

n/2
≥ √

2ce−n/2nn/2.

Now observe from the definition of �, νn and k that

1

tkνk
n

(
�

2

)nm/(2δ)

=
(

δt

4(m + 1)

2

tn(n − 1)

)k

≥
(

n

8kn2

)k

=
(

1

8kn

)k

.

Therefore, we see from (4.6) that

P
(
C(k,n, t)|Nt(Pn)

) ≥ k!(√2ce−n/2nn/2)m/δ
(

1

8kn

)k

= k!(√2c
)2k/ne−knk

(
1

8kn

)k

, (4.7)

since m/δ = 2k/n. Looking back at (4.3) and (4.5), we conclude that

E
[
un(t, x)

] ≥ (u0 + t ũ0)
n (α0γ

2νnt)
k

k!
(

ctn

k

)2k

k!(√2c
)2k/ne−knk

(
1

8kn

)k

= (u0 + t ũ0)
n

(
α0γ

2n3(n − 1)t3c2(
√

2c)2/ne−1

16k3

)k

. (4.8)

There is again a universal positive constant, which we denote again by c, such that

E
[
un(t, x)

] ≥ (u0 + t ũ0)
n

(
α0γ

2cn4t3

k3

)k

. (4.9)

Let

k = e−1/3c1/3α
1/3
0 γ 2/3n4/3t,

to conclude that for t sufficiently large,

E
[
un(t, x)

] ≥ (u0 + t ũ0)
n exp

(
e−1/3c1/3α

1/3
0 γ 2/3n4/3t

)
.

This concludes the proof. �

5. Bounds in the parabolic Anderson problem

It is interesting to use the formula in [8] Theorem 5.1 to obtain bounds on moments and on the moment Lyapounov
exponents of the solution to the parabolic Anderson problem

∂v

∂t
(t, x) = 1

2
�v(t, x) + √

βv(t, x)Ḟ (t, x), (5.1)

with t > 0 and x ∈ R
d , d ≥ 1, and initial condition v(0, x) = v0, where v0 ∈ R

∗+. In this equation, Ḟ (t, x) is the
Gaussian noise defined in Section 2. We will take β = 1, but we note that [2] contains mainly asymptotic bounds as
β ↓ 0 or β ↑ ∞ ([2], Theorem III.2.1). Theorem 5.2 below improves [2], Proposition III.2.3, which treats the case of
discrete space (Zd instead of R

d ).
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The fundamental solution of the heat equation is

G(t, dx) = pt(x)dx,

where pt (x) = (2πt)−d/2 exp(−|x|2/(2t)). Therefore, (2.2) is replaced by

G
(
t,R

d
) = 1. (5.2)

A solution to (5.1) is a jointly measurable and adapted process (v(t, x), (t, x) ∈ R+ × R
2) that satisfies the sto-

chastic integral equation

v(t, x) = w(t, x) +
∫ t

0

∫
Rd

pt−s(x − y)v(s, y)F (ds, dy),

where the stochastic integral is interpreted in the sense of [16] and w(t, x) is the solution of the homogeneous (and
deterministic) heat equation(

∂

∂t
− �

)
w(t, x) = 0, w(0, x) = v0.

In particular,

w(t, x) ≡ v0. (5.3)

The following proposition is proved in [6].

Proposition 5.1. Fix T > 0. If Assumption A holds, then (5.1) has a unique square-integrable solution (u(t, x),

(t, x) ∈ R+ × R
d). Moreover, this solution is positive, L2-continuous and for all p > 0,

sup
0≤t≤T

sup
x∈Rd

E
[
u(t, x)p

]
< ∞.

For the heat equation, the process X̃t defined in Section 2.2 must be replaced by a process whose distribution
at time t is G(t, ·). It is convenient to take X̃t = √

tΘ0, where Θ0 is a standard Normal random vector (see [8]
Example 3.1(a)). Except for this, the remainder of the construction of the process (X�

t , t ≥ 0), � = 1, . . . , n, presented
in Sections 2.2 and 2.3 is unchanged.

