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Abstract. The authors are doing the readers of Statistical Science a true
service with a well-written and up-to-date overview of boosting that origi-
nated with the seminal algorithms of Freund and Schapire. Equally, we are
grateful for high-level software that will permit a larger readership to ex-
periment with, or simply apply, boosting-inspired model fitting. The authors
show us a world of methodology that illustrates how a fundamental innova-
tion can penetrate every nook and cranny of statistical thinking and practice.
They introduce the reader to one particular interpretation of boosting and
then give a display of its potential with extensions from classification (where
it all started) to least squares, exponential family models, survival analysis, to
base-learners other than trees such as smoothing splines, to degrees of free-
dom and regularization, and to fascinating recent work in model selection.
The uninitiated reader will find that the authors did a nice job of present-
ing a certain coherent and useful interpretation of boosting. The other reader,
though, who has watched the business of boosting for a while, may have
quibbles with the authors over details of the historic record and, more impor-
tantly, over their optimism about the current state of theoretical knowledge.
In fact, as much as “the statistical view” has proven fruitful, it has also re-
sulted in some ideas about why boosting works that may be misconceived,
and in some recommendations that may be misguided.

HISTORY OF “THE STATISTICAL VIEW” AND
FIRST QUESTIONS

To get a sense of past history as well as of current
ignorance, we must go back to the roots of boosting,
which are in classification. On this way back, we will
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take the late Leo Breiman as our guide, because learn-
ing what he knew or did not know is instructive to this
day.

Only a decade ago Freund and Schapire (1997,
page 119), defined boosting as “converting a ‘weak’
PAC learning algorithm that performs just slightly bet-
ter than random guessing into one with arbitrarily high
accuracy.” The assumptions underlying the quote im-
ply that the classes are 100% separable and hence
that classification solves basically a geometric prob-
lem. How else would one interpret “arbitrarily high
accuracy” other than implying a zero Bayes error?
See Breiman’s (1998, Appendix) patient but firm com-
ments on this point. To a statistician the early literature
on boosting was an interesting mix of creativity, tech-
nical bravado, and statistically unrealistic assumptions
inspired by the PAC learning framework. Yet, in as far
as machine learners relied on Vapnik’s random sam-
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pling assumption and his allowance for overlapping
classes, they had in hand the seeds for a fundamentally
statistical treatment of boosting, at least in theory.

By now, statistical views of boosting have existed for
a number of years, and they are mostly due to statisti-
cians. One such view is due to Friedman, Hastie and
Tibshirani (2000) who propose that boosting is stage-
wise additive model fitting. Equivalent to stagewise ad-
ditive fitting is Biihlmann and Hothorn’s notion of fit-
ting by gradient descent in function space, theirs be-
ing a more mathematical than statistical terminology.
Biihlmann and Hothorn attribute the view of boosting
as functional gradient descent (FGD) to Breiman, but
in this they are factually inaccurate. Of the two arti-
cles they cite, “Arcing Classifiers” (Breiman, 1998) has
nothing to do with optimization. Here is Breiman’s fa-
mous praise of boosting algorithms as “the most ac-
curate . .. off-the-shelf classifiers on a wide variety of
data sets.” The article is important, but not as an ances-
tor of the “statistical view” of boosting as we will see
below. A better candidate is Biihlmann and Hothorn’s
other reference, “Prediction Games and Arcing Al-
gorithms” (Breiman, 1999). A closer reading shows,
however, that it is an ancestor, not a founder, of a sta-
tistical view of boosting, even though here is the first
interpretation of AdaBoost as minimization of an expo-
nential criterion. Borrowing from Freund and Schapire
(1996), Breiman’s approach is not statistical but game-
theoretic, hence he justifies fitting base learners not
with gradient descent but with the minimax theorem.
He stylizes the problem to selecting among finitely
many fixed base learners, thereby removing the func-
tional aspect. His calculations are on training samples,
not populations, and hence they never reveal what is
being estimated. In his pre-2000 work one will find
neither the terms “functional” and “gradient” nor a
concept of boosting as model fitting and estimation.
These facts stand against Mason et al.’s (2000, Sec-
tion 2.1) attribution of “gradient descent in function
space” to Breiman, against Breiman (2000a, 2004)
himself when he links FGD to Breiman (1999, 1997),
and now against Biihlmann and Hothorn.

