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Abstract: This article addresses current methodological research on non-
parametric Random Forests. It provides a brief intellectual history of Ran-
dom Forests that covers CART, boosting and bagging methods. It then
introduces the primary methods by which researchers can visualize results,
the relationships between covariates and responses, and the out-of-bag test
set error. In addition, the article considers current research on universal
consistency and importance tests in Random Forests. Finally, several uses
for Random Forests are discussed, and available software is identified.
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This article addresses current methodological research on non-parametric Ran-
dom Forests [14]. Random Forests are ensembles of trees grown from boot-
strapped training data. For classification, the trees are combined using majority
voting with one vote per tree over all the trees in the forest. For regression,
forests are created by averaging over trees. Scholars tend to agree that non-
parametric ensemble methods, or ‘committee methods’, such as Random Forests
can offer significant improvements over any single classifier or regression tree
[28, 29][38, p. 251].

In constructing the ensemble, Random Forests use two types of randomness.
First, in growing any given tree, a random sample of predictors is selected at
each node in choosing the best split. A further layer of randomness is added by
using a random sample of observations for growing each tree in the first place. In
theory, using a random sample of observations and selecting random predictors
at each node should reduce dependence between covariates and thus between
the resulting trees [14, p. 10-11][5].
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Results from the use of Random Forests have been impressive. Various studies
have shown that Random Forests reduce classification and regression error on
a wide array of data structures and problems from renal cell carcinoma classifi-
cation and financial forecasting to genetic and bio-medical analysis [70, 80, 47].
Relative to some comparably accurate methods, Random Forests also possess
a reasonably high degree of interpretability to help scientists understand the
relative ‘importance’ of covariates, the effect of adding more variables on out-
of-bag test set error, as well as proximities between observations and marginal
effects. These features make the method not only accurate, but also useful for
scientists, researchers and practitioners from diverse discipline areas.

The range of applications for which CART, bagging, boosting, and Random
Forests are appropriate spans the natural and social sciences. The toy exam-
ples offered in this text come from political science data sets about voting and
ethnic conflict. In my own research, I have applied these algorithms to predict
and explain violent conflict, including outcomes such as the onset of civil war,
the duration of civil war, the termination of ethnic conflict, and the incidence
of armed secessionist rebellion. Applied statisticians and domain scientists in
all quantitative fields should find these methods of interest as substitutes or
complements for prediction, inference and description in standard regression,
classification, longitudinal and censored survival settings.

The article proceeds as follows. The first section presents a brief intellec-
tual history of Random Forests, which covers CART, boosting and bagging
[30, 9, 40, 11, 32, 27]. The second section surveys some of the ways to visual-
ize Random Forests and extract information that can help build better models.
The penultimate section surveys some variations of the basic random forest algo-
rithm which, in addition to regression and classification problems, can deal with
censored survival and clustered data, the latter by bootstrapping at the subject
(rather than sample) level. The article also describes some available software:
front-ends for Breiman’s Fortran code in the R language and in MATLAB ®), as
well as C++ and Java-based visualization tools. The final section summarizes
the material and suggests some directions in which research on Random Forests
appears headed.

1. A short intellectual history
1.1. CART

A reasonable place to begin understanding this class of models is with classifi-
cation and regression trees [9]. The basic idea behind CART is straightforward.
We use a set of observed predictors to partition the data recursively until the
classes or values of the response variable in each sub-partition become fairly
‘homogenous’. The contribution toward this homogeneity (or ‘impurity’) is one
measure of ‘variable importance,” a concept in classification settings that is
typically measured as the total heterogeneity reduction produced by a given
covariate on the response variable when the sample space is recursively parti-
tioned. Homogeneity or impurity is typically defined as i(7) = 0[p(y = 1|7)],
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where the impurity of node 7 is a non-negative function of p(y = 1|7) in a [0, 1]
classification problem. 6 is typically taken as the Gini [#(p) = min(p, 1 — p)],
Entropy [6(p) = |—plog(p)] — [(1 — p)log(1 — p)] or the Bayes error [0(p) =
p(1 — p)]. More on how variable importance is measured is discussed below in
the context of Random Forests following the discussion of CART, Boosting and
Bagging.

