
Electronic Journal of Statistics

Vol. 2 (2008) 1–39
ISSN: 1935-7524
DOI: 10.1214/07-EJS111

Least squares type estimation of the

transition density of a particular hidden

Markov chain

Claire Lacour

MAP5, Université Paris Descartes
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Abstract: In this paper, we study the following model of hidden Markov
chain: Yi = Xi + εi, i = 1, . . . , n + 1 with (Xi) a real-valued stationary
Markov chain and (εi)1≤i≤n+1 a noise having a known distribution and
independent of the sequence (Xi). We present an estimator of the transi-
tion density obtained by minimization of an original contrast that takes
advantage of the regressive aspect of the problem. It is selected among
a collection of projection estimators with a model selection method. The
L2-risk and its rate of convergence are evaluated for ordinary smooth noise
and some simulations illustrate the method. We obtain uniform risk bounds
over classes of Besov balls. In addition our estimation procedure requires
no prior knowledge of the regularity of the true transition. Finally, our
estimator permits to avoid the drawbacks of quotient estimators.
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1. Introduction

In this paper we consider the following additive hidden Markov model:

Yi = Xi + εi i = 1, . . . , n+ 1 (1)

with (Xi)i≥1 a real-valued Markov chain, (εi)i≥1 a sequence of independent and
identically distributed variables and

(Xi)i≥1 and (εi)i≥1 independent. (2)

Only the variables Y1, ..., Yn+1 are observed. Besides its initial distribution, the
chain (Xi)i≥1 is characterized by its transition, i.e. the distribution of Xi+1

givenXi. We assume that this transition has a density Π, defined by Π(x, y)dy =
P (Xi+1 ∈ dy|Xi = x), and our aim is to estimate this transition density Π.
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This model belongs to the class of hidden Markov models. The Hidden
Markov Models constitute a very famous class of discrete-time stochastic pro-
cesses, with many applications in various areas such as biology, speech recogni-
tion or finance. For a general reference on these models, we refer to Cappé et al.
(2005). Here, we study a simple model of HMM where the noise is additive
(which allows dealing also with multiplicative noise by use of a logarithm). In
standard HMM, it is assumed that the joint density of (Xi, Yi) has a parametric
form and the aim is then to infer the parameter from the observations Y1, ..., Yn,
generally by maximizing the likelihood. For this type of study, see, among oth-
ers, Baum and Petrie (1966), Leroux (1992), Bakry et al. (1997), Bickel et al.
(1998), Jensen and Petersen (1999), Douc et al. (2004), Fuh (2006).

This model is also similar to the so-called convolution model (for which the
aim is to estimate the density of (Xi)i≥1). As in that model, we use the Fourier
transform extensively. The restrictions on error distribution and rate of con-
vergence obtained for our estimator are also of the same kind. Related works
include Stefanski (1990), Fan (1993), Masry (1993) (for the multivariate case),
Pensky and Vidakovic (1999), Comte et al. (2006).

The estimation of the transition density of a hidden Markov chain is studied
by Clémençon (2003). His estimator is based on the thresholding of a wavelet-
vaguelette decomposition. The drawback is that this estimator does not achieve
the minimax rate because of a logarithmic loss. Lacour (2007b) describes an
estimation procedure by quotient of an estimator of the joint density and an
estimator of the stationary density f . The minimax rate is reached by this esti-
mator if it is assumed that f and f.Π have the regularity α. But this smoothness
condition on f raises a problem. Indeed Clémençon (2000) gives an example in
which the stationary density f is not continuous, whereas the transition density
Π is constant. It shows that f can be much less regular than Π. Therefore, our
aim is to find an estimator of the transition density which does not have the
above mentioned disadvantages.

To estimate Π, we use an original contrast inspired by the mean square con-
trast. The first idea is to connect our problem with the regression model. For
any function g, we can write

g(Xi+1) =

(∫

Π(., y)g(y)dy

)

(Xi) + ηi+1

where ηi+1 = g(Xi+1) − E[g(Xi+1)|Xi]. Then, for all function g, we can con-
sider

∫

Πg as a regression function. The mean square contrast to estimate
this regression function, if the Xi were known, should be (1/n)

∑n
i=1[t

2(Xi) −
2t(Xi)g(Xi+1)]. If

∫

g2 = 1, this contrast can be written

(1/n)

n
∑

i=1

[

∫

T 2(Xi, y)dy − 2T (Xi, Xi+1)]

by setting T (x, y) = t(x)g(y) i.e. T such that
∫

T (x, y)g(y)dy = t(x). It is this
contrast which is used in Lacour (2007a) but in our case, only the Y1, . . . , Yn+1
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are known. Therefore we introduce in this paper two operators Q and V such
that E[QT 2(Yi)|Xi] =

∫

T 2(Xi, y)dy and E[VT (Yi, Yi+1)|Xi, Xi+1] = T (Xi, Xi+1).
It leads to the following contrast:

γn(T ) =
1

n

n
∑

i=1

[QT 2(Yi) − 2VT (Yi, Yi+1)]. (3)

A collection of estimators is then defined by minimization of this contrast on
wavelet spaces. Indeed wavelets have many useful properties and in particular
they can have a compact support and can be regular enough to balance the
smoothness of the noise. A general reference on the subject is Meyer (1990)’s
book.

A method of model selection inspired by Barron et al. (1999) and based on
contrast (3) is used to build our final estimator. A data driven choice of model
is performed via the minimization of a penalized criterion. The chosen model is
the one which minimizes the empirical risk added to a penalty function. In most
cases when estimating mixing processes, a mixing term appears in this penalty.
In the same way, some unknown terms derived from the dependence between
the Xi appears in the thresholding constant used to define the estimator of
Clémençon (2003). Here a conditioning argument enables to avoid such a mixing
term in the penalty. Our penalty contains only known quantities or terms that
can be estimated and is then computable.

For an ordinary smooth noise with regularity γ, the rate of convergence
n−α/(2α+4γ+2) is obtained if it is assumed that the transition Π belongs to
a Besov space with regularity α. Our estimator is then better than that of
Clémençon (2003) which achieves only the rate (ln(n)/n)α/(2α+4γ+2). Moreover
this rate is obtained without assuming the regularity α of Π known.

This paper is organized as follows. In Section 2 we present the model and the
assumptions. Section 3 is devoted to the definitions of the contrast and of the
estimator. The main result and a sketch of proof are to be found in Section 4.
Numerical illustrations through simulated examples are reported in Section 5.
The detailed proofs are gathered in Section 6.

2. Study framework

2.1. Notations

For the sake of clarity, we use lowercase letters for dimension 1 and capital
letters for dimension 2. For a function t : R 7→ R, we denote by ‖t‖ the L2 norm
that is ‖t‖2 =

∫

R
t2(x)dx. The Fourier transform t∗ of t is defined by

t∗(u) =

∫

e−ixut(x)dx.

