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THE ASYMPTOTIC DISTRIBUTION AND BERRY–ESSEEN BOUND
OF A NEW TEST FOR INDEPENDENCE IN HIGH DIMENSION

WITH AN APPLICATION TO STOCHASTIC OPTIMIZATION

BY WEI-DONG LIU,1 ZHENGYAN LIN1 AND QI-MAN SHAO2

Zhejiang University, Zhejiang University and HKUST

Let X1, . . . ,Xn be a random sample from a p-dimensional population
distribution. Assume that c1nα ≤ p ≤ c2nα for some positive constants c1, c2
and α. In this paper we introduce a new statistic for testing independence of
the p-variates of the population and prove that the limiting distribution is the
extreme distribution of type I with a rate of convergence O((logn)5/2/

√
n).

This is much faster than O(1/ logn), a typical convergence rate for this type
of extreme distribution. A simulation study and application to stochastic op-
timization are discussed.

1. Introduction and main results. Consider a p-variable population repre-
sented by a random vector X = (X1, . . . ,Xp) with the covariance matrix � and
the correlation coefficient matrix R and let {X1, . . . ,Xn} be a random sample of
size n from the population. In the applications of multivariate analysis in the cen-
tury of data, both the dimension p and the sample size n can be very large, p may
be comparable with n or even much larger than n; see, for example, Donoho [4],
and Fan and Li [11]. Since classical limit theorems for fixed p may not be valid for
large p, it is necessary to develop new limiting theorems for large p. Whether the
p-variables are independent is usually a primary step because independence seems
to be a granted assumption for many limiting theorems. When n/p → γ > 0 and
the population distribution is normal, several statistics have been developed to test
the complete independence of the p components of X. Johnstone [15] uses the
largest eigenvalue of the sample covariance matrix and Ledoit and Wolf [17] use
quadratic forms of the sample covariance matrix eigenvalues to test the null hy-
pothesis H0 :� = Ip , where Ip is the p ×p identity matrix, while Schott [20] uses
the sums of sample correlation coefficient squares to test H0 : R = Ip . When the
normality is not present, Jiang [14] constructs a test statistic based on the largest
entries of the sample correlation matrix. Write

Xk = (Xk,1,Xk,2, . . . ,Xk,p), 1 ≤ k ≤ n
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and let

L̃n = max
1≤i<j≤p

∣∣ρ̃(n)
i,j

∣∣,
where

ρ̃
(n)
i,j =

∑n
k=1(Xk,i − X̄

(n)
i )(Xk,j − X̄

(n)
j )

(
∑n

k=1(Xk,i − X̄
(n)
i )2)1/2(

∑n
k=1(Xk,j − X̄

(n)
j )2)1/2

and X̄
(n)
i = ∑n

k=1 Xk,i/n. Jiang [14] proves the following limit theorem concern-
ing the test statistic L̃n:

If n/p → γ ∈ (0,∞) and E|X11|r < ∞ for some r > 30, then

lim
n→∞ P(nL̃2

n − 4 logp + log2 p ≤ y) = exp
(−e−y/2/

√
8π

)
(1.1)

for y ∈ R, where and in the sequel logx = ln max(x, e) and log2 x = log(logx).
Zhou [21] shows that the moment condition E|X1,1|r < ∞ for some r > 30 can

be weakened to

x6P(|X1,1X1,2| ≥ x) → 0 as x → ∞.(1.2)

The limit distribution appearing in (1.1) is called the extreme distribution of
type I. It seems a common belief that the convergence rate of this type of ex-
treme distribution is typically slow (see Hall [13]). In fact, we shall prove [see
Theorem 1.2 and (1.11)] that even when X1,1 has the standard normal distri-
bution the rate of convergence is of order of O(log2 n/ logn). The main pur-
pose of this paper is to introduce a modified test statistic and show that the new
one also has an extreme limit distribution of type I, but with a rate of conver-
gence of O((logn)5/2/

√
n). We shall also prove that the approximation rate of

P(nL̃2
n − 4 logp + log2 p ≤ y) to exp(−p2−p

2 P(χ2(1) ≥ 4 logp − log2 p + y)) in-
stead of the final limit exp(−e−y/2/

√
8π) is indeed of order of O((logn)5/2/

√
n).

This indicates that when a statistic has an extreme limiting distribution, one should
use some “intermediate” approximation, not the final limiting distribution to ap-
proximate the distribution of the statistic. Extreme limiting distributions are im-
portant in various applications, including assessing risk for highly unusual events,
hydrologic assessment, analysis of network simulation and engineering (see [12]
and [16]). These results are partially motivated by the need for new approaches to
applications of these types in practice.

Throughout this paper let H0 be the null hypothesis that the p components of
the population X are independent and have the same distribution, and let Xk =
(Xk,1,Xk,2, . . . ,Xk,p),1 ≤ k ≤ n, be a random sample from the population X.
Define

L2
n = max

1≤i<j≤p
r2
i,j ,(1.3)
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where

r2
i,j = (2A2

n,i,j + 2B2
n,i,j )/Dn,i,j ,

An,i,j =
[n/2]∑
k=1

(
Xk,i − X̄

(n)
i

)(
Xk,j − X̄

(n)
j

)
,

(1.4)

Bn,i,j =
n∑

k=[n/2]+1

(
Xk,i − X̄

(n)
i

)(
Xk,j − X̄

(n)
j

)
,

Dn,i,j =
n∑

k=1

(
Xk,i − X̄

(n)
i

)2
n∑

k=1

(
Xk,j − X̄

(n)
j

)2
,

where [n/2] denotes the integer part of n/2. Our test statistic is chosen as

Wn := nL2
n − 4 logp.(1.5)

It is easy to see that r2
i,j is a consistent estimator of the square of the correlation

coefficient between Xi and Xj and that r2
i,j ≥ (ρ̃

(n)
i,j )2.

Instead of assuming that n and p have the same order, we consider a more
general case. Assume

c1n
α ≤ p ≤ c2n

α,(1.6)

where c1, c2 and α are positive constants.
Our first result shows that the Wn has an extreme limiting distribution of type I

under a weaker moment assumption than (1.2) and the error of the approximation
is of order of O((logn)5/2/

√
n) under E|X1,1|3+4α < ∞ and α > 3/4.

THEOREM 1.1. Assume that (1.6) is satisfied and that

x1+2αP
(|X1,1X1,2| ≥

√
x logx

) → 0 as x → ∞.(1.7)

Then under H0,

P(Wn ≤ y) → exp
(
−1

2
exp

(
−y

2

))
(1.8)

as n → ∞ for any y ∈ R. If E|X1,1|3+4α < ∞ and α > 3/4, then

sup
y∈R

∣∣∣∣P(Wn ≤ y) − exp
(
−1

2
exp

(
−y

2

))∣∣∣∣ ≤ Cn−1/2(logn)5/2(1.9)

and C is a constant independent of n and p.

The next result shows that (1.1) remains valid under the assumption (1.7). More-

over, the convergence rate to exp(−p2−p
2 P(χ2(1) ≥ 4 logp − log2 p + y)) [χ2(1)

has a chi-square distribution with 1 degree of freedom] can also achieve the order
of O((logn)5/2/

√
n) when the 7th moment of X1,1 is finite.
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THEOREM 1.2. Under H0, if (1.6) and (1.7) are satisfied, then (1.1) holds. If
E|X1,1|3+4α < ∞ and α > 3/4, then

sup
y∈R

∣∣∣∣P(nL̃2
n − 4 logp + log2 p ≤ y)

− exp
(
−p2 − p

2
P
(
χ2(1) ≥ 4 logp − log2 p + y

))∣∣∣∣(1.10)

≤ Cn−1/2(logn)5/2.

One can show that (see a proof in Section 5) if α = 1 in (1.6), then

exp
(
−p2 − p

2
P
(
χ2(1) ≥ 4 logp − log2 p + y

)) − exp
(−e−y/2/

√
8π

)
(1.11)

∼ log2 n

8 logn

1√
8π

exp
(
−y

2
− 1√

8π
exp

(
−y

2

))
.