For a statistical view of boosting, the dam really
broke in 1998 with a report by Friedman, Hastie
and Tibshirani (2000, based on a 1998 report; “FHT
(2000)” henceforth). Around that time, others had also
picked up on the exponential criterion and its mini-
mization, including Mason et al. (2000) and Schapire
and Singer (1999), but it was FHT (2000) whose sim-
ple population calculations established the meaning of

boosting as model fitting in the following sense: Boost-
ing creates linear combinations of base learners (called
“weighted votes” in machine learning) that are esti-
mates of half the logit of the underlying conditional
class probabilities, P(Y = 1|x). In this view, boost-
ing could suddenly be seen as class probability esti-
mation in the conditional Bernoulli model, and con-
sequently FHT’s (2000) first order of business was to
create LogitBoost by replacing exponential loss with
the loss function that is natural to statisticians, the neg-
ative log-likelihood of the Bernoulli model (= “log-
loss”). FHT (2000) also replaced boosting’s reweight-
ing with the reweighting that statisticians have known
for decades, iteratively reweighted least squares, to im-
plement Newton descent/Fisher scoring. In this clean
picture, AdaBoost estimates half the logit, LogitBoost
estimates the logit, both by stagewise fitting, but by
different approaches to the functional gradient that pro-
duces the additive terms. Going yet further, Friedman
(2001, based on a 1999 report) discarded weighting al-
together by approximating gradients with plain least
squares. These innovations had been absorbed as early
as 1999 by the newly minted Ph.D. Greg Ridgeway
(1999) who presented an excellent piece on “The State
of Boosting” that included a survey of these yet-to-be-
published developments as well as his own work on
boosting for exponential family and survival regres-
sion. Thus the new view of boosting as model fitting
developed in a short period between the middle of 1998
and early 1999 and bore fruit instantly before any of it
had appeared in print.

It is Friedman’s (2001) gradient boosting that
Biihlmann and Hothorn now call “the generic FGD
or boosting algorithm” (Section 2.1). This promotion
of one particular algorithm to a standard could give
rise to misgivings among the originators of boosting
because the original discrete AdaBoost (Section 1.2)
is not even a special case of gradient boosting. There
exists, however, a version of gradient descent that con-
tains AdaBoost as a special case: it is alluded to in
Section 2.1.1 and appears in Mason et al. (2000, Sec-
tion 3), FHT (2000, Section 4.1) and Breiman (2000a;
2004, Sections 2.2, 4.1). Starting with the identity

0
P t:OlZp(Y,-, F(X) +1tg(X)

:Zp/(Y,‘, f(Xi)) g(Xi)

(p’ = the partial w.r.t. the second argument), find steep-
est descent directions by minimizing the right-hand ex-
pression with regard to g(X). Minimization in this case
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is not generally well defined, because it typically pro-
duces —oo unless the permissible directions g(X) are
bounded (Ridgeway, 2000). One way to bound g(X)
is by confining it to classifiers (g(X) € {—1,+1}), in
which case gradient descent on the exponential loss
function p = exp(—Y; f(X;)) (¥Y; = £1) yields dis-
crete AdaBoost. Instead of bounding of g(X), Ridge-
way (2000) pointed out that the above ill-posed gra-
dient minimization could be regularized by adding a
quadratic penalty Q(g) = Y, g(X;)?/2 to the right-
hand side, only to arrive at a criterion that, after
quadratic completion, produces Friedman’s (2001)
least squares gradient boosting:

S (=0 (i f(X0)) — (X))

1

We may wonder what, other than algebraic conve-
nience, makes Y ; g(X;)?/2 the penalty of choice.
A mild modification is Q(g) =1/(2¢)Y; g(X,-)2 with
¢ > 0 as a penalty parameter; quadratic completion re-
sults in the least squares criterion

> ((—ep' (Vs £(X0)) — 8(XD)7,

1

which shows that for small ¢ its minimization yields
Friedman’s step size shrinkage. The choice

Q@) =Y p"(Vi, f(X0) g(Xi)*/2

has the particular justification that it provides a second-
order approximation to the loss function, and hence its
minimization generates Newton descent/Fisher scor-
ing as used in FHT’s LogitBoost. For comparison,
gradient descent uses —p'(Y;, f(X;)) as the work-
ing response in an unweighted least squares problem,
whereas Newton descent uses (—p'/p")(Yi, f(X}))
as the working response in a weighted least squares
problem with weights p”(Y;, f(X;)). In view of these
choices, we may ask Biihlmann and Hothorn whether
there are deeper reasons for their advocacy of Fried-
man’s gradient descent as the boosting standard. Fried-
man’s intended applications included Li- and Huber
M-estimation, in which case second derivatives are
not available. In many other cases, though, includ-
ing exponential and logistic loss and the likelihood of
any exponential family model, second derivatives are
available, and we should expect some reasoning from
Biihlmann and Hothorn for abandoning entrenched sta-
tistical practice.

