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Abstract: Relative surprise regions are shown to minimize, among Bayesian
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1. Introduction

Suppose we have the ingredients for a proper Bayesian analysis. For this we
observe data x from a statistical model {fθ : θ ∈ Θ} , where fθ is a density with
respect to support measure µ on the sample space X , and we have a proper
prior density π on θ, with respect to support measure υ on Θ. With these
ingredients we have available the joint distribution of (θ,X), as given by the
density fθ (x)π (θ) with respect to support measure ν × µ, and the observed
value x. We denote the prior predictive measure of X by M(B) = EΠ(Pθ(B))
and the posterior measure of θ by Π(A | x). For a quantity of interest τ = Υ(θ),
taking values in a set T , we denote the marginal posterior and prior measures of
Υ by ΠΥ(· | x) and ΠΥ respectively, with corresponding densities πΥ(· | x) and
πΥ, taken with respect to a support measure νT on T .

Bayes theorem, or the principle of conditional probability, says that any prob-
ability statements about the unknown θ, after observing x, should be based on
the posterior Π(· | x). These ingredients alone however, do not prescribe what
γ-credible region Bγ(x) ⊂ T we should quote for τ = Υ(θ). Since there are
typically many subsets of T containing γ of the posterior probability, we need
a rule for choosing among them.

Relative surprise credible regions for τ, as discussed in Evans (1997), are
based on a particular approach to assessing a hypothesis H0 : τ = τ0. For this
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we compute the observed relative surprise (ORS) given by

ΠΥ

(

πΥ(τ | x)

πΥ(τ )
>
πΥ(τ0 | x)

πΥ(τ0)

∣

∣

∣

∣

x

)

. (1)

We see that (1) compares the relative increase in belief for τ0, from a priori to
a posteriori, with this increase for each of the other possible values in T . Other
approaches to measuring surprise are discussed in Good (1988). For estimation,
we consider (1) as a function of τ0 and select a value which minimizes this
quantity as the estimate, called the least relative surprise estimate (LRSE). To
obtain a γ-credible region for τ we simply invert (1) in the standard way to
obtain the γ-relative surprise region

Cγ(x) =

{

τ0 ∈ T : ΠΥ

(

πΥ(τ | x)

πΥ(τ )
>
πΥ(τ0 | x)

πΥ(τ0)

∣

∣

∣

∣

x

)

≤ γ

}

. (2)

One virtue of relative surprise inferences is that they are invariant under repa-
rameterizations.

In Evans, Guttman and Swartz (2006) it was shown that relative surprise
inferences possess an optimal property in the class of Bayesian inferences. In that
development, (2) was taken as the basic concept. In particular, if we consider the
class of all γ-credible regions for τ = Υ(θ), then the γ-relative surprise region for
τ has the smallest prior content among all γ-credible regions for this quantity.
Hypothesis assessments and estimates are derived from relative surprise regions
in a direct way and so also possess optimal properties. The LRSE is obtained by
taking the region with γ = 0 and the ORS is obtained as inf{γ : τ0 ∈ Cγ(x)}. In
section 2 we show that this optimal property has a direct interpretation in terms
of minimizing the prior probability of covering a false value and argue that this
is an appropriate way to assess repeated sampling properties in contexts where
we have a proper prior. In section 3 we prove that, for relative surprise regions,
the prior probability of covering a false value is always bounded above by the
prior probability of covering the true value and so such sets are, in a generalized
sense, unbiased.

As discussed in Evans and Zou (2002) and Evans, Guttman and Swartz (2006),
there is a close connection between relative surprise inferences and Bayes fac-
tors. In section 3 we establish some results that deepen this connection and
show that relative surprise inferences lead to optimal results when interpreted
in terms of Bayes factors. In particular, we prove that a γ-relative surprise region
Cγ(x) for τ = Υ(θ) always has a Bayes factor in favor of the region contain-
ing the true value bounded below by unity and, moreover, the Bayes factor is
maximized among all γ-credible regions for τ by Cγ(x). Further, we introduce
the relative belief ratio as an alternative method for measuring change in be-
lief from a priori to a posteriori, and show that this is also bounded below by
unity for relative surprise regions and that such regions maximize this quantity
as well. The lower bound can be seen as a natural consistency requirement on
inferences in the sense that, it would be odd to report a γ-credible region for τ
for which our belief in the set containing the true value declined from a priori to
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a posteriori. While a decline in belief from a priori to a posteriori makes sense
for any particular subset of T , it doesn’t make sense for our best report for a
set supposedly containing the true value, as the data are suggesting otherwise.
Further, the optimality result indicates that we are making the best use of the
data, from this point-of-view, when we choose to use relative surprise regions. In
section 4 we show that in quite general circumstances relative surprise regions
arise as a member of an equivalence class of credible regions under reparame-
terizations. Further, we show that choosing among these regions is equivalent
to choosing the measure we use to construct an hpd-like credible region, where
hpd stands for highest posterior density. We argue that the most natural choice
of this measure is ΠΥ, which gives relative surprise regions.