So the rate of convergence in (1.1) is of order of O(log2 n/ logn).
The following remarks are noted.

REMARK 1.1. The logarithmic term (logn)5/2 in (1.10) may not be sharp.
Since our aim is to get the main order n−1/2, we will not seek the optimality of the
logarithmic term in this paper.

REMARK 1.2. It is not necessary to require p and n have the tight rela-
tion (1.6). For example, when (1.6) is replaced by

c1n
α1 ≤ p ≤ c2n

α

for some positive constants c1, c2, α1 and α, and assume that E|X1,1|(3+4α)∨r < ∞
for some r > 6, then, following the proofs of Theorems 1.1 and 1.2, we have

sup
y∈R

∣∣∣∣P(Wn ≤ y) − exp
(
−1

2
exp

(
−y

2

))∣∣∣∣ ≤ C
(
n−1/2(logp)5/2 + p−1+ε)

and

sup
y∈R

∣∣∣∣P(nL̃2
n − 4 logp + log2 p ≤ y)

− exp
(
−p2 − p

2
P
(
χ2(1) ≥ 4 logp − log2 p + y

))∣∣∣∣
≤ C

(
n−1/2(logp)5/2 + p−1+ε)

for ε > 0, where the constant C may depend on ε. When logp is of order of nr

(0 < r ≤ 1), we shall discuss the case in our future paper.
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REMARK 1.3. It is not necessary to assume that the p components
of X are identically distributed in Theorems 1.1 and 1.2. For example, if
infn min1≤j≤p EX2

1,j > 0 and

x1+2α sup
n≥1

max
1≤i<j≤p

P
(|X1,iX1,j | ≥

√
x logx

) → 0,

then (1.8) remains valid. If, in addition, supn max1≤j≤p E|X1,j |3+4α < ∞, α >

3/4, then (1.9) and (1.10) hold.

The paper is organized as follows. In Section 2 we conduct a simulation study
and give a simple application of Theorem 1.2 to the sparsest solution of large
underdetermined systems of linear equations. In Section 3 we present a general
theorem from which Theorems 1.1 and 1.2 can be derived easily. An outline of
the proof of the general result along with five propositions is given in Section 5,
while the detailed proofs of the propositions are postponed to Section 6. Proofs of
Theorems 1.1 and 1.2 are given in Section 4.

Throughout the paper, C will denote a positive constant that doesn’t depend
on n and p but may be different at each appearance.

2. A simulation study and application to stochastic optimization. In this
section we give a simulation study for performance of Wn and L̃n and an appli-
cation to the sparsest solution of large underdetermined systems of linear equa-
tions.

2.1. A simulation study. The performance of the test statistics Wn and L̃n

is carried out via simulation. Estimates of the actual significance levels are ob-
tained from 5000 independent simulations with the nominal significance level
α = 0.05.

The simulation results for tests of H0 based on Wn in Theorem 1.1, L̃n (de-
noted by L̃new) in Theorem 1.2 and L̃n (denoted by L̃old) in (1.1) are given in
Table 1 when X1,1 has a standard normal distribution, and in Table 2 when X1,1
has a t-distribution with 7 degrees of freedom. The estimated significance levels
are usually lower than the nominal level 0.05, which indicates that the tests are
conservative. The performances of Wn and L̃new are comparable and both are well
when n is larger than p.

2.2. An application to stochastic optimization. We apply Theorem 1.2 to the
problem of finding sparse representations of single measurement vectors (SMV)
in an over-complete dictionary. The SMV problem can be described as follows.
Given a single measurement vector b and a dictionary A, one wants to solve the
system of equations Ax = b, where A is a n × p matrix, x is a p-variable vector
and b is a n-variable vector. It is usually assumed that n 
 p. A sparse represen-
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TABLE 1
Estimated significance levels when α = 0.05 and X1,1 ∼ N(0,1)

p Test statistics n = 16 n = 32 n = 64 n = 128 n = 256

4 Wn 0.0484 0.0580 0.0496 0.0520 0.0566
L̃new 0.0318 0.0458 0.0498 0.0474 0.0532
L̃old 0.0140 0.0232 0.0284 0.0256 0.0292

8 Wn 0.0190 0.0332 0.0412 0.0524 0.0440
L̃new 0.0104 0.0316 0.0368 0.0462 0.0462
L̃old 0.0066 0.0198 0.0222 0.0258 0.0338

16 Wn 0.0094 0.0248 0.0356 0.0436 0.0478
L̃new 0.0012 0.0112 0.0316 0.0420 0.0482
L̃old 0.0002 0.0130 0.0246 0.0312 0.0338

32 Wn 0.0032 0.0188 0.0366 0.0412 0.0432
L̃new 0.0000 0.0094 0.0228 0.0368 0.0376
L̃old 0.0000 0.0044 0.0212 0.0280 0.0364

64 Wn 0.0010 0.0114 0.0296 0.0402 0.0460
L̃new 0.0000 0.0020 0.0100 0.0292 0.0356
L̃old 0.0000 0.0026 0.0160 0.0256 0.0358

128 Wn 0.0004 0.0082 0.0218 0.0350 0.0568
L̃new 0.0000 0.0000 0.0060 0.0262 0.0380
L̃old 0.0000 0.0000 0.0060 0.0170 0.0362

tation means that vector x has a small number of nonzero components. Examples
of such underdetermined systems of equations include array signal processing,
inverse problems and genomic data analysis. We refer to [2, 6–8] and [9] and ref-
erences therein for a comprehensive description of many important applications of
a SMV problem.

A sparse representation can be found by solving the following optimization
problem:

min‖x‖0, s.t. Ax = b,(Q0)

where the quantity ‖x‖0 denotes the number of nonzero elements in the vector x.
The problem (Q0) is essentially a combinatorial optimization problem, which, in
general, is extremely difficult to solve. The above problem can be convexified as a
	1-norm minimization problem, and solved via linear programming. The 	1-norm
minimization problem is

min‖x‖1, s.t. Ax = b,(Q1)

where ‖x‖1 is the sum of the absolute values of the elements of vector x. It has
been proved that the solutions between (Q0) and (Q1) are equivalent under various
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TABLE 2
Estimated significance levels when α = 0.05 and X1,1 ∼ t7

p Test statistics n = 16 n = 32 n = 64 n = 128 n = 256

4 Wn 0.0484 0.0580 0.0496 0.0520 0.0566
L̃new 0.0408 0.0466 0.0514 0.0504 0.0522
L̃old 0.0192 0.0242 0.0286 0.0276 0.0300

8 Wn 0.0374 0.0560 0.0624 0.0574 0.0586
L̃new 0.0084 0.0332 0.0468 0.0440 0.0470
L̃old 0.0054 0.0230 0.0290 0.0358 0.0372

16 Wn 0.0292 0.0536 0.0750 0.0676 0.0622
L̃new 0.0012 0.0186 0.0324 0.0436 0.0446
L̃old 0.0004 0.0146 0.0308 0.0336 0.0366

32 Wn 0.0144 0.0682 0.0886 0.0758 0.0664
L̃new 0.0000 0.0102 0.0294 0.0414 0.0444
L̃old 0.0000 0.0062 0.0244 0.0336 0.0436

64 Wn 0.0066 0.0816 0.1122 0.1010 0.0670
L̃new 0.0000 0.0040 0.0266 0.0382 0.0472
L̃old 0.0000 0.0042 0.0196 0.0352 0.0388

128 Wn 0.0000 0.1010 0.1240 0.1138 0.0820
L̃new 0.0000 0.0002 0.0184 0.0354 0.0480
L̃old 0.0000 0.0002 0.0178 0.0342 0.0438

conditions. For example, letting G = AT A and M = max1≤i,j≤p,i �=j |G(i, j)|, if
‖x‖0 < (1 + M−1)/2, then x is the unique solution of (Q1) (for b = Ax) and this
solution is identical to the unique solution of (Q0) [3]. Here we assume that A is a
random matrix. Let n,p satisfy the condition in Remark 1.2 and {Xk,i, k, i ≥ 1} be
independent centered random variables satisfying the conditions in Remark 1.3.
Define the normalized (k, i) element of A by Yk,i := Xk,i/(

∑n
k=1 X2

k,i)
1/2. Fol-

lowing the proof of Theorem 1.2, we see that (1.10) remains valid for M2 = M2
n ,

where

M2
n = max

1≤i,j≤p,i �=j
|Gi,j |2 = max

1≤i<j≤p

(
∑n

k=1 Xk,iXk,j )
2

(
∑n

k=1 X2
k,i)(

∑n
k=1 X2

k,j )
.

