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RECURSIVE ESTIMATION OF TIME-AVERAGE
VARIANCE CONSTANTS1

BY WEI BIAO WU

University of Chicago

For statistical inference of means of stationary processes, one needs to
estimate their time-average variance constants (TAVC) or long-run variances.
For a stationary process, its TAVC is the sum of all its covariances and it is
a multiple of the spectral density at zero. The classical TAVC estimate which
is based on batched means does not allow recursive updates and the required
memory complexity is O(n). We propose a faster algorithm which recur-
sively computes the TAVC, thus having memory complexity of order O(1)

and the computational complexity scales linearly in n. Under short-range de-
pendence conditions, we establish moment and almost sure convergence of
the recursive TAVC estimate. Convergence rates are also obtained.

1. Introduction. Let (Xi)i∈Z be a stationary and ergodic process with mean
μ = E(X0) and finite variance; let γ (k) = cov(X0,Xk), k ∈ Z, be the covariance
function. Given the observations X1, . . . ,Xn, a simple estimate of μ is the sample
mean X̄n = n−1 ∑n

i=1 Xi . Under suitable conditions on (Xi), X̄n is asymptotically
normal:

n1/2(X̄n − μ) = n−1/2
n∑

i=1

(Xi − μ) ⇒ N(0, σ 2),(1)

where ⇒ denotes convergence in distribution and σ 2 is called the time-average
variance constant (TAVC), long-run variance or asymptotic variance parameter.
Goodman and Sokal (1989) called σ 2/γ (0) the integrated autocorrelation time.
There exists a huge literature on the central limit theory for stationary processes.
See, for example, Ibragimov and Linnik (1971) and Bradley (2007).

To conduct statistical inference for μ, one needs to estimate σ 2. Under suitable
conditions, σ 2 = ∑

k∈Z γ (k). The estimation of σ 2 is an important problem in
statistical inference of time series and it has a long history. Given X1, . . . ,Xn, let
1 ≤ ln ≤ n be the block length satisfying ln → ∞ and ln/n → 0. Based on the
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batched means
∑j+ln−1

i=j Xi/ ln, 1 ≤ j ≤ n − ln + 1, one can estimate σ 2 by

σ 2
n (ln) = ln

n − ln + 1

n−ln+1∑
j=1

(
1

ln

j+ln−1∑
i=j

Xi − X̄n

)2

.(2)

The estimate σ 2
n (ln) appears in several contexts and it is closely related to Bartlett’s

spectral density estimate. As an alternative, one can propose a similar estimate
by using the nonoverlapped batched means

∑j+ln−1
i=j Xi/ ln, j = 1,1 + ln,1 +

2ln, . . . . Asymptotic properties of σ 2
n (ln) have been extensively studied; see,

for example, Alexopoulos and Goldsman (2004), Song and Schmeiser (1995),
Bühlmann (2002), Lahiri (2003), Politis, Romano and Wolf (1999) and Jones et
al. (2006), among others. For other works on estimation of σ 2, Chauveau and
Diebolt (2003) used multiple parallel chains, and Robert (1995) considered Harris
recurrent chains. The estimation of σ 2 is related to the problem of Markov chain
Monte Carlo (MCMC) convergence assessment; see Brooks and Roberts (1998),
Chauveau and Diebolt (1999) and Chauveau, Diebolt and Robert (1998), among
others.

It is well known that X̄n can be recursively computed in the sense that, if a new
observation Xn+1 is available, then X̄n+1 can be computed as (nX̄n +Xn+1)/(n+
1). Hence, the memory complexity for computing X̄n is O(1). However, this nice
property is no longer present in the estimate σ 2

n (ln) in (2). There is no simple alge-
braic relation between σ 2

n+1(ln+1) and σ 2
n (ln). To compute σ 2

n+1(ln+1), if ln �= ln+1,
one then has to update all batched means and the memory complexity is O(n). In
computationally intensive problems, it is desirable to have a recursive estimate.
For example, in MCMC experiments, one sequentially generates X1,X2, . . . . At
each stage, based on (1), a (1 − α) confidence interval of μ can be constructed
as X̄n ± z1−α/2σ̂n/

√
n, where z1−α/2 is the (1 − α/2)th percentile of a standard

normal distribution, 0 < α < 1. As argued in Geyer (1992), Fishman (1996) and
Jones et al. (2006), among others, for convergence diagnostics of Markov chain
Monte Carlo algorithms, one can terminate the simulation by choosing n such that
the interval is sufficiently small. Quick update of σ̂n is essential for efficient se-
quential monitoring and testing. For example, to test the hypothesis μ = μ0, we
can consider the test statistic

√
n|X̄n − μ0|/σ̂n, which can be quickly calculated

via sequentially updating.
A common practice in MCMC simulations is to run multiple i.i.d. copies of the

chain. One can run, for example, 100 copies of the chain and then conduct conver-
gence diagnostics based on comparison of asymptotic variances of each chain. In
such cases the computational and memory advantage of our recursive algorithm is
more appealing.

The rest of the paper is structured as follows. A sequential estimate σ̂ 2
n of σ 2 is

introduced in Section 2. Namely, at each stage n, σ̂ 2
n can be updated within O(1)

steps so that the computational complexity scales linearly in n. The moment and
almost sure convergence properties are presented in Section 3 and some implemen-
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tation issues are discussed in Section 4. Section 5 provides applications to Markov
chains and linear processes. Proofs are given in the Appendix.

We now introduce some notation. A random variable ξ is said to be in Lp

(p > 0) if ‖ξ‖p := [E(|ξ |p)]1/p < ∞. Write ‖ξ‖ = ‖ξ‖2. For two real sequences
(an) and (bn), write an ∼ bn if limn→∞ an/bn = 1 and an � bn if there exists a
constant c > 0 such that 1/c ≤ |an/bn| ≤ c for all large n. Let Sn = X1 + · · · +
Xn − nμ and S∗

n = maxi≤n |Si |.
2. Recursive TAVC estimates. For ease of reading, we assume at the outset

that μ = 0. To define our recursive TAVC estimate, let (ak)k∈N be a strictly in-
creasing integer-valued sequence such that a1 = 1 and ak+1 −ak → ∞ as k → ∞.
Based on (ak)k∈N, define another sequence (ti)i∈N as ti = ak if ak ≤ i < ak+1. As
a simple example, let ak = k2. Then ti = √i�2, where u� = max{k ∈ Z :k ≤ u}
is the integer part of u. Given X1, . . . ,Xn, define

Vn =
n∑

i=1

W 2
i where Wi = Xti + Xti+1 + · · · + Xi,(3)

and

vn =
n∑

i=1

li where li = i − ti + 1.(4)

We propose to estimate the TAVC σ 2 by Vn/vn. In the estimate (2), for a
given n, the block size ln is the same for different blocks. In Vn, however, dif-
ferent blocks have different block lengths. Let Bk = {ak, ak + 1, . . . , ak+1 − 1}.
Assume ak ≤ n < ak+1. Then tn = ak and Wn = Xak