2. Covering false values

Suppose we have a rule for determining a γ-credible region for τ = Υ(θ) based
on the sampling model and prior, i.e., for each γ ∈ [0, 1] and x ∈ X , the rule
determines a region Bγ(x) ⊂ T satisfying ΠΥ(Bγ(x) | x) ≥ γ. The coverage
Pθ(Υ(θ) ∈ Bγ(X)) of this region is then of considerable interest, particularly
when Π is taken to be a diffuse prior. In such a context it seems natural to
ask that a γ-credible region satisfy, or at least approximately satisfy, the con-
fidence property Pθ(Υ(θ) ∈ Bγ(X)) ≥ γ for all θ ∈ Θ. In other words, in
an i.i.d. sequence xi ∼ Pθ for i = 1, 2, . . . , we require that the proportion
of times that Υ(θ) ∈ Bγ(xi) is at least γ, and also that this property hold
for all θ ∈ Θ. It is well-known that Bayesian credible regions do not gener-
ally possess this property, see Joshi (1974), and in fact can perform rather
poorly in this regard. A number of papers discuss issues concerned with com-
paring frequency and Bayesian inferences including, Berger and Selke (1987),
Casella and Berger (1987), and Samaniego and Reneau (1994) as well as the
texts Gelman, Carlin, Stern and Rubin (2004), Carlin and Louis (2000), and
Robert (2001).

We restrict to proper priors, as then, letting EM denote expectation with
respect to the prior predictive distribution of the data,

γ ≤ EM(ΠΥ(Bγ(X) |X)) =

∫

X

∫

Θ

IBγ(x)(Υ(θ))ΠΥ(dθ | x)M(dx)

=

∫

Θ×X

IBγ(x)(Υ(θ))Pθ(dx)Π(dθ) = EΠ(Pθ(Υ(θ) ∈ Bγ(X))). (3)

This can be interpreted as saying that the prior probability the γ-credible re-
gion Bγ contains a value Υ(θ), when θ ∼ Π, is at least γ. This probability can
also be given a long-run relative frequency interpretation in the i.i.d. sequence
(θi, xi) ∼ Π × Pθ for i = 1, 2, . . . , as the proportion of times Υ(θi) ∈ Bγ(xi).
Various arguments can be offered for the restriction to proper priors, e.g., see
DeGroot (1970). In particular, when we have a proper prior, this long-run rel-
ative frequency seems more appropriate than the confidence property, as the
confidence property requires good coverage at values of θ that have a priori very
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little weight. Further, while the confidence property has its appeal, the plethora
of absurd confidence regions, see Plante (1991) for some discussion, might at
least lead one to doubt the wisdom of focusing too closely on confidence.

Property (3) holds for any γ-credible region Bγ and so does not help us choose
among them. Consider, however, the accuracy of the region Bγ , where this is
measured by the probability of Bγ covering an independent false value τ ∼ Λ
where Λ is a probability measure on T .

Definition 1. The prior probability of covering a false value from probability
measure Λ is given by

EM(Λ(Bγ(X))) =

∫

Θ

∫

T

Pθ(τ ∈ Bγ(X)) Λ(dτ )Π(dθ). (4)

So the “true” value of θ is generated from the prior Π, the data x is generated
from Pθ, and the “false” value τ of the parameter of interest is generated from
Λ independent of the true value, i.e., τ has no connection with the data.

To obtain a γ-credible region Bγ that minimizes (4) we make use of the fol-
lowing results. Suppose we have a probability measure P and a σ-finite measure
Q on a set Ω. Further, suppose that P and Q are both absolutely continuous
with respect to the same measure on Ω with respective densities p and q. Let
Dγ = {ω0 ∈ Ω : P (p(ω)/q(ω) > p(ω0)/q(ω0)) ≤ γ} for γ ∈ [0, 1] . Lemma 1 and
Theorem 2 are proved in Evans, Guttman and Swartz (2006). In that paper P
is taken to be the posterior but otherwise the proofs are the same.

