
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2009, Vol. 45, No. 3, 667–684
DOI: 10.1214/08-AIHP182
© Association des Publications de l’Institut Henri Poincaré, 2009

Infinite divisibility of solutions to some self-similar
integro-differential equations and exponential

functionals of Lévy processes

Patie Pierre

Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse, 22, CH-3012 Bern, Switzerland
E-mail: patie@stat.unibe.ch, Fax: 0041 (0)31 631 38 05

Received 7 August 2007; revised 13 March 2008; accepted 30 April 2008

Abstract. We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators,
for any α,x > 0, γ ≥ 0 and f a smooth function on R+,

L(γ )f (x) = x−α

(
σ

2
x2f ′′(x) + (σγ + b)xf ′(x) +

∫ ∞
0

(
f

(
e−rx

) − f (x)
)
e−rγ + xf ′(x)rI{r≤1}ν(dr)

)
, (0.1)

where the coefficients b ∈ R, σ ≥ 0 and the measure ν, which satisfies the integrability condition
∫ ∞

0 (1 ∧ r2)ν(dr) < +∞, are
uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent ψ .
L(γ ) is known to be the infinitesimal generator of a positive α-self-similar Feller process, which has been introduced by Lamperti
[Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225]. The eigenfunctions are expressed in terms of a new family of power series which
includes, for instance, the modified Bessel functions of the first kind and some generalizations of the Mittag-Leffler function. Then,
we show that some specific combinations of these functions are Laplace transforms of self-decomposable or infinitely divisible
distributions concentrated on the positive line with respect to the main argument, and, more surprisingly, with respect to the
parameter ψ(γ ). In particular, this generalizes a result of Hartman [Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267–287]
for the increasing solution of the Bessel differential equation. Finally, we compute, for some cases, the associated decreasing
eigenfunctions and derive the Laplace transform of the exponential functionals of some spectrally negative Lévy processes with a
negative first moment.

Résumé. Nous commençons par caractériser les fonctions propres croissantes, au sens strict, de la famille d’opérateurs intégro-
différentiels (0.1), pour tout α > 0, γ ≥ 0, f une function définie sur R+ et suffissament régulière, et où les coefficients b ∈
R, σ ≥ 0 et la mesure ν, qui satisfait la condition d’intégrabilité

∫ ∞
0 (1 ∧ r2)ν(dr) < +∞, sont données, de manière unique, par

la distribution d’une variable aléatoire infiniment divisible et spectralement négative dont on écrit ψ son exposant caractéristique.
L(γ ) est le générateur infinitésimal d’un processus positif Fellerien α-auto-similaire, introduit par Lamperti [Z. Wahrsch. Verw.
Gebiete 22 (1972) 205–225]. Les fonctions propres sont définies en terme d’une nouvelle famille de séries entières qui contient,
par exemple, les fonctions de Bessel modifiées du premier ordre et des généralisations des fonctions de Mittag-Leffler. Nous
continuons par montrer que des combinaisons particulières de ces séries entières correspondent à des transformées de Laplace
de variables aléatoires positives auto-décomposables ou infiniment divisibles, par rapport à la valeur propre associée mais aussi
par rapport au paramètre ψ(γ ), ce qui est plus surprenant. En particulier, ceci généralise un résultat de Hartman [Ann. Sc. Norm.
Super. Pisa Cl. Sci. IV-III (1976) 267–287] sur les fonctions de Bessel modifiées. Finalement, nous calculons, dans certains cas,
les fonctions propres décroissantes, ce qui nous permet de caractériser la loi, par le biais de sa transformée de Laplace, de la
fonctionnelle exponentielle de certains processus de Lévy spectralement négatifs ayant un premier moment négatif.
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1. Introduction

During the last decade, there has been a renewed interest in self-similar semigroups, something which seems to be
attributed to their connections to several fields of mathematics and more generally to many area of the sciences. For in-
stance, in probability theory, these semigroups arise in the study of important processes such as self-similar processes,
branching processes and also in the investigation of self-similar fragmentation. Moreover, the Feller processes asso-
ciated to self-similar semigroups are closely related, via the Lamperti’s mapping, to the exponential functionals of
Lévy processes which appear to be key objects in a variety of settings (random processes in random environments,
mathematical finance, astrophysics. . .). We refer to Bertoin and Yor [6] for an interesting recent survey on this topic.
Finally, we emphasize that they are also related to the theory of the fractional operator which is used intensively in
many applied fields, see, e.g., the survey paper of Kilbas and Trujillo [21].

In this paper we provide, in terms of power series, the increasing eigenfunction associated to the linear opera-
tor L(γ ), given by (0.1), that is the increasing solution to the integro-differential equation, for x, q ≥ 0,

L(γ )fq(x) = qfq(x).

As a byproduct, we compute the Laplace transform of the first passage times above for spectrally negative self-similar
processes and some related quantities.

Moreover, when the spectrally negative random variable has a negative first moment, we provide, under an addi-
tional technical condition, the decreasing eigenfunctions associated with L = L(0). We deduce an explicit expression
of the Laplace transform of the exponential functional of some spectrally negative Lévy processes with negative mean.
This is a companion result of Bertoin and Yor [5] who characterized, in terms of its negative entire moments, the law
of the exponential functional of spectrally positive Lévy processes which drift to −∞.

Furthermore, it is plain that L(γ ) is a generalization of the infinitesimal generator of the (re-scaled) Bessel process
(ν ≡ 0 and α = 2). In this specific case, Hartman [16], relying on purely analytical arguments, showed that the function

γ 	→ I√2γ (a)I0(A)

I√2γ (A)I0(a)
, 0 < a < A < ∞, (1.1)

is the Laplace transform of an infinitely divisible distribution concentrated on the positive line, where Iν stands for
the modified Bessel function of the first kind. We mention that in the limit case A → ∞, the result above has been
reproved, in an elegant fashion, by Pitman and Yor [30]. We shall provide a simple probabilistic explanation of
Hartman’s result (for any 0 < A < ∞) and show that this property still holds for similar ratios of the increasing
eigenfunctions associated with the non-local operator L(γ ).

The outline of the remainder of the paper is as follows. In the sequel, we set up the notation and provide some basic
results. Section 2 is devoted to the statement of the main results. The proofs are given in Section 3. Finally, in the last
section, we illustrate our approach by investigating some known and new examples.