+ Xak+1 + · · · + Xn. If
n + 1 �= tn+1, then n + 1 still belongs to the block Bk and Wn+1 = Wn + Xn+1.
On the other hand, however, if n + 1 = tn+1, then tn+1 = ak+1 and n + 1 be-
longs to the next block B1+k , and Wn+1 now becomes Xn+1. Combining these
two cases, we have Wn+1 = Wn1n+1�=tn+1 + Xn+1. For n ∈ N, choose kn ∈ N such
that akn ≤ n < a1+kn . Then akn = tn. To summarize, we propose the following
recursive algorithm:

ALGORITHM 1. At stage n, we store (n, kn, akn, vn,Vn,Wn). Note that
tn = akn . At stage n + 1, we update the vector by:

1. If n + 1 = a1+kn , let kn+1 = 1 + kn and Wn+1 = Xn+1; If n + 1 �= a1+kn , then
let kn+1 = kn and Wn+1 = Wn + Xn+1,

2. Vn+1 = Vn + W 2
n+1,

3. vn+1 = vn + (n + 2 − tn+1), where tn+1 = akn+1 .

Output: σ̂ 2
n+1 = Vn+1/vn+1.

To implement Algorithm 1, one needs to specify the sequence (ak)k≥1. A sim-
ple choice is that ak = ckp�, k ≥ 1, where c > 0 and p > 1 are constants (cf.
Remark 2 and Theorem 2). We now compute tn for the sequence (ak)k≥1. To this
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end, let k ∈ N be such that ak ≤ n < ak+1. Then

ckp − 1 < ckp� ≤ n ≤ c(k + 1)p� − 1 ≤ c(k + 1)p − 1.

Solving k = kn from the preceding inequality, we obtain

tn = akn, where kn = ⌈(
c−1(n + 1)

)1/p⌉ − 1 and
(5)

�u� = min{i ∈ Z : i ≥ u}.
With the above formula, it is easy to check the condition n + 1 = tn+1 in step 1 of
Algorithm 1. In the special case with c = 1 and p = 2, n + 1 = tn+1 if and only if
(n + 1)1/2 ∈ N.

Algorithm 1 is not yet directly applicable in practical situations since μ is un-
known and Wi needs to be centered. A natural centering sequence is the sample
mean X̄n = ∑n

i=1 Xi/n. Based on Vn in (3), we propose

V ′
n =

n∑
i=1

(W ′
i )

2, where W ′
i = Xti + Xti+1 + · · · + Xi − liX̄n,(6)

where we recall li = i − ti + 1. Observe that (W ′
i )

2 − W 2
i = (liX̄n)

2 − 2liWiX̄n.

To recursively compute V ′
n, we also need to introduce

Un =
n∑

i=1

liWi and qn =
n∑

i=1

l2
i .

Then

V ′
n = Vn − 2UnX̄n + qn(X̄n)

2.(7)

Algorithm 1 can be modified as follows:

ALGORITHM 2. At stage n, we store (n, kn, akn, vn, qn,Un,Vn,Wn, X̄n). At
stage n + 1, we update the vector by:

1. kn+1 = kn + 1n+1=a1+kn
, tn+1 = akn+1 ,

2. X̄n+1 = (nX̄n + Xn+1)/(n + 1),
3. qn+1 = qn + (n + 2 − tn+1)

2,
4. vn+1 = vn + (n + 2 − tn+1),
5. Wn+1 = Xn+1 + Wn1n+1�=tn+1 ,
6. Vn+1 = Vn + W 2

n+1,
7. Un+1 = Un + (n + 2 − tn+1)Wn+1,
8. V ′

n+1 = Vn+1 − 2Un+1X̄n+1 + qn+1(X̄n+1)
2.

Output: σ̂ 2
n+1 = V ′

n+1/vn+1.

At stage n, based on σ̂ 2
n = V ′

n/vn, we can construct the (1 − α) confidence
interval for μ as X̄n ± σ̂nz1−α/2/

√
n. Convergence rate of σ̂ 2

n certainly depends on
the sequence (ak), as well as the dependence structure of the underlying process.
Section 3 concerns the convergence properties of σ̂ 2

n .
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It is easily seen that the above recursive algorithms can be generalized to spec-
tral density estimation. Let

f (θ) = 1

2π

∑
k∈Z

γ (k)e
√−1kθ = 1

2π

∑
k∈Z

γ (k) cos(kθ), θ ∈ R,

be the spectral density function, where
√−1 is the imaginary unit. Assume that

EXk = 0. As in (3), we can introduce

Vn(θ) =
n∑

i=1

|Wi(θ)|2, where Wi(θ) =
i∑

j=ti

Xj e
√−1jθ ,

and recursively estimate f (θ) at a given θ ∈ R by f̂n(θ) = Vn(θ)/(2πvn). The
latter can be viewed as a version of Bartlett’s spectral density estimate with varying
block lengths. Using similar but lengthier arguments adopted in the Appendix, we
can obtain similar convergence results for f̂n(θ). The details are omitted since our
primary focus is the inference of sample means of stationary processes.

3. Convergence properties. For the recursive estimate σ̂ 2
n proposed in Sec-

tion 2, a natural question is to study its convergence properties. The latter problem
is far from being trivial. Here we should implement the dependence measures pro-
posed in Wu (2005) and obtain moment and almost sure convergence of σ̂ 2

n .
We first make some structural assumptions on the dependence. Assume here-

after that (Xi) is a stationary causal process of the form

Xi = g(. . . , εi−1, εi),(8)

where εi are i.i.d. innovations and g is a measurable function such that Xi is well
defined. The framework (8) is very general and it allows many widely used lin-
ear and nonlinear processes. As in Wiener (1958) and Priestley (1988), (8) can be
interpreted as a physical system with Fi = (. . . , εi−1, εi) being the input, g be-
ing a filter and Xi being the output. Wiener (1958) dealt with the problem of
representing stationary and ergodic processes as shifts of functions of indepen-
dent random variables; see Rosenblatt (1959), Tong (1990) and Borkar (1993).
Based on (8), Wu (2005) introduced the physical and predictive dependence mea-
sures which quantifies the degree of dependence of outputs on inputs. Specifi-
cally, let ε′

0, εj , j ∈ Z, be i.i.d. random variables and F ′
0 = (. . . , ε−2, ε−1, ε

′
0); let

gi(F0) = E[g(Fi )|F0]. For p ≥ 1 define the physical dependence measure

δp(i) = ‖Xi − X′
i‖p where X′

i = g(F ′
0 , ε1, . . . , εi−1, εi),(9)

and the predictive dependence measure

ωp(i) = ‖gi(F0) − gi(F
′

0)‖p.(10)

The process X′
i is a coupled version of Xi with ε0 replaced by ε′

0. So δp(i) quan-
tifies the contribution of ε0 to Xi by measuring the distance between Xi and X′

i .
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ωp(i) measures the contribution of ε0 in predicting future expected values. For
details, see Wu (2005).