Lemma 1. P (Dγ) ≥ γ with equality whenever the distribution of p(ω)/q(ω),
with ω ∼ P, has no atoms.

Theorem 2. The set Dγ minimizes Q (D) among all measurable sets D ⊂ Ω
satisfying P (D) ≥ P (Dγ) . Further, when the distribution of p(·)/q(·) has no
atoms, then Dγ minimizes Q (D) among all measurable sets D ⊂ Ω satisfying
P (D) ≥ γ.

The following result establishes the optimality, with respect to (4), of hpd-like
credible regions as defined in (5).

Theorem 3. Suppose that the probability distribution Λ is also absolutely con-
tinuous with respect to νT on T with density λ. Then, in the Bayesian model
specified by Π × Pθ, the region BΛ,γ given by

BΛ,γ(x) =

{

τ0 ∈ T : Π

(

πΥ(τ | x)

λ(τ )
>
πΥ(τ0 | x)

λ(τ0)

∣

∣

∣

∣

x

)

≤ γ

}

(5)

minimizes (4) among all regions B satisfying ΠΥ(B(x) | x) ≥ ΠΥ(BΛ,γ(x) | x).
If ΠΥ(BΛ,γ(x) | x) = γ for each x, then BΛ,γ minimizes (4) among all γ-credible
regions for Υ(θ).

Proof. Putting P = ΠΥ(· | x) and Q = Λ in Theorem 2, implies that BΛ,γ(x)
minimizes Λ(B(x)) among allB satisfying ΠΥ(B(x) | x) ≥ ΠΥ(BΛ,γ(x) | x). Now
EM (Λ(B(X))) is minimized, among all regions B satisfying ΠΥ(B(x) | x) ≥
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ΠΥ(BΛ,γ(x) | x) for each x, by B = BΛ,γ . Observe that EM (Λ(B(X))) =
∫

Θ

∫

X EΛ(IB(x) (τ ))Pθ(dx)Π(dθ) =
∫

Θ

∫

X

∫

T IB(x) (τ ) Λ(dτ )Pθ(dx)Π(dθ) =
∫

Θ

∫

T

∫

X
IB(x) (τ ) Pθ(dx) Λ(dτ )Π(dθ) =

∫

Θ

∫

T
Pθ(τ ∈ B(X)) Λ(dτ )Π(dθ) which

is (4). This completes the proof.

Specializing this to the choice Λ = ΠΥ, we have the following result.

Corollary 4. If Λ = ΠΥ, then BΛ,γ = Cγ , i.e., the optimal region is the γ-
relative surprise region.

This says that Cγ minimizes the prior probability of covering a false value
of the parameter of interest, when the false value follows the marginal prior
distribution ΠΥ and is independent of the true value of the model parameter.
It seems natural to take Λ = ΠΥ as this distribution identifies the values of τ
that we consider a priori at least plausible. A repeated sampling interpretation
of this is obtained by considering a sequence (θi, xi, τi), for i = 1, 2, . . . , of
independent values from the joint distribution Π × Pθ × ΠΥ. Then Corollary 4
says that, among all γ-credible regions Bγ for Υ(θ) formed from Π × Pθ, a γ-
relative surprise region for Υ(θ) minimizes the proportion of times the event
τi ∈ Bγ(xi) is true. Of course, the event Υ(θi) ∈ Bγ(xi) is also true at least γ
of the time in this sequence.

It is worth noting that Theorem 3 and Corollary 4 also hold when θ ∼ Π∗

for any probability distribution Π∗, i.e.,
∫

Θ

∫

T
Pθ(τ ∈ Bγ(X)) Λ(dτ )Π∗(dθ) is

minimized among all γ-credible regions Bγ for Υ(θ), constructed from Π×Pθ, by
BΛ,γ . The proof is the same. So, for example, we could take Π∗ to be degenerate
at some value and Cγ would still be optimal. From a practical, point-of-view,
however, the choices Π∗ = Π and Λ = ΠΥ seem to be the most sensible, as (4)
then has an interpretation as a prior probability.

In addition (4), with Λ = ΠΥ, would appear to have several uses. First we
can quote this probability as a way of assessing the accuracy of Cγ with a given
prior. If this probability is quite high, then we have a region with low accuracy.
Also (4) can be used for experimental design purposes such as setting sample
size. Consider the following example.