Notice that the function t is the inverse Fourier transform of t∗ and can be
written t(x) = 1/(2π)

∫

eixut∗(u)du. The convolution product is defined by
(t ∗ s)(x) =

∫

t(x− y)s(y)dy.
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In the same way, for a function T : R
2 7→ R, ‖T‖2 =

∫∫

R2 T
2(x, y)dxdy and

T ∗(u, v) =

∫∫

e−ixu−iyvT (x, y)dxdy.

We denote by t⊗ s the function: (x, y) 7→ (t⊗ s)(x, y) = t(x)s(y).
We will estimate Π on a compact set A = A1 × A2 only and we denote by

‖.‖A the norm in L2(A) i.e.

‖T‖2
A =

∫∫

A

T 2(x, y)dxdy.

2.2. Assumptions on noise

The Markov chain (Xi)i≥1 is observed through a noise sequence (εi)i≥1 of in-
dependent and identically distributed random variables. The density of εi is
denoted by q and is assumed to be known. We assume that the Fourier trans-
form of q never vanishes and that q is ordinary smooth. More precisely the
assumption on the error density is the following:

H1 q is uniformly bounded and there exist γ > 0 and k0 > 0 such that ∀x ∈ R

|q∗(x)| ≥ k0(x
2 + 1)−γ/2.

This assumption restrains the regularity class of the noise. Among the so-called
ordinary smooth noises, we can cite the Laplace distribution, the exponential
distribution and all the Gamma or symmetric Gamma distributions. The noise
follows a Gamma distribution with scale parameter λ and shape parameter ζ if
q(x) = λζxζ−1e−λx/Γ(ζ) for x > 0 with Γ the classic Gamma function. Then

|q∗(x)| =

(

1 +
x2

λ2

)−ζ/2

.

So q is bounded and verifies H1 with γ = ζ. The case ζ = 1 corresponds to
an exponential distribution and if λ = 1/2, ζ = p/2, it is a chi-square χ(p). A
Laplace noise is defined in the following way

q(x) =
λ

2
e−λ|x−µ| and |q∗(x)| =

λ2

x2 + λ2

Then H1 is satisfied with γ = 2. More generally, we can define the symmetric
gamma distribution with density q(x) = λζ |x|ζ−1e−λ|x|/(2Γ(ζ)). The character-
istic function is then

q∗(x) =

(

1 +
x2

λ2

)−ζ/2

cos

(

2ζ arctan

(

x

λ+
√
x2 + λ2

))

so that H1 is verified with γ = ζ + 1 if ζ is an odd integer and γ = ζ otherwise.
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Remark 1. We have to point out that the Gaussian noise does not verify As-
sumption H1. Indeed, an exponential decrease of the Fourier transform of the
error density is more difficult to control and a supersmooth noise makes denois-
ing more difficult. For that reason, many authors, among which Butucea (2004),
Koo and Lee (1998) or Youndjé and Wells (2002), have considered only ordi-
nary smooth noise. The method used in this paper does not allow dealing with
supersmooth noise. Indeed, it requires a wavelet basis more regular than the noise
and with compact support (because of Assumption H4 below), which is impossible
when the noise is supersmooth.

2.3. Assumptions on the chain

The hypotheses on the hidden Markov chain (Xi)i≥1 are the following:

H2 The chain is irreducible, positive recurrent and stationary with unknown
density f .

H3 There exists a positive real f0 such that, for all x in A1,

f0 ≤ f(x) ≤ ‖f‖∞,A1 < ∞

H4 The transition density Π is bounded on A by ‖Π‖∞,A <∞.
H5 The process (Xk) is geometrically β-mixing (βq ≤ e−θq), or arithmetically

β-mixing (βq ≤ q−θ) with θ > 8 where

βq =

∫

‖P q(x, .)− µ‖TV f(x)dx

with P q(x, .) the distribution of Xi+q given Xi = x, µ the stationary
distribution and ‖.‖TV the total variation distance.

We refer to Doukhan (1994) for details on the β-mixing. Assumption H5
implies that the process (Yk) is β-mixing, with β-mixing coefficients smaller
than those of (Xk). Assumption H3 is common (but restrictive) and is crucial
to control the empirical processes brought into play. A lot of processes verify
Assumptions H2–H5, as autoregressive processes, diffusions or ARCH processes.
These examples are detailed in Lacour (2007a).

3. Estimation procedure

3.1. Projection spaces

Here we describe the projection that we use to estimate the transition Π. We
will consider an increasing sequence of spaces, indexed by m, to construct a
collection of estimators. For the sake of simplicity, we assume that A = [0, 1]2.

We use a compactly supported wavelet basis on the interval [0, 1], described
in Cohen et al. (1993). The construction provides a set of functions (φk) for
k = 0, . . . , 2J − 1 with J a fixed level, and for all j > J a set of functions
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(ψjk), k = 0, . . . , 2j − 1. The collection of these functions forms a complete
orthonormal system on [0, 1]. Then , for u in L2([0, 1]), we can write

u =

2J−1
∑

k=0

bkφk +
∑

j>J

2j−1
∑

k=0

ajkψjk.

Actually

φk(x) =











2J/2φ0(2Jx− k) if k = 0, . . . , N − 1

2J/2φ(2Jx− k) if k = N, . . . , 2J −N − 1

2J/2φ1(2Jx− k) if k = 2J −N, . . . , 2J − 1

where φ is a Daubechies father wavelet with support [−N + 1, N ] and φ0, φ1

are edge wavelets explicitly constructed in Cohen et al. (1993). The functions
φk have support [(k−N +1)/2J , (k+N )/2J ]∩ [0, 1]. For r a positive real, N is
chosen large enough so that φ has regularity r (in the sense defined in (4)): this
is possible since it is a property of the Daubechies wavelets that the smoothness
of φ increases linearly with N . We choose J such that 2J ≥ 2N so that the two
edges do not interact (no overlap between φ0 and φ1). The construction ensures
that φ0 and φ1 are also of regularity r. In the same way, for each level j, the
ψjk are dilatation and translation of functions ψ, ψ0 and ψ1 with regularity r.

Now we construct a wavelet basis of L2([0, 1]2) by the tensorial product
method (see Meyer (1990) Chapter 3 Section 3). The father wavelet is φ ⊗ φ
and the mother wavelets are φ ⊗ ψ, ψ ⊗ φ, ψ ⊗ ψ. A function T in L2([0, 1]2)
can then be written

T (x, y) =
2J−1
∑

k=0

2J−1
∑

l=0

bklφk(x)φl(y) +
∑

j>J

2j−1
∑

k=0

2j−1
∑

l=0

(a
(1)
jklφjk(x)ψjl(y)

+a
(2)
jklψjk(x)φjl(y) + a

(3)
jklψjk(x)ψjl(y)).