LIMITATIONS OF “THE STATISTICAL VIEW” OF
BOOSTING

While the statistical view of boosting as model fit-
ting is truly a breakthrough and has proven extremely
fruitful in spawning new boosting methodologies, one
should not ignore that it has also caused misconcep-
tions, in particular in classification. For example, the
idea that boosting implicitly estimates conditional class
probabilities turns out to be wrong in practice. Both
AdaBoost and LogitBoost are primarily used for clas-
sification, not class probability estimation, and in so far
as they produce successful classifiers in practice, they
also produce extremely overfitted estimates of con-
ditional class probabilities, namely, values near zero
and 1. In other words, it would be a mistake to as-
sume that in order to successfully classify, one should
look for accurate class probability estimates. Success-
ful classification cannot be reduced to successful class
probability estimation, and some published theoretical
work is flawed because of doing just that. Biihlmann
and Hothorn allude to these problems in Section 1.3,
but they do not discuss them. It would be helpful if they
summarized for us the state of statistical theory in ex-
plaining successful classification without committing
the fallacy of reducing it to successful class probability
estimation.

There have been some misunderstandings in the
literature about an alleged superiority of LogitBoost
over AdaBoost for class probability estimation. No
such thing can be asserted to date. Both produce
scores that are in theory estimates of P(Y = 1|x)
when passed through an inverse link function. Both
could be used for class probability estimation if prop-
erly regularized—at the cost of deteriorating classifi-
cation performance. Bithlmann and Hothorn’s list of
reasons for preferring log-loss over exponential loss
(Section 3.2.1) might cater to some of the more com-
mon misconceptions: log-loss “(i) ...yields probabil-
ity estimates”—so does exponential loss; both do so in
theory but not in practice, unless either loss function is
suitably regularized; “(ii) it is a monotone loss function
of the margin”—so is exponential loss; “(iii) it grows
linearly as the margin. . . tends to —oo, unlike the expo-
nential loss”—true, but when they add “The third point
reflects a robustness aspect: it is similar to Huber’s loss
function,” they are overstepping the boundaries of to-
day’s knowledge. Do we know that there even exists
a robustness issue? Unlike quantitative responses, bi-
nary responses have no problem of vertically outly-
ing values. The stronger growth of the exponential loss
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only implies greater penalties for strongly misclassified
cases, and why should this be detrimental? It appears
that there is currently no theory that allows us to rec-
ommend log-loss over exponential loss or vice versa,
or to choose from the larger class of proper scoring
rules described by Buja et al. (2005). If Biithlmann and
Hothorn have a stronger argument to make, it would be
most welcome.

For our next point, we return to Breiman’s (1998)
article because its main message is a heresy in light
of today’s “statistical view” of boosting. He writes:
“The main effect of both bagging and arcing is to re-
duce variance” (page 802; “arcing” = Breiman’s term
for boosting). This was written before his discovery
of boosting’s connection with exponential loss, from
a performance-oriented point of view informed by a
bias-variance decomposition he devised for classifica-
tion. It was also before the advent of the “statistical
view” and its “low-variance principle,” which explains
Breiman’s use of the full CART algorithm as the base
learner, following earlier examples in machine learning
that used the full C4.5 algorithm.

Then Breiman (1999, page 1494) dramatically re-
verses himself in response to learning that “Schapire
et al. (1997) [(1998)] gave examples of data where
two-node trees (stumps) had high bias and the main
effect of AdaBoost was to reduce the bias.” This work
of Breiman’s makes fascinating reading because of its
perplexed tone and its admission in the Conclusions
section (page 1506) that “the results leave us in a
quandary,” and “the laboratory results for various arc-
ing algorithms are excellent, but the theory is in dis-
array.” His important discovery that AdaBoost can be
interpreted as the minimizer of an exponential criterion
happens on the side line of an argument with Schapire
and Freund about the deficiencies of VC- and margin-
based arguments for explaining boosting. Yet, there-
after Breiman no longer cites his 1998 Annals article
in a substantive way, and he, too, submits to the idea
that the complexity of base learners needs to be con-
trolled. Today we seem to be sworn in on base learners
that are weak in the sense of having low complexity,
high bias (for most data) and low variance, and accord-
ingly Biihlmann and Hothorn exhort us to adopt the
“low-variance principle” (Section 4.4). What PAC the-
ory used to call “weak learner” is now statistically re-
interpreted as “low-variance learner.” In this we miss
out on the other possible cause of weakness, which
is high variance. As much as underfitting calls for
bias reduction, overfitting calls for variance reduction.
Some varieties of boosting may be able to achieve both,