1.1. Notation and preliminaries

1.1.1. Some important sets of probability measures
Let ξ1 be a spectrally negative infinitely divisible random variable. It is well known that its characteristic exponent,
ψ , admits the following Lévy–Khintchine representation

ψ(u) = bu + σ

2
u2 +

∫ ∞

0

(
e−ur − 1 + urI{r≤1}

)
ν(dr), u ≥ 0, (1.2)

where the coefficients b ∈ R, σ ≥ 0 and the measure ν̃, image of ν by the mapping x → −x, which satisfies the
integrability condition

∫ 0
−∞(1 ∧ r2)ν̃(dr) < +∞, are uniquely determined by the distribution of ξ1. We exclude the

case where b ≤ 0 and
∫ 0
−∞(1 ∧ r)ν̃(dr) < +∞, i.e., when ψ is the Laplace exponent of the negative of a subordinator.

It is plain that limu→∞ ψ(u) = +∞ and by monotone convergence one gets E[ξ1] = b − ∫ ∞
1 rν(dr) ∈ [−∞,∞).

Differentiating again, one observes that ψ is strictly convex unless ξ is degenerate, which we exclude. Note that 0 is
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always a root of the equation ψ(u) = 0. However, in the case E[ξ1] < 0, this equation admits another positive root,
which we denote by θ . This yields the so-called Cramér condition

E
[
eθξ1

] = 1.

Then, for any E[ξ1] ∈ [−∞,∞), the function u 	→ ψ(u) is continuous and increasing on [max(θ,0),∞) and thus it
has a well-defined inverse function φ : [0,∞) → [max(θ,0),∞) which is also continuous and increasing. We denote
the totality of all functions ψ of the form (1.2) by L K. Note, from the stability of infinitely divisible distributions
under convolution and convolution powers to positive real numbers, that L K forms a convex cone in the space of real
valued functions defined on [0,∞).

We also mention that when a probability measure dm is supported on a subset of [0,∞), then dm is infinitely
divisible if and only if its Laplace transform satisfies the conditions, for any u ≥ 0,∫ ∞

0
e−ux dm(x) = e−φ(u)

with φ(0) = 0 and φ′(u) is completely monotonic, i.e., φ′ is infinitely differentiable on (0,∞) and for all n = 1,2, . . . ,

(−1)n−1φ(n)(u) > 0, u > 0. Moreover, the so-called Laplace exponent, φ, admits the following Lévy–Khintchine
representation

φ(u) = au +
∫ ∞

0

(
1 − e−ur

)
μ(dr), u ≥ 0, (1.3)

for some a ≥ 0 and some positive measure μ on (0,∞) satisfying
∫ ∞

0 (1 ∧ r)μ(dr) < ∞, see, e.g., Meyer [27].
Finally, we recall that a random variable H is self-decomposable (or of class L) if it is the solution to the random

affine equation

H
(d)= cH + Hc,

where
(d)= stands for the equality in distribution, 0 < c < 1 and Hc is a random variable independent of H . It is

well known that the law of these random variables is absolutely continuous, see, e.g., [32], Example 27.8. Moreover,
Wolfe [35] showed that the density h of a positive self-decomposable random variable is unimodal, i.e., there exists
a ∈ R+ (the mode) such that h is increasing on ]0, a[ and decreasing on ]a,∞[. The Laplace exponent, φs , of a
self-decomposable distribution concentrated on R+ is given by

φs(u) = au +
∫ ∞

0

(
1 − e−ur

)k(r)

r
dr,

where k is a positive decreasing function. We refer to the monographs of Sato [32] and Steutel and van Harn [33] for
an excellent account on these sets of probability measures.

1.1.2. Lévy and Lamperti
Let Px (we write simply P for P0) be the law of a spectrally negative Lévy process ξ := (ξt )t≥0, starting at x ∈ R,
with (Ft )t≥0 its natural filtration. This law is characterized by the characteristic exponent of ξ1, which we assumed to
belong to L K, i.e., being of the form (1.2). We deduce, from the above discussion and the strong law of large numbers,
that limt→+∞ ξt = sgn(E[ξ1])∞ a.s. and the process oscillates if E[ξ1] = 0.

For any γ ≥ 0, we write P(γ ) for the law of the Lévy process with characteristic exponent

ψγ (u) = ψ(u + γ ) − ψ(γ ), u ≥ 0.

The laws P(γ ) and P are connected via the following absolute continuity relationship, also known as the Esscher
transform,

dP
(γ )
x |Ft = eγ (ξt−x)−ψ(γ )t dPx |Ft , t > 0, x ∈ R. (1.4)
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Lamperti [23] showed that there exists a one-to-one mapping between Px and the law Qex of a 1
α

-self-similar Markov
process X on (0,∞), i.e., a Feller process which enjoys the following α-self-similarity property for any c > 0(

(Xcαt )t≥0,Q
(γ )
cex

) (d)= (
(cXt )t≥0,Q

(γ )
ex

)
. (1.5)

More precisely, Lamperti showed that X can be constructed from ξ as follows

log(Xt ) = ξAt , t ≥ 0, (1.6)

where

At = inf

{
s ≥ 0;Σs :=

∫ s

0
eαξu du > t

}
.

We write as E(γ )
x (resp. Ex ) the expectation operator associated with Q

(γ )
x (resp. Qx = Q

(0)
x ). Moreover, for E[ξ1] < 0,

it is plain that X has an a.s. finite lifetime which is κ0 = inf{s ≥ 0;Xs− = 0,Xs = 0}. However, under the additional
condition 0 < θ < α, where we recall that ψ(θ) = 0, Rivero [31] showed that the minimal process (X,κ0) admits a
unique recurrent extension that hits and leaves 0 continuously a.s. and which is an α-self-similar process on [0,∞).
We simply write (X,Qx) for the law of such a recurrent extension starting from x ≥ 0. Furthermore, for E[ξ1] ≥ 0,
Bertoin and Yor [5], Proposition 1, showed that the family of probability measures (Qx)x>0 converges in the sense of
finite dimensional distribution to a probability measure Q0+ as x → 0+, see also Caballero and Chaumont [10] for
conditions for the weak convergence. Thus, for any x ≥ 0, (X,Qx) is also spectrally negative, in the sense that it has
no positive jumps. Moreover, for any x ≥ 0, (X,Qx) is a Feller process on [0,∞) and we denote its semigroup (resp.
its resolvent) by (Qt )t≥0 (resp. by Uq,q > 0), i.e., for any x, t ≥ 0 and v ∈ B([0,∞)), the space of bounded Borelian
functions on [0,∞),

Qtv(x) = Ex

[
v(Xt )

]
,

Uqv(x) =
∫ ∞

0
e−qtQtv(x)dt.