For the sake of simplicity, we adopt the following notation

T (x, y) =
∑

j≥J

∑

(k,l)∈Λj

ajklϕjk(x)ϕjl(y).

where ϕjk = 2j/2ϕ(2jx − k) with ϕ = φ, φ0, φ1, ψ, ψ0 or ψ1 according to the
values of j and k. For j > J , Λj is a set with cardinal 3.22j and ΛJ is a set
with cardinal 22J . In the rest of this paper we will use the following property of
ϕ deriving from the regularity of the initial Daubechies wavelet: there exists a
positive constant k3 such that

∀u ∈ R |ϕ∗(u)| ≤ k3(u
2 + 1)−r/2 (4)

Now , for m ≥ J , we can consider the space

Sm = {T : R
2 → R, T (x, y) =

m
∑

j=J

∑

(k,l)∈Λj

ajklϕjk(x)ϕjl(y)}
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Note that the functions in Sm are all supported in the interval [0, 1]2. The
dimension of the space Sm is D2

m = 22J + 3
∑m

j=J+1 22j ∈ [22m, 22m+2]. We

denote by S the space Sm0 with the greatest dimension D2
m0

= D2 smaller than

n1/(4γ+2). It is the maximal space that we consider. The spaces Sm have the
following properties:

P1 m′ ≤ m⇒ Sm′ ⊂ Sm

P2 ‖
∑

jkl ajklϕjk ⊗ ϕjl‖2 =
∑

jkl a
2
jkl.

This property derives from the orthonormality of the basis.
Now, for all function t : R 7→ R, let vt be the inverse Fourier transform of

t∗/q∗(−.), i.e.

vt(x) =
1

2π

∫

eixu t∗(u)

q∗(−u)du.

This operator is introduced because it verifies E[vt(Yk)|Xk] = t(Xk) for all
function t. We can write the following lemma :

Lemma 1. If r > γ + 2, there exists Φ1 > 0 such that

P3 ‖∑m
j=J

∑

k ϕ
2
jk‖∞ ≤ Φ1Dm

P4 ‖
∑

k |vϕjk |2‖∞ ≤ Φ1(2
j)2γ+2

P5
∑

k ‖vϕjk‖2 ≤ Φ1(2
j)2γ+1

P6 ‖
∑

kk′ |vϕjkϕjk′ |2‖∞ ≤ Φ1(2
j)2γ+3

P7
∑

kk′

∫

|vϕjkϕjk′ |2 ≤ Φ1(2
j)2γ+2

This lemma is proved in Section 6.

3.2. Construction of a contrast

Now let us estimate the transition density of the Markov chain by minimizing
a contrast. This section is devoted to the definition of this contrast. We explain
here how it can be obtained, first by considering the case without noise.

3.2.1. First step: if X1, . . . , Xn+1 were observed

We present here a heuristic to understand why we choose the contrast, assuming
first that the (Xi) are known. For all function g, the definition of the transition
density implies E[g(Xi+1)|Xi] =

∫

Π(Xi, y) g(y)dy so that we can write

g(Xi+1) =

(∫

Π(., y)g(y)dy

)

(Xi) + ηi

where ηi = g(Xi+1)− E[g(Xi+1)|Xi] is a centered process. We recognize then a
regression model. A contrast to estimate

∫

Π(., y)g(y)dy is

γn(u) =
1

n

n
∑

i=1

[u2(Xi) − 2u(Xi)g(Xi+1)].
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It is the classical mean square contrast to estimate a regression function. But
we want to estimate Π(., y) and not only

∫

Π(., y)g(y)dy.
So we observe that if

∫

g2 =1 and T (x, y) =u(x)g(y), then u(.) =
∫

T (., y)g(y)dy.
So if u(.) =

∫

T (., y)g(y)dy estimates
∫

Π(., y)g(y)dy, we can assume that T es-
timates Π. Since

∫

T 2(., y)dy = u2(.), the contrast becomes

γn(T ) =
1

n

n
∑

i=1

[

∫

T 2(Xi, y)dy − 2T (Xi, Xi+1)]

It is the contrast studied in Lacour (2007a) and it allows for a good estimation
of Π(., y) when the Markov chain is observed. We can observe that

Eγn(T ) =

∫

T 2(x, y)f(x)dxdy−2

∫

T (x, y)f(x)Π(x, y)dxdy = ‖T−Π‖2
f−‖Π‖2

f

where f is the density of Xi and

‖T‖f =

(
∫

T 2(x, y)f(x)dxdy

)1/2

.

Then this contrast is an empirical counterpart of the distance ‖T − Π‖f .

3.2.2. Second step: the Xi’s are unknown, the observations are the Yi’s

The aim of this step is to modify the previous contrast, to take into account
that the Xi’s are not observed. To do this, we use the same technique as in the
convolution problem (see Comte et al. (2006)). Let us denote by FX the density
of (Xi, Xi+1) and FY the density of (Yi, Yi+1). We remark that FY = FX ∗(q⊗q)
and F ∗

Y = F ∗
X(q∗ ⊗ q∗) and then

E[T (Xi, Xi+1)] =

∫∫

TFX =
1

2π

∫∫

T ∗F ∗
X =

1

2π

∫∫

T ∗

q∗ ⊗ q∗
F ∗

Y

by using the Parseval equality. The idea is then to define V ∗
T = T ∗/(q∗ ⊗ q∗) so

that

E[T (Xi, Xi+1)] =
1

2π

∫∫

V ∗
T F

∗
Y =

∫∫

VTFY = E[VT (Yi, Yi+1)].

Then we replace the term T (Xi, Xi+1) in the contrast by VT (Yi, Yi+1). In the
same way, we find an operator Q to replace the term

∫

T 2(Xi, y)dy. More pre-
cisely, for all function T , let VT be the inverse Fourier transform of T ∗/(q∗ ⊗
q∗)(−.), i.e.

VT (x, y) =
1

4π2

∫∫

eixu+iyv T ∗(u, v)

q∗(−u)q∗(−v)dudv.

Let QT be the inverse Fourier transform of T ∗(., 0)/(q∗)(−.), i.e.

QT (x) =
1

2π

∫

eixu T
∗(u, 0)

q∗(−u) du.

V and Q have been chosen so that the following lemma holds.
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Lemma 2. For all k ∈ {1, . . . , n+ 1}
1. E[VT (Yk, Yk+1)|X1, ..., Xn+1] = T (Xk, Xk+1)
2. E[VT (Yk, Yk+1)] =

∫∫

T (x, y)Π(x, y)f(x)dxdy
3. E[QT (Yk)|X1, ..., Xn+1] =

∫

T (Xk, y)dy
4. E[QT (Yk)] =

∫∫

T (x, y)f(x)dxdy

Points 1. and 3. are proved in Section 6, the other assertions are their imme-
diate consequences. Note that V and Q are strongly linked with v. In particular
Vs⊗t(x, y) = vs(x)vt(y) and Qs⊗t(x) = vs(x)

∫

t(y)dy.
By using the operators V and Q, we now define the contrast, depending only

on the observations Y1, . . . , Yn+1:

γn(T ) =
1

n

n
∑

k=1

[QT 2(Yk) − 2VT (Yk, Yk+1)]

With Lemma 2, we compute E(γn(T )) =
∫∫

T 2(x, y)f(x)dxdy − 2
∫∫

T (x, y)
Π(x, y)f(x)dxdy = ‖T −Π‖2

f − ‖Π‖2
f . So we want to estimate Π by minimizing

γn. The definition of the contrast leads to the following “empirical norm”:

Ψn(T ) =
1

n

n
∑

k=1

QT 2(Yk).