Example 1 (Location normal). Suppose that x = (x1, . . . , xn) is a sample
from the N(θ, 1) distribution and θ ∼ N(0, σ2) so the posterior distribution of
θ is N((n+ 1/σ2)−1nx̄, (n+ 1/σ2)−1). The ratio of the posterior density to the
prior density is, in this case, proportional to the likelihood exp

{

−n(θ − x̄)2/2
}

.
Therefore, a γ-relative surprise interval for θ is a likelihood interval and so takes
the form Cγ(x) = x̄± kγ(n, x̄, σ

2) where kγ(n, x̄, σ
2) ≥ 0 satisfies

γ = Φ
(

(n+ 1/σ2)−1/2x̄/σ2 + (n+ 1/σ2)1/2kγ(n, x̄, σ
2)

)

− Φ
(

(n + 1/σ2)−1/2x̄/σ2 − (n+ 1/σ2)1/2kγ(n, x̄, σ
2)

)

. (6)

The value kγ(n, x̄, σ
2) is easily obtained numerically from (6). Now ΠΥ(Cγ(x)) =

Φ
(

(x̄+ kγ(n, x̄, σ
2))/σ

)

− Φ
(

(x̄ − kγ(n, x̄, σ
2))/σ

)

and x̄ ∼ N(0, σ2 + 1/n).
Therefore, when Λ = ΠΥ, (4) is given by
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∫ ∞

−∞

[

Φ
(

((σ2 + 1/n)1/2z + kγ(n, (σ
2 + 1/n)1/2z, σ2))/σ

)

− Φ
(

((σ2 + 1/n)1/2z − kγ(n, (σ
2 + 1/n)1/2z, σ2))/σ

)

]

ϕ(z) dz. (7)

For example, the following table gives some values of the prior probability of
covering a false value when γ = .95 and σ2 = 1, based on a Monte Carlo
integration sample size of 103, with the standard errors in parentheses.

n 1 10 25 50
EM (ΠΥ(Cγ(X))) .700 (.004) .322 (.004) .212 (.003) .152 (.002)

It is straightforward to show that (7) converges to 0 as n → ∞. So, by
choosing n large enough, we can make (7) as small as we like and so control the
error in our inference. If σ2 → ∞, so the prior is becoming more diffuse, the
prior probability of covering a false value generated from the prior converges to
0. This is exactly how we would want our region to behave, namely, the data
become much more important in determining the inference as the prior becomes
more diffuse. For example, Cγ(x) → x̄±n−1/2z(1+γ)/2 as σ2 → ∞. So for a very
diffuse prior, Cγ(x) has a very small probability of covering an independently
generated value from the prior.

Example 1 illustrates that we can’t use (4), with Λ = ΠΥ, to compare priors.
A more concentrated prior will give a higher value for (4) than one more diffuse,
however, we have different regions Cγ(x) and different distributions for the false
values under different priors. This emphasizes the importance of a careful choice
of the prior so that unrealistic values of the parameter are excluded.

Similar optimality results can be obtained for the ORS given by (1). For
suppose we agree to reject the hypothesis H0 : Υ(θ) = τ0 whenever the ORS is
greater than γ. This is equivalent to rejecting H0 whenever τ0 ∈ Ccγ(x). Now
consider the class of tests specified by γ-credible regions Bγ , so we reject H0

whenever τ0 ∈ Bcγ(x). In this case, we want to find Bγ maximizing

∫

Θ

∫

T

Pθ(τ ∈ Bcγ(X))ΠΥ(dτ )Π(dθ |Υ(θ) = τ0). (8)

This is the conditional prior probability, given that H0 is true, that we would
reject the hypothesis specified by τ, when τ is a value independently generated
from the prior. The quantity (8) is clearly analogous to power in the frequentist
context. Then, arguing as in Theorem 3 and Corollary 4, we have that (8) is
maximized by Ccγ(x) among all rejection regions with posterior content less than
or equal to 1 − γ. Also, we can use (8) to determine a sample size so that the
test based on Ccγ has a prescribed value for this conditional prior probability.

3. Change in belief and unbiasedness

For C ⊂ T , BFC(x) = {ΠΥ(C | x)/(1 − ΠΥ(C | x))}{ΠΥ(C)/(1 − ΠΥ(C))}−1 is
the Bayes factor in favor of the true value of τ being in C. If we let C shrink
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nicely to τ0 (as in Rudin (1974), p. 163, a sequence of Borel sets Ci shrinks nicely
to a point τ0 if there is an α > 0 such that each Ci lies in an open ball B(τ0, ri)
centered at τ0 and of radius ri > 0, then µ(Ci) ≥ αµ(B(τ0 , ri)) for every i
where µ is volume measure, and ri → 0 as i → ∞), then BFC(x) converges
to πΥ(τ0 | x)/πΥ(τ0) whenever these densities are continuous at τ0. So we can
think of this quantity as an approximation to the Bayes factor associated with
τ0 and the ORS is a calibration of this value to determine if it is indeed small
and thus evidence against τ0 as a plausible value.

