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ON THE UNIQUENESS OF THE INFINITE CLUSTER OF
THE VACANT SET OF RANDOM INTERLACEMENTS

BY AUGUSTO TEIXEIRA

ETH Zürich

We consider the model of random interlacements on Z
d introduced

in Sznitman [Vacant set of random interlacements and percolation (2007)
preprint]. For this model, we prove the uniqueness of the infinite compo-
nent of the vacant set. As a consequence, we derive the continuity in u of the
probability that the origin belongs to the infinite component of the vacant set
at level u in the supercritical phase u < u∗.

1. Introduction. In this paper we proceed with the study of percolation in
the model of random interlacements introduced by Sznitman in [8]. This model is
naturally linked to the analysis of random walks on the discrete torus (Z/NZ)d

(d ≥ 3) and on the discrete cylinder (Z/NZ)d ×Z (d ≥ 2), when the walk runs up
to times proportional to Nd and N2d , respectively. Random interlacements heuris-
tically describe the limiting microscopic “texture in the bulk” left by the random
walk in these time scales, see [1, 3] and [9].

One can think of random interlacements as consisting of the trace of a cloud of
trajectories in Z

d (d ≥ 3) where a parameter u ∈ (0,∞) controls the density of the
cloud. This pictorial description derives from the original construction given in [8]
that will be detailed in Section 2.

The law Qu of the indicator function of the vacant set at level u, that is, the
complement of the interlacement set, viewed as a random element of {0,1}Z

d
, is

characterized as the unique law on {0,1}Z
d
, such that

Qu[Yx = 1 for all x ∈ K] = exp{−u cap(K)},(1.1)

for all finite sets K ⊂ Z
d;

see [8], Sections 1 and 2. In the equation above, (Yx)x∈Zd stands for the canonical

coordinates on {0,1}Z
d

(endowed with its canonical σ -algebra Y) and cap(K)

stands for the capacity of the set K ; see (2.4). As shown in Theorem 2.1 of [8],

the translation operators are measure-preserving flows on
({0,1}Z

d
,Y,Qu) which are ergodic.

(1.2)
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Our main interest here lies in the percolative properties of the random set {x ∈
Z

d; Yx = 1}. With this in mind, it is natural to introduce the function

η(u) = Qu[0 belongs to an infinite component of {x ∈ Z
d;Yx = 1}]

and the critical value

u∗ = inf{u ≥ 0;η(u) = 0}.(1.3)

It was proved in [8] that for d ≥ 7, u∗ is positive and that for d ≥ 3, u∗ is
finite; see Theorems 3.5 and 4.3. The positivity of u∗ in the case d ≥ 3 was later
established in [7], (0.5).

Let us mention here that the set {x ∈ Z
d;Yx = 0} presents a different behavior.

As shown in Corollary 2.3 of [8], which is proved using similar ideas to those of
the present paper,

for every u > 0, Qu-almost surely {x ∈ Z
d;Yx = 0} is an infinite

connected subset of Z
d .

(1.4)

In this paper, we establish some properties of the critical-supercritical phases
(u ≤ u∗) of the vacant set. Our main result concerns the uniqueness of the infinite
cluster.

THEOREM 1.1 (d ≥ 3). For arbitrary u ≥ 0, the set {x ∈ Z
d;Yx = 1} has Qu-

almost surely at most one infinite component.

An important consequence of the theorem above is Corollary 1.2 regarding the
continuity of the percolation probability in the supercritical regime.

COROLLARY 1.2 (d ≥ 3). The percolation probability η(u) is a left-
continuous function which is continuous on [0, u∗).

It is not known whether the vacant set percolates at the critical point u∗.
The proof of Theorem 1.1 roughly follows the strategy of Burton and Keane [2].

But their argument cannot be applied to the situation considered here, since it relies
on the so-called finite energy property, that the measures Qu fail to satisfy

0 < Qu(Yy = 1|Yz, z �= y) < 1, Qu-a.s., for all y ∈ Z
d;(1.5)

for more details, see [4], Section 12, and [8], (1.60). Let us recall the two main
steps in the argument of Burton and Keane. Using the fact that the number of
infinite components is almost surely a constant (this is already contained in [6],
Theorem 1), one first proves that this constant is not an integer bigger than 1 and
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finally that this constant is also finite. In both steps one makes use of the finite
energy property to prescribe a specific configuration of occupied sites inside a box.