The term empirical norm is used because EΨn(T ) = ‖T‖2
f , but Ψn is not a

norm in the common sense of the word.

3.3. Definition of the estimator

We have to minimize the contrast γn to find our estimator. By writing T =
∑m

j=J

∑

(k,l)∈Λj
ajklϕjk ⊗ ϕjl =

∑

λ aλ ωλ(x, y), we obtain

∂γn(T )

∂aλ0

=
2

n

n
∑

i=1

(

∑

λ

aλQωλωλ0
(Yi) − Vωλ0

(Yi, Yi+1)

)

.

Then, by denoting Am the vector of the coefficients aλ of T ,

∀λ0
∂γn(T )

∂aλ0

= 0 ⇐⇒ GmAm = Zm (5)

where

Gm =

[

1

n

n
∑

i=1

Qωλωµ(Yi)

]

λ,µ

, Zm =

[

1

n

n
∑

i=1

Vωλ(Yi, Yi+1)

]

λ

But the matrix Gm is not necessarily invertible. This is why we introduce the
set

Γ =

{

min Sp(Gm) ≥ 2

3
f0

}

(6)
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where Sp denotes the spectrum, i.e. the set of the eigenvalues of the matrix and
f0 is the lower bound of f on A1. On Γ, Gm is invertible and γn is convex so that
the minimization of γn is equivalent to Equation (5) and admits the solution
Am = G−1

m Zm. Now we can define

Π̂m =

{

argminT∈Sm γn(T ) on Γ,

0 on Γc.

Remark 2. The term 2/3 in Γ can be replaced by any constant smaller than 1.
Moreover, the construction of Π̂m described here requires the knowledge of f0.
Nevertheless, when f0 is unknown, we can replace it by an estimator f̂0 defined
as the minimum of an estimator of f (for an estimator of the density of a hidden
Markov chain, see Lacour (2007b)). The result is then unchanged if f is regular
enough and the mixing rate high enough.

We then have an estimator of Π for all Sm. But we have to choose the best
model m to obtain an estimator which achieves the best rate of convergence,
whatever the regularity of Π. So we set

m̂ = arg min
m∈Mn

{γn(Π̂m) + pen(m)}

where pen is a penalty function to be specified later and

Mn = {m ≥ J,D4γ+2
m ≤ n}.

Then we can define our final estimator:

Π̃ =

{

Π̂m̂ if ‖Π̂m̂‖ ≤ kn with kn = n1/2,

0 else.

4. Result

4.1. Risk and rate of convergence

For a function G and a subspace S, we define

dA(G, S) = inf
T∈S

‖G− T‖A.

We recall that A is the estimation area. For each estimator Π̂m, we have the
following decomposition of the risk:

Proposition 1. We consider a Markov chain and a noise satisfying Assump-
tions H1–H5 with γ ≥ 3/4. For m fixed in Mn, we consider Π̂m the estimator
of the transition density Π, previously described. Then there exists C > 0 such
that

E‖Π̂m − Π‖2
A ≤ C

{

d2
A(Π, Sm) +

D4γ+2
m

n

}

.
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We do not prove this proposition because this result is included in Theorem
1 below, which is proved in Section 6.

Now if Π belongs to a Besov space with regularity α, it is a common approx-
imation property of the wavelet spaces that d2

A(Π, Sm) ≤ CD−2α
m . So, choosing

m1 such that Dm1 = n1/(2α+4γ+2), we obtain the minimum risk

E‖Π̂m1 − Π‖2
A ≤ Cn− 2α

2α+4γ+2 .

But this choice of m1 is impossible if α is unknown (it is a priori the case since
Π is unknown). That is why we have built our estimator Π̃ via model selection.
Now we can state the following theorem.

Theorem 1. We consider a Markov chain and a noise that satisfy Assumptions
H1–H5 with γ > 3/4. We consider Π̃ the estimator of the transition density Π
previously described with r > 2γ + 3/2 and

pen(m) = K
D4γ+2

m

n
for some K > K0

where K0 = C(γ)Φ2
1‖q‖2

∞f
−1
0 . Then there exists C′ > 0 such that

E‖Π̃ − Π‖2
A ≤ C inf

m∈Mn

{d2
A(Π, Sm) + pen(m)} +

C′

n

with C = max(2 + 72f−1
0 ‖f‖∞,A1(1 + 2‖Π‖2

A), 12f−1
0 (1 + 2‖Π‖2

A)).

Note that this result is non-asympotic. It is an advantage of the least square
method over the quotient method.

All the constants on which the penalty depends do not have the same status.
The constants Φ1, γ and ‖q‖∞ are known, since the wavelet basis and the noise
distribution are known. The constant f0 is unknown but it can be estimated
(see Remark 2). Then, even if it means replacing f0 by an estimator f̂0, the
penalty is computable. In particular the dependence coefficients of the sequence
do not appear at all in the penalty.

The condition γ > 3/4 is due to an additional term of order D
2γ+7/2
m /n

(coming from the term (1/n)
∑n

i=1QT 2(Yi) in the contrast) inside the penalty.
If γ > 3/4, then 2γ + 7/2 < 4γ + 2 and D4γ+2

m /n is the dominant term. If
γ = 3/4, the result is still true but the constant in the penalty also depends on

‖Π‖A. In the other cases the estimation is possible but the term D
2γ+7/2
m /n is

not negligible any more and the order of the variance (and consequently the rate
of convergence) must be changed. This constraint γ > 3/4 is not very restrictive
since γ must be larger than 1/2 in order that q be square integrable. Moreover
in the case of a Gamma noise, q is not bounded if γ < 1.

We can now evaluate the rate of convergence of our estimator.

Corollary 1. We suppose that the restriction of Π to A belongs to the Besov
space Bα

2,∞(A) with α < r. Then, under the assumptions of Theorem 1,

E‖Π̃ − Π‖2
A = O(n− 2α

2α+4γ+2 ).
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To our knowledge, the minimax rates are unknown in the specific estimation
problem we consider here and finding them is definitely beyond the scope of

this paper. Nevertheless, Clémençon (2003) proved that the rate n− 2α
2α+4γ+2 is

optimal whenever f and fΠ belong to Bα
2,∞(R) and Bα

2,∞(R2) respectively.

Nevertheless we remark that we obtain the same rate of convergence with Π̃
as those obtained with Π̂m1 where Dm1 = n1/(2+4γ+2α), but without requiring
the knowledge of α. Moreover our estimator is better than the one of Clémençon

(2003), which achieves only the rate (ln(n)/n)
2α

2α+4γ+2 . It is also an improvement
on the result of Lacour (2007b) because this rate is obtained without requiring
any regularity for f or fΠ.

If we want to compare the quotient method described in Lacour (2007b) and
the one introduced in this paper, we can say that only the quotient method al-
lows dealing with supersmooth distributions, at least from a theoretical point of
view. However, the least squares method has the advantage of giving a good rate
of convergence without requiring prior information on the stationary density.
Moreover, our result is non-asymptotic contrary to the one of Lacour (2007b).