We also introduce the semigroup and the resolvent of the minimal process (X,κ0) for x > 0,

Q0
t v(x) = Ex

[
v(Xt ), t < κ0

]
,

U
q

0 v(x) =
∫ ∞

0
e−qtQ0

t v(x)dt.

The strong Markov property yields the following expression for the resolvent of the recurrent extension

Uqv(x) = U
q

0 v(x) + Ex

[
e−qκ0

]
Uqv(0), x ≥ 0. (1.7)

Moreover, we recall that the Lamperti mapping reads in terms of the characteristic operator as follows.

Proposition 1.1. Let f :R+ → R be such that f (x), xf ′(x) and x2f ′′(x) are continuous functions on R+, then f

belongs to the domain, D(L), of the characteristic operator L of (X,Q) which is given, for x > 0, by

Lf (x) = x−α

(
σ

2
x2f ′′(x) + bxf ′(x)

+
∫ ∞

0

((
f

(
e−rx

) − f (x)
) + xf ′(x)r

)
ν(dr)

)
. (1.8)

In the case E[ξ1] < 0, f ∈ D(L) if and only if it satisfies the boundary condition

lim
x→0

f ′(x)

xθ−1
= 0. (1.9)
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Proof. The first part of the proposition follows from Lamperti [23], Theorem 6.1. We point out that, in the case
E[ξ1] < 0, the characteristic operator of the minimal process and its recurrent extension coincide for x > 0. In-
deed, from its Feller property, the semigroup (Qt , t > 0) corresponding to the recurrent extension leaves invariant
C0([0,∞)), the space of continuous functions vanishing at infinity. Therefore, if we let (1.8) stand for the char-
acteristic operator of the process, then we can conclude, see Gikhman and Skorokhod [15], p. 130, Theorem 1,
that the domain D(L) of the strong infinitesimal generator, L, of the process (X,Q) consists of all the functions
f ∈ C0([0,∞)) ∩ D(L) such that Lf ∈ C0([0,∞)). However, it is plain that the analytic form of the function Lf (x)

for x > 0 and for any function f , such that f (x), xf ′(x), x2f ′′(x) are continuous, does not depend on the method
of extension and is given by the expression above. Let us now turn to the boundary condition in the case E[ξ1] < 0.
We first deal with the necessary condition. From the discussion above, it is clear that it is enough to characterize the
boundary condition for the strong infinitesimal generator. To this end, we recall that Uq is a Fellerian resolvent, see
Rivero [31], Theorem 2. Thus, let f ∈ C0([0,∞)) ∩ D(L); then there exists v ∈ C0([0,∞)) such that Lf − qf = v,
i.e., for x ≥ 0

Uqv(x) = f (x).

Then, using the expression of the resolvent of the recurrent extension (1.7) and the continuity of f , we get

f (x) − f (0) = U
q

0 v(x) − Ex

[
1 − e−qκ0

]
Uqv(0). (1.10)

Let us now consider v0 ∈ C0((0,∞)), the space of continuous function vanishing at 0 and ∞. Then, from [31],
Lemma 1, we have Uqv0(x) ∈ C0((0,∞)) ∩ D(L). Moreover, from [31], Theorem 2, we know that a necessary
condition for the existence of a unique recurrent extension which hits and leaves 0 continuously a.s. is that both limits

lim
x→0

U
q

0 v0(x)

xθ
and lim

x→0

Ex[1 − e−qκ0 ]
xθ

exist for any v0 ∈ C0((0,∞)). Moreover, in this case, the identity

lim
x→0

U
q

0 v0(x)

Ex[1 − e−qκ0 ] = Uqv0(0) (1.11)

holds for any v0 ∈ C0((0,∞)). Hence, for v0 ∈ C0((0,∞)), the necessary condition (1.9) follows by dividing both
sides of (1.10) by xθ , by taking the limit x → 0 and by invoking the uniqueness of the limit. The general case, i.e.,
for any v ∈ C0([0,∞)), follows from the fact that the Lebesgue measure of the set {t ≥ 0;Xt = 0} is, by construction,
0 with probability 1, and from Blumenthal [8], Section 4. The sufficient part is readily obtained from the uniqueness
of the recurrent extension that hits and leaves 0 continuously a.s. �

1.1.3. The family of power series
Let ψ ∈ L K and for γ ≥ 0 and α > 0, set

an(ψγ ;α) =
(

n∏
k=1

ψγ (αk)

)−1

, a0 = 1,

where we recall that ψγ (u) = ψ(u+γ )−ψ(γ ),u ≥ 0. Then, we introduce the function Iα,ψγ which admits the series
representation

Iα,ψγ (z) =
∞∑

n=0

an(ψγ ;α)zn, z ∈ C.

We simply write Iα,ψ when γ = 0. We gather some basic properties of this family of power series which will be
useful for the sequel.
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Proposition 1.2. For any ψ ∈ L K, γ ∈ C, Re(γ ) ≥ 0 and α > 0, Iα,ψγ is an entire function. Moreover, if E[ξ1] ≥ 0
or if E[ξ1] < 0 and θ < α, Iα,ψ is positive and increasing on [0,∞).

Proof. Observe that

| an+1 |
| an | = 1

| ψ(αn + γ ) − ψ(γ ) | .

The analyticity of Iα,ψγ follows from the fact that limu→∞ ψγ (u) = +∞. The positivity and the monotonicity is
secured by observing that under the condition θ < α in the case E[ξ1] < 0, we have ψ(α) > 0 and ψ is increasing on
[max(θ,0),∞). �

Remark 1.3. Note that Rivero’s condition, 0 < θ < α for E[ξ1] < 0, arises naturally in the previous proposition to
ensure that the associated functions are positive and increasing.