Hence, (Q0) and (Q1) are equivalent with probability 1−α (0 < α < 1) for every x

with fewer than (1 + mα)/2 nonzeros, where mα = √
n/(yα + 4 logp − log2 p)

and yα is the solution of

exp
(
−p2 − p

2
P
(
χ2(1) ≥ 4 logp − log2 p + yα

)) = 1 − α.
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When Xij above are i.i.d. standard normal random variables, the result is similar
to that given in [5].

3. A general result. Instead of proving Theorems 1.1 and 1.2 separately, we
give a general result in this section. Let d be a positive integer and {X,X

(m)
k,i ;k, i ≥

1,1 ≤ m ≤ d} be an array of i.i.d. random variables. Put

Xk,i,j = (
Y

(1)
k,i,j , . . . , Y

(d)
k,i,j

)
, Y

(m)
k,i,j = X

(m)
k,i X

(m)
k,j , i, j, k ≥ 1,1 ≤ m ≤ d

and

Wp,n = max
1≤i<j≤p

∥∥∥∥∥
n∑

k=1

Xk,i,j

∥∥∥∥∥,
where ‖ · ‖ denotes the Euclidean norm in Rd .

THEOREM 3.1. Suppose that EX = 0 and EX2 = 1. Let X′ be an independent
copy of X, and

sup
x

x1+2αP
(|XX′| ≥

√
x logx

)
< ∞.(3.1)

Then for any 0 < ε ≤ 10−4 there exists a finite constant C such that

sup
y∈R

∣∣∣∣P(
W 2

p,n

n
− αp ≤ y

)
− exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
≤ Cp−1+20

√
ε + C

(logn)5/2

n1/2 E|XX′|3I{|XX′| ≤ √
n/(logn)4}

(3.2)

+ Cn1+2αP
(|XX′| ≥ d−1/2ε

√
n logp

)
,

where αp = 4 logp−(2−d) log2 p and χ2(d) has a chi-square distribution with d

degrees of freedom.

Now, set

An,i =
d∑

m=1

n∑
k=1

(
X

(m)
k,i

)2
, 1 ≤ i ≤ p

and Qn,i,j = An,iAn,j ,

L2
p,n = max

1≤i<j≤p

‖∑n
k=1 Xk,i,j‖2

Qn,i,j

.
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THEOREM 3.2. Under the conditions of Theorem 3.1 and EX4 < ∞, we have,
for any 0 < ε ≤ 10−4,

sup
y∈R

∣∣∣∣P(d2nL2
p,n − αp ≤ y) − exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
≤ Cp−1+20

√
ε + C

(logn)5/2

n1/2(3.3)

+ Cn1+2αP
(|XX′| ≥ d−1/2ε

√
n logp

) + τn,

where

τn = Cnp20
√

εP
(
|X| ≥ n1/4

(logp)1/4

)
.

The proofs of Theorems 3.1 and 3.2 are postponed to Section 5.

4. Proofs of Theorems 1.1 and 1.2. We are now ready to see that Theo-
rems 1.1 and 1.2 are two special cases of Theorems 3.1 and 3.2.

PROOF OF THEOREM 1.1. For the sake of simplicity, we assume that n is
even. Otherwise use [n/2] instead of n/2 below. Without loss of generality, we
assume EX1,1 = 0 and EX2

1,1 = 1. Set

Ãn,i,j =
n/2∑
k=1

Xk,iXk,j , B̃n,i,j =
n∑

k=n/2+1

Xk,iXk,j =
n/2∑
k=1

Xk+n/2,iXk+n/2,j ,

D̃n,i,j =
n∑

k=1

X2
k,i

n∑
k=1

X2
k,j .

Take d = 2 in Theorem 3.1. Since (Ãn,i,j )
2 + (B̃n,i,j )

2 = ‖(Ãn,i,j , B̃n,i,j )‖2, by
Theorem 3.1,

P
(

max
1≤i<j≤p

2(Ãn,i,j )
2 + 2(B̃n,i,j )

2

n
− 4 logp ≤ y

)
(4.1)

= P
(2W 2

p,n/2

n
− 4 logp ≤ y

)
→ e−e−y/2/2

and hence,

max
1≤i<j≤p

|Ãn,i,j | = OP
(√

n logn
)

and

(4.2)
max

1≤i<j≤p
|B̃n,i,j | = OP

(√
n logn

)
.
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Noting that condition (1.7) implies E|X1,1|2+4α−ε < ∞ for any ε > 0 (see
Lemma 6.4), we can show, by Lemma 6.1,

max
1≤i≤p

|∑n
k=1 Xk,i |

n
= OP

(√
logn

n

)
(4.3)

and

max
1≤i≤p

|∑n
k=1 X2

k,i − n|
n

= OP(n−δ),(4.4)

for some δ > 0. Observe that

r2
i,j = 2

(
∑n/2

k=1 Xk,iXk,j )
2 − 2X̄1,i,j

∑n/2
k=1 Xk,iXk,j + (X̄1,i,j )

2

[∑n
k=1 X2

k,i − n(X̄
(n)
i )2][∑n

k=1 X2
k,j − n(X̄

(n)
j )2]

+ 2
(
∑n

k=n/2+1 Xk,iXk,j )
2 − 2X̄2,i,j

∑n
k=n/2+1 Xk,iXk,j + (X̄2,i,j )

2

[∑n
k=1 X2

k,i − n(X̄
(n)
i )2][∑n

k=1 X2
k,j − n(X̄

(n)
j )2] ,

where

X̄1,i,j = 2−1n
(
X̄

(n/2)
i X̄n

j + X̄
(n)
i X̄

n/2
j − X̄

(n)
i X̄n

j

) = OP(logn),

X̄2,i,j = 2−1n

(
2n−1

n∑
k=n/2+1

Xk,iX̄
n
j + 2n−1X̄

(n)
i

n∑
k=n/2+1

Xk,j − X̄
(n)
i X̄n

j

)

= OP(logn).

(1.8) now follows from (4.1)–(4.4).
Now we prove (1.9). Let En,i,j = (An,i,j )

2 + (Bn,i,j )
2. We first show that Dn,i,j

in the denominator of r2
i,j can be replaced by D̃n,i,j . Observe that∑n

k=1[(Xk,i − X̄
(n)
i )2 − X2

k,i]
n

= −(
∑n

k=1 Xk,i)
2

n2 .

We have, by Lemma 6.1,

P
(

max
1≤i≤p

∣∣∣∣
∑n

k=1[(Xk,i − X̄
(n)
i )2 − X2

k,i]
n

∣∣∣∣ ≥ 4
√

logn/n

)

≤ pP

(∣∣∣∣∣
n∑

k=1

Xk,1

∣∣∣∣∣ ≥ 2n

(
logn

n

)1/4
)

(4.5)

≤ Cn−1/2,

P
(

max
1≤i≤p

∣∣∣∣
∑n

k=1 X2
k,i − n

n

∣∣∣∣ ≥ 1

2

)
(4.6)

≤ Cn−1/2−α ≤ Cn−1/2
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and

P

(
max

1≤i≤p

∣∣∣∣∣
n∑

k=1

Xk,i

∣∣∣∣∣ ≥ 4
√

n logn

)
≤ Cn−1/2.(4.7)

Therefore,

P
(

2n max
1≤i<j≤p

En,i,j

D̃n,i,j

≤ (
1 − 8

√
logn/n

)
(y + αp)

)
− Cn−1/2

≤ P(Wn ≤ y)

≤ P
(

2n max
1≤i<j≤p

En,i,j

D̃n,i,j

≤ (
1 + 8

√
logn/n

)
(y + αp)

)
+ Cn−1/2.