4.2. Sketch of proof of Theorem 1

We give in this section a sketch of proof of Theorem 1.
Let m ∈ Mn. We denote by Πm the orthogonal projection of Π on Sm. We

have the following bias-variance decomposition

E‖Π̃ − Π‖2
A = E‖Π̃ − Πm‖2

A + ‖Πm − Π‖2
A

The term ‖Π̃− Πm‖2
A can be written in the following way

‖Π̃ − Πm‖2
A = ‖Π̃ − Πm‖2

A {‖Π̂m̂‖≤kn} + ‖Π̃ − Πm‖2
A {‖Π̂m̂‖>kn}

≤ ‖Π̂m̂ − Πm‖2
A + ‖Πm‖2

A {‖Π̂m̂‖>kn}

since Π̃ = 0 on the set {‖Π̂m̂‖ > kn} and Π̃ = Π̂m̂ on the complement. The term
‖Πm‖2

A {‖Π̂m̂‖>kn} is easily dealt with, the main term is ‖Π̂m̂ −Πm‖2
A. But, on

Γ, the definitions of Π̂m and m̂ lead to the inequality

γn(Π̂m̂) + pen(m̂) ≤ γn(Πm) + pen(m). (7)

Letting Zn,m(T ) = 1
n

∑n
k=1[VT (Yk, Yk+1)−QTΠm(Yk)], a fast computation gives

γn(Π̂m̂) − γn(Πm) = Ψn(Π̂m̂ − Πm) − 2Zn,m(Π̂m̂ − Πm)

so that (7) becomes

Ψn(Π̂m̂ − Πm) ≤ 2Zn,m(Π̂m̂ − Πm) + pen(m) − pen(m̂)

≤ 2‖Π̂m̂ − Πm‖f sup
T∈Bf (m,m̂)

Zn,m(T ) + pen(m) − pen(m̂)

where Bf (m, m̂) = {T ∈ Sm + Sm̂, ‖T‖f = 1}. The main steps of the proof
are then
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1. to control the term supT∈Bf (m,m̂) Zn,m(T ),

2. to link the empirical “norm” Ψn with the L2 norm ‖.‖A.

• To deal with the supremum of the empirical process Zn,m(T ), we use an
inequality of Talagrand stated in Lemma 6 (Section 6.8). This inequality is very
powerful but can be applied only to a sum of independent random variables.
That is why we split Zn,m(T ) into three processes plus a bias term.

Zn,m(T ) = Z(1)
n (T ) − Z(2)

n (T ) + Z(3)
n (T ) +

∫∫

T (x, y)(Π − Πm)(x, y)f(x)dxdy

with






































Z(1)
n (T ) =

1

n

n
∑

k=1

VT (Yk, Yk+1) − E[VT (Yk, Yk+1)|X1, . . . , Xn+1]

Z(2)
n (T ) =

1

n

n
∑

k=1

QTΠm(Yk) − E[QTΠm(Yk)]

Z(3)
n (T ) =

1

n

n
∑

k=1

T (Xk, Xk+1) − E[T (Xk, Xk+1)]

For the first process Z
(1)
n , we are back to independent variables by remarking

that, conditionally to X1, . . . , Xn+1, the couples (Y2i−1, Y2i) are independent
(see Proposition 3).

For the other processes, we use the mixing assumption H5 to build auxil-
iary variables X∗

i which are approximations of the Xi’s and which constitute
independent clusters of variables (see Proposition 4).

• To pass from Ψn to the L2 norm, we introduce the following set

∆ = {∀T ∈ S ‖T‖2
f ≤ 3

2
Ψn(T )}

We can easily prove (see Section 6.3) that ∆ ⊂ Γ. Then,

‖Π̂m̂ − Πm‖A ∆ ≤ 3

2
f−1
0 Ψn(Π̂m̂ − Πm) Γ

It remains to prove that P (∆c) = P (∃T ∈ S,Ψn(T ) < (2/3)E[Ψn(T )]) is small
enough. It is done in Proposition 2.

5. Simulations

To illustrate the method, we compute our estimator Π̃ for different Markov pro-
cesses with known transition density. The estimation procedure contains several
Fourier transforms. This may seem heavy, but, for each noise distribution, the
computation of vϕjk for all the basis functions can be done beforehand. Here we

use the Daubechies wavelet D20. Next, to compute Π̃ from data Y1, . . . , Yn+1,
we use the following steps (see Section 3.3):
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• For each m, compute matrices Gm and Zm,
• Deduce the matrix Am,
• Select the m̂ which minimizes γn(Π̂m) + pen(m) = −tAmZm + pen(m),
• Compute Π̃ using matrix Am̂.

Actually, following the theoretical procedure, we should set Π̂m = 0 on Γc

(see Section 3.3) but, for practical purposes, it is more sensible to inverse Gm

whenever possible. In all the examples examined below, the minimum of the
spectrum of Gm has never been too small (so that we merely inverted it without
using set Γ). The reason is that P (Γc) is very small: it appears in the proofs
that it can be bounded with an exponential inequality.

We consider several kinds of Markov chains :

• An autoregressive process denoted by AR and defined by:

Xn+1 = aXn + b + εn+1

where the εn+1 are independent and identical distributed random vari-
ables, with centered Gaussian distribution with variance σ2. For this pro-
cess, the transition density can be written 1/(σ

√
2π) exp(−(y − ax −

b)2/2σ2). We consider the following parameter values :

(i) a = 2/3, b = 0, σ2 = 5/9, estimated on [−2, 2]2.

(ii) a = 0.5, b = 3, σ2 = 1, and then the process is estimated on [4, 8]2.

• A radial Ornstein-Uhlenbeck process (in its discrete version). For j =
1, . . . , δ, we define the processes: ξj

n+1 = aξj
n + βεj

n where the εj
n are i.i.d.

standard Gaussian. The chain is then defined by Xn =

√

∑δ
i=1(ξ

i
n)2. The

transition density is given in Chaleyat-Maurel and Genon-Catalot (2006)
where this process is studied in detail:

π(x, y) = y>0 exp

(

−y
2 + a2x2

2β2

)

Iδ/2−1

(

axy

β2

)

ax

β2

( y

ax

)δ/2

and Iδ/2−1 is the Bessel function with index δ/2 − 1. This process (with

here a = 0.5, β = 3, δ = 3) is denoted by
√

CIR since its square is actually
a Cox-Ingersoll-Ross process. The estimation domain for this process is
[2, 10]2.

• A Cox-Ingersoll-Ross process, which is exactly the square of the previous
process. The invariant distribution is a Gamma density with scale param-
eter l = (1 − a2)/(2β2) and shape parameter a = δ/2. The transition
density is

π(x, y) =
1

2β2
exp

(

−y + a2x

2β2

)

Iδ/2−1

(

a
√
xy

β2

)

( y

a2x

)δ/4−1/2

The used parameters are the following:

(iii) a = 3/4, β =
√

7/48 and δ = 4, estimated on [0.1, 3]2.
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(iv) a = 1/3, β = 3/4 and δ = 2. This chain is estimated on [0, 2]2.