To give an intuition of the kind of restriction that we have in the present case, we
recall from (1.4) that the set {x ∈ Z

d;Yx = 0} has Qu-a.s. no bounded component,
so that we cannot arbitrarily assign values for the variables Yx , not even for a finite
set of them.

It is not clear how to overcome this difficulty with the description of the process
that was given in terms of (1.1). Instead, we consider the characterization of the
process by means of the interlacement set, that we pictorially described as a cloud
of trajectories of paths in Z

d . Loosely speaking, our scheme is to modify the be-
havior of these paths which eventually meet a previously chosen set K ⊂ Z

d in
order to assemble the desired configuration inside K . This approach presents geo-
metrical restrictions on the configurations we are able to design. Both to prove that
the number of infinite components is finite and that it is not bigger than 1, we have
to overcome these restrictions by carefully choosing the sets which we want to
cover with the interlacement paths.

For the proof of the corollary, we adapt the argument of van den Berg and
Keane [11].

This paper is organized as follows. In Section 2, we give the description of
the model of random interlacement and quote some key results achieved in [8].
Section 3 contains the proofs of Theorem 1.1 and Corollary 1.2.

2. A brief review of the random interlacements. We start with some no-
tation that will be used to describe the model of random interlacements. Let
{ek}k=1,...,d denote the canonical basis vectors of R

d and πk : Zd → Z the pro-
jection on the kth direction. The euclidean norm is denoted by | · | and we say that
two points x and y in Z

d are nearest neighbors (x ↔ y) if |x − y| equals 1. The
closed ball B(x, r) = {y ∈ Z; |y − x|∞ ≤ r} is defined in terms of the l∞-norm
|x|∞ = sup{|πk(x)|;1 ≤ i ≤ d}. For a set K ⊂ Z, |K| denotes its cardinality. We
also distinguish the two boundaries of K :

∂K = {x ∈ K;x is a nearest neighbor of some point y ∈ Kc},
(2.1)

∂extK = {x ∈ Kc;x is a nearest neighbor of some point y ∈ K},
and define its “closure” as K̄ = K ∪ ∂extK .

Throughout this paper the term path always refers to nearest-neighbor paths and
by a piece of path we mean a finite sequence (τn)0≤n≤l of nearest-neighbor points.
By entrance (resp. departure) points of a path τ : Z → Z

d in a set K ∈ Z
d , we mean

E = {τ(n); τ(n − 1) ∈ Kc and τ(n) ∈ K for n ∈ Z}(2.2)

[resp. D = {τ(n); τ(n + 1) ∈ Kc and τ(n) ∈ K for n ∈ Z}].(2.3)
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The capacity of a finite set K ⊂ Z
d is given by the formula

cap(K) = 1

2d
inf

{ ∑
x↔y

|f (x) − f (y)|2;f = 1 in K,

(2.4)

f has finite support

}
.

Note above that, in the notation of weighted graphs, we assigned 1/2d for the
conductance of the edges of Z

d , so that the sum of the conductance of all edges
incident to a fixed vertice is 1.

Consider the spaces W+ and W of infinite, respectively doubly infinite paths,
tending to infinity at infinity in Z

d (d ≥ 3):

W+ =
{
γ : N → Z

d;γ (i) ↔ γ (i + 1) for each i ≥ 0,

lim
i→∞|γ (i)| = ∞

}
,

(2.5)

W =
{
γ : Z → Z

d;γ (i) ↔ γ (i + 1) for each i ∈ Z,

lim|i|→∞|γ (i)| = ∞
}
,

and endow them with the σ -algebras W+ and W generated by the coordinate
maps Xn. For a given path w ∈ W+ (resp. w′ ∈ W ), we write Range(w) = w(N)

[resp. Range(w′) = w′(Z)] and denote with Px the probability on (W+,W+) gov-
erning the simple random walk starting at x. Since d ≥ 3, the simple random walk
is transient, and the set W+ supports the probability Px . On W+, the hitting time
of a set K ⊂ Z

d is represented by

H̃K = inf{n ≥ 1;Xn ∈ K}.(2.6)

Define the space W ∗ of paths in W modulo time-shift, that is,

W ∗ = W/ ∼, where ω ∼ ω′ if ω(·) = ω′(k + ·), for some k ∈ Z,(2.7)

and denote with π∗ the canonical projection from W to W ∗. The map π∗ induces
a σ -algebra in W ∗ given by W∗ = {A ⊂ W ∗; (π∗)−1(A) ∈ W}.