Now write Fn,i,j = (Ãn,i,j , B̃n,i,j ). Note that∣∣‖Fn,i,j‖ −
√

A2
n,i,j + B2

n,i,j

∣∣ ≤ ‖(X̄1,i,j , X̄2,i,j )‖.
This together with (4.7) leads to

P
(√

2n max
1≤i<j≤p

‖Fn,i,j‖
D̃

1/2
n,i,j

≤ (
1 − 8

√
logn/n

)1/2
(y + αp)1/2

− C logn/
√

n

)
− Cn−1/2

≤ P(Wn ≤ y)

≤ P
(√

2n max
1≤i<j≤p

‖Fn,i,j‖
D̃

1/2
n,i,j

≤ (
1 + 8

√
logn/n

)1/2
(y + αp)1/2

+ C logn/
√

n

)
+ Cn−1/2.

Take d = 2 in Theorem 3.2. It is easily seen that P(2nmax1≤i<j≤p
‖Fn,i,j‖2

D̃n,i,j
≤

x) = P(2nL2
p,n/2 ≤ x) for any x ∈ R. Write

ln±(y) =
[(

1 ± 8

√
logn

n

)1/2

(y + αp)1/2 ± C
logn

n1/2

]2

.

We have

P
(
2nL2

p,n/2 ≤ ln−(y)
) − Cn−1/2

≤ P(Wn ≤ y)(4.8)

≤ P
(
2nL2

p,n/2 ≤ ln+(y)
) + Cn−1/2.
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By Theorem 3.2, we obtain

sup
y∈R

∣∣∣∣P(
2nL2

p,n/2 ≤ ln+(y)
) − exp

(
−1

2
exp

(
−y

2

))∣∣∣∣
≤ sup

y∈R

∣∣∣∣exp
(
−p2 − p

2
P
(
χ2(2) ≥ ln+(y)

)) − exp
(
−1

2
exp

(
−y

2

))∣∣∣∣
+ Cn−1/2(logn)5/2 + Cp−1+20

√
ε

+ dn1+2αP
(|XX′| ≥ 2−1ε

√
n logp

) + τn

=: sup
y∈R

Pn+(y) + Cn−1/2(logn)5/2,

where

Pn+(y) =
∣∣∣∣exp

(
−p2 − p

2
e−ln+(y)/2

)
− exp

(
−1

2
exp

(
−y

2

))∣∣∣∣.
Note that

sup
y≤−2 log2 n8

ln+(y) − αp ≤ −2 log2 n8 + C
(logn)3/2

n1/2 .(4.9)

This implies

sup
y≤−2 log2 n8

Pn+(y) ≤ Cn−3.

Also, we can get

sup
y≥2 logn

ln+(y) − αp ≥ 2 logn.(4.10)

Therefore, following the inequality 1−exp(−1
2 exp(−y

2 )) ≤ C exp(−y
2 ) for y ≥ 1,

sup
y≥2 logn

Pn+(y) ≤ Cn−1/2.

A direct elementary calculation gives

sup
−2 log2 n8≤y≤2 logn

|ln+(y) − αp − y| ≤ C
(logn)3/2

n1/2 ,(4.11)

hence, by the inequality |ex − 1| ≤ C|x| for |x| ≤ 1,

sup
−2 log2 n8≤y≤2 logn

Pn+(y) ≤ Cn−1/2(logn)5/2 + Cp−1 logn.

The above arguments yield

sup
y∈R

∣∣∣∣P(
2nL2

p,n/2 ≤ ln+(y)
) − exp

(
−1

2
exp

(
−y

2

))∣∣∣∣ ≤ Cn−1/2(logn)5/2.
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Similarly,

sup
y∈R

∣∣∣∣P(
2nL2

p,n/2 ≤ ln−(y)
) − exp

(
−1

2
exp

(
−y

2

))∣∣∣∣ ≤ Cn−1/2(logn)5/2.

The proof is now complete by (4.8) and the above two inequalities. �

PROOF OF THEOREM 1.2. We assume that EX1,1 = 0, EX2
1,1 = 1. The proof

of (1.1) is similar to that of (1.8), hence, is omitted. Now we prove (1.10). In view
of Lemma 6.1 and the proofs of Theorem 1.1, we have

exp
(
−p2 − p

2
P
(
χ2(1) ≥ ln−(y)

)) − Cn−1/2(logn)5/2

≤ P(nL̃2
n − αp ≤ y)

≤ exp
(
−p2 − p

2
P
(
χ2(1) ≥ ln+(y)

)) + Cn−1/2(logn)5/2.

Moreover, it follows from (4.9), (4.10) and (4.11) that

sup
y≤−2 log2 n8

∣∣∣∣exp
(
−p2 − p

2
P
(
χ2(1) ≥ ln±(y)

))

− exp
(
−p2 − p

2
P
(
χ2(1) ≥ αp + y

))∣∣∣∣ ≤ Cn−1/2,

sup
y≥2 logn

∣∣∣∣exp
(
−p2 − p

2
P
(
χ2(1) ≥ ln±(y)

))

− exp
(
−p2 − p

2
P
(
χ2(1) ≥ αp + y

))∣∣∣∣ ≤ Cn−1/2,

and

sup
−2 log2 n8≤y≤2 logn

∣∣∣∣exp
(
−p2 − p

2
P
(
χ2(1) ≥ ln±(y)

))

− exp
(
−p2 − p

2
P
(
χ2(1) ≥ αp + y

))∣∣∣∣ ≤ Cn−1/2(logn)5/2.

This completes the proof of Theorem 1.2. �

5. Proof of the general result. In this section we outline the proof of the
general result, Theorems 3.1 and 3.2.
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5.1. The truncation and notation. We first truncate Xk,i,j . Let ε be a small
positive number which will be specified later and put

Y
(m)
k,i,j = X

(m)
k,i X

(m)
k,j ,

Ỹ
(m)
k,i,j = Y

(m)
k,i,j I

{∣∣Y (m)
k,i,j

∣∣ ≤ d−1/2ε
√

n logp
}
,

Ŷ
(m)
k,i,j = Y

(m)
k,i,j I

{∣∣Y (m)
k,i,j

∣∣ ≤ √
n/(logn)4}

,(5.1)

Y̆
(m)
k,i,j = Y

(m)
k,i,j I

{√
n/(logn)4 <

∣∣Y (m)
k,i,j

∣∣ ≤ d−1/2ε
√

n logp
}
,

1 ≤ k ≤ n,1 ≤ i, j ≤ p,1 ≤ m ≤ d

and

X̃k,i,j = (
Ỹ

(1)
k,i,j , . . . , Ỹ

(d)
k,i,j

)
, X̂k,i,j = (

Ŷ
(1)
k,i,j , . . . , Ŷ

(d)
k,i,j

)
,

X̆k,i,j = (
Y̆

(1)
k,i,j , . . . , Y̆

(d)
k,i,j

)
, 1 ≤ k ≤ n, 1 ≤ i, j ≤ p,

(5.2)

T̃p,n = max
1≤i<j≤p

∥∥∥∥∥
n∑

k=1

X̃k,i,j

∥∥∥∥∥, T̂p,n = max
1≤i<j≤p

∥∥∥∥∥
n∑

k=1

X̂k,i,j

∥∥∥∥∥,
L̃2

p,n = max
1≤i<j≤p

‖∑n
k=1 X̃k,i,j‖2

Qn,i,j

.

5.2. Auxiliary results. To prove the general result, we first collect some auxil-
iary results. As in many previous works on the Poisson approximation, we apply
Lemma 5.1 below, which is a special case of Theorem 1 of Arratia, Goldstein and
Gordon [1].