• An ARCH process defined by Xn+1 = sin(Xn)+ (cos(Xn)+3)εn+1 where
the εn+1 are i.i.d. standard Gaussian. The transition density of this chain
is

π(x, y) = ϕ

(

y − sin(x)

cos(x) + 3

)

1

cos(x) + 3

and we estimate this process on [−5, 5]2.

For this last chain, the stationary density is not explicit. So we simulate
n+500 variables and we estimate only from the last n to ensure the stationarity
of the process. For the other chains, it is sufficient to simulate an initial variable
X0 with density f .

n 50 100 250 500 1000 noise

AR(i) 0.579 0.407 0.270 0.230 0.209 Lapl
0.599 0.480 0.313 0.272 0.245 Gauss

AR(ii) 0.389 0.294 0.195 0.155 0.139 Lapl
0.339 0.304 0.280 0.273 0.271 Gauss√

CIR 0.171 0.138 0.123 0.118 0.111 Lapl
0.199 0.169 0.150 0.142 0.139 Gauss

CIR(iii) 0.420 0.345 0.237 0.195 0.175 Lapl
0.337 0.302 0.276 0.245 0.209 Gauss

CIR(iv) 0.525 0.403 0.337 0.304 0.292 Lapl
0.369 0.345 0.344 0.327 0.321 Gauss

ARCH 0.312 0.287 0.261 0.185 0.150 Lapl
0.337 0.319 0.296 0.290 0.183 Gauss

Table 1

MISE E‖Π − Π̃‖2 averaged over N = 200 samples.

We consider two different noises:

Laplace noise In this case, the density of εi is given by

q(x) =
λ

2
e−λ|x|; q∗(x) =

λ2

λ2 + x2
; λ = 5.

The smoothness parameter is γ = 2 so that the theoretical penalty is

pen(m) = CΦ2
1‖q‖2

∞f
−1
0

D10
m

n
=

1

n

(

λ

2

)2

CΦ2
1f

−1
0 D10

m

Several simulations lead to fix a constant C very low. As the term f−1
0

does not vary very much with regard to C, we choose to use the same
following penalty for all the examples:

pen(m) =
1

n

(

λ

2

)2 (
Dm

4

)10

.
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Fig 1. Mean of the MISE for the six processes when n increases

Gaussian noise In this case, the density of εi is given by

q(x) =
1

λ
√

2π
e−

x2

2λ2 ; q∗(x) = e−
λ2x2

2 ; λ = 0.3.

This noise does not verify Assumption H1 but it is interesting to see if this
assumption is also necessary for practical purposes. Given the exponential
regularity of this noise, we consider the following penalty

pen(m) =
κ

n
exp(λ2D2

m)

where, by simulation experiments, we calibrate the penalty with κ = 5.

Table 1 presents the L2 risk of our estimator of the transition density for
the six Markov chains and the two noises. These results can be compared with
those of Lacour (2007a) (Table 2) who studies the processes AR(i),

√
CIR and

ARCH but directly observed, i.e. without noise. The risk values are then higher
in our case, but with the same order, which is satisfactory. It is noticeable that
the estimation works almost in the same way with the Gaussian noise, but with
a slower decrease of the risk, as can be observed in Figure 1 . It is a classical
phenomenon in deconvolution problems, since the Gaussian noise is much more
regular than the Laplace noise.

Figure 2 allows visualizing the result for process ARCH observed through a
Laplace noise: the surfaces z = Π(x, y) and z = Π̃(x, y) are presented. We also
give figures of cross-sections of this kind of surfaces. We can see in Figure 3 the
curves z = Π(x,−0.44) versus z = Π̃(x,−0.44) and the curves z = Π(1.12, y)
versus z = Π̃(1.12, y) for the process AR(i). Generally, for a multidimensional
estimation, the mixed control of the directions does not enable to do as well as a
classical one-dimensional function estimation. Nevertheless here the curves are
very close.

From a practical point of vue, it is difficult to compare the method described
here and the one of Lacour (2007b). Indeed, the bases used are very different.
However, we can say that the quotient method seems to give better results when
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Fig 2. True Π (black) and estimator Π̃ (white) for process ARCH observed through a Laplace
noise, n = 500
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Fig 3. Sections for process AR(i) observed through a Laplace noise, n = 500

the noise distribution is Gaussian (that is conform to theory). Nevertheless, the
least squares procedure is better for a Laplace noise, especially when n is small.

6. Detailed proofs

6.1. Proof of Lemma 1

• Using

|
∑

k

ϕ2
jk(x)| ≤ C(ϕ)2j/2‖ϕjk‖∞ ≤ C′(ϕ)2j , (8)

P3 holds if Φ1 ≥ 2C′(ϕ).
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• The computation of vϕjk gives

|vϕjk (x)| ≤ 2j/2

2π

∫ |ϕ∗(v)|
|q∗(−v2j)|dv

Next, it follows from Assumption H1 that |vϕjk (x)| ≤ C1,γ(2j)γ+1/2/2πk0 us-
ing Lemma 5 (Section 6.8) since r > γ + 1. Then, for all x,

∑

k |vϕjk (x)|2 ≤
3.2jC2

1,γ
k−2
0

4π2 (2j)2γ+1 that establishes P4 with Φ1 ≥ 3C2
1,γk

−2
0 /(4π2).

• To prove P5, we apply the Parseval equality. That yields
∫

|vϕjk |2 =
1

2π

∫ |ϕ∗(v)|2
|q∗(−v2j)|2 dv.

Using H1 and given that 2r > 2γ + 1, we obtain
∫

|vϕjk |2 ≤ C2,2γ(2j)2γ/2πk2
0

And finally P5 holds with Φ1 ≥ 3C2,2γk
−2
0 /(2π).

• We begin with computing |vϕjkϕjk′ (x)| by using that (ϕjkϕjk′)∗ is equal to
the convolution product ϕ∗

jk ∗ ϕ∗
jk′ .

|vϕjkϕjk′ (x)| ≤
2−j

2π

∫∫ |ϕ∗(v/2j)||ϕ∗((u− v)/2j)|
|q∗(−u)| dudv

≤ k−1
0

2π
2j(2j)γ

∫∫

|ϕ∗(y)ϕ∗(x− y)|(x2 + 1)γ/2dxdy.

Then Lemma 5 (Section 6.8) shows that

|vϕjkϕjk′ (x)| ≤ k−1
0

2π
(2j)γ+1Cr

[

∫

|x|>1

|x|1−r(x2 + 1)γ/2dx

+

∫

|x|≤1

(x2 + 1)γ/2dx
]

.

Hence, since r > γ + 2, there exists C > 0 such that |vϕjkϕjk′ (x)| ≤ C(2j)γ+1.
The fact that ϕjk and ϕjk′ have disjoint supports if k + N ≤ k′ − N + 1 or
k′ +N ≤ k −N + 1 enables to prove P6 with Φ1 ≥ 3(4N − 3)C2.

• Applying Parseval’s equality,
∫

|vϕjkϕjk′ |2 =
2j

2π

∫ |(ϕjkϕjk′)∗|2(2jv)

|q∗(−2jv)|2 dv.