In comparison with the traditional strong mixing conditions, δp(i) and ωp(i)

appear more convenient to use in our context and they are directly related with the
data-generating mechanisms. Wu (2005) showed that, if the process (Xi) is stable,
namely, �2 := ∑∞

i=0 ω2(i) < ∞, then (13) below holds with σ ≤ �2. See also
Hannan (1979) and Volný (1993). Box, Jenkins and Reinsel (1994) considered
the special case of linear processes and interpreted the stability condition as the
cumulative impact of a single shock ε0 on the whole process (Xi) being finite.
Main results in the sequel are all expressed in terms of δp(i) and ωp(i).

3.1. A representation of σ . We shall first introduce a useful representation
of σ . Write Si = ∑i

j=1 Xj . Assume that EXi = 0 and

∞∑
i=0

‖P0Xi‖2 < ∞ where Pi · = E(·|Fi ) − E(·|Fi−1).(11)

Then

Dk :=
∞∑
i=k

PkXi ∈ L2(12)

and (Dk)k∈Z is a stationary martingale difference sequence with respect to the
natural filter Fk . Additionally, by Theorem 1 in Hannan (1979), we have the in-
variance principle

1√
n

{∑
i≤nt

Xi,0 ≤ t ≤ 1
}

⇒ {σB(t),0 ≤ t ≤ 1} where σ = ‖Dk‖2.(13)

Here B is the standard Brownian motion. Let Mn = ∑n
i=1 Di . If (11) holds with

α > 2 [cf. (14) below], then we have ‖Sn − Mn‖α = o(
√

n) [see Theorem 1 in
Wu (2007)]. The operator Pi in (14) is called the projection operator and it natu-
rally generates martingale differences. The representation of σ in (13) is useful in
the analysis of our estimates.

3.2. Moment convergence. We first present a general result on moment con-
vergence properties of Vn/vn under mild dependence conditions. Recall (11) for
the definition of the projection operator Pi · = E(·|Fi ) − E(·|Fi−1).

THEOREM 1. Let EXi = 0 and Xi ∈ Lα , α > 2. Assume

∞∑
i=0

‖P0Xi‖α < ∞.(14)



RECURSIVE ESTIMATION OF VARIANCES 1535

Further assume that, as m → ∞, am+1 − am → ∞ and

(am+1 − am)2∑m
k=2(ak − ak−1)2 → 0.(15)

Then ‖Vn/vn − σ 2‖α/2 = o(1).

Theorem 1 implies that, for consistency of Vn/vn, Xk does not need to have
finite fourth moment. Instead, the moment condition Xi ∈ Lα with α > 2 suffices.
We now discuss conditions (14) and (15) in the following remarks.

REMARK 1. By Jensen’s inequality, we have ‖P0Xi‖α ≤ ωα(i) ≤ 2‖P0Xi‖α ;
see Theorem 1 in Wu (2005). Then (14) is equivalent to the stability condition∑∞

j=0 ωα(j) < ∞ [Wu (2005)]. The latter condition can be interpreted as follows:
the cumulative contribution of ε0 in predicting future values (Xi)i>0 is finite, thus
suggesting short-range dependence. For long-range dependent processes (14) is
violated and σ 2 does not always exist; see Example 5.2. So (14) is a very natural
condition.

REMARK 2. Theorem 1 imposes mild conditions on the sequence (ak)k≥1.
The theorem is applicable if ak = ckp�, where p > 1 and c > 0 are constants.
To account for dependence, it is certainly needed that am+1 − am → ∞. Condi-
tion (15) does not hold if am diverges to infinity too fast. For example, (15) is
violated if ak = 2k . In the latter case Vn/vn is not a consistent estimate of σ 2 if Xi

are i.i.d. standard normals. To see this, let ξj , j ∈ Z, be independent and identically
distributed as

∫ 1
0 B

2(t) dt , where we recall that B is the standard Brownian motion.
Elementary calculations show that v2m ∼ 22m/6 and

2−2k
2k+1−1∑
i=2k

(X2k + · · · + Xi)
2 ⇒ ξ0.

Since Xi are i.i.d., V2m/v2m ⇒ (3/2)
∑∞

j=0 ξj /4j . In contrast, σ = 1.

Corollary 1 asserts the moment convergence of σ̂ 2
n = V ′

n/vn generated from
Algorithm 2 which allows unknown μ.

COROLLARY 1. Let conditions (14) and (15) of Theorem 1 be satisfied. Then
for σ̂ 2

n = V ′
n/vn generated from Algorithm 2, we also have ‖V ′

n/vn − σ 2‖α/2 =
o(1).
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3.3. Convergence rates. Theorem 1 asserts the moment convergence of Vn/vn

under mild conditions (14) and (15). However, it does not provide information on
the convergence rates. Under suitable decay rates of dependence measures, Theo-
rem 2 provides a convergence rate of Vn/vn for algebraic sequences (ak).

THEOREM 2. Let ak = ckp�, k ≥ 1, where c > 0 and p > 1 are constants.

(i) Assume that Xi ∈ Lα , EXi = 0, and for some α ∈ (2,4],
∞∑

j=0

δα(j) < ∞.(16)

Then

‖Vn − EVn‖α/2 = O
(
n3/2−3/(2p)+2/α)

.(17)

(ii) Assume that Xi ∈ Lα , EXi = 0 and (16) holds for some α > 4. Then

lim
n→∞

‖Vn − EVn‖
n2−3/(2p)

= σ 2p2c3/(2p)

√
12p − 9

.(18)

(iii) If Xi ∈ L2, EXi = 0, and for some q ∈ (0,1],
∞∑

j=0

jqω(j) < ∞.(19)

Then EVn − vnσ
2 = O[n1+(1−q)(1−1/p)]. Consequently, under (16) and (19),

‖Vn − vnσ
2‖α/2 = O(nφ), where φ = max(3/2 − 3/(2p) + 2/α,1 + (1 − q)(1 −

1/p)).