The Bayes factor in favor of C is a measure of the change in our belief that C
contains the true value from a priori to a posteriori. Perhaps a simpler measure
of this change in belief is given by the following.

Definition 2. The relative belief ratio of a subset C ⊂ T , is given by RBC (x) =
ΠΥ(C | x)/ΠΥ(C).

Again, as C shrinks nicely to {τ0}, RBC(x) converges to πΥ(τ0 | x)/πΥ(τ0).
Note that BFC (x) = RBC(x)/RBCc(x) and so BFC is not a function of RBC
or conversely. They are measuring change in belief on different scales. Clearly
the two will be approximately equal when RBCc(x) ≈ 1 and this will occur
whenever C is “small”.

Now consider a γ-relative surprise region Cγ(x) for τ. From (2), and the fact
that the function ΠΥ (πΥ(τ | x)/πΥ(τ ) > k | x) is right-continuous in k, there
exists kγ(x) such that Cγ(x) = {τ : πΥ(τ | x)/πΥ(τ ) > kγ(x)}. From this we
have the following property for relative surprise regions. We assume throughout
the remainder of this section that πΥ(τ ) > 0 for every τ ∈ T .

Lemma 5. The relative surprise region Cγ(x) satisfies RBCγ(x)(x) > kγ(x).

Proof. We have that ΠΥ(Cγ(x) | x) =
∫

Cγ(x)
πΥ(τ | x) νT (dτ ) which is clearly

greater than kγ(x)
∫

Cγ(x) πΥ(τ ) νT (dτ ) = kγ(x)ΠΥ(Cγ(x)) proving the result.

So Lemma 5 says that the ratio of posterior to prior probabilities of Cγ(x)
satisfies the same inequality that the respective densities do on this set.

We have an important lower bound on BFCγ(x)(x) and RBCγ(x)(x).

Lemma 6. The relative surprise region Cγ(x) satisfies BFCγ(x)(x) > 1 and
RBCγ (x)(x) > 1.

Proof. Clearly we have that Ccγ(x) = {τ : πΥ(τ | x)/πΥ(τ ) ≤ kγ(x)} and, as in
Lemma 5, this implies that RBCc

γ
(x)(x) ≤ kγ(x). Combining this with Lemma 5

gives that BFCγ(x)(x) > 1. Since BFC(x) > 1, then 1/ΠΥ(C) > 1/ΠΥ(C | x)
and this implies that RBCγ(x)(x) > 1.

Accordingly the Bayes factor and the relative belief ratio always indicate an
increase in belief in the set Cγ(x) from a priori to a posteriori. In particular, the
posterior probability content of Cγ(x) is always greater than its prior content.
Note that, since BFCc(x) = 1/BFC(x), we have that BFCc

γ
(x)(x) < 1 and

RBCc
γ
(x)(x) < 1 for a relative surprise region Cγ(x).
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Note that the fact the Bayes factor and relative belief ratio are always greater
than 1 for a relative surprise region, does not imply that relative surprise in-
ferences never find evidence against a hypothesized value H0 : τ = τ0. For we
assess H0 by computing (1), or equivalently from (2), computing γ∗ = inf{γ :
τ0 ∈ Cγ(x)}. If γ

∗ is large (near 1), then we have evidence against H0. Alterna-
tively, we could select an appropriate γ and report Cγ(x) as our best choice of a
γ-credible region to contain the true value. If τ0 /∈ Cγ(x), then we have evidence
against H0.

Of course, there may be other credible regions with these properties. For
example, hpd regions often have these properties, although there does not seem
to be an easy general proof of this. In any case, the following shows that relative
surprise regions are best from this point-of-view.

Theorem 7. The set Cγ(x) has maximal Bayes factor and maximal relative be-
lief ratio among all measurable sets C ⊂ T satisfying ΠΥ(C | x) = ΠΥ(Cγ(x) | x).

Proof. From Theorem 2 we know that ΠΥ(C ) is minimized, among all measur-
able C satisfying ΠΥ(C | x) ≥ ΠΥ(Cγ(x) | x), by taking C = Cγ(x). So ΠΥ(C )
is also minimized by the same choice when we restrict to those C satisfying
ΠΥ(C | x) = ΠΥ(Cγ(x) | x). Since f(x) = (1− x)/x is decreasing in x, the result
follows for the Bayes factor and is obvious for the relative belief ratio.