The random interlacement is defined by means of a Poisson point process on
W ∗ ×R+. The intensity of this process will be given by the product of a measure ν

on W ∗ and the Lebesgue measure; see, for instance, [10] for a reference about point
processes. Here, the positive real line is introduced in order to couple different
intensities of the point processes, allowing us to relate the probability of increasing
events at different intensities u,u′ ∈ R+ [an event A ∈ Y is said to be increasing if,
whenever α ∈ A and α′(z) ≥ α(z) for all z ∈ Z

d , we have α′ ∈ A]. The mentioned
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measure ν is constructed in [8] and in the next paragraph we give a characterization
of it.

For any finite set K of Z
d , we write WK for the space of paths in W that

intersect K and introduce W ∗
K = π∗(WK). On WK we define the finite mea-

sure QK such that, given A and B in the σ -algebra W+ and a piece of path
τ : {0, . . . , l} → Z

d ,

QK [(X−n)n≥0 ∈ A, (Xn)0≤n≤LK
= τ, (Xn+LK

)n≥0 ∈ B]
(2.8)

= Pτ(0)[A, H̃K = ∞]Pτ(0)[(Xn)0≤n≤l = τ ]Pτ(l)[B, H̃K = ∞],
where LK is the time of the last visit of a path to the set K .

A. S. Sznitman proved in [8] the consistency of the measures π∗ ◦ QK ; that is,
whenever K ⊂ K ′, we have 1W ∗

K
· π∗ ◦ QK ′ = π∗ ◦ QK . This readily implies the

existence of a σ -finite measure ν in W ∗ satisfying, for any finite set K ⊂ Z
d ,

1W ∗
K

· ν = π∗ ◦ QK.(2.9)

We are now in position to define the process we are interested in. Consider the
space of point measures in W ∗ × R+

� =
{
ω = ∑

i≥1

δ(w∗
i ,ui );w∗

i ∈ W ∗, ui ∈ R+ and ω(W ∗
K × [0, u]) < ∞

(2.10)

for every finite K ⊂ Z
d and u ≥ 0

}
,

endowed with the σ -algebra generated by the evaluation maps ω �→ ω(D) for
D ∈ W∗ ⊗ B(R+) [where B(·) denotes the Borel σ -algebra]. Let P be the law of
a Poisson point process in W ∗ × R+ (see for this definition [10], Proposition 3.6)
with intensity given by the product of ν with the Lebesgue measure on R+. For
a given point measure ω in �, written as ω = ∑

i δ(w∗
i ,ui ), we define the interlace-

ment and the vacant set at level u, respectively, as

I u(ω) =
{ ⋃

i;ui≤u

Range(w∗
i )

}
,(2.11)

Vu = Z
d \ I u.(2.12)

According to [8], Remark 2.2, in the notation of (1.1),

Qu is the image measure of (1[x∈Vu])x∈Zd under P.(2.13)

So, the set {x ∈ Z
d;Yx = 1} that was used to state Theorem 1.1 has the same law

as the vacant set defined in (2.12).
We finish this section with a definition that will be crucial for the proofs in the

next section.
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DEFINITION 2.1. Given u > 0 and ω ∈ �, for a finite set K ⊂ Z
d , we say

that x1, . . . , xk ∈ K are an exiting k-tuple of K at level u if they belong to distinct
infinite connected components of both Vu(ω) and Vu(ω) \ (K \ {x1, . . . , xk}).

3. Uniqueness of the infinite component of the vacant set. In this section
we prove Theorem 1.1 and Corollary 1.2. In proving Theorem 1.1, just as for
the case of independent Bernoulli percolation, we use the fact that the number of
infinite components of Vu is almost surely a constant. We only need to discard the
possibility that this constant is either an integer bigger than 1 or that it is infinite.