Since ω(j) ≤ δ2(j) ≤ δα(j), a sufficient condition for (16) and (19) is∑∞
j=1 jqδα(j) < ∞.
Theorem 2 gives guidance on how to choose p based on the dependence and

moment conditions of the process, which are characterized by parameters q and α,
respectively. A good p is the minimizer of n3/2−3/(2p)+2/α + n1+(1−q)(1−1/p).
This p also minimizes φ = φ(p). Solving the equation

3/2 − 3/(2p) + 2/α = 1 + (1 − q)(1 − 1/p),

one obtains p = (1/2 + q)/(q − 2 + 2/α). To summarize, we have the following:

COROLLARY 2. Let p = (1/2+q)/(q−1/2+2/α). Under conditions of The-
orem 2, we have ‖Vn/vn − σ 2‖α/2 = O(n2/α−1/2−1/(2p)). In particular, if α = 4
and q = 1, then p = 3/2 and ‖Vn/vn − σ 2‖2 = O(n−1/3).
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REMARK 3. Since ak+1 − ak ∼ cpkp−1 and m ∼ (n/c)1/p , elementary calcu-
lations show that

vam ∼
m∑

i=1

(ai+1 − ai)(ai+1 − ai + 1)/2 ∼ m2p−1c2p2/(4p − 2) ∼ vn.(20)

By Remark 4, ‖Vn − V ′
n‖α/2/vn = O(n−1/p). Hence, Corollary 2 also applies to

σ̂ 2
n = V ′

n/vn since −1/p < 2/α − 1/2 − 1/(2p).

Since 2 < α ≤ 4, p increases as q decreases. The latter observation can be ex-
plained as follows: if (19) only holds for small q , then it indicates strong depen-
dence and one needs to choose large block sizes to suppress the dependence.

We now compare Corollary 2 with classical results of the estimation of TAVC
by using the batched means. Carlstein (1986) obtained the bound O(n−1/3) for
the special AR(1) model with i.i.d. normal innovations. Under appropriate strong
mixing conditions, one can obtain the optimal mean squares error (MSE) bound
O(n−2/3) if the batch size is of order n1/3; see Künsch (1989) and Lahiri (2003),
among others. By Corollary 2, one can obtain the same bound: ‖Vn/vn − σ 2‖2

2 =
O(n−2/3), and the gap am+1 − am = c(m + 1)3/2� − cm3/2� ∼ (3c/2)m1/2 ∼
(c3/23/2)n1/3. For more discussions, see Section 4.

Our results have the attractive feature that they do not require strong mixing
conditions which may be difficult to be verified in practice. Also, we impose a
very mild moment condition that Xi ∈ Lα with 2 < α ≤ 4.

In view of the recursive nature of our estimate, it is natural to consider its almost
sure convergence behavior. In the context of mean estimation based on MCMC
simulations, Glynn and Whitt (1992) argued that, for asymptotic validity of se-
quential confidence intervals, one needs to have a strongly consistent estimate of σ

while the weaker version of mere convergence in probability is not enough.

COROLLARY 3. Under conditions in Corollary 2, we have∥∥∥max
n≤N

|Vn − EVn|
∥∥∥
α/2

= O(Nτ logN),

(21)
where τ = 3/2 − 3/(2p) + 2/α,

and VN − EVN = o[Nτ (logN)2] almost surely, and also

VN/vN − σ 2 = o
(
N2/α−1/2−1/(2p)(logN)2)

almost surely.(22)

4. Implementation issues. Assume that (19) holds with q = 1 and (16) holds
with α > 4. Let the sequence ak = ckp�, k ≥ 1. To implement Algorithm 2, it is
necessary to choose c and p. Corollary 2 suggests the optimal p = 3/2. Here we
shall suggest a data driven estimate of c by using the procedure in Bühlmann and
Künsch (1999).



1538 W. B. WU

Since (19) holds with q = 1,
∑∞

i=1 i|γ (i)| < ∞. So as l → ∞,

E(S2
l ) − lσ 2 = −2

∞∑
k=1

min(l, k)γ (k) = θ + o(1) where θ = −2
∞∑

k=1

kγ (k).

So EVn − vnσ
2 = nθ + o(n). By (20), vn ∼ 9m2c2/16. Since m ∼ (n/c)2/3, by

Theorem 2(ii),

‖Vn/vn − σ 2‖2
2 = ‖Vn − EVn‖2

2 + |EVn − vnσ
2|2

v2
n

∼ 16σ 4

9m
+ 256θ2n2

81c4m4 ∼
(
σ 4 16c2/3

9
+ θ2 256

81c4/3

)
n−2/3.

The MSE-optimal c minimizes ‖Vn/vn − σ 2‖2
2. Hence,

‖Vn/vn − σ 2‖2
2 ∼ 214/3

35/3 θ2/3σ 8/3n−2/3 and c = 4
√

2|θ |
3σ 2 .(23)

We now consider the batched mean estimate σ 2
n (ln) given in (2) with X̄n therein

replaced by 0. Assume ln/n → 0 and ln → ∞. Under suitable strong mixing
conditions, we have ‖σ 2

n (ln) − Eσ 2
n (ln)‖2

2 ∼ 4σ 4ln/(3n) and Eσ 2
n (ln) − σ 2 ∼

(θ + o(1))/ ln [see, e.g., Song and Schmeiser (1995) or Politis, Romano and
Wolf (1999)]. So the asymptotic MSE-optimal ln satisfies

‖σ 2
n (ln) − σ 2‖2

2 ∼ 22/331/3θ2/3σ 8/3

n2/3
(24)

with ln = λ∗n1/3� and λ3∗ = 3θ2

2σ 4 .

Bühlmann and Künsch (1999) proposed a data-driven method for finding the block
length ln. Sherman (1998) considered a similar problem. For the purpose of es-
timating c in (23), we shall present Bühlmann and Künsch’s (1999) algorithm
here.

ALGORITHM 3. Let the Tukey–Hanning window wTH(x) = (1 + cos(πx)) ×
1|x|≤1/2 and the split-cosine window wSC(x) = (1 + cos(5(x − 0.8)π))/2 if 0.8 ≤
|x| ≤ 1; wSC(x) = 1 if 0.8 > |x| and wSC(x) = 0 if |x| > 1.

1. Calculate γ̂ (k) = n−1 ∑n−|k|
i=1 (Xi − X̄n)(Xi+|k| − X̄n), k = 1 − n, . . . , n − 1.

2. Let b0 = n−1. For m = 1,2,3,4, let

bm = n−1/3
( ∑n−1

k=1−n γ̂ (k)2

6
∑n−1

k=1−n wSC(kbm−1n4/21)k2γ̂ (k)2

)1/3

.
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3. Let l̂n be the closest integer of b̂−1, where

b̂ = n−1/3
( 2(

∑n−1
k=1−n ŵTH(kb4n

4/21)γ (k))2

3(
∑n−1

k=1−n wSC(kb4n4/21)|k|γ̂ (k))2

)1/3

.

By Theorem 4.1 in Bühlmann and Künsch’s (1999), under suitable conditions,
one has asymptotically that nb̂3 ∼ 2σ 4/(3θ2). Relation (23) hence suggests a data
driven choice ĉ = (4λ̂∗/3)3/2, where λ̂∗ = l̂n/n1/3 and l̂n is from Algorithm 3. By
(23) and (24), with c = (4λ∗/3)3/2, we have ‖Vn/vn − σ 2‖2/‖σ 2

n (ln) − σ 2‖2 ∼
4/3, which suggests that the recursive estimate Vn/vn has a reasonably good per-
formance compared with the batched mean estimate σ 2

n (ln). In practice, we can
conduct a pilot study and estimate c by using Algorithm 3 with a relatively small n.
Then we can use this c for our recursive algorithm.