Theorem 7 is most relevant when there are a number of credible regions,
including the relative surprise region Cγ(x), with posterior content exactly equal
to γ. Theorem 7 then says that Cγ(x) is the best choice among these regions
from the point of view of the Bayes factor and the relative belief ratio, as it
provides the largest increase in belief from a priori to a posteriori. We have the
following immediate consequence.

Corollary 8. Suppose that the true value of θ is selected according to Π. Then
EM (BFBγ(X)(X)) and EM(RBBγ (X)(X)) are maximized, among credible re-
gions Bγ(x) satisfying ΠΥ(Bγ(x) | x) = ΠΥ(Cγ(x) | x) for all x, by Bγ(x) =
Cγ(x).

This says that the prior mean Bayes factor and prior mean relative belief
ratio are maximized, by Cγ(x).

Consider the following example as an illustration.

Example 2 (Probability of joint success). Suppose we observe x from a
Binomial(n, θ1), an independent y from a Binomial(n, θ2), we put independent
uniform priors on θ1 and θ2 and we are interested in making inference about
ψ = θ1θ2. This is the probability of simultaneous success from tossing two coins
where the coins have probability of heads equal to θ1 and θ2, respectively.

Suppose we have n = 5 and observe x = 4 and y = 1. In the following table
we give some γ-hpd intervals and γ-relative surprise (rs) intervals for ψ. We see
that these intervals are quite different. Also the relative surprise intervals always
dominate the hpd intervals in the sense that the Bayes factor and relative belief
ratio of the relative surprise interval are always greater than the corresponding
quantities for the hpd interval, as proven generally in Theorem 7. The estimate
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determined by the hpd approach is the mode and this is given by .122 while the
LRSE is .186.While the hpd intervals, in this example, always have RB > 1 and
BF > 1, other methods of forming the intervals do not necessarily give intervals
with these properties. For example, if we took the left-tail of the posterior as
a γ-credible interval for ψ, then the left-tail .4-credible interval has RB = .730
and BF = .640.

γ hpd RB (hpd) BF (hpd) rs RB (rs) BF (rs)

.95 (.008, .447) 1.25 5.99 (.028, .501) 1.32 7.35

.75 (.032, .293) 1.47 2.82 (.071, .361) 1.69 3.35

.50 (.059, .216) 1.57 2.16 (.110, .284) 1.74 2.48

.25 (.089, .163) 1.63 1.84 (.119, .270) 1.76 2.36

These results are somewhat typical for this context. For example, when n =
20, x = 19, y = 19, the .95-hpd interval is (.675, .962) with RB = 16.16, and BF
= 305.40, while the .95-relative surprise interval is (.684, .990) with RB = 16.98,
and BF = 322.59. In this case the posterior mode is .857 and the LRSE is .902.

In frequentist contexts, a confidence region is said to be unbiased, if the
probability of the region containing a particular false value is always less than
or equal to the probability of the region containing the true value. The following
result shows that relative surprise regions are unbiased in a generalized sense.

Theorem 9. For a relative surprise region, the prior probability of containing
an independent value generated from the prior is always less than the prior
probability of containing the true value, when it is generated from the prior.

Proof. From Lemma 6 we have that ΠΥ(Cγ(x) | x)>ΠΥ(Cγ(x)) and so it follows
that EM(ΠΥ(Cγ(X))) < EM(ΠΥ(Cγ(X) |X))). By (4), EM(ΠΥ(Cγ(X))) is the
prior probability of Cγ containing a false value while EM(ΠΥ(Cγ(X) |X))) =
EΠ(Pθ(Υ(θ) ∈ Cγ(X))) is the prior probability that Cγ(X) contains the true
value Υ(θ) when θ ∼ Π, X ∼ Pθ.

4. Reparameterizations

A basic principle of inference is that inferences about a parameter of interest
should be invariant under reparameterizations, e.g., whatever rule we use to
obtain a γ-credible region Bγ for a parameter of interest τ, the rule should yield
the region ΨBγ for any 1-1, sufficiently smooth, reparameterization ψ = Ψ(τ ).
Relative surprise inferences satisfy this principle.