The CART algorithm (for regression) has three steps.

1. At each non-terminal node, select a split to minimize the sum of squared
errors: SSepror = Zivzl(yl - fc(xl-))2, where fc is the predicted value for
the relevant tree.

2. Determine when nodes are terminal (i.e., when to stop growing the tree
or how much to prune) using cross-validation.

3. Estimate the outcome class or response value at each terminal node.

The first and third steps are relatively straightforward, but the second can
present problems. Growing a large tree, pruning it, and tuning it using cross-
validation to locate a tree with high predictive accuracy and interpretability is
as much art as it is science [38, p. 270]. In short, cross validation suggests how
much to prune the saturated tree by building ‘ancillary trees’ and calculating
error rates for the saturated tree and the subtrees. There are many ways to
conduct the cross-validation, including V-fold, leave-one-out or repeated ran-
dom subsampling [59]. If we use V-fold cross-validation, where V' = 10, we
would grow 10 ancillary trees on a partition of the training data using 90%
of the data and leaving 10% out in order to estimate the error rates. All of
the error rates from the trees on which this procedure is done are then com-
bined and used to determine how much pruning to do on the saturated tree.
One popular implementation of this procedure is the ipred library in the R
language [44].

Random Forests, which will be discussed shortly in more detail, obviate the
need for cross-validation. Instead, they produce an unbiased estimate of the test
set error internally by constructing many bootstrap samples from the original
data and leaving about one-third of the cases out of the bootstrap sample and
the construction of the n'” tree in the forest. This is one of several advantage
that Random Forests possess over its predecessor, CART.

CART has other problems that scholars have duly discussed elsewhere; these
include: ‘(1) discontinuous boundaries; (2) poor approximations of linear func-
tions or functions which are additive in a small number of variables (cf. [38, p.
274]); (3) typically uncompetitive in low dimensions; (4) difficult to determine
when a complex CART model is close to a simple model’; and (5) ‘instability of
trees’ [2, p. 3][38, p. 272-4].

Despite these problems, CART is an attractive research tool: it not only clus-
ters observations into groups with similar values on the response variable, but it
also shows exactly how these clusters were constructed using a tree on which the
branches are splits on the values of the explanatory variables. Categorical, or-
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dered, unordered, interval-all variable types are handled seamlessly and allowed
to relate in highly non-linear ways with the response [9, 60]. In some implemen-
tations of CART, prior probabilities can be assigned to the response class. In
the [0,1] classification case, this would amount to specifying a prior probability
of success or failure, based on one’s belief about the marginal distribution of
the response from previous studies. This provides a useful means of adding a
cost according to whether a false positive or a false negative is more costly |9,
section 4.4][5, p. 274-5].

1.2. Boosting, bagging and Random Forest

Instead of recursively partitioning smaller and smaller portions of the data set
like CART, boosting considers the full data set at each potential partitioning
node [67][38, p. 299ff]. The name comes from the ability ‘to boost’ a ‘weak
learning algorithm’ into a stronger one using ‘committee methods’ [38; p. 299].
Assume two classes: -1 and 1: Y € {—1,1}, let X be a vector of explanatory
variables and let G(X) be a classifier, such that G,,(x),m = 1,2,...,M is a
sequence of classifiers. The predictions are aggregated using a weighted voting
system: G(z) = sign[SM_ | nGon(2)] [66, 68][38, p. 300]. The a;’s weigh the
contribution of each G, (z), giving more accurate classifiers more weight, and
vice versa. In step 2c., v, is the weight assigned to G,,(z) in order to yield the
final classifier G(z). Misclassified observations are scaled by a factor exp(am,),
which increases their influence in the next sequence, G,+1(z) [38, p. 301].

Adaboost, or ‘adaptive boosting’ [38, p. 301], is a popular version of boosting
that has performed well. Breiman speculates that Adaboost is actually a random
forest [14, p. 20-21]. For a two-class classification problem with exponential loss,
such as the one described above, the Adaboost.M1 algorithm is given as follows
[32][38, 301]:

1. Initialize the observation weights, w; = 1/N,i=1,2,..., N.
2. Form =1 to M:

a. Fit a classifier G,,(x) on the training data using weights w;.
Zi\;l wi I(yi#Gm ()

= .

b. Compute err,, = -
c. Compute a,y, = log(1 — er;jn/errm).
d. Set w; «— w; - explag, - I(y; # Gm(zi))],i=1,2,...,N.