The computational and memory advantage of our recursive algorithm is more
prominent if one runs multiple copies of the chain. In such applications we may
obtain an estimate of σ 2 for each individual chain, and then use median or mean
of those estimates to obtain an improved estimate. Also, we can check the vari-
ations of those TAVC estimates for convergence diagnostics. The computational
cost for the traditional nonrecursive algorithms may be very expensive if the num-
ber of copies is large. Chauveau and Diebolt (2003) also considered estimate of σ 2

based on multiple chains. However, their estimate is not consistent if the number
of copies is bounded.

5. Applications. Here we shall apply Theorems 1 and 2 to Markov chains
which are in the form of iterated random functions and to functionals of linear
processes. The former is useful in MCMC simulations.

5.1. Markov chains. Let εi , i ∈ Z, be i.i.d. random variables. Consider the
Markov chain (Yn) recursively defined by

Yn = g(Yn−1, εn),(25)

where g is a measurable function. A variety of nonlinear time series models are of
the form (25). Diaconis and Freedman (1999) showed that the Markov chain (25)
admits a unique stationary distribution provided that

E logLε0 < 0 where Lε0 = sup
y �=y′

|g(y, ε0) − g(y′, ε0)|
|y − y′| ,(26)

and

E[Lι
ε0

+ |g(y0, ε0)|ι] < ∞ for some y0 and ι > 0.(27)

Under (26) and (27), by iterating (25), Yn adopts the representation (8). Inter-
estingly, the same set of conditions [namely, (26) and (27)] also implies that
δχ(j) = O(rj ) for some r ∈ (0,1) and χ > 0; see Wu and Shao (2004).
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We now apply Theorem 2 to the process Xi = h(Yi). In MCMC experi-
ments, μ = EXi is estimated by X̄n and the length of the confidence interval
X̄n ± z1−α/2σ̂n/

√
n can be used for convergence diagnostics [Jones et al. (2006)].

We shall impose regularity conditions on h such that (16) and (19) are satisfied.
Assume Xi ∈ Lα0 for some α0 > 2. For t > 0 let

�(t) = sup
{∥∥[h(Y ) − h(Y ′)] × 1|Y−Y ′|≤t

∥∥
α :Y and Y ′ are identically distributed

}
.

Following the argument of Theorem 3 in Wu and Shao (2004), under

∫ 1

0

�(t)| log t |
t

dt < ∞,(28)

we have
∑∞

i=1 iδα(i) < ∞ and, hence, (16) and (19) hold. The details of the
derivation are omitted. We now give examples that (28) holds. If h is Lipschitz
continuous, then �(t) = O(t) and (28) follows. Let h be an indicator function
h(y) = 1y≤y0 , where y0 is fixed. Then (28) also holds if P(|Yi − y0| ≤ t) = O(tρ)

for some ρ > 0. In particular, if Yi has a density, then ρ = 1.
An attractive feature of our setting is that we do not need the assumption of

irreducibility and positive Harris recurrence. The latter assumptions are not valid
for many Markov chains. For example, Markov chains associated with fractal im-
ages [Diaconis and Freedman (1999)] are not generally positive Harris recurrent.
As a concrete example, consider (25) with Yn = (Yn−1 + 2εn)/3, where εn are
i.i.d. with distribution P(εn = 0) = P(εn = 1) = 1/2. Then the chain is not pos-
itive Harris recurrent. On the other hand, (26) and (27) trivially hold and (Yn)

adopts an invariant distribution. Additionally, its support is the Cantor set and
P(|Yi − y0| ≤ t) = O(tρ), where ρ = (log 2)/(log 3) is the Hausdorff dimension.

5.2. Linear processes. Let εi , i ∈ Z, be i.i.d. random variables with mean 0
and finite αth moment (α > 2) and (ai) be a sequence of real coefficients; let Xn =
K(en), where K is a measure function for which Xn ∈ Lα and en = ∑∞

i=0 aiεn−i

is a linear process. A special case is that K(x) = |x|. Since K may be nonlinear,
the treatment of

∑n
i=1 K(ei) appears more difficult than that of

∑n
i=1 ei since the

latter preserves the linearity structure.
We now apply Theorem 1 to the process (Xi). Recall that ε′

0 is independent
of εi , i ∈ Z. Let e′

n = en − anε0 + anε
′
0. If K is Lipschitz continuous, then

|K(en) − K(e′
n)| = O(|an|)|ε0 − ε′

0|. Hence, the physical dependence measure
δα(n) = O(|an|) and, consequently, ‖P0Xi‖α = O(|ai |) since ωα(n) ≤ δα(n). In
this case (14) is reduced to

∑∞
i=0 |ai | < ∞, which is a natural condition for the

short-range dependence. If the latter condition is violated, for example, if ai = i−β ,
1/2 < β < 1, then the (Xi) is a long-memory process and normalizing sequence
for

∑n
i=1 Xi is n3/2−β , which is different from

√
n. Correspondingly, σ 2 = ∞.
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APPENDIX

A.1. Proof of Theorem 1. For n ∈ N choose m = mn ∈ N such that am ≤ n <

am+1. Then

vn =
n∑

j=1

(j − tj + 1) =
m∑

i=2

ai−1∑
j=ai−1

(j − tj + 1) +
n∑

j=am

(j − tj + 1)

(29)

=
m∑

i=2

(ai − ai−1)(ai − ai−1 + 1)

2
+ (n − am)(n − am + 1)

2
.

Simple calculations show that (15) implies

1 ≤ lim inf
m→∞

vn

vam

≤ lim sup
m→∞

vam+1

vam

= 1.(30)

So the limits in the above expression are all 1. Also observe that for any fixed
k0 ∈ N, since am+1 − am is increasing to ∞, we have

lim
m→∞

#{i ≤ n : i − ti + 1 ≤ k0}
vn

≤ lim
m→∞

mk0

vn

= 0.(31)

We now apply the martingale approximation in Wu (2007). Clearly (14) implies
that Dk := ∑∞

i=k PkXi ∈ Lα. Let Mn = ∑n
i=1 Di . By Theorem 1 in Wu (2007),

condition (14) also implies that

‖Sn‖α = O
(√

n
)
, ‖Mn‖α = O

(√
n
)

and ‖Sn − Mn‖α = o
(√

n
)
.(32)

Hence, as n → ∞,

ρn := n−1‖S2
n − M2

n‖α/2 ≤ n−1‖Sn − Mn‖α‖Sn + Mn‖α → 0.(33)

As Vn in (3), we introduce

Qn =
n∑

i=1

R2
i where Ri = Dti + Dti+1 + · · · + Di.