Suppose, however, that we insist on forming credible regions for parameters
taking values in T by minimizing their Λ content, where Λ is also absolutely
continuous with respect to νT on T with density λ. Let T be an open subset
of Rk and DT ,T denote the class of reparameterizations Ψ : T → T that are
1-1, onto, continuously differentiable and such that Ψ−1 is continuously differ-
entiable. Then, by Theorem 3, the γ-credible region for ψ = Ψ(τ ) that has
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minimal Λ content is given by the hpd-like region

BΨ
Λ,γ(x) =











ψ0 ∈ T : ΠΥ







πΥ(τ |x)J−1

Ψ
(τ)

λ(Ψ(τ))
>

πΥ(Ψ−1(ψ0) |x)J
−1

Ψ
(Ψ−1(ψ0)))

λ(ψ0)

∣

∣

∣

∣

∣

∣

∣

x






≤ γ











, (9)

where JΨ (τ ) is the Jacobian of the transformation Ψ evaluated at τ.
Since BΨ

Λ,γ(x) is a γ-credible region for ψ = Ψ(τ ), then Ψ−1BΨ
Λ,γ(x) is a

γ-credible region for τ. Let [BΛ,γ(x)] =
{

Ψ−1BΨ
Λ,γ(x) : Ψ ∈ DT ,T

}

be the class
of γ-credible regions for τ that arise via reparameterizations, when using the
measure Λ to construct the credible regions. Each of the regions in [BΛ,γ(x)] is
a plausible candidate as a γ-credible region for the parameter of interest and it
is not clear how we should choose among them. The following result provides
an approach to this choice.

Lemma 10. For Ψ ∈ DT ,T we have that Ψ−1BΨ
Λ,γ(x) = BΛ◦Ψ,γ(x) and so

[BΛ,γ(x)] = {BΛ◦Ψ,γ(x) : Ψ ∈ DT ,T } .

Proof. For A ⊂ T , we have that Λ ◦ Ψ(A) = Λ(Ψ(A)) =
∫

Ψ(A)
λ(τ ) νT (dτ ) =

∫

A
λ(Ψ(τ ))JΨ (τ ) νT (dτ ) and so the density of Λ◦Ψ is λ(Ψ(τ ))JΨ (τ ) . Therefore,

by Theorem 3 and (9), the result follows.

So it is equivalent to think of [BΛ,γ(x)] as containing all the γ-credible regions
for τ obtained by minimizing the Λ ◦Ψ content for some Ψ ∈ DT ,T . This result
says that choosing among the elements of [BΛ,γ(x)] is equivalent to choosing
which measure Λ ◦ Ψ we should use to optimize with respect to.

Now suppose that Λ is a probability measure and define ΨΛ : T → [0, 1]
k

so
that ΨΛ(τ ) ∼ Uniform

(

[0, 1]k
)

when τ ∼ Λ, e.g., we can take ΨΛ to be the
probability transform. Then, for probability measures Λ1 and Λ2, we can define
ΨΛ1,Λ2

: T → T by ΨΛ1,Λ2
= ΨΛ1

◦Ψ−1
Λ2

and thus Λ1 ◦ ΨΛ1,Λ2
= Λ2. Therefore,

if ΨΛ1,Λ2
∈ DT ,T , we have that [BΛ1,γ(x)] = [BΛ2,γ(x)] . We say that Λ2 is

obtained via a smooth reparameterization from Λ1 when ΨΛ1,Λ2
∈ DT ,T . We

have the following result immediately from Corollary 4.

Lemma 11. If Λ is a probability measure and Ψ−1
Λ ◦ΨΠΥ

∈ DT ,T , then Cγ(x) ∈
[BΛ,γ(x)] .

Note that, when ΨΠΥ
,ΨΛ are the respective probability transforms, λ is

continuous and positive and πΥ is positive and continuous, then by the in-
verse function theorem, we must have that Ψ∗ = Ψ−1

Λ ◦ ΨΠΥ
∈ DT ,T and

JΨ∗
(τ ) = πΥ(τ )/λ(Ψ∗(τ )). Lemma 11 says that, in very general circumstances,

when we choose to optimize with respect to a probability measure Λ on T , a
relative surprise region is always available as an equivalent credible region under
a reparameterization.

As previously noted, when we consider choosing among the elements of
[BΛ,γ(x)] we need only consider which measure Λ ◦Ψ is most appropriate. The-
orem 3 says that choosing Λ ◦ Ψ leads to a region that minimizes the prior
probability of covering a false value τ ∼ Λ ◦Ψ. Unless there are good reasons to
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do otherwise, the most appropriate weighting to apply to false values is given
by the prior ΠΥ = Λ ◦ Ψ−1

Λ ◦ ΨΠΥ
. This leads to a region that focuses on the

parameter values that we believe are a priori important. For example, choosing
a credible region that minimized the probability of covering false values that
are well out of range where the prior placed most of its mass, would seem to be
clearly inappropriate, as we presumably know a priori that these are unrealistic
values.