2. Main results

Let ψ ∈ L K. Moreover, if E[ξ1] < 0, we assume that θ < α, recalling that ψ(θ) = 0. Next, for a ∈ R, we introduce
the stopping times

τa = inf{s ≥ 0; ξs = a} and κea = inf
{
s ≥ 0;Xs = ea

}
with the convention that inf{Ø} = ∞. For any λ ≥ 0, we denote ρ = φ(λ) where φ : [0,∞) → [max(θ,0),∞) is the
increasing and continuous inverse function of ψ .

Theorem 2.1. Let q ≥ 0 and 0 ≤ x ≤ a. Then, we have

Ex

[
e−qκa

] = Iα,ψ(qxα)

Iα,ψ(qaα)
. (2.1)

Moreover, for λ ≥ 0,

Ex

[
e−qκa−λAκa I{κa<κ0}

] =
(

x

a

)ρ Iα,ψρ (qxα)

Iα,ψρ (qaα)
(2.2)

and

Ex

[
e−λτa−qΣτa I{τa<+∞}

] = eρ(x−a)
Iα,ψρ (qeαx)

Iα,ψρ (qeαa)
. (2.3)

Remark 2.2. (1) Note, by letting q → 0 in (2.1), that Qx[κa < +∞] = 1 for any 0 ≤ x ≤ a. Thus, the points above the
starting point are recurrent states for (X,Q). Moreover, for E[ξ1] ≥ 0 and x < a, we recall that Px[τa < +∞] = 1
and Qex [κea < κ0] = 1. Thus, under such a condition, the indicator functions in (2.2) and (2.3) can be omitted.

(2) Consider the case ψ(u) = 1
2u2 + γ u, γ > −1, i.e., (X,Q) is a Bessel process of index γ . Then, the expression

of the Laplace transform of κa , which is well known to be expressed in terms of the modified Bessel functions of the first
kind, dates back to Ciesielski and Taylor [11] and Kent [20]. We refer to Section 4.1 for more detailed computations
related to the modified Bessel functions.

We proceed by characterizing, through its Laplace transform, the law of the exponential functional, Σ∞, of spec-
trally negative Lévy processes satisfying Rivero’s condition. We emphasize that it is a companion result of Bertoin
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and Yor [5], Proposition 2, who computed the negative entire moments of the exponential functional of spectrally
positive Lévy processes when they drift to −∞.

Theorem 2.3. Assume E[ξ1] < 0 and 0 < θ < α. Then, there exists a positive constant Cθ such that

Iα,ψ

(
xα

) ∼ Cθx
θ Iα,ψθ

(
xα

)
as x → ∞.

Moreover, if we assume that there exists β ∈ [0,1] such that limu→∞ ψ(u)/u1+β = lβ then we have

Cθ = �(1 − θ/α)

α
l
−θα

β eMγ βθα

∞∏
k=1

e−βθα/k (k + θα)ψ(αk)

kψ(αk + θα)
,

where Mγ = 0.577 . . . stands for the Euler–Mascheroni constant and θα = θ
α

< 1.
Next, introduce the function

Nα,ψ,θ (x) = Iα,ψ(x) − Cθx
θ/α Iα,ψθ (x), x ≥ 0.

Nα,ψ,θ is analytical on the right-half plane and decreasing on R+. Finally, the positive random variable Σ∞ has the
following Laplace transform

E
[
e−qΣ∞] = Nα,ψ,θ (q). (2.4)

Remark 2.4. Note that the random variable Σ∞ is the solution to the random equation, for any a > 0,

Σ∞
(d)= Στ−a + e−ξτ−a Σ ′∞,

where Σ ′∞ is an independent copy of Σ∞. Indeed, together, the strong Markov property, the stationarity and inde-
pendence of the increments of the Lévy process ξ entail that, for any a ∈ R, the shifted process (ξt+τa − ξτa )t≥0 is
distributed as (ξt )t≥0 and is independent of (ξt , t ≤ τa). Finally, we get the equation by noting that, since E[ξ1] < 0,
we have for any a > 0, P(τ−a < ∞).

Bertoin and Yor [5] determined, in terms of their positive entire moments, the entrance law of spectrally negative
self-similar positive Markov processes when E[ξ1] ≥ 0. In the sequel, we characterize the entrance law of the dual
process of (X,Q) when −∞ < E[ξ1] < 0, i.e., of spectrally positive self-similar positive Markov processes when
the underlying Lévy process, in the Lamperti mapping, has a finite positive mean. To this end, let (X̂,Q) be the
self-similar process associated with the Lévy process (̂ξ ,P), the dual of (ξ,P) with respect to the Lebesgue measure.
We recall that for −∞ < E[ξ1] < 0, Bertoin and Yor [4], Lemma 2, showed that, for x > 0, (X̂,Qx) is in weak
duality with respect to the reference measure m(dy) = αyα−1 dy with the minimal process (X,κ0). In the same vein,
Rivero [31], Lemma 7, proved that in the cases E[ξ1] < 0 and θ < α, (X,Q) is in weak duality with respect to the
measure mθ(dy) = yα−θ−1 dy, with (X̂,Q(θ)), the unique recurrent extension which hits and leaves 0 continuously
a.s., of the self-similar process associated via the Lamperti’s mapping with (ξ̂ θ ,P), the dual of the θ -Esscher transform
of (ξ,P). Before stating the next result, we recall that an entrance law {ηs; s > 0} for the semi-group Qt is a family
of finite measures on the Borel sets of (0,∞) such that ηsQt = ηs+t for all strictly positive s and t and such that
Eηs [1 − e−κ0] remains bounded as s approaches 0.

Corollary 2.5. If −∞ < E[ξ1] < 0, then (X̂,Q) admits an entrance law which is absolutely continuous with respect
to the reference measure m(dy). Its Laplace transform with respect to the time variable is given, for y, q > 0, by

n̂q(y) = 1

|E[ξ1]| Nα,ψ,θ

(
qyα

)
.
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Moreover, assume E[ξ1] < 0 and 0 < θ < α. Then, (X̂,Q(θ)) admits an entrance law which is absolutely continuous
with respect to the reference measure mθ(dy). Its Laplace transform with respect to the time variable is given, for y,
q > 0, by

n̂
q
θ (y) = 1

ψ ′(θ)Cθ

Nα,ψ,θ

(
qyα

)
.

