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Comment: Microarrays, Empirical Bayes
and the Two-Groups Model
Kenneth Rice and David Spiegelhalter

Through his various examples, Professor Efron
makes a convincing case that cutting-edge science
requires methods for detecting multiple “non-nulls.”
These methods must be straightforward to implement,
but perhaps more importantly statisticians need to be
able to justify them unambiguously. Efron’s Empirical
Bayes approach is certainly computationally efficient,
but we feel the rationale for making each of his steps
is unattractively ad hoc. This concern is practical, not
philosophical; Efron’s criterion for choice of tuning
parameters seems to be that they look “believable.” In
less expert hands, this approach seems to introduce a
lot of leeway for practitioners to simply “tune” away
until they get the results they want.

In an attempt to address this problem, we will de-
scribe an approach developed in a fully model-based
framework. As with locfdr, the calculations are fast,
but our whole analysis derives from clear up-front
statements about what the analysis is trying to achieve,
and the modeling assumptions made. The results look
reassuringly similar to Professor Efron’s. We hope this
will be helpful for understanding the current paper, and
in making a contribution to this general field.

We begin by following Efron in placing the local
false discovery rate, fdr(z), as the primary focus of the
analysis, and exploit the fact that it can offer a neat pa-
rameterization of the two-part model. If the marginal,
“mixture” density for the z-values is

f (z) = p0f0(z) + (1 − p0)f1(z)

and fdr(z) = p0f0(z)/f (z), then

f1(z) = p0

1 − p0

1 − fdr(z)

fdr(z)
f0(z).
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We observe that, because f1 is a density, we only need
to know f0 and fdr in order to find its normalized form,
and in turn this tells us the value of p0. Thus, for a
given f0, specifying fdr sets up everything else we re-
quire for model-based analysis.

Naturally, the analysis we report will depend on the
functional form assumed for fdr, and Efron implic-
itly assumes a rather flexible form of fdr, through a
seventh-order polynomial-smoothed density estimate.
However, this approach does not rule out an f̂dr with
multiple peaks. Thinking of the schools example, we
would not want to be the statistician explaining how
two “bad” schools may have z1 < z2 < 0, but yet
f̂dr(z1) > 0.2 while f̂dr(z2) < 0.2. Put more simply,
Efron’s method can report that School 1 has worse
performance, but only School 2 is called an outlier.
We find it more straightforward to a priori justify our
choice of fdr by careful consideration of its role in the
reported inference.

In our experience, the search for non-null “discov-
eries” is based around two ideas; first, we will not
discover anything near the center of f0 (effectively
Efron’s “zero assumption,” also termed “purity” by
Genovese and Wasserman, 2004). A second sensible
assumption is that the evidence for z being “null” will
decrease monotonically as we move out from the cen-
ter. One way to satisfy this is with a logistic-linear form
for fdr, giving a two-component normal mixture for f1,
but we get closer to the spirit of Efron’s analysis by as-
suming that fdr is unity inside a central region, and then
follows a half-normal decline, that is,

fdrH (z) =
⎧⎪⎨
⎪⎩

e−(z+ka)2/2, z < −ka ,
1, −ka ≤ z ≤ kb,
e−(z−kb)

2/2, z > kb.

Following the observation above, taking the null com-
ponent f0 to be standard Normal, now defines the fol-
lowing marginal distribution f H (z):

f H (z) = p0(2π)−1/2 ·
⎧⎪⎨
⎪⎩

e−|z|ka+k2
a/2, z < −ka ,

e−z2/2, −ka ≤ z ≤ kb,
e−|z|kb+k2

b/2, z > kb,
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where the constant of proportionality is p0, the propor-
tion of nulls, which is an easily determined function of
ka and kb.

f H (z) is seen to have a N(0,1) “core” and exponen-
tial tails. By substituting (z−μ0)/σ0 for z in f0(z) and
fdrH(z), it is easily generalized to a full location-scale
family, where the “core” (or null distribution) is now
N(μ0, σ

2
0 ). We term this a “Huber” distribution, de-

noted H(μ0, σ0, ka, kb), following the observation in
Huber (1964) that his optimal robust location estima-
tion procedure based on a piecewise-linear bounded in-
fluence function was precisely equivalent to maximum
likelihood estimation applied to such a distribution, but
with ka = kb = k specified and σ0 assumed known.

Assuming this distribution and adopting a full likeli-
hood approach, maximum likelihood estimates μ̂0, σ̂0
are the solutions of estimating equations that take, up
to a very good approximation, the same form as Hu-
ber’s famous “Type 2” estimator. We do not need to fix
ka and kb; they can be estimated from the data in the
same way.

We have implemented maximum likelihood-based
regression for this error distribution within our own
R package (huber.lm), and also as a fully Bayesian
MCMC approach via a new distribution, dhuber,
within WinBUGS.

Figure 1 and Table 1 show the results of fitting this
distributional family to four of Efron’s examples using
huber.lm.

In line with Efron, we assume that f0 follows a
N(μ0, σ

2
0 ) distribution, and provide point estimates

for μ0, σ0,p0 as well as ka, kb. We also show the fit-
ted marginal distributions f H (z), QQ-plots of the z-
values against f H (z) and a “naive” Normal, the fit-
ted local false discovery rate fdrH(z), and an appro-
priately scaled representation of the “alternative” dis-
tribution f1. Figure 1 shows a good fit of the Huber
distribution to these examples. The fitted fdrH curves
are also plotted, and these show a close concordance
with Efron’s locfdr results. For the BRCA data, we
have not plotted fdrH , as use of the Huber distribution
here gives estimates for both ka and kb tending to ∞,
and hence gives a point estimate of f̂dr = 1 for all data
points. The practical message is clear; we find that the
BRCA data, on its own, provides no strong evidence
of any signals beyond the fitted N(μ,σ 2) null, in line
with Efron’s results. The QQ-plot for the BRCA data
provides further informal confirmation. Other authors
have declared some evidence for signals in this dataset,
a recent example being Jin and Cai (2007). However,
this is in contrast to a Bayesian analysis with a uniform

prior for ka and kb, which leads to a posterior for both
ka and kb that rules out values less than 2 (p0 > 0.8%)
and which provides an essentially uniform distribution
for ka, kb > 3 (p0 < 0.02%).