LEMMA 5.1 (Arratia, Goldstein and Gordon [1]). Let {ηα,α ∈ I } be random
variables on an index set I . For each α ∈ I , let Bα be a subset of I with α ∈ Bα .
For a given t ∈ R, set λ = ∑

α∈I P(ηα > t). Then∣∣∣∣P(
max
α∈I

ηα ≤ t

)
− e−λ

∣∣∣∣ ≤ (1 ∧ λ−1)(b1 + b2 + b3),(5.3)

where

b1 = ∑
α∈I

∑
β∈Bα

P(ηα > t)P(ηβ > t),

b2 = ∑
α∈I

∑
β∈Bα,β �=α

P(ηα > t, ηβ > t),

b3 = ∑
α∈I

E
∣∣P(

ηα > t |σ(ηβ,β /∈ Bα)
) − P(ηα > t)

∣∣
and σ(ηβ,β /∈ Bα) is the σ -algebra generated by {ηβ,β /∈ Bα}. In particular, if ηα

is independent of {ηβ,β /∈ Bα} for each α, then b3 = 0.
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The following estimates are also essential for our proof.

PROPOSITION 5.1. Under the conditions of Theorem 3.1, we have

sup
−2 log2 nθ≤y≤2 logn

∣∣∣∣∣P
(∥∥∥∥∥

n∑
k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn

)
− P

(
χ2(d) ≥ αp + y

)∣∣∣∣∣
(5.4)

≤ C
(logn)5/2

p2n1/2 E|XX′|3I{|XX′| ≤ √
n/(logn)4} + Cp−3,

where yn =
√

(αp + y)(1 + O(
√

logn/n)), θ = 8�(d/2), and �(·) is the gamma
function.

PROPOSITION 5.2. Under the conditions of Theorem 3.1, we have

sup
y≤−2 log2 nθ

∣∣∣∣P(
T̃ 2

p,n

n
− αp ≤ y

)
− exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
≤ Cn−2 + Cp−1+20

√
ε.

PROPOSITION 5.3. Under the conditions of Theorem 3.1, we have

sup
y≥2 logn

∣∣∣∣P(
T̃ 2

p,n

n
− αp ≤ y

)
− exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
≤ C

(logn)5/2

n1/2 E|XX′|3I{|XX′| ≤ √
n/(logn)4} + Cp−1.

PROPOSITION 5.4. Under the conditions of Theorem 3.1, for any sequence vn

satisfying vn ∼ 2
√

n logp, we have

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ vn,

∥∥∥∥∥
n∑

k=1

X̃k,1,3

∥∥∥∥∥ ≥ vn

)

≤ Cp−4+20
√

ε.

PROPOSITION 5.5. Under the conditions of Theorem 3.2, we have

sup
y≤−2 log2 nθ

∣∣∣∣P(d2nL̃2
p,n − αp ≤ y) − exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
(5.5)

≤ Cn−2 + Cp−1+20
√

ε
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and

sup
y≥2 logn

∣∣∣∣P(d2nL̃2
p,n − αp ≤ y) − exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
(5.6)

≤ C
(logn)5/2

n1/2 + τn.

Proofs of the propositions above will be given in Section 6.

5.3. Proof of Theorem 3.1. Clearly,

P(W 2
p,n �= T̃ 2

p,n) ≤ dP
(

max
1≤k≤n

max
1≤i<j≤p

∣∣Y (1)
k,i,j

∣∣ ≥ d−1/2ε
√

n logp

)
(5.7)

≤ Cnp2P
(|XX′| ≥ d−1/2ε

√
n logp

)
.

To prove Theorem 3.1, it suffices to show that

sup
y∈R

∣∣∣∣P(
T̃ 2

p,n

n
− αp ≤ y

)
− exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
(5.8)

≤ Cp−1+20
√

ε + C
(logn)5/2

n1/2 E|XX′|3I{|XX′| ≤ √
n/(logn)4}

.

Let I = {(i, j);1 ≤ i < j ≤ p} in Lemma 5.1. For α = (i, j) ∈ I , set

ηα =
∥∥∥∥∥

n∑
k=1

X̃k,i,j

∥∥∥∥∥
and Bα = {(k, l) ∈ I ; k = i or l = j}. Put t = √

nαp + ny. Noting that ηα is inde-
pendent of {ηβ,β /∈ Bα} for each α ∈ I , we have

|P(T̃p,n ≤ t) − e−λn | ≤ b1n + b2n,(5.9)

where

λn = (1/2)(p2 − p)P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t

)
,

b1n ≤ p3P2

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t

)
,

b2n ≤ p3P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t,

∥∥∥∥∥
n∑

k=1

X̃k,1,3

∥∥∥∥∥ > t

)
.
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Now (5.8) follows from (5.9) and Propositions 5.1–5.4.

5.4. Proof of Theorem 3.2. Assume that τn ≤ 1, otherwise (3.3) is trivial. It
suffices to show that

sup
y∈R

∣∣∣∣P(d2nL̃2
p,n − αp ≤ y) − exp

(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣
≤ Cp−1+20

√
ε + C

(logn)5/2

n1/2 + τn.

Following the proof of Theorem 3.1, by Lemma 5.1 again, we have

|P(d2nL̃2
p,n − αp ≤ y) − e−λ̃n | ≤ b̃1n + b̃2n,(5.10)

where

λ̃n = p2 − p

2
P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̃1,2

)
,

b̃1n ≤ 2p3P2

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̃1,2

)
,

b̃2n ≤ p(p2 − p)P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̃1,2,

∥∥∥∥∥
n∑

k=1

X̃k,1,3

∥∥∥∥∥ > t̃1,3

)

and

t̃i,j =
√

Qn,i,j

d2n
(αp + y).

Let

Ân,i =
d∑

m=1

n∑
k=1

(
X

(m)
k,i

)2
I

{(
X

(m)
k,i

)2 ≤
√

n

logp

}
,

Q̂n,i,j = Ân,iÂn,j , t̂i,j =
√

Q̂n,i,j

d2n
(αp + y).

The main idea of the proof is to replace Qn,i,j by Q̂n,i,j and Q̂n,i,j by some
nonrandom constants.

We use Lemma 6.1 and let δ = 1/4, M = 2, β = 1, a = 8D1(1 − Mδ)−1 logp

and x = 32 × 34d
√

n logp in (6.1). So �n,x,a = 0 and

P
(∣∣∣∣ Ân,1

dn
− EX2I

{
X2 ≤

√
n

logp

}∣∣∣∣ ≥ 32 × 34

√
logp

n

)
≤ Cp−4.
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Let

vn =
(
n(αp − 2 log2 nθ)

(
1 − EX2I

{
X2 >

√
n

logp

}
− 32 × 34

√
logp

n

))1/2

.

Then vn ∼ 2
√

n logp. Note that An,i,j ≥ Ân.i.j and, hence, Qn,i,j ≥ Q̂n,i,j . By
Proposition 5.4,

sup
y≥−2 log2 n8

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̃1,2,

∥∥∥∥∥
n∑

k=1

X̃k,1,3

∥∥∥∥∥ > t̃1,3

)

≤ sup
y≥−2 log2 n8

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̂1,2,

∥∥∥∥∥
n∑

k=1

X̃k,1,3

∥∥∥∥∥ > t̂1,3

)
(5.11)

≤ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > vn,

∥∥∥∥∥
n∑

k=1

X̃k,1,3

∥∥∥∥∥ > vn

)
+ Cp−4

≤ Cp−4+20
√

ε.

Moreover, by Proposition 5.1, for −2 log2 nθ ≤ y ≤ 2 logn,

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̃1,2

)

≤ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̂1,2

)

≤ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ >
√

n(αp + y)(1 − tn)

)
+ Cp−4

≤ P
(
χ2(d) ≥ αp + y

)| + C
(logn)5/2

p2n1/2 + Cp−3,

where tn = C
√

logn/n. Note that

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̃1,2

)

≥ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̂1,2

)

− 2d

n∑
i=1

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̂1,2,
(
X

(1)
i,1

)2 ≥
√

n

logp

)
.
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For y ≥ −2 log2 nθ , letting β = 192ε, q = 4α, r = 2 + 2α, δ = 12ε/5 and x =
2(1 − 2ε)

√
n logp in (6.2) yields

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̂1,2,
(
X

(1)
i,1

)2 ≥
√

n

logp

)

≤ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ >
√

n(αp + y)(1 − tn),
(
X

(1)
i,1

)2 ≥
√

n

logp

)
+ Cp−4

≤ P

(∥∥∥∥∥
n∑

k=1,�=i

(X̃k,1,2 − EX̃k,1,2)

∥∥∥∥∥ > 2(1 − 2ε)
√

n logp,
(
X

(1)
i,1

)2 ≥
√

n

logp

)

+ Cp−4

≤ C
[
p−2(1−10

√
ε) + p−4] × P

(
|X| ≥ n1/4

(logp)1/4

)
+ Cp−4

≤ Cp−2(1−10
√

ε)P
(
|X| ≥ n1/4

(logp)1/4

)
+ Cp−4.