To handle the former possibility, the idea is to modify the behavior of the paths
that visit a predefined box in order to join at least two of the infinite components
touching it; see Lemma 3.2. This should not be done by simply removing all the
paths that meet this box because this could change the configuration outside the
box, and possibly create more infinite components of the vacant set. To handle the
latter possibility, the rough idea is to build a trifurcation point (see Definition 3.3)
using the interlacement paths; this is done in what follows Lemma 3.4

In both cases, the difficulty is due to the fact that the measures Qu fail to sat-
isfy the so-called finite energy condition (1.5) used in [2]. For a more detailed
discussion on this, we refer to (1.60) of [8].

We restate our main theorem in terms of Vu.

THEOREM 3.1 (d ≥ 3). For any u ≥ 0 with η(u) > 0, there exists P-a.s. a
unique infinite component in the vacant set Vu.

PROOF. Let Nu be the number of infinite components of the set Vu. Since
this random variable is invariant under translations of the lattice, (2.13) and (1.2)
imply that Nu is P-almost surely a constant k(u). We start with:

LEMMA 3.2. For any parameter u, k(u) ∈ {0,1,∞}.
PROOF. We will write k in place of k(u) for simplicity. Suppose that for

some u, we have 2 ≤ k < ∞. Then, by the continuity of P, there exists an L

(that we suppose to be larger than 100) such that with positive probability the box
K = B(0,L) is connected to k infinite components of Vu.

To control the fact that the modifications we will do inside K̄ [recall the defi-
nition below (2.1)] are not going to create more than k infinite components in the
vacant set, we first show that the event

A1 = {K̄ ∩ I u �= ∅ and Vu \ K̄ has more than k infinite components}(3.1)

has probability zero.
Define for this purpose a function φ1 :W ∗̄

K
→ W ∗̄

K
in the following way. For

a given path w∗ ∈ W ∗̄
K

, φ1(w
∗) is the path obtained by inserting in the moment of

the first visit of w∗ in K̄ a piece of path that covers the set K̄ .
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With the help of (2.8) we see that φ1 ◦ (1W ∗̄
K

· ν) is absolutely continuous with
respect to 1W ∗̄

K
· ν. Extending φ1 as the identity on the complement of W ∗̄

K
and

defining

�1(ω) = ∑
ui<u

δ(φ1(w
∗
i ),ui) + ∑

ui≥u

δ(w∗
i ,ui ), for ω =

∞∑
i=1

δ(w∗
i ,ui ),(3.2)

we also have �1 ◦ P � P.
For a given ω ∈ A1, the effect of applying �1 is to fill the set K , so that A1 ⊂

�−1
1 [Nu > k]. Then, since Nu equals k P-almost surely, �1 ◦ P � P implies that

P(A1) = 0.
Note that whenever K is connected to k infinite clusters at level u, it is possible

to find in ∂extK an exiting k-tuple of K̄ ; recall the Definition 2.1. Since we have
a finite number of choices for the points in this k-tuple, we can find nonrandom
z1, . . . , zk ∈ ∂extK for which the event

A2 = {z1, . . . , zk is an exiting k-tuple of K̄ at level u}(3.3)

has positive probability.
One can choose a set U ⊂ K ∪ {z1, z2}, containing a path joining z1 and z2

and such that S = K̄ \ U is connected (recall that we required L to be larger
than 100). For instance, take U to be the union of: K without its corners (i.e.,
K \ {x ∈ K; |x| = L

√
d}), the points z1 and z2 and the neighbors of z1 and z2

in K .
Given the choice of such U , we claim that it is possible to define a map

φ2 :W ∗̄
K

→ W ∗̄
K

such that

for any w∗ in W ∗ for which all entrance and departure points of K̄

are in S, φ2(w
∗) has the same range as w∗ out of K̄ and does not

intersect U .
(3.4)

Indeed, if w∗ is as above, one can replace each of the excursions that w∗ performs
in K̄ by a piece of path contained in S with the same starting and ending points.
For paths not satisfying the condition above, we make φ2(w) = w.

On the event A2, both z1 and z2 are in the vacant set. Hence, given a point
measure ω = ∑

i≥1 δ(w∗
i ,ui ) ∈ A2, the entrance and departure points of all paths w∗

i

in K̄ are distinct from the z1 and z2 and therefore are in S. As in the case of φ1,
using (2.8) we can conclude that φ2 ◦ (1W ∗̄

K
· ν) � (1W ∗̄

K
· ν). If we extend φ2 as

identity out of W ∗̄
K

and define �2 in analogy with (3.2) with φ1 replaced by φ2 we
have also �2 ◦ P � P.