Finally, we show that some specific combinations of the functions Iα,ψ define some mappings from the convex
cone L K into the convex cone of positive self-decomposable distributions or into the convex cone of positive infinitely
divisible distributions.

Theorem 2.6. Let q ≥ 0. Then, the mapping

q 	→ 1

Iα,ψ(q)
(2.5)

is the Laplace transform of a positive self-decomposable distribution.
The mappings

q 	→ exp

(
−q

dIα,ψ(q)/dq

Iα,ψ(q)

)
and q 	→ 1

Iα,ψ(q)
exp

(
−q

dIα,ψ(q)/dq

Iα,ψ(q)

)
(2.6)

are the Laplace transforms of positive infinitely divisible distributions.
Finally, for E[ξ1] ≥ 0, λ ≥ 0, 0 < a < A < ∞ and recall that ρ = φ(λ), the mapping

λ 	→
(

a

A

)ρ Iα,ψρ (a)Iα,ψ(A)

Iα,ψρ (A)Iα,ψ(a)
(2.7)

is the Laplace transform of an infinitely divisible distribution on the positive line.

Remark 2.7. The random variable—the Laplace transform of which is given in (2.7)—is characterized below in (3.7).
Moreover, consider again the case ψ(u) = 1

2u2 + γ u, γ ≥ 0, i.e., (X,Q) is a Bessel process of index γ :

(1) Then, (2.7) corresponds to Hartman’s result (1.1). Moreover, by letting A → ∞ and using the asymptotic
behavior of the modified Bessel function of the first kind, see (4.1), we get the Laplace transform of the so-called
Hartman–Watson law [17], the density of which has been characterized by Yor [37]. Note also that this law is the
mixture distribution in the representation of the von Mises distribution as a mixture of wrapped normal distributions,
see [17].

(2) Moreover, by choosing γ = 1
2 , the mapping on the right-hand side of (2.6) corresponds to the Laplace trans-

form of the Lévy stochastic area integral. Indeed, for Bt = (B1
t ,B2

t ), a Brownian motion on R2, Lévy [25] computed
the Laplace transform of the process Lt = ∫ t

0 B1
s dB2

s − B2
s dB1

s , t > 0, for fixed u > 0, and a = (
√

u,
√

u) ∈ R2, as
follows

E
[
eitLu |Bu = a

] = tu

sinh(tu)
exp−(

tu coth(tu) − 1
)
, t ∈ R.

This has been generalized by Biane and Yor [7] to the Lévy stochastic area integral associated to some planar
Gaussian Markov processes, in terms of the modified Bessel functions of the first kind of any index γ > 0.

3. Proofs

3.1. Proof of Theorem 2.1

First, since the mapping x 	→ Iα,ψ(xα) is analytic on the right-half plane, it is plain that Iα,ψ ∈ D(L). Observe also
that, for any β > 0, xβ ∈ D(L) and

Lxβ = xβ−αψ(β). (3.1)



Solutions to self-similar equations 675

Then, for any positive integer N , using the linearity of the operator L and (3.1), we get, for any x ≥ 0,

L
N∑

n=0

an(ψ;α)qnxαn =
N∑

n=1

an(ψ;α)qnLxαn

=
N∑

n=1

an(ψ;α)qnψ(αn)xα(n−1)

= q

N−1∑
n=0

an(ψ;α)qnxαn.

The series being analytic on the right-half plane, then the right-hand side of the previous line convergences as N → ∞.
Hence, we get by monotone convergence (the series has only positive terms) that

LIα,ψ

(
qxα

) = qIα,ψ

(
qxα

)
, x ≥ 0.

Moreover, recalling that for E[ξ1] < 0, θ < α we derive, in this case, that

lim
x→0

x−θ+1 ∂

∂x
Iα,ψ

(
xα

) = lim
x→0

∞∑
n=0

α(n + 1)an+1(ψ,α)xα(n+1)−θ

= 0.

Hence, for E[ξ1] < 0, Iα,ψ satisfy the condition (1.9). Thus, it is an eigenfunction for the recurrent extension (X,Q).
Next, applying Dynkin’s formula [12] with the bounded stopping time t ∧ κa , we get, for any t ≥ 0,

Ex

[
e−q(t∧κa)Iα,ψ

(
qXα

t∧κa

)] = Iα,ψ

(
qxα

)
.

Since the mapping a 	→ Iα,ψ(qa) is increasing on [0,∞), we obtain, by dominated convergence and by using the fact
that the process has no positive jumps, that, for any 0 ≤ x ≤ a,

Ex

[
e−qκa

] = Iα,ψ(qxα)

Iα,ψ(qaα)
.

The proof of (2.1) is completed. Next, the Esscher transform (1.4) combined with the Doob optional stopping theorem
yields

Ex

[
e−λτa−qΣτa I{τa<+∞}

] = eρ(x−a)E(ρ)
x

[
e−qΣτa I{τa<+∞}

]
.

The proof of Theorem 2.1 is completed by invoking the obvious identity (κea ,Qex )
(d)= (Στa ,Px) on {κea < κ0} and by

using (2.1). �

We end this part by providing an interesting absolute continuity relationship between self-similar processes, which
will be useful for the sequel. We recall from the discussion above that for E[ξ1] < 0, the self-similar process associated
with (ξ,P) has an a.s. finite lifetime κ0. Then, by using Lamperti’s mapping (1.6) and applying the chain rule, it follows
that the Esscher transform (1.4) reads for γ, δ ≥ 0 and x > 0, as follows

dQ
(γ )

x|FAt
=

(
Xt

x

)γ−δ

e−(ψ(γ )−ψ(δ))At dQ
(δ)
x|FAt

on {t < κ0}, (3.2)

where

At =
∫ t

0
X−α

u du.
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Since for every FAt -stopping time T , Σ(T ) is an Ft -stopping time, the absolute continuity relationship (3.2) holds
for every FAt -stopping time on FAT + ∪ {T < κ0}. We mention that, for E[ξ1] > 0, where the condition “on {t < κ0}”
can be omitted, the relationship (3.2) was already established by Carmona et al. [9], Proposition 2.1, under the name
of the Girsanov power transformation. Finally, if we set γ = θ and δ = 0 in the case E[ξ1] < 0, then (3.2) simplifies
to the following Doob’s h-transform, for x > 0,

dQ
(θ)
x|FAt

=
(

Xt

x

)θ

dQx|FAt
on {t < κ0}. (3.3)

3.2. Proof of Theorem 2.3

We assume that E[ξ1] < 0 and θ < α. Then, the identity (xαΣ∞,P)
(d)= (κ0,Qx) yields

Ex

[
e−qκ0

] = E
[
e−qxαΣ∞]

.