For −2 log2 nθ ≤ y ≤ 2 logn, it follows from Proposition 5.1 that

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ > t̂1,2

)
≥ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ >
√

n(αp + y)(1 + tn)

)
− Cp−4

≥ P
(
χ2(d) ≥ αp + y

) − C
(logn)5/2

p2n1/2 − Cp−3.

Combing the above inequalities gives

sup
−2 log2 nθ≤y≤2 logn

∣∣∣∣∣P
(∥∥∥∥∥

n∑
k=1

X̃k,1,2

∥∥∥∥∥ > t̃1,2

)
− P

(
χ2(d) ≥ αp + y

)∣∣∣∣∣
≤ C

(logn)5/2

p2n1/2 + Cp−3(5.12)

+ Cnp−2(1−10
√

ε)P
(
|X| ≥ n1/4

(logp)1/4

)
.

The proof of Theorem 3.2 is now complete by (5.10)–(5.12) and Proposition 5.5.

6. Proofs of auxiliary results. To prove Propositions 5.1–5.4, we need some
preliminary lemmas.
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The first is a Fuk–Nagaev type inequality for vector-valued random variables.

LEMMA 6.1. Let ξi , 1 ≤ i ≤ n, be independent random vectors in Rd with
Eξi = 0 and E‖ξi‖2 < ∞, 1 ≤ i ≤ n. Put Sn = ∑n

i=1 ξi . Then for 0 < δ < 1, β > 0,
a > δ−1 and any x > 0,

P
(

max
1≤k≤n

‖Sk‖ ≥ x + 3E‖Sn‖ + 8
a

x
�n,x,a

)

≤
n∑

k=1

P(‖ξk‖ > δx) + C

(
�n,x,a

x2

)M

(6.1)

+ exp
(
−((1 − Mδ)x)2

2(1 + β)�n

)

+ exp
(
−(1 − Mδ)a

2Dβ

)
,

where �n = sup{∑n
k=1 E(u, ξk)

2 :‖u‖ ≤ 1}, (·, ·) denotes the Euclidean inner
product, �n,x,a = ∑n

k=1 E‖ξk‖2I {‖ξk‖ ≥ x/a}, Dβ = 11(1 + 2/β), M is a pos-
itive number satisfying Mδ < 1, and C is a constant which depends on M and δ.

In particular, if max1≤k≤n E‖ξi‖r ≤ K for some r > 2 and K < ∞, then for any
q ≥ 2 and 0 < β ≤ 1, there exist C1, C2 depending only on β , q , K such that, for
any x ≥ C2

√
n and 0 < δ ≤ β(r − 2)(32q + 16r − 32)−1,

P
(

max
1≤k≤n

‖Sk‖ ≥ x

)
(6.2)

≤
n∑

k=1

P(‖ξk‖ > δx) + exp
(
− x2

2(1 + β)�n

)
+ C1n

−q.

PROOF. Put

ξ̃i = ξiI {‖ξi‖ ≤ δx}, S̃n =
n∑

i=1

ξ̃i ,

ξ̂i = ξiI {‖ξi‖ ≤ x/a}, Ŝn =
n∑

i=1

ξ̂i ,

ξ̆i = ξiI {x/a < ‖ξi‖ ≤ δx}, S̆n =
n∑

i=1

ξ̆i

and write

Bn = 3E‖Sn‖ + 8
a

x

n∑
k=1

E‖ξk‖2I {‖ξk‖ ≥ x/a}.
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Then

P
(

max
1≤k≤n

‖Sk‖ ≥ x + Bn

)

≤ P
(

max
1≤k≤n

‖S̃k‖ ≥ x + Bn

)
+

n∑
k=1

P(‖ξk‖ > δx)

(6.3)

≤ P
(

max
1≤k≤n

‖Ŝk‖ ≥ (1 − Mδ)x + Bn/2
)

+
n∑

k=1

P(‖ξk‖ > δx)

+ P
(

max
1≤k≤n

‖S̆k‖ ≥ Mδx + Bn/2
)
.

Since Eξk = 0 for 1 ≤ k ≤ n, we have

max
1≤k≤n

‖EŜk‖ + 3
2E‖Ŝn − EŜn‖ ≤ Bn/2.

Hence,

P
(

max
1≤k≤n

‖Ŝk‖ ≥ (1 − Mδ)x + Bn/2
)

≤ P
(

max
1≤k≤n

‖Ŝk − EŜk‖ ≥ (1 − Mδ)x + 3
2E‖Ŝn − EŜn‖

)
(6.4)

≤ exp
(
−((1 − Mδ)x)2

2(1 + β)�n

)
+ exp

(
−(1 − Mδ)a

2Dβ

)
,

where the last inequality follows from (3.4) in Einmahl and Li [10].
We now estimate P(max1≤k≤n ‖S̆k‖ ≥ Mδx + Bn/2). It follows from the

Hoeffding–Bennett inequality that

P
(

max
1≤k≤n

‖S̆k‖ ≥ Mδx + Bn/2
)

≤ P

(
n∑

k=1

‖ξ̆i‖ ≥ Mδx + Bn/2

)

≤ P

(
n∑

k=1

(‖ξ̆i‖ − E‖ξ̆i‖) ≥ Mδx

)

≤
(

3
∑n

k=1 E‖ξk‖2I {‖ξk‖ ≥ x/a}
Mδ2x2

)M

.

So (6.1) is proved.
In order to prove (6.2), we let a = max(2Dτq(1 − Mδ1)

−1 logn, δ−1
1 + 1),

where δ1 and τ are positive numbers which will be specified later. Then

exp
(
−(1 − Mδ1)a

2Dτ

)
≤ n−q .
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Note that E‖Sn‖ ≤ C
√

nK1/r . Since �n,y,a ≤ Kn(ay−1)r−2, we have, for
y ≥ √

n, ay−1�n,y,a ≤ Cn(3−r)/2(logn)r−1 ≤ C3
√

n, and y−2�n,y,a ≤ Cn1−r/2×
ar−2 ≤ Cn1−r/2(logn)r−2. Now take M = (r − 2)−1(2q + r − 2) and 0 < δ1 ≤
β(r − 2)(16q + 8r − 16)−1 such that M(r/2 − 1) > q and Mδ1 ≤ β/8. Let
C4 = 8β−1(3CK1/r + 8C3). By (6.1), it holds that, for y ≥ C4

√
n,

P
(

max
1≤k≤n

‖Sk‖ ≥ (1 + β/8)y

)

≤ P
(

max
1≤k≤n

‖Sk‖ ≥ y + 3E‖Sn‖ + 8
a

y
�n,y,a

)

≤
n∑

k=1

P(‖ξk‖ > δ1y) + exp
(
−(1 − β/8)2y2

2(1 + τ)�n

)
+ C1n

−q,

where we let τ satisfy (1 − β/8)2(1 + τ)−1(1 + β/8)−2 > (1 + β)−1. Setting
C2 = (1 + β/8)C4, δ = (1 + β/8)−1δ1 and x = y(1 + β/8), we obtain (6.2). �

The following moderate deviation for independent random variables will play
an important role in our proof.

LEMMA 6.2. Let ξi , 1 ≤ i ≤ n, be independent random variables with
Eξi = 0. Put

s2
n =

n∑
i=1

Eξ2
i , τn =

n∑
i=1

E|ξi |3, Sn =
n∑

i=1

ξi .