Note that applying �2 to some ω ∈ A2, we join the vacant components associ-
ated with z1 and z2 using the set U (that is now contained in Vu) without changing
the interlacements outside K̄ . Hence, in view of (3.1) and Definition 2.1, we con-
clude that A2 \ A1 ⊂ �−1

2 [Nu < k]. So that

0 < P[A2 \ A1] ≤ P
[
�−1

2 [Nu < k]] = �2 ◦ P[Nu < k],(3.5)
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which, by the absolute continuity of �2 ◦P with respect to P, implies that P[Nu <

k] > 0 and thus contradicts the assumption that Nu is almost surely k(u). Hence,
k ∈ {0,1,∞}. �

Now we want to rule out the case k = ∞. We follow the broad strategy of Burton
and Keane (see [2]), but in the absence of the finite energy property, a specific proof
for the existence of trifurcation points needs to be developed.

DEFINITION 3.3. We call y a trifurcation point at level u if it belongs to an
infinite component of Vu which is split into three distinct infinite components by
the removal of y.

The rough strategy of the proof will be to modify the behavior of the interlacement
paths to build corridors connecting three infinite clusters to a fixed point y.

For L ≥ 1, denote the (d − 1)-dimensional l∞-ball

SL = {x ∈ Z
d;π1(x) = 0 and |x|∞ ≤ L},(3.6)

see the beginning of Section 2 for the notation. In the next lemma we prove that for
an appropriate choice of L, with positive probability we can find an exiting triple
of S̄L at level u in which the tree points are mutually distant.

LEMMA 3.4. Fix u > 0. Under the assumption that k(u) = ∞, there exists
a positive integer L0 and three points z1, z2 and z3 in ∂extSL0 , such that

|zi − zj | ≥ 100d for i �= j,(3.7)

and the event

A3 = {z1, z2 and z3 is an exiting triple of S̄L0 at level u}(3.8)

has positive probability.

PROOF. Given a connected component of Z
d , we say that it is unbounded

in the direction +ek (resp. −ek) if its projection πk on the kth coordinate is un-
bounded from above (resp. from below). Clearly, every infinite component of Vu

is unbounded in at least one of the 2d possible directions. Hence, when the number
of unbounded components is equal to infinity, we can find one direction for which
infinitely many components are unbounded, that is,

[Nu = ∞]
(3.9)

⊆ ⋃
r∈{+,−}

d⋃
i=1

[#{unbounded components in direction rei} = ∞].
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Since [Nu = ∞] was supposed to be a P-almost sure event, we can choose a fixed
direction (without loss of generality we can assume it to be +e1) for which the
event in brackets in the right-hand side of the equation above has positive proba-
bility.

Denote with Fl (for l ∈ Z) the hyperplane perpendicular to e1 containing the
point le1, Fl = {x ∈ Z

d;π1(x) = l}. It is clear that for every configuration in which
there are infinitely many components unbounded in direction +e1, we can take
l large enough such that Fl intersects at least M = 3|B(0,100d)| of them, that is,

[#{unbounded components in +e1} = ∞]
⊆ ⋃

l≥0

[#{unbounded components in +e1 intersecting Fl} ≥ M].

Hence, for a proper choice of l0 (that we can assume to be 0 by the trans-
lation invariance of the process; see [8], Proposition 1.3), Fl0 intersects at least
3|B(0,100d)| infinite components of Vu with positive probability.