Our plan is to first approximate Vn by Qn such that ‖Qn − Vn‖α/2 = o(vn) and
then show that ‖Qn/vn − σ 2‖α/2 = o(1). Clearly the theorem follows from these
two assertions. For the former, let k0 ∈ N. By (33) and (31),

lim sup
n→∞

‖Vn − Qn‖α/2

vn

≤ lim sup
n→∞

v−1
n

n∑
i=1

‖R2
i − W 2

i ‖α/2

≤ lim sup
n→∞

v−1
n

n∑
i=1

(i − ti + 1)ρi−ti+1

(34)
≤ lim sup

n→∞
v−1
n

∑
1≤i≤n : i−ti+1>k0

(i − ti + 1)ρi−ti+1

≤ sup
k≥k0

ρk → 0 as k0 → ∞.
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It remains to prove ‖Qn/vn − σ 2‖α/2 = o(1). Note that ti = ak if ak ≤ i ≤
ak+1 − 1. Let

Yk =
ak+1−1∑
i=ak

(Dti + Dti+1 + · · · + Di)
2 =

ak+1−1∑
i=ak

(Dak
+ Dak+1 + · · · + Di)

2

and

Ỹk =
ak+1−1∑
i=ak

(D2
ak

+ D2
ak+1 + · · · + D2

i ).

By Burkholder’s inequality, there exists a constant c = cα such that

‖Yk‖α/2 ≤
ak+1−1∑
i=ak

‖(Dak
+ Dak+1 + · · · + Di)

2‖α/2

=
ak+1−1∑
i=ak

‖Dak
+ Dak+1 + · · · + Di‖2

α

≤
ak+1−1∑
i=ak

cα(i − ak + 1)‖D1‖2
α.

On the other hand,

‖Ỹk‖α/2 ≤
ak+1−1∑
i=ak

(i − ak + 1)‖D1‖2
α.

In the rest of the proof, cα denotes a constant which only depends on α and its value
may change from line to line. Since 1 < α/2 ≤ 2 and Yk −E(Yk|Fak

), k = 1,2, . . . ,

is a martingale difference sequence, we have by Burkholder’s and Jensen’s inequal-
ities that ∥∥∥∥∥

m∑
k=1

[Yk − E(Yk|Fak
)]

∥∥∥∥∥
α/2

α/2

≤ cα

m∑
k=1

‖Yk − E(Yk|Fak
)‖α/2

α/2

(35)

≤ cα

m∑
k=1

‖Yk‖α/2
α/2.

Similarly,

∥∥∥∥∥
m∑

k=1

[Ỹk − E(Ỹk|Fak
)]

∥∥∥∥∥
α/2

α/2

≤ cα

m∑
k=1

‖Ỹk‖α/2
α/2.(36)
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Note that Di are also martingale differences. Simple calculations show that
E(Ỹk|Fak

) = E(Yk|Fak
). By (35) and (36),

∥∥∥∥∥
m∑

k=1

(Yk − Ỹk)

∥∥∥∥∥
α/2

α/2

≤ cα

m∑
k=1

(‖Yk‖α/2
α/2 + ‖Ỹk‖α/2

α/2)

≤ cα‖D1‖α
α

m∑
k=1

[ak+1−1∑
i=ak

(i − ak + 1)

]α/2

≤ cα‖D1‖α
α max

h≤m

[ah+1−1∑
i=ah

(i − ah + 1)

]α/2−1 m∑
k=1

[ak+1−1∑
i=ak

(i − ak + 1)

]
.

By (15) and (30), since ah+1 − ah → ∞,

‖∑m
k=1(Yk − Ỹk)‖α/2

α/2

v
α/2
n

≤ cα‖D1‖α
α

[
maxh≤m(ah+1 − ah)

2

vn

]α/2−1

→ 0.(37)

By the ergodic theorem, since D2
k ∈ Lα/2, we have ‖D2

1 + · · · + D2
l − lσ 2‖α/2 =

o(l). Therefore, ‖Ỹk − EỸk‖α/2 = o((ak+1 − ak)
2) and, by (35) and (36),

lim
n→∞

‖∑m
k=1(Ỹk − EỸk)‖α/2

vn

= lim
n→∞

∑m
k=1 o((ak+1 − ak)

2)

vn

= 0,

which, in view of (37), implies that ‖∑m
k=1 Yk − vamσ 2‖α/2 = o(vam).

Finally, we shall compare Qn and Qam+1−1 = ∑m
k=1 Yk . To this end, again by

(35) and (36), recall am ≤ n < am+1,

‖Qn − Qam+1−1‖α/2 =
∥∥∥∥∥
am+1−1∑
i=n+1

R2
i

∥∥∥∥∥
α/2

≤
am+1−1∑
i=n+1

‖Ri‖2
α

=
am+1−1∑
i=n+1

O(i − ti + 1) ≤ (am+1 − am)2 = o(vn),

which by (34) completes the proof.

A.2. Proof of Corollary 1. Observe that V ′
n remains unchanged if Xi is re-

placed by Xi − μ. So we can assume without loss of generality that μ = 0.
By (7) and Theorem 1, it suffices to verify that (i) ‖UnX̄n‖α/2 = o(vn) and (ii)
‖qn(X̄n)

2‖α/2 = o(vn). For (ii), by (32), ‖X̄n‖α = O(n−1/2). Choose m ∈ N such
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that am ≤ n < am+1. By (15),

(am+1 − am)2 = o(1)

[
m∑

k=2

(ak − ak−1)

]2

= o(a2
m).

Since am → ∞ and am is increasing,

max
l≤m

(al+1 − al) = o(am) = o(n).(38)

Hence, qn ≤ vn maxl≤m(al+1−al) = vno(n) and (ii) follows. To show (i), we claim
that

‖Un‖α = O(1)

[
m∑

l=1

(al+1 − al)
5

]1/2

.(39)

With the above relation, noting that
∑m

l=1(al+1 − al)
4 ≤ [∑m

l=1(al+1 − al)
2]2, we

have by (29) and (38) that ‖UnX̄n‖α/2 ≤ ‖Un‖α‖X̄n‖α = o(vn).
In the sequel we shall prove (39). To this end, recall li = i − ti + 1 and let

hj = hj,n =
n∑

i=1

li1ti≤j≤i , j = 1, . . . , n.

Then

Un =
n∑

i=1

li

i∑
j=ti

Xj =
n∑

j=1

Xjhj .

Since Xj = ∑∞
k=0 Pj−kXj , and Pj−kXj , j ∈ Z, forming martingale differences,

we have by Burkholder’s and Minkowski’s inequalities that

‖Un‖α ≤
∞∑

k=0

∥∥∥∥∥
n∑

j=1

Pj−kXjhj

∥∥∥∥∥
α

≤
∞∑

k=0

cα

[
n∑

j=1

‖Pj−kXjhj‖2
α

]1/2

=
(

n∑
j=1

h2
j

)1/2

cα

∞∑
k=0

‖P0Xk‖α.