3. Output G(z) = sign [an\le G ()]

Boosting, however, is generally less attractive to statisticians than bagging
or Random Forests, in part, because it lacks consistency and there is nothing
implying convergence [54] in [5, p. 288].

Bagging, or ‘bootstrap aggregation’, is an ensemble method that uses a boot-
strap sample of the hold out data [34] to train predictors and then combines
results from several fitting attempts, assigning a predicted class or value for each
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observation [30, 11, 58][38, p. 246-9; 225-236]. The bootstrap sample is gener-
ated from a training set, i,qin, of size n by producing m additional training
sets with size n* : n* < n by uniformly sampling from €24,4;, with replacement.
Bagging is one of the earliest methods to combine ‘random trees’ and, as such,
provides a key step in the development of Random Forests [11].

Let € be an original data set, divided into a training 2,4, and a testing
data set, Qcs, and let B be a series of bootstrap samples from $2;,4in. The
basic bagging algorithm is given as follows [38, p. 246-7]:

1. From an original data set, €2:

a. Take B bootstrap samples from the training data, Qqin
b. Aggregate the collection of bootstrap samples: Zf (B;)

2. Train predictors using these bootstrapped and aggregated (bagged) data
by growing many trees without pruning and then counting the number of
times (over trees) that each case is classified in each category.

3. Combine predictors using majority voting (for classification) or averaging
(for regression) over the set of trees and assign cases accordingly.

The result of averaging all the classifiers is a decrease in variance for the
bagged estimates [38, p. 247]. The price is an increase in bias. Assigning cases to
categories using majority voting over a set of bootstrapped classification trees
(step 3) reduces the chances of over-fitting. Majority voting means each tree
votes: that is, assigns a class to each sample. The results are then aggregated
and the class which receives the majority of votes is chosen.

For a two-class classification problem, a four cell ‘confusion matrix’ is pro-
duced with false positives, false negatives, and accurate class predictions. This
matrix can be useful in understanding where the model falls short. Combined
with an exception analysis that identifies influential outliers and observations
which are poorly predicted by the model, the researcher can begin building
better models [56].

Like bagging, Random Forests also grow many trees using bootstrapped sam-
ples from the training data. An unpruned classification tree is grown for each
bootstrap sample and new cases are dropped down the trees. Majority voting is
used to determine the terminal node to which the case should be assigned. Ran-
domness is added at each node by choosing a random sample of predictors to
consider for the split. The result is a forest constructed from randomly selected
cases and randomly selected predictors. According to Breiman [14, p. 6]:

Definition ‘Random Forests is a classifier consisting of a collection of tree-
structured classifiers: {h(x,0),k = 1,...}, where the {O4} are independent
identically distributed random vectors and each tree casts a unit vote for the
most popular class at input x.’

The algorithm is given as follows [38, 14, 24, 2]:
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1. For B;,i=1,...,B

a. Draw a bootstrap sample S of size N from the training data.

b. Grow an unpruned random-forest tree, T} using the bootstrapped
data, until the minimum terminal node size, 7,5, is obtained by recur-
sively following the sub-algortihm.

Randomly select p variables from the total set of P variables.
Select the optimal variable/split-point among the p variables
Split node into two daughter nodes.
2. Output ensemble of trees {1}, }¥
3. Predict new observations, or out-of-bag observations [12, 21]
For regression: Aff () =% Zle Ty(x)

bth

For classification: Let Cy () be the class prediction of the b* random

forest tree — C’f}(x) = majority vote {Cy(z)}2

In addition to precision, this algorithm has the advantage of preventing over-
fitting by reducing dependence between trees, which makes majority voting an
effective strategy. M;,,, the number of variables to try at each node, is the
main tuning parameter. Breiman [14] suggests using M;,, = /p, where p is
the number of predictors, for regression and using M., = g for classification,
but cross-validation can be used to optimize the choice for My, = f(p) [51,
10]. As for the number of trees, one can grow as many trees as one wishes
without over-fitting, but can also inspect the out-of-bag error rate as a function
of the number of trees (Figure 3) in order to determine how many trees to
grow [18].