But,using Lemma 5,

|(ϕjkϕjk′)∗(2jv)| ≤
∫

|ϕ∗(y)||ϕ∗(v − y)|dy ≤ Cr

[

|v|1−r
|v|>1 + |v|≤1

]

(9)

Then, it follows that
∫

|vϕjkϕjk′ |2 ≤ k−2
0 2j

2π
C2

r

∫

(|v|2(1−r)
|v|>1+ |v|≤1)((2

jv)2+1)γdv ≤ C(2j)2γ+1.

It is then sufficient to sum this quantity for all k, k′ by taking into account the
superposition of the supports to prove P7 as soon as Φ1 ≥ 3C(4N − 3).
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6.2. Proof of Lemma 2

1. First we write that

VT (Yk, Yk+1) =
1

4π2

∫

eiYku+iYk+1v T ∗(u, v)

q∗(−u)q∗(−v)dudv

so that, by denoting X = (X1, . . . , Xn+1),

E[VT (Yk, Yk+1)|X] =
1

4π2

∫

E[eiYku+iYk+1v|X]
T ∗(u, v)

q∗(−u)q∗(−v)dudv.

By using the independence between (Xi) and (εi), we compute

E[eiYku+iYk+1v|X] = E[eiXku+iXk+1veiεkueiεk+1u|X]

= eiXku+iXk+1v
E[eiεku]E[eiεk+1v] = eiXku+iXk+1vq∗(−u)q∗(−v).

Then

E[VT (Yk, Yk+1)|X] =
1

4π2

∫

eiXku+iXk+1vT ∗(u, v)dudv = T (Xk, Xk+1).

3. We proceed in a similar way for Q. Since QT (Yk) = (1/2π)
∫

eiYkuT ∗(u, 0)
(q∗(−u))−1du, then

E[QT (Yk)|X] =
1

2π

∫

E[eiYku|X]
T ∗(u, 0)

q∗(−u) du.

By using the independence between (Xi) and (εi), we compute

E[eiYku|X] = E[eiXkueiεku|X] = eiXku
E[eiεku] = eiXkuq∗(−u).

Thus

E[QT (Yk)|X] =
1

2π

∫

eiXkuq∗(−u)T
∗(u, 0)

q∗(−u) du =
1

2π

∫

eiXkuT ∗(u, 0)du.

By denoting by Ty the function x 7→ Ty(x) = T (x, y), we obtain

T ∗(u, 0) =

∫∫

e−ixuTy(x)dxdy =

∫

T ∗
y (u)dy

and then

1

2π

∫

eiXkuT ∗(u, 0)du =
1

2π

∫∫

eiXkuT ∗
y (u)dydu

=

∫

Ty(Xk)dy =

∫

T (Xk, y)dy.

(10)
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6.3. Proof of Theorem 1

We start with introducing some auxiliary variables whose existence is ensured
by Assumption H5 of mixing. In the case of arithmetical mixing, since θ > 8,
there exists a real c such that 0 < c < 3/8 and cθ > 3. In this case, we set
qn = ⌊nc⌋. In the case of geometric mixing, we set qn = ⌊c ln(n)⌋ where c is a
real larger than 3/θ.

For the sake of simplicity, we suppose that n + 1 = 2pnqn, with pn an
integer. Let for l = 0, . . . , pn − 1, Al = (X2lqn+1, ..., X(2l+1)qn

) and Bl =
(X(2l+1)qn+1, ..., X(2l+2)qn

). As in Viennet (1997), by using Berbee’s coupling
Lemma, we can build a sequence (A∗

l ) such that










Al and A∗
l have the same distribution,

A∗
l and A∗

l′ are independent if l 6= l′,

P (Al 6= A∗
l ) ≤ βqn .

(11)

In the same way, we build (B∗
l ) and we define for any l ∈ {0, . . . , pn − 1},

A∗
l = (X∗

2lqn+1, ..., X
∗
(2l+1)qn

), B∗
l = (X∗

(2l+1)qn+1, ..., X
∗
(2l+2)qn

) so that the se-

quence (X∗
1 , . . . , X

∗
n) is well defined. We can now define

Ω∗
X = {∀i, 1 ≤ i ≤ n+ 1 Xi = X∗

i }.

Let us recall that S is the space Sm with maximal dimension D2 ≤ n
1

4γ+2 .
We now adopt the notations

∆ = {∀T ∈ S ‖T‖2
f ≤ 3

2
Ψn(T )}; Ω = ∆ ∩ Ω∗

X .

Let us fix m ∈ Mn. We denote by Πm the orthogonal projection of Π on Sm.
Then we have the decomposition

E‖Π̃ − Π‖2
A ≤ 2E

(

‖Π̃ − Πm‖2
A Ω ‖Π̂m̂‖≤kn

)

+ 2E

(

‖Π̃ − Πm‖2
A Ω ‖Π̂m̂‖>kn

)

+2E

(

‖Π̃ − Πm‖2
A Ωc

)

+ 2‖Πm − Π‖2
A

≤ 2E

(

‖Π̂m̂ − Πm‖2
A Ω

)

+ 2‖Πm‖2
AE

(

Ω ‖Π̂m̂‖>kn

)

+2E

(

[2‖Π̃‖2
A + 2‖Πm‖2

A] Ωc

)

+ 2‖Πm − Π‖2
A.

Now, using the Markov inequality and the definition of Π̃,

E‖Π̃ − Π‖2
A ≤ 2E

(

‖Π̂m̂ − Πm‖2
A Ω

)

+ 2‖Π‖2
A

E(‖Π̂m̂‖2
Ω)

k2
n

+4(k2
n + ‖Π‖2

A)E ( Ωc) + 2‖Πm − Π‖2
A.

But E(‖Π̂m̂‖2
Ω) ≤ 2E(‖Π̂m̂ − Πm‖2

A Ω) + 2‖Πm‖2
A and kn =

√
n, so

E‖Π̃ − Π‖2
A ≤ 2E

(

‖Π̂m̂ − Πm‖2
A Ω

)

(1 + 2‖Π‖2
A) +

4‖Π‖4
A

n

+4(n+ ‖Π‖2
A)P (Ωc) + 2‖Πm − Π‖2

A.
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We now state the following proposition :

Proposition 2. There exists C0 > 0 such that

P (Ωc) ≤ C0

n2
.

Hence

E‖Π̃ − Π‖2
A ≤ 2‖Πm − Π‖2

A + 2E

(

‖Π̂m̂ − Πm‖2
A Ω

)

(1 + 2‖Π‖2
A)

+
4

n
(‖Π‖4

A + C0(1 + ‖Π‖2
A)).

(12)

Now we have to bound E

(

‖Π̂m̂ − Πm‖2
A Ω

)

. The estimators Π̂m are defined

by minimization of the contrast on a set Γ defined in (6). Let us prove that this
set Γ contains Ω. More precisely, we prove that ∆ ⊂ Γ. For T =

∑

λ aλωλ ∈ Sm,
the matrix Am = (aλ) of its coefficients in the basis (ωλ(x, y)) verifies Ψn(T ) =
tAmGmAm. Then, on ∆,

tAmGmAm ≥ 2

3
‖T‖2

f ≥ 2

3
f0‖T‖2.