By (14) and the definition of hj , (39) follows from

n∑
j=1

h2
j ≤

m∑
k=1

ak+1−1∑
j=ak

h2
j ≤

m∑
k=1

ak+1−1∑
j=ak

(ak+1 − ak)
4 =

m∑
k=1

(ak+1 − ak)
5.

REMARK 4. If ak = ckp�, k ≥ 1, where c > 0 and p > 1, then m ∼ (n/c)1/p

and, by (39), ‖Un‖α = O[m(5p−4)/2] = O(n5/2−2/p). Also note that qn � n3−2/p .
Hence, ‖Vn − V ′

n‖α/2 = O(qn/n) + O(n5/2−2/p)/n1/2 = O(n2−2/p).



RECURSIVE ESTIMATION OF VARIANCES 1545

A.3. Proof of Theorem 2. (i) Recall (3) for Wi = Xti + Xti+1 + · · · + Xi

and (9) for the definition of the coupled process (X′
n). Let W ∗

i = X′
ti

+ X′
ti+1 +

· · · + X′
i . For notational simplicity write δj for δα(j). Since ε′

0 is independent of
εi, i ∈ Z, we have E(Xi |F−1) = E(X∗

i |F−1) = E(X∗
i |F0). By Jensen’s inequality,

‖P0Xi‖α ≤ ‖Xi −X∗
i ‖α = δi and (16) implies that �α = ∑∞

i=0 ‖P0Xi‖α < ∞. By
Theorem 1 in Wu (2007), ‖Wi‖α ≤ cα�α(i − ti + 1)1/2, where cα is a constant.
Since

E[W 2
i |F−1] = E[(W ∗

i )2|F−1] = E[(W ∗
i )2|F0],

we have by Schwarz’s and Jensen’s inequalities that

‖P0W
2
i ‖α/2 = ‖E[W 2

i |F0] − E[W 2
i |F−1]‖α/2

= ‖E[W 2
i |F0] − E[(W ∗

i )2|F0]‖α/2

≤ ‖W 2
i − (W ∗

i )2‖α/2 ≤ ‖Wi + W ∗
i ‖α‖Wi − W ∗

i ‖α

≤ 2‖Wi‖α

i∑
j=ti

δj ≤ 2cα�α(i − ti + 1)1/2
i∑

j=ti

δj .

Similarly, for k ≥ 0,

‖Pi−kW
2
i ‖α/2 ≤ 2‖Wi‖α

i∑
j=ti

δk+ti−j

(40)

≤ 2cα�α(i − ti + 1)1/2
i∑

j=ti

δk+ti−j .

Since Pi−kW
2
i , i ∈ Z, form martingale differences, by Burkholder’s inequality,

∥∥∥∥∥
n∑

i=1

Pi−kW
2
i

∥∥∥∥∥
α/2

α/2

≤ cα

n∑
i=1

‖Pi−kW
2
i ‖α/2

α/2

≤ cα�α/2
α

n∑
i=1

[
(i − ti + 1)1/2

i∑
j=ti

δk+ti−j

]α/2

.

By the triangle inequality, since W 2
i = ∑∞

k=0 Pi−kW
2
i , we have

‖Vn − EVn‖α/2 ≤
∞∑

k=0

∥∥∥∥∥
n∑

i=1

Pi−kW
2
i

∥∥∥∥∥
α/2

.(41)

If am ≤ i < am+1, then ti = am and i − ti ≤ am+1 − 1 − am. Let bm = (1 +
c)p2pmp−1�. Elementary calculations show that am+1 − 1 − am ≤ bm for all
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m ∈ N. Hence,

∞∑
k=2bm

∥∥∥∥∥
n∑

i=1

Pi−kW
2
i

∥∥∥∥∥
α/2

≤
∞∑

k=2bm

{
n∑

i=1

[
(i − ti + 1)1/2

bm∑
j=0

δk−j

]α/2}2/α

O(1)

(42)

≤
[

n∑
i=1

(i − ti + 1)α/4

]2/α ∞∑
k=2bm

bm∑
j=0

δk−jO(1)

= [O(nbα/4
m )]2/αo(bm) = o(n2/αb3/2

m ).

On the other hand,

2bm−1∑
k=0

∥∥∥∥∥
n∑

i=1

Pi−kW
2
i

∥∥∥∥∥
α/2

= O(bm)

[
n∑

i=1

(i − ti + 1)α/4

]2/α

= O(n2/αb3/2
m ).(43)

Therefore, ‖Vn − EVn‖α/2 = O(n2/αb
3/2
m ) and (i) follows since bm = O(n1−1/p).

(ii) Define Gh+1 = ∑ah+1−1
i=ah

W 2
i . By Lemma 1 below, we have ‖Gh+1 −

E(Gh+1|Fah
)‖2/(ah+1 − ah)

4 → σ 4/3 as h → ∞. Since Gh+1 − E(Gh+1|Fah
),

h = 1,2, . . . , are martingale differences with respect to the filter Fah+1 , we have

∥∥∥∥∥
m∑

h=1

[Gh+1 − E(Gh+1|Fah
)]

∥∥∥∥∥
2

=
m∑

h=1

‖Gh+1 − E(Gh+1|Fah
)‖2

∼
m∑

h=1

(ah+1 − ah)
4 σ 4

3
∼ n4−3/p σ 4p4c3/p

12p − 9

by noting that ah+1 − ah ∼ cphp−1. Similarly, by Lemma 1,∥∥∥∥∥
m∑

h=1

[E(Gh+1|Fah
) − E(Gh+1|Fah−1)]

∥∥∥∥∥
2

=
m∑

h=1

‖[E(Gh+1|Fah
) − E(Gh+1|Fah−1)]‖2

≤
m∑

h=1

‖E(Gh+1|Fah
) − E(Gh+1)‖2

=
m∑

h=1

o
(
(ah+1 − ah)

4) = o(n4−3/p).
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We now deal with �m := ∑m
h=1[E(Gh+1|Fah−1) − E(Gh+1)]. For ah ≤ i ≤

ah+1 − 1, since E(W 2
i |Fah−1) − E(W 2

i ) = ∑∞
k=0 Pi−kE(W 2

i |Fah−1), we have

‖�m‖ ≤
∞∑

k=0

∥∥∥∥∥
m∑

h=1

ah+1−1∑
i=ah

Pi−kE(W 2
i |Fah−1)

∥∥∥∥∥
=

∞∑
k=0

[
m∑

h=1

ah+1−1∑
i=ah

‖Pi−kE(W 2
i |Fah−1)‖2

]1/2

.

Observe that Pi−kE(W 2
i |Fah−1) = 0 if i − k > ah−1, and Pi−kE(W 2

i |Fah−1) =
Pi−kW

2
i if i − k ≤ ah−1. By (40), as in the proof of (42), we have

∞∑
k=2bm

[
m∑

h=1

ah+1−1∑
i=ah

‖Pi−kE(W 2
i |Fah−1)‖2

]1/2

= o(n1/2b3/2
m ).