Randomly selecting predictors can reduce competition between similarly im-
portant factors or factors that fit some observations well but others poorly,
particularly when multi-collinearity and sub-group differences are pronounced
[5, p. 282]. Furthermore, Random Forests contain a built-in cross-validation
method to calculate test set error using out-of-bag samples. Variables in out-of-
bag samples are randomly permuted and then their impact on the test set error
is measured, providing one useful method of determining ‘variable importance’
[14, p. 23ff]. Breiman [12] [14, p. 11] has argued that the out-of-bag test set
error is as good as a test set of the same size without the need to keep aside a
test set.

Following Breiman [16] and Sandri et al. [65, p. 4], we can define four promi-
nent measures of variable importance in Random Forests:

e Measure 1: Randomly permute the values of the i‘" variable. Obtain
new classifications over out of bag observations (those not used to grow
the tree) and record as é;. Compare with é. For the ' variable, calculate
arg max {0;¢é; — é}[72, 65]. The difference between the accuracy of the
prediction before and after permutation provides the importance of the
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it" variable for one tree, and the important for the forest is calculated by
averaging over all trees [74, p. 6-7].

e Measure 2: This measure takes the amount by which the margin is low-
ered across all trees as a measure of importance. Take an observation
(y,x), the margin function marg(y,x) is defined as a the degree to which
the proportion of the most voted incorrect classifications is exceeded by
the proportion of the correct classifications:

arg max{0; avgs[marg(y,x) — marg;(y,x)]}. (1)

e Measure 3: Building on the previous two measures, this measure takes
the difference of the number of lowered and raised margins as follows:

arg max{0; #(marg(y, x) < margi(y, X)) - #marg(y, x) > marg;(y, x)]}.

(2)

e Measure 4: This measure takes as the sum of all reductions in the Ran-

dom Forests due to the i*" variable divided by the total number of trees
in the forest:

I, = 7 1, 2)1G,2) 3)

where 7z is a node in each tree that relies on a heterogeneity index such as
the Shannon entropy or Gini index, d(i, z) is the decrease in that hetero-
geneity index induced by z; at node z, and I(i, z) is an indicator function
equal to 1 if the i*" variable is selected for a split at node z.x; is chosen
to split on if d(4, z) > d(w, z)¥ randomly selected X,, at node z.

It is prudent to consider all of these measures when using Random Forests
for variable selection, since results may vary and inferences may be sensitive to
one’s choice. Breiman himself recommends trying all four. In addition, one has
the option of considering up to date variations on these measures implemented
in many statistical software languages.

In summary, Random Forests offer dramatic improvements in predictive ac-
curacy and stability, but they do not leave intuitive trees behind to interpret.
Breiman and others have suggested and developed a number of clever ways to
visualize Random Forests that make them attractive methods not only for pre-
diction but also for data description, model assessment and model improvement.

2. Visualizing results

Random Forests improve upon CART in a number of ways, including stability
and accuracy, but in exchange they forgo the single interpretable tree. A number
of visualization tools have been suggested to fill this gap. Figure 1 and Figure 2
are examples.

Figure 1 illustrates how variable importance is measured and ranked. The
predictive accuracy is defined on the out-of-bag data for each tree and after
randomly permuting each variable in the out-of-bag sample by counting the
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F1G 1. Variable Importance Plot. The data set used in this analysis is from a Euro-barometer
survey. The response is a vote for a particular political party type. The variables label eq28.x
all concern attitudes toward asylum seekers; all labels eq27.x concern attitudes toward immi-
grants, eod6.o concerns car ownership, ed7boccup is an occupation question, eage is year of
birth, income is income deciles, ed2mar is marital status, ed10comm is a rural/urban residence
question, ed5ch concerns the respondent’s number of children and their ages, edlibchurch
is about church attendance, ed8paid concerns the source of respondent’s income, ageedu is
years of schooling, c is country random effect, ed11adenom is the respondent’s denomination,
sex is the respondent’s gender, edbah is the number of adults living in the hoursehold, ager
is age of respondent,ocupr is occupation of the respondent, edur is the education level of the
respondent, ed7aoccup is the respondent’s current occupation, ed5bh is the number of adults
living in the household.