Assume that

|ξi | ≤ cnsn

for 1 ≤ i ≤ n and some 0 < cn ≤ 1. Then

P(Sn ≥ xsn) = eγ (x/sn)(1 − �(x)
)(

1 + θn,x(1 + x)s−3
n τn

)
(6.5)

for 0 < x ≤ 1/(18cn), where |θn,x | ≤ 36 and γ (x) is the Cramér–Petrov series (see
Petrov [18]) satisfying |γ (x)| ≤ 2x3τns

−3
n . In particular, we have

P(Sn ≥ xsn) = (
1 − �(x)

)(
1 + θn,x(1 + x)3s−3

n τn

)
(6.6)

for 0 < x ≤ 1/(18c
1/3
n ), where |θn,x | ≤ 40.

PROOF. (6.5) is due to Sakhanenko [19] (see Example 1 in Sakhanenko [19])
and (6.6) follows from (6.5). �

The next lemma is simple but useful to provide a moderate deviation of the
convolution of independent sums.
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LEMMA 6.3. Let U1, U2, V1 and V2 be independent random variables. As-
sume that there exist 0 ≤ c0 ≤ 1 and x0 such that, for any 0 ≤ x ≤ x0,

P(|U1| ≥ x) = P(|V1| ≥ x)(1 + θ1,x)(6.7)

and

P(|U2| ≥ x) = P(|V2| ≥ x)(1 + θ2,x),(6.8)

where |θ1,x | ≤ c0 and |θ2,x | ≤ c0. Then

P(U2
1 + U2

2 ≥ x2) = P(V 2
1 + V 2

2 ≥ x2)(1 + θx)(6.9)

for 0 ≤ x ≤ x0, where |θx | ≤ 3c0.

PROOF. Observe that P(|U1| ≥ x) = 1 = P(|V1| ≥ x) for x ≤ 0, so
(6.7) and (6.9) remain valid for x < 0 with θ1,x = 0 = θ2,x . Hence, for 0 ≤ x ≤ x0,

P(U2
1 + U2

2 ≥ x2) = E{P(U2
1 ≥ x2 − U2

2 |U2)}
≤ E{P(V 2

1 ≥ x2 − U2
2 |U2)(1 + θ1,x2−U2

2
)}

≤ E{P(V 2
1 ≥ x2 − U2

2 |U2)(1 + c0)}
≤ (1 + c0)P(U2

2 ≥ x2 − V 2
1 )

(6.10)
= E{P(U2

2 ≥ x2 − V 2
1 |V1)}

≤ (1 + c0)E{P(V 2
2 ≥ x2 − V 2

1 )(1 + c0)}
= (1 + c0)

2P(V 2
1 + V 2

2 ≥ x2)

≤ (1 + 3c0)P(V 2
1 + V 2

2 ≥ x2).

Similarly,

P(U2
1 + U2

2 ≥ x2) ≥ (1 − c0)P(U2
2 ≥ x2 − V 2

1 )

≥ (1 − c0)
2P(V 2

1 + V 2
2 ≥ x2)(6.11)

≥ (1 − 2c0)P(V 2
1 + V 2

2 ≥ x2).

This proves (6.9) by (6.10) and (6.11). �

REMARK 6.1. It is easy to see that Lemma 6.3 remains valid for m indepen-
dent squared variables.

LEMMA 6.4. If condition (1.7) is satisfied, then

E
(|X1,1|2+4α/(1 + log |X1,1|)4+4α)

< ∞.(6.12)
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PROOF. It is easy to see that (1.7) implies

E
(|X1,1X1,2|2+4α/(1 + log |X1,1X1,2|)4+4α)

< ∞,

which yields (6.12) by the independence of X1,1 and X1,2. �

PROOF OF PROPOSITION 5.1. Let X̃k,1,2, X̂k,1,2, Y
(1)
k,1,2 be defined in (5.1)

and (5.2). Let

A =
d⋃

i=1

n⋃
k=1

{∣∣Y (i)
k,1,2

∣∣ >

√
n

(logn)4

}
.

Then

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn

)

= P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn,A

)
+ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn,A

c

)
(6.13)

≤ P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn,A

)
+ P

(∥∥∥∥∥
n∑

k=1

X̂k,1,2

∥∥∥∥∥ ≥ √
nyn

)
.

First, we prove that P(‖∑n
k=1 X̃k,1,2‖ ≥ √

nyn,A) is small, that is,

sup
−2 log2 nθ≤y≤2 logn

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn,A

)
≤ Cp−3.(6.14)

Noting that for −2 log2 nθ ≤ y ≤ 2 logn

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn,A

)

≤ d

n∑
i=1

P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥ √
nyn,

∣∣Y (1)
i,1,2

∣∣ >

√
n

(logn)4

)

≤ d

n∑
i=1

P

(∥∥∥∥∥
n∑

k=1,k �=i

X̃k,1,2

∥∥∥∥∥ ≥ 2(1 − ε)
√

n logp,
∣∣Y (1)

i,1,2

∣∣ >

√
n

(logn)4

)
(6.15)

= d

n∑
i=1

P

(∥∥∥∥∥
n∑

k=1,k �=i

X̃k,1,2

∥∥∥∥∥ ≥ 2(1 − ε)
√

n logp

)

× P
(∣∣Y (1)

i,1,2

∣∣ >

√
n

(logn)4

)
,
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we have, by Lemma 6.1,

P

(∥∥∥∥∥
n∑

k=1,k �=i

X̃k,1,2

∥∥∥∥∥ ≥ 2(1 − ε)
√

n logp

)

≤ P

(∥∥∥∥∥
n∑

k=1,k �=i

Xk,1,2

∥∥∥∥∥ ≥ 2(1 − ε)
√

n logp

)

+ dnP
(∣∣Y (1)

1,1,2

∣∣ ≥ d−1/2ε
√

n logp
)

≤ dnP
(∣∣Y (1)

1,1,2

∣∣ ≥ d−1/2ε
√

n logp
) + nP

(‖X1,1,2‖ ≥ δ
√

n logp
)

+ exp
(
−4(1 − ε)2n logp

2(1 + β)�n

)
+ Cn−q

≤ CnP
(∣∣Y (1)

1,1,2

∣∣ ≥ δ′√n logp
) + exp

(
−2(1 − ε)2n logp

(1 + β)�n

)
+ Cn−q,

where δ and δ′ are some positive numbers, β is any positive number, q is a large
number and �n = (n − 1) sup{E(u,X1,1,2)

2 :‖u‖ ≤ 1} = n − 1. For −2 log2 nθ ≤
y ≤ 2 logn, by letting β small enough such that (1 − ε)2(1 + β)−1 > 1 − 2

√
ε, we

have

exp
(
−2(1 − ε)2n logp

(1 + β)�n

)
≤ Cp−2(1−2ε)2/(1+β) ≤ Cp−2(1−2

√
ε).

By Markov’s inequality and Lemma 6.4,

np−2(1−2
√

ε)P
(∣∣Y (1)

1,1,2

∣∣ >

√
n

(logn)4

)
≤ Cp−3

and

n2P
(∣∣Y (1)

1,1,2

∣∣ ≥ δ′√n logp
)
P
(∣∣Y (1)

1,1,2

∣∣ >

√
n

(logn)4

)
≤ Cp−3.