For 0 ≤ k ≤ 2bm − 1, since �α(l) = ∑∞
i=l δα(i) → 0 as l → ∞,

m∑
h=1

ah+1−1∑
i=ah

‖Pi−kE(W 2
i |Fah−1)‖2

= O(1)

m∑
h=1

ah+1−1∑
i=ah

(i − ti + 1)

[
k∑

j=k+ti−i

δα(j)

]2

1i−k≤ah−1

= O(1)

m∑
h=1

ah+1−1∑
i=ah

(i − ti + 1)�2
α(ah − ah−1)

= O(1)

m∑
h=1

(ah+1 − ah)
2�2

α(ah − ah−1)

=
m∑

h=1

o(h2p−2) = o(m2p−1).

Hence,

2bm−1∑
k=0

[
m∑

h=1

ah+1−1∑
i=ah

‖Pi−kE(W 2
i |Fah−1)‖2

]1/2

= o(bmmp−1/2)

and (ii) follows in view of∥∥∥∥∥
am+1−1∑

i=n

(
W 2

i − E(W 2
i )

)∥∥∥∥∥ ≤
am+1−1∑

i=n

‖W 2
i ‖ = O(b2

m) = o(bmmp−1/2)
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since ‖Wi‖2
4 = O(i − ti + 1) = O(bm), am+1 − 1 − am ≤ bm and bm = (1 +

c)p2pmp−1�.
(iii) Let j > 0. For i ∈ Z, since Pi are orthogonal and Xj = ∑

i∈Z PiXj ,

|γ (j)| = |E(X0Xj)| =
∣∣∣∣E∑

i∈Z

(PiX0)(PiXj )

∣∣∣∣
≤ ∑

i∈Z

‖PiX0‖‖PiXj‖ ≤ ∑
i∈Z

ω(−i)ω(j − i).

Here we let ω(i) = 0 if i < 0. By (19),
∞∑

j=0

jq |γ (j)| < ∞.

Consequently, for Sl = X1 + · · · + Xl , since 0 < q ≤ 1,

|ES2
l − lσ 2| ≤ 2

∞∑
j=1

min(j, l)|γ (j)| = O(l1−q).

Therefore,

|EVn − tnσ
2| ≤

n∑
i=1

|EWi − (i − ti + 1)σ 2|

=
n∑

i=1

O[(i − ti + 1)1−q ]

= O(nb1−q
m ) = O

[
n1+(1−q)(1−1/p)].

LEMMA 1. Assume that Xi ∈ Lα , EXi = 0 and (16) holds for some α > 4.
Let Si = ∑i

j=1 Xi . Then we have (i) ‖∑l
i=1(E(S2

i |F1) − E(S2
i ))‖ = o(l2) and (ii)

lim
l→∞

‖∑l
i=1(S

2
i − E(S2

i ))‖2

l4 = σ 4

3
.(44)

PROOF. As in (40), for r ≤ 1, ‖PrS
2
i ‖ ≤ Ci1/2 ∑i

j=1 δα(j − r), where C =
2cα�α . Since

∑l
i=1(E(S2

i |F1) − E(S2
i )) = ∑1

r=−∞
∑l

i=1 PrS
2
i , by orthogonality,

(i) follows from∥∥∥∥∥
l∑

i=1

(
E(S2

i |F1) − E(S2
i )

)∥∥∥∥∥
2

=
1∑

r=−∞

∥∥∥∥∥
l∑

i=1

PrS
2
i

∥∥∥∥∥
2

≤
1∑

r=−∞

(
l∑

i=1

‖PrS
2
i ‖

)2
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≤
1∑

r=−∞

(
Cl3/2

l∑
j=1

δα(j − r)

)2

≤
1∑

r=−∞
C2l3�α

l∑
j=1

δα(j − r)

= O(l3)

l∑
j=1

1∑
r=−∞

δα(j − r) = o(l4).

For (ii), let Al = ∑l
i=1 S2

i / l2. By the invariance principle (13) and the continuous
mapping theorem, we have Al ⇒ σ 2 ∫ 1

0 IB(t)2 dt . By Theorem 1 in Wu (2007),
‖Si‖α = O(

√
i). So

‖Al‖α/2 ≤
l∑

i=1

‖S2
i ‖α/2

l2 ≤
l∑

i=1

‖Si‖2
α

l2 = O(1).

Since α/2 > 2, {[Al − E(Al)]2, l ≥ 1} is uniformly integrable [Chow and Te-
icher (1988)]. Hence, the weak convergence of Al implies the L2 moment con-
vergence

E{[Al − E(Al)]2} → σ 4
E

{∫ 1

0
[B(t)2 − E(B(t)2)]dt

}2

= σ 4

3
.

A.4. Proof of Corollary 3. Choose d ∈ N such that 2d−1 < N ≤ 2d . Using
the same argument as in the proof of Theorem 2 [see (41)–(43) therein], we have
for 1 ≤ a < b that

‖Vb − Va − E(Vb − Va)‖α/2 =
∥∥∥∥∥

b∑
i=a+1

(W 2
i − EW 2

i )

∥∥∥∥∥
α/2

= O
[
b3(1−1/p)/2(b − a)2/α]

,

where the constant in O does not depend on a and b. To show (21), we shall apply
a useful maximal inequality established in Wu (2007). By Proposition 1 in the
latter paper,∥∥∥max

n≤2d
|Vn − EVn|

∥∥∥
α/2

≤
d∑

r=0

[2d−r∑
l=1

∥∥V2r l − V2r (l−1) − E
(
V2r l − V2r (l−1)

)∥∥α/2
α/2

]2/α

.
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Note that

2d−r∑
l=1

∥∥V2r l − V2r (l−1) − E
(
V2r l − V2r (l−1)

)∥∥α/2
α/2

=
2d−r∑
l=1

O
{[

(2r l)3(1−1/p)/2(2r )2/α]α/2}

= O(1)2r+3r(1−1/p)α/4(2d−r )1+3(1−1/p)α/4.

Hence, ∥∥∥max
n≤2d

|Vn − EVn|
∥∥∥
α/2

= O(d + 1)(2d)2/α+3(1−1/p)/2

and (21) follows in view of 2d−1 < N ≤ 2d .
We now show (22). Note that α/2 > 1. By (21), we have

∞∑
d=1

‖maxn≤2d |Vn − EVn|‖α/2
α/2

(2dτ d2)α/2 =
∞∑

d=1

O(d−α/2) < ∞,

which by the Borel–Cantelli lemma implies that VN − EVN = o[Nτ (logN)2] al-
most surely. Consequently, (22) easily follows from EVn − tnσ

2 =
O[n1+(1−q)(1−1/p)]. �

Acknowledgments. I thank Peter Glynn and a referee for their many useful
comments.
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