Hence, the mapping x 	→ Ex[e−qκ0 ] is decreasing on [0,∞), and by dominated convergence we have, see also Vuolle-
Apiala [34],

lim
x→∞ Ex

[
e−qκ0

] = lim
x→∞ E

[
e−qxαΣ∞]

= 0 (3.4)

and

lim
x→0

Ex

[
e−qκ0

] = 1.

We now compute the Laplace transform of κ0. From the Doob’s h-transform (3.3), we deduce that, for any x, a such
that 0 < x ≤ a,

Ex

[
e−qκa I{κa<κ0}

] =
(

x

a

)θ Iα,ψθ (qxα)

Iα,ψθ (qaα)
.

Then, the strong Markov property and the absence of positive jumps yield

Ex

[
e−qκ0I{κ0<κa}

] = 1

E0[e−qκa ]
(
Ex

[
e−qκa

] − Ex

[
e−qκa I{κa<κ0}

])
= Iα,ψ

(
qxα

) − Iα,ψ

(
qaα

)(x

a

)θ Iα,ψθ (qxα)

Iα,ψθ (qaα)

and

Ex

[
e−qκ0

] = Ex

[
e−qκ0I{κ0<κa}

] + Ex

[
e−qκa I{κa<κ0}

]
Ea

[
e−qκ0

]
= Iα,ψ

(
qxα

) − Iα,ψ

(
qaα

)(x

a

)θ Iα,ψθ (qxα)

Iα,ψθ (qaα)

+
(

x

a

)θ Iα,ψθ (qxα)

Iα,ψθ (qaα)
Ea

[
e−qκ0

]
= Iα,ψ

(
qxα

) − xθ Iα,ψθ

(
qxα

) a−θ

Iα,ψθ (qaα)

(
Iα,ψ

(
qaα

) − Ea

[
e−qκ0

])
.
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To derive an expression of the sought quantity, we first differentiate with respect to a the previous equation, the
function involved being smooth, to get the Riccati equation

a−θ

Iα,ψθ (qaα)

(
∂

∂a
Ea

[
e−qκ0

] − ∂

∂a
Iα,ψ

(
qaα

)) + (
Ea

[
e−qκ0

] − Iα,ψ

(
qaα

)) ∂

∂a

a−θ

Iα,ψθ (qaα)
= 0,

where we have used the fact that xθ Iα,ψθ (qxα) > 0 for any x > 0. By solving this Riccati equation, we observe that
the solution has the following form

Ex

[
e−qκ0

] = AIα,ψ

(
qxα

) − Cxθ Iα,ψθ

(
qxα

)
(3.5)

for some constants A,C. It is immediate that A = 1 since E0[e−qκ0 ] = 1. Then, the self-similarity property yields
C = q1/αc, for some real constant c. Furthermore, (3.4) ensures the existence of a constant Cθ > 0 such that

Iα,ψ

(
xα

) ∼ Cθx
θ Iα,ψθ

(
xα

)
as x → ∞.

Moreover, observe from (3.5) that

lim
x→0

Ex[1 − e−κ0 ]
xθ

= Cθ .

Next, we recall the following identities (see [31], (11) and Remark 1, p. 489):

lim
x→0

Ex[1 − e−κ0 ]
xθ

= �(1 − θ/α)

αψ ′(θ)
E

[
Σ

θ/α−1∞
]

and

E
[
Σ

θ/α−1∞
] = E(θ)

[(∫ ∞

0
e−αξs ds

)θ/α−1]
.

Since (ξ,P(θ)) has a positive mean, the proof of the Theorem 2.3 is completed by using Proposition 2.3 in Maulik and
Zwart [26] and by choosing c = Cθ . �

3.3. Proof of Corollary 2.5

We characterize the entrance laws of (X̂,Q) and (X̂,Q(θ)). To this end, we state the following easy result.

Lemma 3.1. Let us assume that −∞ < E[ξ1] < 0. Then, the entrance law of (X̂,Q) admits a density ηt (y) with
respect to the reference measure m(dy), y > 0. Moreover, the Laplace transform in time of ηt (y), denoted by nq(y),
q ≥ 0, is characterized by the identity

nq(y) = 1

|E[ξ1]|E
[
e−qyαΣ∞]

.

Proof. The claims follow readily from Bertoin and Yor [5], p. 396. Indeed, they characterize the q-potential of the
entrance law of a self-similar process associated via Lamperti’s mapping to a Lévy process with a positive and finite
mean, as follows. For any measurable function f :R+ → R+, we have

nqf = 1

|E[ξ1]|
∫ ∞

0
f (y)E

[
e−qyαΣ∞]

m(dy),

where we have used the identity E[ξ̂1] = −E[ξ1]. �
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The first part of the corollary follows from (2.4). For the second statement, we use [31], Proposition 3, where the
q-potential, nq , of the entrance law is given, for a bounded continuous function f , by

nqf = 1

ψ ′(θ)Cθ

∫ ∞

0
f (y)E

[
e−qyαΣ∞]

yα−1−θ dy.

The proof of the corollary is completed by means of the identity (2.4).
Note the following result regarding the resolvent of the minimal process (X,κ0).

Lemma 3.2. For E[ξ1] < 0, the resolvent, U
q

0 , of the minimal process (X,κ0) admits a density with respect to the
reference measure m(dy), which is jointly continuous and bounded. Thus, the processes (X,κ0) and (X̂,Q) are in
classical duality.

Proof. We recall that in the case E[ξ1] < 0, the process (ξ,P) is necessarily of unbounded variation since we have
excluded the case of negative subordinators. Thus, each point of the real line is regular for itself, see [3], VII, Corol-
lary 5. Moreover, since the q-capacity of {0}, which is φ′(q), is positive for any q > 0 (see [3], Chapter VII.5.2), and
the resolvent of (ξ,P) is absolutely continuous, we deduce that points are not polar for (ξ,P), i.e., Px(τy < +∞) > 0
for any x, y ∈ R. It is not difficult to see that these two properties are left invariant by time change with a continuous
additive functional, see Bally and Stoica [2], Proposition 4.1. The assertions follow from [2], Proposition 3.1. �

3.4. Proof of Theorem 2.6

The claim (2.5) is contained in the following lemma.