This proves (6.14).
Now we come to estimate P(‖∑n

k=1 X̂k,1,2‖ ≥ √
nyn). Observe that

P

(∥∥∥∥∥
n∑

k=1

X̂k,1,2

∥∥∥∥∥ ≥ √
nyn

)

≤ P

(∥∥∥∥∥b−1/2
n

n∑
k=1

(X̂k,1,2 − EX̂k,1,2)

∥∥∥∥∥ ≥ b−1/2
n

(√
nyn − dnan

))
(6.16)

≤ P

(∥∥∥∥∥(nbn)
−1/2

n∑
k=1

(X̂k,1,2 − EX̂k,1,2)

∥∥∥∥∥ ≥ yn − cn

)
,
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where an = E‖X1,1,2‖I {‖X1,1,2‖ ≥ √
n/(logn)4}, bn = Var(Ŷ (1)

1,1,2) and

cn = C
√

nan + C
√

lognE
∣∣Y (1)

1,1,2

∣∣2I{∣∣Y (1)
1,1,2

∣∣ ≥ √
n/(logn)4}

≤ Cδp
−2+δ

for any δ > 0. By Lemma 6.2, for 0 ≤ x ≤ (logn)4/3/100, we have

P

(∣∣∣∣∣b−1/2
n

n∑
k=1

(
Ŷ

(1)
k,1,2 − EŶ

(1)
k,1,2

)∣∣∣∣∣ ≥ √
nx

)

= 2
(
1 − �(x)

)(
1 + θn,x(1 + x)3(nbn)

−3/2τn

)
,

where θn,x ≤ 40×8 and τn = nE|Ŷ (1)
1,1,2|3. So by Lemma 6.3 (see also Remark 6.1),

we get, for 0 ≤ x ≤ (logn)4/3/100,

P

(∥∥∥∥∥b−1/2
n

n∑
k=1

(X̂k,1,2 − EX̂k,1,2)

∥∥∥∥∥
2

≥ nx2

)
(6.17)

= P
(
χ2(d) ≥ x2)(

1 + θ ′
n,x(1 + x)3(nbn)

−3/2τn

)
,

where θ ′
n,x ≤ 3d−1320. Putting (6.16) with (6.17) together yields, for −2 log2 nθ ≤

y ≤ 2 logn and some 0 < C < ∞ (not depending on y),

P

(∥∥∥∥∥
n∑

k=1

X̂k,1,2

∥∥∥∥∥ ≥ √
nyn

)

≤ P
(
χ2(d) ≥ y2

n

) + cny
d−1
n exp

(−(yn − cn)
2/2

)
+ CP

(
χ2(d) ≥ (yn − cn)

2)
(1 + yn)

3(nbn)
−3/2τn

≤ P
(
χ2(d) ≥ αp + y

) + Cp−2n−1/2(logn)5/2

+ C
(
p−2cn(logn)3/2 + p−2(logn)5/2n−1/2E

∣∣Ŷ (1)
1,1,2

∣∣3)
≤ P

(
χ2(d) ≥ αp + y

) + C
(
p−3 + p−2(logn)5/2n−1/2E

∣∣Ŷ (1)
1,1,2

∣∣3)
.

Similarly, we have, for −2 log2 nθ ≤ y ≤ 2 logn,

P

(∥∥∥∥∥
n∑

k=1

X̂k,1,2

∥∥∥∥∥ ≥ √
nyn

)

≥ P
(
χ2(d) ≥ αp + y

) − C
(
p−3 + p−2(logn)5/2n−1/2E

∣∣Ŷ (1)
1,1,2

∣∣3)
.

This completes the proof of Proposition 5.1 by combining the above inequal-
ities. �
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PROOF OF PROPOSITION 5.2. Since

P
(
χ2(d) ≥ x

) ∼ 21−d/2�−1(d/2)xd/2−1 exp(−x/2)(6.18)

as x → ∞, we have

sup
y≤−2 log2 nθ

exp
(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

)) ≤ Cn−2.(6.19)

Noting that

sup
y≤−2 log2 nθ

P(T̃ 2
p,n − nαp ≤ ny) ≤ P(T̃ 2

p,n ≤ nαp − 2n log2 nθ ),(6.20)

Propositions 5.1 and 5.4 imply

P(T̃ 2
p,n ≤ nαp − 2n log2 nθ ) ≤ e−ϕn + Cp−1+20

√
ε,(6.21)

where

ϕn = p2 − p

2
P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥ ≥
√

nαp − 2n log2 nθ

)
.

By Proposition 5.1 again, we have ϕn ≥ 2 logn for n large. Now Proposition 5.2
follows by (6.19), (6.20) and (6.21). �

PROOF OF PROPOSITION 5.3. By (6.18),

sup
y≥2 logn

∣∣∣∣1 − exp
(
−p2 − p

2
P
(
χ2(d) ≥ αp + y

))∣∣∣∣ ≤ Cn−1.(6.22)

Moreover, by Proposition 5.1,

sup
y≥2 logn

P(T̃ 2
p,n

≥ nαp + ny) ≤ P(T̃ 2
p,n ≥ nαp + 2n logn)

≤ p2P

(∥∥∥∥∥
n∑

k=1

X̃k,1,2

∥∥∥∥∥
2

≥ nαp + 2n logn

)
(6.23)

≤ C
(logn)5/2

n1/2 E|XX′|3I{|XX′| ≤ √
n/(logn)4}

+ Cp−1 + Cn−1.

Proposition 5.3 now follows from (6.22) and (6.23). �
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PROOF OF PROPOSITION 5.4. Observe that

P

(∥∥∥∥∥
n∑

i=1

X̃i,1,2

∥∥∥∥∥ ≥ vn,

∥∥∥∥∥
n∑

i=1

X̃i,1,3

∥∥∥∥∥ ≥ vn

)

≤ P

(∥∥∥∥∥
n∑

i=1

(X̃i,1,2 − EX̃i,1,2)

∥∥∥∥∥ ≥ (1 − ε)vn,

∥∥∥∥∥
n∑

i=1

(X̃i,1,3 − EX̃i,1,3)

∥∥∥∥∥ ≥ (1 − ε)vn

)
(6.24)

≤ P

(∥∥∥∥∥
n∑

i=1

(X̃i,1,2 − EX̃i,1,2, X̃i,1,3 − EX̃i,1,3)

∥∥∥∥∥
2

≥ 2
(
(1 − ε)vn

)2
)

≤ P

(∥∥∥∥∥
n∑

i=1

(X̃i,1,2 − EX̃i,1,2, X̃i,1,3 − EX̃i,1,3)

∥∥∥∥∥
2

≥ 2
(
(2 − 3ε)

√
n logp

)2
)
.

Take β = 192ε, q = 4α, r = 2 + 2α, δ = β(r − 2)(32q + 16r − 32)−1 = 12ε/5
and x = √

2(2 − 3ε)
√

n logp in (6.2). Since ‖X̃i,1,2‖ ≤ ε
√

n logp, we have

P
(‖(X̃i,1,2 − EX̃i,1,2, X̃i,1,3 − EX̃i,1,3)‖ ≥ δx

) = 0.(6.25)

It can be shown that the largest eigenvalue of the covariance matrix of (X̃1,1,2 −
EX̃1,1,2, X̃1,1,3 − EX̃1,1,3) tends to 1 as n → ∞. Therefore, for 0 < ε < 10−4,

exp
(
− x2

2(1 + 192ε)�n

)
≤ C exp

(
−(2 − 3ε)2 logp

1 + 193ε

)
≤ Cp−4+20

√
ε.(6.26)

Proposition 5.4 is proved by (6.2) and (6.24)–(6.26). �

PROOF OF PROPOSITION 5.5. The proof of (5.5) follows from the proof of
Proposition 5.2, while the proof of (5.6) is similar to that of Proposition 5.3. The
details are omitted here. �

PROOF OF (1.11). Let

λn = p2 − p

2
P
(
χ2(1) ≥ y2

n

)
, yn =

√
4 logp − log2 p + y.

It is known that

2√
2πyn

(
1 − 1

y2
n

)
e−y2

n/2 ≤ P
(
χ2(1) ≥ y2

n

) ≤ 2√
2πyn

e−y2
n/2.(6.27)
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Thus,

λn ≤ p2 − p√
2πyn

exp
(
−y2

n

2

)
= (1 − p−1)

√
logp√

2πyn

exp
(
−y

2

)
.

By (6.27) again,

λn ≥ (1 − p−1)
√

logp√
2πyn

exp
(
−y

2

)
− O

(
1

logn

)
.

Hence,

λn = 1√
8π

exp
(
−y

2

)
+ An

1√
8π

exp
(
−y

2

)
+ O

(
1

logn

)
,

where An ∼ log2 n/(8 logn) as n → ∞. Finally, we can write

e−λn = (1 − Bn) exp
(
− 1√

8π
exp

(
−y

2

))
, Bn ∼ log2 n

8 logn

1√
8π

exp
(
−y

2

)
.

This proves (1.11). �
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