The following illustrates the need for a rule to select a credible region.

Example 3 (All γ-credible intervals can arise from reparameterizations). Sup-
pose that the posterior of τ ∈ R1 is absolutely continuous, has finite sec-
ond moment and πΥ(τ | x) > 0 for every τ ∈ R1. Let τ1 > τ0 be such that
ΠΥ((τ0, τ1) | x) = γ. Let Λ be a probability measure with density λ(τ ) > 0
for every τ ∈ R1. From Lemma 10, we have that the set of all Λ hpd-like γ-
credible intervals for τ obtained via reparameterizations, is the same as the set
of all Λ ◦ Ψ hpd-like γ-credible intervals for τ as Ψ ranges over all reparam-
eterizations. Then, there is a constant kγ(x,Ψ) such that BΛ◦Ψ,γ(x) = {τ :
πΥ(τ | x)/λΨ(τ ) > kγ(x,Ψ)} where λΨ is the density of Λ ◦ Ψ. Clearly, there
exists a Ψ such that λΨ(τ ) ∝ πΥ(τ | x)(1 + (τ − (τ0 + τ1)/2)2), i.e., the prob-
ability measure with this density is a smooth reparameterization of Λ, and so
BΛ◦Ψ,γ(x) = (τ0, τ1) ∈ [BΛ,γ(x)] .

While the reparameterization in the example depends on the data, it is not
clear generally how to rule out reparameterizations. With the relative suprise
rule this is not an issue, because of invariance.

So far we have restricted the discussion to probability measures Λ. Suppose,
however, that Λ is a bounded measure on T . It is immediate, for any positive
constant b, that BbΛ,γ(x) = BΛ,γ(x). So we can take b = 1/Λ(T ) and simply
treat Λ as a probability measure, as we get the same set of credible regions and
Cγ(x) ∈ [BΛ,γ(x)] . Suppose now that Λ is an unbounded measure with density
λ with respect to υT . Further suppose that there is a sequence of bounded mea-
sures Λn with densities λn with respect to υT , such that λn → λ pointwise as
n → ∞. For example, if Λ and υT are volume measure on Rk, then λ ≡ 1 and we
can take λn to be (2πn)k/2 times a Nk(0, nI) density. Then, when the posterior
distribution of πΥ(τ | x)/λ(τ ) is continuous, we have that BΛn,γ(x) → BΛ,γ(x)
as n → ∞, since lim inf BΛn,γ(x) = limsupBΛn,γ(x) = BΛ,γ(x) up to a set
having posterior measure 0. If λ and πΥ are positive and continuous, then we
have that Cγ(x) ∈ [BΛn,γ(x)] for each n. Therefore, BΛ,γ(x) is approximated by
BΛn,γ(x) for large n and Cγ(x) is equivalent to this set under a reparameteriza-
tion. Accordingly, we can think of Cγ(x) as being approximately equivalent to
BΛ,γ(x) under a reparameterization.

5. Conclusions

Relative surprise regions have been shown to minimize the prior probability
of covering a false value from the prior. This prior probability can be seen to
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serve as a measure of accuracy of a credible region and can be used for design
purposes. Further, relative surprise regions have optimal properties with respect
to the Bayes factor and relative belief ratio of the region. Finally, we have shown
that relative surprise regions arise very naturally when we consider choosing
among equivalent credible regions based on reparameterizations.

The relevance of our results in a particular application depends on the prior.
In our view this is no different than concerns about the relevance of our choice of
a sampling model in a problem, i.e., if we make a poor choice, then any inferences
drawn based on this model are at least suspect. Model checking methods, can
increase our confidence, when the model passes, that our choice makes sense.
Similarly, methods for checking for prior-data conflict, such as those discussed
in Evans and Moshonov (2006, 2007), can increase our confidence that the prior
we have chosen makes sense. When the model and prior pass such checks, then
optimal inferences drawn from such ingredients have greater force. In particular,
the repeated sampling interpretations based upon the prior, then seem much
more appropriate to us than the common frequentist practice of looking for
procedures that possess good properties uniformly over all values of the model
parameter, i.e., even at values of the parameter that we believe a priori are not
relevant.
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