whereas current theories and the “statistical view” in
general obsess with bias. Against today’s consensus
we need to draw attention again to the earlier Breiman
(1998) to remind us of his and others’ favorable ex-
periences with boosting of high-variance base learners
such as CART and C4.5. It was in the high-variance
case that Breiman issued his praise of boosting, and it
is this case that seems to be lacking theoretical expla-
nation. Obviously, high-variance base learners cannot
be analyzed with a heuristic such as in Biihlmann and
Hothorn’s Section 5.1 (from Biihlmann and Yu, 2003)
for L, boosting which only transfers variability from
residuals to fits and never the other way round. Ideally,
we would have a single approach that automatically
reduces bias when necessary and variance when nec-
essary. That such could be the case for some versions
of AdaBoost was still in the back of Breiman’s mind,
and it is now explicitly asserted by Amit and Blanchard
(2001), not only for AdaBoost but for a large class of
ensemble methods. Is this a statistical jackpot, and we
are not realizing it because we are missing the theory
to comprehend it?

After his acquiescence to low-complexity base learn-
ers and regularization, Breiman still uttered occasion-
ally a discordant view, as in his work on random
forests (Breiman, 1999b, page 3) where he conjec-
tured: “Adaboost has no random elements . .. But just
as a deterministic random number generator can give
a good imitation of randomness, my belief is that in
its later stages Adaboost is emulating a random for-
est.” If his intuition is on target, then we may want
to focus on randomized versions of boosting for vari-
ance reduction, both in theory and practice. On the
practical side, Friedman (2002, based on a report of
1999) took a leaf out of Breiman’s book and found
that restricting boosting iterations to random subsam-
ples improved performance in the vast majority of sce-
narios he examined. The abstract of Friedman’s ar-
ticle ends on this note: “This randomized approach
also increases robustness against overcapacity of the
base learner,” that is, against overfitting by a high-
variance base learner. This simple yet powerful exten-
sion of functional gradient descent is not mentioned
by Biihlmann and Hothorn. Yet, Breiman’s and Fried-
man’s work seems to point to a statistical jackpot out-
side the “statistical view.”

LIMITATIONS OF “THE STATISTICAL VIEW” OF
BOOSTING EXEMPLIFIED

In the previous section we outlined limitations of
the prevalent “statistical view” of boosting by follow-
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ing some of boosting’s history and pointing to mis-
conceptions and blind spots in “the statistical view.”
In this section we will sharpen our concerns based on
an article, “Evidence Contrary to the Statistical View
of Boosting,” by two of us (Mease and Wyner, 2007,
“MW (2007)” henceforth), to appear in the Journal of
Machine Learning Research (JMLR). Understandably
this article was not known to Bithlmann and Hothorn
at the time when they wrote theirs, as we were not
aware of theirs when we wrote ours. Since these two
works represent two contemporary contesting views,
we feel it is of interest to discuss the relationship fur-
ther. Specifically, in this section we will draw con-
nections between statements made in Bithlmann and
Hothorn’s article and evidence against these statements
presented in our JMLR article. In what follows, we pro-
vide a list of five beliefs central to the statistical view of
boosting. For each of these, we cite specific statements
in the Biihlmann—Hothorn article that reflect these be-
liefs. Then we briefly discuss empirical evidence pre-
sented in our JMLR article that calls these beliefs into
question. The discussion is now limited to two-class
classification where boosting’s peculiarities are most
in focus. The algorithm we use is “discrete AdaBoost.”

Statistical Perspective on Boosting Belief #1:
Stumps Should Be Used for Additive Bayes
Decision Rules