Lemma 3.3. The process (κa)a≥0 is under Q0+ an α-self-similar additive process, i.e., a process with independent
increments which enjoy the scaling property (1.5). Hence κ1 is under Q0+ a positive self-decomposable random
variable.

Proof. The first assertion follows from the absence of positive jumps, the strong Markov property and the self-
similarity of (X,Q). The last statement is a straightforward consequence of the property of the law of additive
processes, see Sato [32], Chapter 3.16. �

Moreover, it is well known (see Wolfe [36] and also Jeanblanc et al. [19] for related results) that if the mapping
q 	→ f (q) is the Laplace transform of a positive self-decomposable random variable, then there exists a unique, in
distribution, (increasing) Lévy process L such that E[log(1 + L1)] < +∞ and its Laplace exponent, φL, is given by

φL(q) = q
df (q)/dq

f (q)
, q ≥ 0.

Thus, from Theorem 2.3 and Lemma 3.3, we deduce the statement (2.6), after recalling that the infinite divisibility
property is stable under convolution.

Before stating the second Lemma, we assume E[ξ1] ≥ 0 and we introduce some notation. Let (Pt )t≥0 be the
semigroup of the Lévy process ξ . We denote by (P Σ

t )t≥0 the subordinate semigroup of (Pt )t≥0 by the continuous
decreasing multiplicative functional (e−qΣt )t≥0. That is for f ∈ B(R), we have, for any t ≥ 0,

P Σ
t f (x) = Ex

[
e−qΣt f (ξt )

]
, x ∈ R.

Next, by choosing λ = 0 in (2.3), we deduce that the function x 	→ Iα,ψ(qeαx) is excessive for the semigroup
(P Σ

t )t≥0. Moreover, it is plain that, for any x ∈ R, 0 < Iα,ψ(qeαx) < ∞. Thus, one can define a new real-valued
(sub)-Markov process with semigroup (resp. law) denoted by (P I

t )t≥0 (resp. PI ), as Doob’s h-transform of (P Σ
t )t≥0,

as follows, for any f ∈ B(R) and t ≥ 0,

P I
t f (x) = 1

Iα,ψ(qeαx)
P Σ

t

(
f Iα,ψ

(
qeα·))(x), x ∈ R. (3.6)
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We are now ready to state the following result which characterizes the random variable associated with the Laplace
transform (2.7).

Lemma 3.4. For any 0 ≤ x ≤ a, λ ≥ 0 and recalling that ρ = φ(λ), we have

EI
x

[
e−λτa

] = eρ(x−a)
Iα,ψρ (qeαx)Iα,ψ(qeαa)

Iα,ψρ (qeαa)Iα,ψ(qeαx)
. (3.7)

Proof. We deduce from (3.6) that the following absolute continuity relationship

dPI
x|Ft

= e−qΣt Iα,ψ(qeαξt )

Iα,ψ(qeαx)
dPx|Ft (3.8)

holds for any t > 0 and x ∈ R. It is plain that this relationship remains valid on FT + ∩{T + < ∞} for any F∞-stopping
time T . Recalling that Px[τa < ∞] = 1 for E[ξ1] ≥ 0, we get that

EI
x

[
e−λτa

] = Iα,ψ(qeαa)

Iα,ψ(qeαx)
Ex

[
e−λτa−qΣτa

]
= eρ(x−a)

Iα,ψρ (qeαx)Iα,ψ(qeαa)

Iα,ψρ (qeαa)Iα,ψ(qeαx)
,

where the last line follows from (2.3). �

Finally, it is plain from the absolute continuity (3.8) that the process under PI is also spectrally negative. Then,
from the strong Markov and the absence of positive jumps, we have for any x < c < a,(

τa,P I
x

) (d)= (
τc,P I

x

) + (
τa,P I

c

)
,

where the random variables on the right-hand side are independent. Hence, (τa,PI
x ) is infinitely divisible. The proof

of Theorem 2.6 is then completed. �

4. Some illustrative examples

We end by investigating some well-known and new examples in more detail.

4.1. The modified Bessel functions

We consider ξ to be a Brownian motion with drift γ ∈ R, i.e., ψ(u) = 1
2u2 + γ u and we set α = 2. In the case γ < 0,

we have θ = 2γ and therefore we assume γ > −1. Its associated self-similar process is well known to be a Bessel
process of index γ . In the sequel, we simply indicate the connections between the power series I2,ψ and the modified
Bessel functions since the results of this paper are well known and can be found, for instance, in Hartman [16], Pitman
and Yor [30] and Yor [38]. We have

an(ψ,γ ;2)−1 = 2nn!
n∏

k=1

(k + γ )

= 2nn!�(n + γ + 1)

�(γ + 1)
, a0 = 1.

Thus, we get

I2,ψ (x) = (x/2)−γ /2�(γ + 1)Iγ
(√

2x
)
,
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where

Iγ (x) =
∞∑

n=0

(x/2)γ+2n

n!�(γ + n + 1)

stands for the modified Bessel function of index γ , see e.g., [24], Chapter 5. The asymptotic behavior of this function
is well known to

Iγ (x) ∼ ex

√
2πx

as x → ∞. (4.1)

Thus, we obtain that

N2,ψ2γ
(x) = (x/2)γ /2�(−γ + 1)

(
I−γ

(√
2x

) − Iγ
(√

2x
))

= (x/2)γ /2 2

�(γ )
Kγ

(√
2x

)
,

where 2Kγ (x) = �(1 − γ )�(γ )(I−γ (x) − Iγ (x)) is the MacDonald function of index γ .

4.2. Some generalizations of the Mittag-Leffler function

In [29], the author introduced a new parametric family of one-sided Lévy processes which are characterized by the
following Laplace exponent, for any 1 < � < 2, β ≥ 0 and γ > 1 − �,

ψ(βu + γ ) − ψ(γ ) = 1

�

(
(βu + γ − 1)� − (γ − 1)�

)
, (4.2)

where (k)� = �(k+�)
�(k)

stands for the Pochhammer symbol. Its characteristic triplet is σ = 0,

ν̃(dy) = �(� − 1)

β�(2 − �)

e(�+γ−1)y/β

(1 − ey/β)�+1
dy, y < 0

and

bγ = β(γ )�
(
Ψ (γ − 1 + �) − Ψ (γ − 1)

)
,

where Ψ (λ) = �′(λ)
�(λ)

is the digamma function. In particular, if γ0 denotes the zero of the function γ → bγ , then for
γ ≥ γ0 ∈ (1 − �,0), E[ξ1] ≥ 0.