Taking into account (5.2) and (5.3), [8], Theorem 5.1, particularizes to

E
[
v(t, x1) · · ·v(t, xn)

]
(5.4)

= vn
0 etn(n−1)/2E(0,x1),...,(0,xn)

[
Nt (Pn)∏

i=1

f
(
X

Ri
1

σi
− X

Ri
2

σi

)]
,

instead of (2.7). Therefore, the nth moment of v will behave differently (and is simpler to obtain) than the nth moment
of u, as we now show.

Theorem 5.2. (a) Upper bound. Under Assumptions A and B, the solution (v(t, x), (t, x) ∈ R+ × R
d) of (5.1)

satisfies

E
[
vn(t, x)

] ≤ vn
0 exp

(
αtn(n − 1)/2

)
.

(b) Lower bound. Under Assumptions A and C, there is a universal constant c > 0 such that for all even n ≥ 2,
x ∈ R

3 and t > 0,

E
[
vn(t, x)

] ≥ vn
0 exp

(
cα0tn

2).
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Proof. (a) Using Assumption B, we see from (5.4) that

E
[
vn(t, x)

] ≤ vn
0 etn(n−1)/2E(0,x),...,(0,x)

[
αNt (Pn)

]
.

Since Nt(Pn) is a Poisson random variable with parameter tn(n − 1)/2, this is equal to

vn
0 etn(n−1)/2 exp

(
t
n(n − 1)

2

(
elog(α) − 1

)) = vn
0 eαtn(n−1)/2.

This proves (a).
(b) The main difference between the motion process (X̃) that is used in formula (5.4) compared to the process that

appears in (2.7) is not so much the factor
√

t but the fact that the random vector Θ0 is now Gaussian. However, the
motion still occurs in a fixed direction, and if ‖Θ0‖ ≤ 1, then the distance travelled during a time interval of length δ2

is at most δ.
We now follow the proof of Theorem 4.1, with the following changes. The definition of D(t) becomes

D(t) =
n⋂

�=1

{
X�

τ�
i

+ Θ̃�,(i) ∈ C
(
x,X�

τ�
i

)
,

∥∥Θ̃�,(i)
∥∥ ≤ 1, i = 1, . . . ,Nt (�)

}
.

As of the line following (4.1), δ is replace by δ2, so that τ �
i+1 − τ �

i ≤ δ2 on C(k,n, t), but (4.2) remains valid. The

random variable Z̃n,t in (4.3) is replaced by the constant 1.
Inequality (4.3) becomes

E
[
vn(t, x)

] ≥ vn
0 eνntE(0,x)...,(0,x)[1D(t)1C(k,n,t)].

The probability γ becomes

γ = P
{
y + Θ0 ∈ C(0, y), ‖Θ0‖ ≤ 1

}
.

The lower bound (4.4) becomes

vn
0
(α0γ

2νnt)
k

k! P
(
C(k,n, t)|Nt(Pn) = k

)
,

which is estimated as in the proof of Theorem 4.1. In particular, (4.7) remains valid, and (4.8) becomes

E
[
vn(t, x)

] ≥ vn
0
(α0γ

2νnt)
k

k! k!(√2c)2k/ne−knk

(
1

8kn

)k

= vn
0

(
α0γ

2n(n − 1)t (
√

2c)2/ne−1

16k

)k

.

Inequality (4.9) becomes

E
[
un(t, x)

] ≥ vn
0

(
α0γ

2cn2t

k

)k

.

Let

k = e−1cα0γ
2n2t,

to conclude that for t sufficiently large,

E
[
un(t, x)

] ≥ vn
0 exp

(
e−1cα0γ

2n2t
)
,

which completes the proof. �
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Remark 5.3. Let

λn = lim
t→∞

logE[un(t, x)]
t

,

which is shown to exist in [2]. Then Theorem 5.2 implies that there are constants 0 < c < C < ∞ such that for all
even n ≥ 2,

cn ≤ λn

n
≤ n,

which gives a different proof of the intermittency property of v than that in [2].
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