In their Section 4.3 Biihlmann and Hothorn repro-
duce the following argument from FHT (2000): “When
using stumps ... the boosting estimate will be an addi-
tive model in the original predictor variables, because
every stump-estimate is a function of a single predictor
variable only. Similarly, boosting trees with (at most) d
terminal nodes results in a nonparametric model hav-
ing at most interactions of order d — 2. Therefore, if
we want to constrain the degree of interactions, we can
easily do this by constraining the (maximal) number of
nodes in the base procedure.” In Section 4.4 they sug-
gest to “choose the base procedure (having the desired
structure) with low variance at the price of larger esti-
mation bias.” As a consequence, if one decides that the
desired structure is an additive model, the best choice
for a base learner would be stumps. While this be-
lief certainly is well accepted in the statistical commu-
nity, practice suggests otherwise. It can easily be shown
through simulation that boosted stumps often perform
substantially worse than larger trees even when the true
classification boundaries can be described by an addi-
tive function. A striking example is given in Section 3.1
of our JMLR article. In this simulation not only do

stumps give a higher misclassification error (even with
the optimal stopping time), they also exhibit substantial
overfitting while the larger trees show no signs of over-
fitting in the first 1000 iterations and lead to a much
smaller hold-out misclassification error.

Statistical Perspective on Boosting Belief #2: Early
Stopping Should Be Used to Prevent Overfitting

In Section 1.3 Biihlmann and Hothorn tell us that “it
is clear nowadays that AdaBoost and also other boost-
ing algorithms are overfitting eventually, and early
stopping is necessary.” This statement is extremely
broad and contradicts Breiman (2000b) who wrote,
based on empirical evidence, that “A crucial property
of AdaBoost is that it almost never overfits the data
no matter how many iterations it is run.” The con-
trast might suggest that in the seven years since, there
has been theory or further empirical evidence to ver-
ify that overfitting will happen eventually in all of the
instances on which Breiman based his claim. No such
theory exists and empirical examples of overfitting are
rare, especially for relatively high-variance base learn-
ers. Ironically, stumps with low variance seem to be
more prone to overfitting than base learners with high
variance. Also, some examples of overfitting in the
literature are quite artificial and often employ algo-
rithms that bear little resemblance to the original Ad-
aBoost algorithm. On the other hand, examples for
which overfitting is not observed are abundant, and a
number of such examples are given in our JMLR ar-
ticle. If overfitting is judged with respect to misclas-
sification error, not only does the empirical evidence
suggest early stopping is not necessary in most appli-
cations of AdaBoost, but early stopping can degrade
performance. Another matter is overfitting in terms of
the conditional class probabilities as measured by the
surrogate loss function (exponential loss, negative log-
likelihood, proper scoring rules in general; see Buja
et al., 2005). Class probabilities tend to overfit rapidly
and drastically, while hold-out misclassification errors
keep improving.

Statistical Perspective on Boosting Belief #3:
Shrinkage Should Be Used to Prevent Overfitting

Shrinkage in boosting is the practice of using a step-
length factor smaller than 1. It is discussed in Sec-
tion 2.1 where the authors write the following: “The
choice of the step-length factor v in step 4 is of minor
importance, as long as it is ‘small’ such as v =0.1. A
smaller value of v typically requires a larger number
of boosting iterations and thus more computing time,
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while the predictive accuracy has been empirically
found to be potentially better and almost never worse
when choosing v ‘sufficiently small’ (e.g., v =0.1).”
With regard to AdaBoost, these statements are gener-
ally not true. In fact, not only does shrinkage often not
improve performance, it can lead to overfitting in cases
in which AdaBoost otherwise would not overfit. An ex-
ample can be found in Section 3.7 of our JMLR article.

Statistical Perspective on Boosting Belief #4:
Boosting is Estimating Probabilities

In Section 3.1 Biihlmann and Hothorn present the
usual probability estimates for AdaBoost that emerge
from the “statistical view,” mentioning that “the reason
for constructing these probability estimates is based on
the fact that boosting with a suitable stopping iteration
is consistent.” While the “statistical view” of boosting
does in fact suggest this mapping produces estimates
of the class probabilities, they tend to produce uncom-
petitive classification if stopped early, or else vastly
overfitted class probabilities if stopped late. We do cau-
tion against their use in the article cited by the authors
(Mease, Wyner, Buja, 2007). In that article we further
show that simple approaches based on over- and under-
sampling yield class probability estimates that perform
quite well. In MW (2007) we give a simple example for
which the true conditional probabilities of class 1 are
either 0.1 or 0.9, yet the probability estimates quickly
diverge to values smaller than 0.01 and larger than 0.99
well before the classification rule has approached its
optimum. This behavior is typical.