correct votes. The difference between the permuted and non-permuted counts
is calculated, averaged over the forest and normalized using the standard error.
In regression, the mean-square error is calculated for each tree in the out-of-
sample forest with and without permutation. The following is more structured
description of the process [38, p. 593]:

1. For the b tree:
a. Pass out of bag samples down the tree and record accuracy.

2. Randomly permute the values of the j** variable in the out of bag sample
Recalculate and record accuracy.
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Fic 2. A Partial Plot of One Dichotomous Predictor Variable. The data set used in this
analysis concerns violent irredentist conflict between post-secessionist states and the rump
states [71]. Spatially, the data cover the entire globe and, temporally, includes all cases since
the early 19th century. The variable in question is a simple indicator variable of whether the
two states in question possess overlapping ethnic population pockets. The presence of such
pockets is positively related to the response, interstate conflict.

3. Average the decrease in accuracy that resulted from randomly permuting
over all the trees, b1,...,bp
Call this difference the importance of the j** variable.
4. Repeat for j;,7=1,..., N and rank

Figure 1 uses a slightly different measure-the total decrease in node impurities
that results from uses a given variable to split, averaged over all the trees [51,
p. 7]. Since this is a classification example, node impurity is measured using the
Gini index rather than the residual sum of squares [18, 51] [14, p. 10-11][5, p.
283].

Marginal or partial dependence plots (Figure 2) provide another approach
to visualizing results [38, p. 331-44][18, p.12-3]. Other predictors are ‘held con-
stant’, allowing one to examine the relationship between an individual predictor
and the response. The partial dependence function can be estimated for regres-
sion as in [38, p. 333, 10.51] [34, 51]:

_ 1
fs(Xs) =+ Y f(Xs, mic), (4)

=1

where Xy is the predictor on which partial dependence is estimated, {x;c} are
the values of X¢ from the Xs in the training data set. The function and related



Dawvid S. Siroky/Navigating Random Forests 156

OOB Error Rate

0.35 0.40
| |

0.30
|

Error

0.15
|

trees

F1G 3. Out of Bag Test Set Error Rate.

TABLE 1
A ‘Confusion Matrix’ of a Data Set with 100 Observations

No Event Predicted Event Predicted Error

No Event 41 9 18%
Event 6 44 12%

plot show the effect of Xg on fx after adjusting for the effect of X on fx, and
not the effect of Xg on fx ignoring the effect of X [38, p. 333-4]. The plot
below, based on data about the occurrence of ethnic conflict, shows that when
the predictor is in class 1 (versus 0) the response is much more likely to be in
class 1 (versus 0) after adjusting for the other predictors.

In addition to the relationship between predictors and responses, one can
examine a ‘confusion matrix’ of predictive performance for the 2-class case (see
Table 1 for an example). For binary classification problems, this is a 2 X 2
table, with accurate predictions on the Northwest and Southeast diagonals,
and inaccurate predictions (false negatives and positives) on the other diagonal
(Table 1). The test set error rate can be visualized as a function of the number
of trees grown (Figure 3). Figure 3 shows that the average test set error rate
plateaus around 15% after a few hundred trees. The false positive and false
negative rates are graphed separately (18% and 12% respectively), and the heavy
line running between the two is the average test set error rate (15%).
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3. Uses of Random Forests

Random Forests can be used for a number of purposes, such as describing the
relationship between predictors and responses, forecasting, variable selection,
missing data imputation and classification. Random Forests handle missing data
and out-of-sample testing naturally; they can be used with mixed discrete and
continuous predictors and responses, and also offer an elegant approach for
survival analysis. Although variable importance measures can offer powerful
insights of complex data structures, some recent research suggests a possible
bias in Random Forests variable importance measures for situations in which
predictors vary widely in terms of measurement or number of categories [72].