We can infer the same statement for some set SL ⊂ F0. Indeed, we note that
as L increases, the (d − 1)-dimensional balls SL [recall the definition in (3.6)]
eventually meet every component that touches F0, so that

[#{infinite components intersecting F0} ≥ M]
⊆ ⋃

L≥0

[#{inf. comp. intersecting SL} ≥ M]

and for a suitable choice of L0,

P
[
#{infinite components intersecting SL0} � M

]
> 0.(3.10)

On the event in brackets above, it is possible to find an exiting M-tuple of S̄L0

at level u, and extract from it an exiting triple satisfying (3.7).
Since the number of possible choices for this triple is finite, we can find de-

terministic z1, z2 and z3 in ∂extSL0 (with |zi − zj | ≥ 100d for i �= j ) that are an
exiting triple of S̄L0 at level u with positive probability. �

We now begin the construction of the trifurcation associated to this triple.
Roughly speaking, we will use the interlacement paths to build tunnels connecting
the zi ’s to some point y in SL0 [recall from (3.6), that SL0 is a (d − 1)-dimensional
l∞-ball]. What we now describe are the paths (γi)i=1,2,3 that are going to be the
base for the construction of such tunnels.

Each γi starts at the point zi (∈ ∂extSL0 ). In the first step, the path γi goes from
zi to its unique neighbor in SL0 . In the case this path did not reach the smaller ball
SL0−1, it enters SL0−1 using as few steps as possible (at most d − 1). Now, one can
easily continue these paths from their entrance points in SL0−1 (that are still far
from each other) to a common point y without leaving SL0−1 and in such a way
that H \ {y} has three connected components, where H = ⋃

i Range(γi).
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Our aim now is to fill the region C = S̄L0 \ H that surrounds the γi’s using
the paths of the interlacements. To do this, we first show that C is connected by
partitioning it into the following four subsets:

“top” T = C ∩ (SL0 + e1),

“bottom” B = C ∩ (SL0 − e1),

“kernel” K = C ∩ SL0,

“sides” E = C \ (T ∪ B ∪ K).

Since T and B are (d − 1)-dimensional l∞-balls with at most three mutually dis-
tant points removed, they are connected. Every point of K is neighbor to both T
and B and since K is nonempty, T , B and K belong to the same component
of C. Finally, we show that all the components in the set E are connected in C to
the kernel K .

If d ≥ 4, each of the 2d − 2 “faces” of E is a connected set just as T and B
are. Indeed, these “faces” are (d − 2)-dimensional l∞-balls with at most three far
apart points removed. In this case, since in the construction of the paths γi we
allowed them to cover at most 3(d − 1) points of SL0 \ SL0−1, we have at least
(2L0 + 1)(d−2) − 3 − 3(d − 1) > 0 points in each of these faces that are neighbors
to K .

If d = 3, the set E is given by the union of four segments with at most three
points removed. After this removal, each of them splits into at most four smaller
segments. Consider one of these smaller segments which we denote by P . We
show that P is connected to K by considering two distinct cases. If the length
of P is greater than or equal to 100, we conclude as in the paragraph above that it
has at least 100 − 3 · (3 − 1) > 0 points in the neighborhood of K . If the length
of P is smaller than 100, with (3.7) we conclude that P is a segment determined
in one extreme by one of the points zi ’s and in the other extreme by the end of one
of the four segments of length 2L0 + 1 that cover E . By the particular construction
we chose, the path associated with the point zi in the extreme of P does not visit
any of the neighbors of P in SL0 . Again by (3.7) we conclude that the other two
points zi are far from P and their respective paths γi’s spend at most their first
d − 1 steps out of SL0−1. Hence all the neighbors of P in SL0 belong to K .

Now we show how the connectedness of C proved above allows us to cover it
with the interlacement paths. It implies, for instance, that for every pair of points
x and y in ∂extSL0 \ {z1, z2, z3}, there exists a piece of path αx,y connecting x and
y and with Range(αx,y) = C.

We claim that it is possible to define a map φ3 :W ∗̄
SL0

→ W ∗̄
SL0

such that

given a path w∗ for which all entrance and departure points in S̄L0

belong to C, φ3(w
∗) has the same range as w∗ out of S̄L0 and

Range(φ3(w
∗)) ∩ S̄L0 = C.

(3.11)
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Indeed, if w∗ satisfies the above property, one simply replaces all portions of the
path performed inside S̄L0 by the piece α (as above) corresponding to the entrance
and departure points of this portion in S̄L0 . We set φ3 as the identity if w∗ does not
satisfy the mentioned property.

We emphasize that the w∗
i with ui ≤ u appearing in a point measure ω ∈ A3

[see (2.10)] have the property that all its entrance and departure points of S̄L0 are
distinct from z1, z2 and z3, and hence belong to C.