Statistical Perspective on Boosting Belief #5:
Regularization Should Be Based on the Loss
Function

In Section 5.4 the authors suggest one can “use in-
formation criteria for estimating a good stopping iter-
ation.” One of these criteria suggested for the classifi-
cation problem is an AIC- or BIC-penalized negative
binomial log-likelihood. A problem with Biihlmann
and Hothorn’s presentation is that they do not explain
whether their recommendation is intended for estimat-
ing conditional class probabilities or for classification.
In the case of classification, readers should be warned
that the recommendation will produce inferior perfor-
mance for reasons explained earlier: Boosting itera-
tions keep improving in terms of hold-out misclassi-
fication error while class probabilities are being over-
fitted beyond reason. While early stopping based on
penalized likelihoods might produce reasonable values

for conditional class probabilities, the resulting classi-
fiers would be entirely uncompetitive in terms of hold-
out misclassification error. In our two JMLR articles
(Mease et al., 2007; MW, 2007) we provide a num-
ber of examples in which the hold-out misclassifica-
tion error decreases throughout while the hold-out bi-
nomial log-likelihood and similar measures deteriorate
throughout. This would suggest that the “good stop-
ping iteration” is the very first iteration, when in fact
for classification the best iteration is the last iteration
which is at least 800 in all examples.

WHAT IS THE ROLE OF THE SURROGATE LOSS
FUNCTION?

In this last section we wish to further muddy our
view of the role of surrogate loss functions as well
as the issues of step-size selection and early stopping.
Drawing on Wyner (2003), we consider a modification
of AdaBoost that doubles the step size relative to the
standard AdaBoost algorithm:

— errlml
oM = 210g<ﬂ>_

errlml

The additional factor of 2 of course does not simply
double all the coefficients because it affects the re-
weighting at each iteration: starting with the second
iteration, raw and modified AdaBoost will use differ-
ent sets of weights, hence the fitted base learners will
differ.

As can be seen from the description of the AdaBoost
algorithm in Biihlmann and Hothorn’s Section 1.2,
doubling the step size amounts to using the square
of the weight multiplier in each iteration. It is obvi-
ous that the modified AdaBoost uses a more aggres-
sive reweighting strategy because, relatively speak-
ing, squaring makes small weights smaller and large
weights larger. Just the same, modified AdaBoost is a
reweighting algorithm that is very similar to the origi-
nal AdaBoost, and it is not a priori clear which of the
two algorithms is going to be the more successful one.

It is obvious, however, that modified AdaBoost does
strange things in terms of the exponential loss. We
know that the original AdaBoost’s step-size choice is
the minimizer in a line search of the exponential loss
in the direction of the fitted base learner. Doubling the
step size overshoots the line search by not descend-
ing to the valley but re-ascending on the opposite slope
of the exponential loss function. Even more is known:
Wyner (2003) showed that the modified algorithm re-
ascends in such a way that the exponential loss is the
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same as in the previous iteration! In other words, the
value of the exponential loss remains constant across
iterations. Still more is known: it can be shown that
there does not exist any loss function for which modi-
fied AdaBoost yields the minimizer of a line search.

Are we to conclude that modified AdaBoost must
perform badly? This could not be further from the
truth: with C4.5 as the base learner, misclassification
errors tend to approach zero quickly on the training
data and tend to decrease long thereafter on the hold-
out data, just as in AdaBoost. As to the bottom line, the
modified algorithm is comparable to AdaBoost: hold-
out misclassification errors after over 200 iterations
are not identical but similar on average to AdaBoost’s
(Wyner, 2003, Figures 1-3). What is the final analy-
sis of these facts? At a minimum, we can say that they
throw a monkey wrench into the tidy machinery of the
“statistical view of boosting.”

CONCLUSIONS

There is something missing in the “statistical view
of boosting,” and what is missing results in mis-
guided recommendations. By guiding us toward high-
bias/low-variance/low-complexity base learners for
boosting, the “view” misses out on the power of
boosting low-bias/high-variance/high-complexity base
learners such as C4.5 and CART. It was in this con-
text that boosting had received its original praise in
the statistics world (Breiman, 1998). The situation in
which the “statistical view” finds itself is akin to the
joke in which a man looks for the lost key under the
street light even though he lost it in the dark. The “sta-
tistical view” uses the ample light of traditional model
fitting that is based on predictors with weak explana-
tory power. A contrasting view, pioneered by the earlier
Breiman as well as Amit and Geman (1997) and asso-
ciated with the terms “bagging” and “random forests,”
assumes predictor sets so rich that they overfit and re-
quire variance- instead of bias-reduction. Breiman’s
(1998) early view was that boosting is like bagging,
only better, in its ability to reduce variance. By not ac-
counting for variance reduction, the “statistical view”
guides us into a familiar corner where there is plenty
of light but where we might be missing out on more
powerful fitting technology.
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