Random Forests can also be useful when combined with more conventional
approaches. As Berk [5, p. 290] points out, if predictors thought to be impor-
tant in one analysis do not emerge in the other, this may indicate the need
for further scrutiny and can reveal new information about non-linearities and
interactions. In observational studies, Berk, Li and Hickman [6] have suggested
that ensemble methods can sometimes do a better (lower bias) job of modeling
the selection process than propensity score matching, which usually relies upon
logistic regression to determine the probability of treatment group membership
[6] in [5, p. 290][23, 36, 61, 62, 63, 64, 39].

4. Universal consistency and predictor importance

The impressive performance of Random Forests has brought more attention to
its properties and limitations. Breiman himself raised, but did not fully address,
a number of questions about the consistency of random forest averaging rules
[7,17, 75]. For example, Breiman [14] wrote that ‘Use of the Strong Law of Large
Numbers shows that they [Random Forests] always converge so that over-fitting
is not a problem. . .this result explains why Random Forests do not over-fit as
more trees are added, but produce a limiting value of the out of bag error’
[14, 78, 7].

To investigate the issue of ‘universal consistency’, Biau, Devroye and Lugosi
[7] consider a binary classification problem and show that the ‘purely random
forest classifier’ and the ‘scale-invariant random forest classifiers’ are consistent,
but also that randomized, greedily grown tree classifiers are inconsistent and
propose an alternative methodology to define a computationally feasible consis-
tent greedily grown random forest classifier [7, p. 2028-2031] [74, Theorem 20.9]
[7, p. 2018-2026]).

While Biau, Devroye and Lugosi [7] have examined the consistency of Ran-
dom Forests, other research has begun to explore additional properties and
limitations. For example, Strobl et al. [72, 73] demonstrated that one of the two
more common variable importance measures-the Gini measure-is biased when
predictors vary significantly in scale. By contrast, the same authors find that a
second method of determining variable importance is unbiased under the same
circumstances. Breiman et al. [9] first observed that similar measures may be
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biased in favor of selecting those variables with more values of the covariate, in
part, because these variables provide more splits.

Strobl and Zeileis [73] investigated the Random Forests permutation impor-
tance test’s ability to identify relevant predictor variables that may be correlated
in a simulation study. The authors concluded that the test possesses some un-
desirable properties in its current form, although the issues could probably be
addressed by applying a ‘conditional permutation scheme’. Strobl and Zeileis
[73] also question the rejection area for the null hypothesis being tested and
argue that further research is necessary to determine its adequacy. Finally, the
authors note that multiple testing issues will have to be taken into account when
a large number of variables are under consideration. These issues, inter alia, will
continue to constitute the subject of further research and debate on Random
Forests, but it is already clear that they perform well in a wide range of scientific
domains and have earned their place in the algorithmic canon.

5. Software

Random Forests, and other ensemble methods, are available in many software
formats. CART, having been around for a few decades already, is of course
widely available in both free-ware and commercial-ware. Random Forests are
available in R ([51]) and MATLAB ([79]). R, a popular free-ware statistical
environment, has a well functioning and frequently updated Random Forests
library [50], and a version for time-to-event censored survival data [45], as well
as some specialized packages, such as varSelRF, which implements a validated
method for selecting small sets of predictors while preserving classification ac-
curacy [26]. MATLAB also has an interface to the random forest algorithm,
contributed by Ting Wang ([79]), in addition to many other statistical learn-
ing methods. Breiman and Cutler have written a java-based visualization tool
called RAFT, which stands for RAndom Forest Tool ([8]). Karpievitch, Hill, Mil-
lar, Smolka, Almeida and Hoffman [46] propose a modification of the Random
Forest algorithm for clustered, repeated measure data. These data are common-
place in a wide range of application domains, including bio-statistical and social
scientific applications. Karpievitch, Leclerc, Hill, and Almeida [46] recently in-
troduced the C++ free-ware ‘RF++: Improved Random Forest for Clustered
Data Classification’.

6. Conclusions

Random Forests have already gained considerable attention, despite being rel-
atively new. In addition to impressive accuracy, some research suggests that
Random Forests are more robust to noise, more stable and faster to train than
Adaboost [13, 49, 22]. Random Forests—and other statistical learning methods—
have often been ignored, in part, because they differ so dramatically from widely
used statistical modeling tools. Hopefully, this article has uncovered some of the
mystery behind these methods, making them more familiar to statisticians and
applied researchers, and prompting some readers to explore further.
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