4.2.1. The case γ = 0
Equation (4.2) reduces to ψ(u) = 1

�
(u − 1)� . Observe that θ = 1 and ψ ′(1) = �(�)

�
. Moreover, setting α = �, we get

an(�,0;�)−1 = �(�(n + 1) − 1)

�(� − 1)
, a0 = 1.

The series, in this case, can be written as follows

I�,ψθ (x) = �(�)E�,�(�x),

I�,ψ(x) = �(� − 1)E�,�−1(�x),

where

E�,β(z) =
∞∑

n=0

zn

�(�n + β)
, z ∈ C,



Solutions to self-similar equations 681

stands for the Mittag-Leffler function of parameter �,β > 0. The function E�,0(z) was defined and studied by Mittag-
Leffler [28]. It is a direct generalization of the exponential function. The generalization E�,β(z) was given by Agar-
wal [1] following the work of Humbert [18]. A detailed account of these functions is available from the monograph of
Erdélyi et al. [13]. Next, we recall the following Mellin–Laplace transform of the generalized Mittag-Leffler function,
for λ,β ≥ 0, we have∫ ∞

0
e−(λ+1)xxβ−1 E�,β

(
x�

)
dx = (λ + 1)�−β

(λ + 1)� − 1
.

We deduce by invoking a Tauberian theorem, see Feller [14], Chapter XIII.5, the following asymptotic behavior

E�,β

(
x�

) ∼ 1

�
exx1−βl

(
x�

)
as x → ∞,

with l as a slowly varying function at infinity. Thus, C1 = �
�−1 , E[Σ1/�−1∞ ] = ��(�−1)

�(1−1/�)
and

N�,ψ1

(
x�

) = E�,�−1
(
x�

) − �x

� − 1
E�,�

(
x�

)
.

Finally, we can state the following properties of the Mittag-Leffler function.

Corollary 4.1. Let 1 < � < 2. The mappings

q 	→ 1

E�,�(q)
and q 	→ E�,�−1(q) − �q1/�

� − 1
E�,�(q)

are the Laplace transforms of positive self-decomposable distributions. The mapping

q 	→ exp

(
qE ′

�,�(q)

E�,�(q)

)
is the Laplace transform of a positive infinitely divisible distribution.

4.2.2. The general case
In this case,

an(β, γ ;�)−1 =
n∏

k=1

(
(βk + γ − 1)� − (γ − 1)�

)
, a0 = 1

and write E�,β,γ (x) = ∑∞
n=0 an(β, γ ;�)xn. We point out that this function is closely related to the power series

introduced by Kilbas and Saigo [22] which has coefficients of the following form

ãn(β, γ ;�)−1 =
n∏

k=1

(
�(βk + γ ) + 1

)
�
, a0 = 1.

From Theorem 2.6, we deduce the following properties.

Corollary 4.2. Let 1 < � < 2, β ≥ 0 and γ > 1 − �. Then, the mapping

q 	→ 1

E�,�β,γ (q)

is the Laplace transform of a positive self-decomposable distribution. The mapping

q 	→ exp

(
qE ′

�,�β,γ (q)

E�,�β,γ (q)

)
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is the Laplace transform of a positive infinitely divisible distribution. Finally, for 0 < a < A and γ ≥ γ0, recalling that
ρ = φ(λ), the mapping

λ 	→
(

a

A

)ρ E�,�β,γ+ρ(a)E�,�β,γ (A)

E�,�β,γ+ρ(A)E�,�β,γ (a)

is the Laplace transform of a positive infinitely divisible distribution.

4.3. The power series associated to stable processes and a new generalization of the exponential function

Finally, we consider the Esscher transform of a spectrally negative stable process, i.e., ψγ (u) = c�((u + γ )� − (γ )�),
γ ≥ 0, 1 < � < 2 and c� > 0. Its characteristic triplet is σ = 0,

ν̃(dy) = c��(� − 1)

�(2 − �)

eγy

|y|�+1
dy, y < 0,

and b = c��γ �−1 ≥ 0. The inverse function of ψ is φ(u) = (c�u + γ �)1/� − γ and

an(α,�, γ )−1 =
n∏

k=1

(
(αk + γ )� − γ �

)
, a0 = 1.

Such formulation motivates us to introduce a generalization of the factorial symbol, which we defined, for n ∈ N,
α ∈ C,Re(α) ≥ 0 and γ ∈ C,Re(γ ) ≥ 0, by

(α, γ )�,n =
n∏

k=1

(
(kα + γ )� − γ �

)
and (α, γ )�,0 = 1.

Note the obvious identities

(α, γ )0,n = 0,

(α, γ )1,n = αnn!,
(α,0)�,n = αnn!(α,0)�−1,n,

(α, γ )�,n = α�n

(
1,

γ

α

)
�,n

.

Moreover, we have

(α, γ )�,n = α�n

n∑
k=0

(−1)n−k

(
γ

α

)�(n−k)(
1,

γ

α

)
�,k

.

We write simply

Iα,γ,�(c�x) =
∞∑

n=0

xn

(α, γ )�,n

.

Observe that

lim
�↓1

Iα,γ,�(c�x) = ex/α.
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Corollary 4.3. Let 1 < � < 2, α > 0 and γ ≥ 0. Then, the mapping

q 	→ 1

Iα,γ,�(q)

is the Laplace transform of a positive self-decomposable distribution. The mapping

q 	→ exp

(
qI ′

α,γ,�(q)

Iα,γ,�(q)

)
is the Laplace transform of a positive infinitely divisible distribution. Finally, for 0 < a < A and writing ρ = φ(λ),
the mapping

λ 	→
(

a

A

)ρ Iα,ρ,�(a)Iα,0,�(A)

Iα,ρ,�(A)Iα,0,�(a)

is the Laplace transform of a positive infinitely divisible distribution.
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