Extend φ3 as the identity out of W ∗̄
SL0

. Using (2.8) we conclude that φ3 ◦ ν is

absolutely continuous with respect to ν. Defining �3 as in (3.2) with φ1 replaced
by φ3, we note that also �3 ◦ P is absolutely continuous with respect to P and on
the event �3(A3), y is a trifurcation point of Vu.

Since A3 has positive probability,

0 < P(A3) ≤ �3 ◦ P[�3(A3)],
implying that P(�3(A3)) > 0. The rest of the argument for uniqueness fol-
lows the proof in [2] with help of the ergodicity of translations mentioned in
(1.2). This shows that P[Nu = ∞] = 0, completing the proof of Theorem 1.1.

�

An important consequence of the uniqueness of the infinite component is the
continuity of the percolation probability in the supercritical phase, stated in Corol-
lary 1.2. As mentioned in the Introduction, we follow the argument of van den
Berg and Keane [11] with slight modifications.

PROOF OF COROLLARY 1.2. First we prove the left-continuity of η. The prob-
ability of the event Cu

r = {the origin is connected by Vu to the boundary of the
box K = B(0, r)} is a real analytic function of u as follows, for instance, from the
inclusion-exclusion formula (2.17) of [8].

Observe that in the notation of (1.3),

η(u) = P

[⋂
r≥1

Cu
r

]
= lim

r→∞ P[Cu
r ](3.12)

is a decreasing limit of continuous functions and hence is upper-semicontinuous
on R+. Since it is monotone nonincreasing, η is left-continuous on [0,∞).

To prove the right-continuity of η in [0, u∗), we need to understand the behavior
of the event Cu∞ = ⋂

r≥1 Cu
r for u in this interval. From now on, take a fixed u <

u∗. By the continuity of P and the observation that Cv∞ is a nonincreasing family
of events with respect to v, we have

lim
v↓u

η(v) = lim
v↓u

P[Cv∞] = P

[ ⋃
v>u

Cv∞

]
,(3.13)
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and all we need to prove is that this limit is in fact η(u), or equivalently, that

P

[
Cu∞

∖( ⋃
v>u

Cv∞

)]
= 0.(3.14)

Fix a vo in (u,u∗). Recalling the definition in (2.10), we consider the intersec-
tion of Cu∞ with

B =
{
ω = ∑

i

δ(w∗
i ,ui ) ∈ �; and there exist Ju and J vo,

(3.15)

unique infinite components of Vu and Vvo respectively

}
.

In view of Theorem 1.1, B is an almost sure event. As a step toward (3.14), we
first show that

B ∩ Cu∞ ⊂ ⋃
v>u

Cv∞.(3.16)

By the uniqueness required in (3.15), for ω ∈ B , J vo ⊂ Ju. Hence, whenever
ω ∈ B ∩ Cu∞, we can find a finite path τ in Ju, connecting J vo to the origin. It
is clear by (2.10) that the number of pairs (w∗

i , ui) with ui < vo, such that w∗
i

touches τ , is finite. Moreover, because Range(τ ) ⊂ Vu, all the ui’s in the pairs
above are bigger than u, so that their infimum is bigger than u. Then, for parame-
ters v between u and this infimum, the origin belongs to an infinite component.
In other words, ω ∈ Cv∞, so that B ∩ Cu∞ ⊂ (

⋃
v>u Cv∞) and (3.16) follows. The

claim (3.14) is now a direct consequence of (3.16) and P[B] = 1. �

REMARK 3.5. (1) According to Remark 1.4 of [8], the construction of random
interlacements can be straightforwardly generalized to other transient weighted
graphs. It is a natural question whether the results of this paper can be achieved in
some other situations. For instance, in what context does Lemma 3.2 hold? Clearly
the argument presented here is very specific to Z

d .
(2) An important way to extend Theorem 1.1 is to give a quantitative analo-

gous result for the supercritical phase. One could be interested, for example, in
the decay with n, of the probability that inside B(0, n) one can find two distinct
components of diameter at least α · n, for α > 0.

(3) One can also be interested in the question of simultaneous uniqueness.
More precisely, is it true that P-a.s. there exists at most one infinite component in
the vacant set at level u for every parameter u > 0? This is known to be true for
Bernoulli independent percolation in several contexts; see, for instance, [5].
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