Table 1 provides parameter estimates for the asym-
metric Huber distribution: likelihood ratio tests for
common k are p = 0.68 (Prostate); p = 0.14 (Educa-
tion); p = 0.007 (HIV). We find a close concordance
between our results and those in Efron’s paper. The es-
timated proportions of nonnull observations are 1.7%
(Prostate), 7.3% (Education) and 6.2% (HIV). As p0 is
a slightly messy function of ka and kb,

p0 = √
2π

[
e−k2

a/2/ka + e−k2
b/2/kb

+ √
2π

(
�(ka) + �(kb) − 1

)]−1
,

we have found it easiest to obtain intervals by using an
MCMC approach. However, using the delta method or
a parametric bootstrap on the distribution of the MLEs
offers, in spirit, the same inference.

In contrast to Efron’s desire to “minimize the amount
of statistical modeling required of the statistician,” we
would encourage statistical modeling where the mod-
eling assumptions are clear and comprehensible; for
example, we find a simply defined parametric model
preferable to Efron’s seven-parameter polynomial-
smoothed density estimate. Our explicit acknowledg-
ment of these assumptions also motivates consideration
(below) of how they may be usefully strengthened, and
also whether they may be relaxed.

Using a simple but flexible fully parametric fam-
ily such as the Huber distributions confers many ad-
vantages. If we are willing to condition on the ad-
equacy of the assumed model for f H (z), then the
full resources of likelihood modeling become avail-
able, providing interval estimates, hypothesis tests and
so on. In a hierarchical setting, the Huber distrib-
ution can also be considered at the random-effects
level. Computationally this is handled with ease within
a full Bayesian MCMC environment, where using
H(μ,σ, k) or H(μ,σ, ka, kb) within a hierarchical
model presents no additional difficulties over its use as
a sampling distribution. Becoming “more” Bayesian
still, we note the possibilities for use of informative
priors regarding the thresholds ka and kb, and hence
implicitly p0. In our opinion, analyses which acknowl-
edge these a priori assumptions seem particularly at-
tractive for examples smaller than Efron’s, where a
reliable density estimate seems out of reach. Finally,
a Bayesian modeling framework allows the inclusion
of a model for such data within an integrated evidence
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FIG. 1. Summary plots fitting the Huber distribution to four examples. For each dataset, we plot histograms of the z-values and fitted
marginal distribution, QQ-plots of the data against fitted Huber distribution (f H ) and a naive pure Normal (f N ), and finally a plot of the
fitted fdr and the alternative distribution f1 (inverted). For BRCA, the fitted fdr is always 1, giving no strong evidence of signals in this
dataset.
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TABLE 1
Maximum likelihood estimates (95% intervals) for parameters of the asymmetric Huber distribution for four of Efron’s examples; the

intervals for p0 are obtained from an MCMC simulation

Prostate Education BRCA HIV

μ0 −0.001 (−0.031, 0.030) −0.361 (−0.427, −0.295) −0.026 (−0.075, 0.023) −0.138 (−0.161, −0.115)
σ0 1.059 (1.030, 1.089) 1.452 (1.363, 1.546) 1.431 (1.396, 1.466) 0.760 (0.730, 0.791)
ka 1.80 (1.61, 2.01) 1.31 (1.17, 1.48) — — 1.40 (1.28, 1.53)
kb 1.75 (1.59, 1.93) 1.21 (1.08, 1.37) — — 1.26 (1.17, 1.36)
p0 0.983 (0.975, 0.990) 0.927 (0.899, 0.950) — — 0.938 (0.921, 0.954)

synthesis, which can be guided by a combination of
substantive knowledge and data analysis.

Taking a less Bayesian or full-likelihood approach,
and not wishing to condition on the “truth” of the
model assumptions, one could proceed directly to
Huber-style estimating equations for μ0, σ0 and k (or
ka and kb), justified either through their connection to
the model we have described, or by arguing that this
influence function directly reflects the population pa-
rameter we want to estimate; if we are trying to mini-
mize model-dependence, the second approach is more
satisfactory, and is quite standard in GEE. Sandwich
and/or bootstrap variance estimates could be used to
reflect uncertainty about these point estimates, with-
out further parametric assumptions about the mixture
distribution f . In samples of thousands of z’s (but not
with a few hundred), this provides appealingly robust
estimates of location and scale.

However, going beyond μ0 and σ0, it is not clear to
us that the GEE paradigm allows “model-robust” mea-
sures of fdr. Must one compare the marginal f to an f0
which is assumed to have a specifically Gaussian form,
or that of some other parametric family? Might some

advanced form of cross-validation offer a model-free
approach? And could this be done without an exces-
sive computational burden? Any insights from Profes-
sor Efron in this matter would be very welcome.

In conclusion, we feel that flexible likelihood or
Bayesian modeling techniques, combined with basic
insights from the literature on outlier-robustness, will
contain much of value in the era of microarrays and
other data-sources requiring large numbers of hypoth-
esis tests. We thank Professor Efron for his stimulating
paper, and also for his generosity in making available
the four featured datasets.
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