Now, using P2, ‖T‖2 = tAmAm and then tAmGmAm ≥ (2/3)f0
tAmAm. If µ is

an eigenvalue of Gm, there exists Am 6= 0 such that GmAm = µAm and then
tAmGmAm = µtAmAm. Then, on ∆,

µtAmAm ≥ 2

3
f0

tAmAm.

Consequently µ ≥ (2/3)f0. So ∆ ⊂ Γ and Π̂m̂ minimizes the contrast on ∆.
We now observe that, for all functions T, S

γn(T ) − γn(S) = Ψn(T − S) − 2

n

n
∑

k=1

[V(T−S)(Yk, Yk+1) −Q(T−S)S(Yk)].

Then, since on ∆, γn(Π̂m̂) + pen(m̂) ≤ γn(Πm) + pen(m),

Ψn(Π̂m̂ − Πm) ≤ 2

n

n
∑

k=1

[V(Π̂m̂−Πm)(Yk, Yk+1) −Q(Π̂m̂−Πm)Πm
(Yk)]

+pen(m) − pen(m̂)

≤ 2Zn,m(Π̂m̂ − Πm) + pen(m) − pen(m̂)

≤ 2‖Π̂m̂ − Πm‖f sup
T∈Bf (m,m̂)

Zn,m(T ) + pen(m) − pen(m̂)

where

Zn,m(T ) =
1

n

n
∑

k=1

[VT (Yk, Yk+1) −QTΠm(Yk)]
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and, for all m′, Bf (m,m′) = {T ∈ Sm + Sm′ , ‖T‖f = 1}. Now let p(., .) be a
function such that for all m,m′, 12p(m,m′) ≤ pen(m) + pen(m′). Then

Ψn(Π̂m̂ − Πm) ≤ 1

3
‖Π̂m̂ − Πm‖2

f + 3[ sup
T∈Bf (m,m̂)

Z2
n,m(T ) − 4p(m, m̂)] + 2pen(m).

So, using the definition of ∆ ⊃ Ω,

‖Π̂m̂ − Πm‖2
f Ω ≤ 3

2
Ψn(Π̂m̂ − Πm) Ω

≤ 1

2
‖Π̂m̂ − Πm‖2

f Ω +
9

2

∑

m′∈Mn

[ sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′)] Ω + 3pen(m)

Thus

1

2
‖Π̂m̂ − Πm‖2

f Ω ≤ 9

2

∑

m′∈Mn

[ sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′)] Ω + 3pen(m)

And using Assumption H3,

‖Π̂m̂−Πm‖2
A Ω ≤ 9f−1

0

∑

m′∈Mn

[ sup
T∈Bf (m,m′)

Z2
n,m(T )−4p(m,m′)] Ω+6f−1

0 pen(m)

(13)
Now, by denoting EX the expectation conditionally to X1, . . . , Xn+1, the

process Zn,m(T ) can be split in the following way :

Zn,m(T ) = Z(1)
n (T ) − Z(2)

n (T ) + Z(3)
n (T ) +

∫∫

T (x, y)(Π − Πm)(x, y)f(x)dxdy

with






































Z(1)
n (T ) =

1

n

n
∑

k=1

VT (Yk, Yk+1) − EX [VT (Yk, Yk+1)]

Z(2)
n (T ) =

1

n

n
∑

k=1

QTΠm(Yk) − E[QTΠm(Yk)]

Z(3)
n (T ) =

1

n

n
∑

k=1

T (Xk, Xk+1) − E[T (Xk, Xk+1)]

Then, by introducing functions p1(., .), p2(., .) and p3(., .)

sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′) ≤ 4 sup

T∈Bf(m,m′)

(Z(1)
n (T )2 − p1(m,m

′))

+4 sup
T∈Bf (m,m′)

(Z(2)
n (T )2 − p2(m,m

′)) + 4 sup
T∈Bf(m,m′)

(Z(3)
n (T )2 − p3(m,m

′))

+4((p1 + p2 + p3)(m,m
′) − p(m,m′)) + 4 sup

T∈Bf(m,m′)

‖(Π − Πm) A‖2
f‖T‖2

f

We now use the following propositions.
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Proposition 3. Let p1(m,m
′) = K1(γ)Φ

2
1f

−1
0 ‖q‖2

∞D
4γ+2
m′′ /n where m′′ =

max(m,m′). Then, if r > 2γ + 1/2, there exists a positive constant C1 such
that

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(1)
n (T )2 − p1(m,m

′)

]

+

)

≤ C1

n
.

Proposition 4. Let p2(m,m
′) = p

(1)
2 (m,m′) + p

(2)
2 (m,m′) with p

(1)
2 (m,m′) =

K2‖Π‖2
A D

2γ+7/2
m′′ /n and p

(2)
2 (m,m′) = K2‖Π‖2

A(
∑

k βk)D3
m′′/n where m′′ =

max(m,m′). Then, if r > 2γ+3/2, there exists a positive constant C2 such that

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(2)
n (T )2 − p2(m,m

′)

]

+

Ω

)

≤ C2

n
.

Proposition 5. Let p3(m,m
′) = K3

∑

k β2kD
2
m′′/n where m′′ = max(m,m′).

Then, there exists a positive constant C3 such that

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(3)
n (T )2 − p3(m,m

′)

]

+

Ω

)

≤ C3

n
.

The first two propositions are proved in Sections 6.6 and 6.7. The last propo-
sition is proved in Lacour (2007b) Section 6.5 (for another basis but only the
property P3 ‖

∑

jk ϕ
2
jk‖∞ ≤ Φ1Dm is used).

Then we get

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′)

]

Ω

)

≤ 4
C1 + C2 + C3

n

+4‖(Π − Πm) A‖2
f + 4

∑

m′∈Mn

((p1 + p2 + p3)(m,m
′) − p(m,m′)).

But, if γ > 3/4, 4γ+2 > 2γ+7/2 and there exists m2 such that for all m′ > m2,
p1(m,m

′) > p2(m,m
′) + p3(m,m

′). It implies that

∑

m′∈Mn

(p1(m,m
′) + p2(m,m

′) + p3(m,m
′) − 2p1(m,m

′))

≤
∑

m′≤m2

(p2(m,m
′) + p3(m,m

′) − p1(m,m
′)) ≤ C(m2)

n
.

Thus in the case γ > 3/4, we choose p = 2p1 and

∑

m′∈Mn

E

([

sup
T∈Bf (m′)

Z2
n,m(T ) − 4p(m,m′)

]

Ω

)

≤ 4
C1 + C2 + C3 + C(m2)

n

+4‖f‖∞,A1‖Π − Πm‖2
A

(14)
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If γ = 3/4, we choose p = 2(p1 + p
(1)
2 ). Since there exists m2 such that for all

m′ > m2, p1(m,m
′) + p

(1)
2 (m,m′) > p

(2)
2 (m,m′) + p3(m,m

′), we can write
∑

m′∈Mn

(p1(m,m
′) + p2(m,m

′) + p3(m,m
′) − p(m,m′))

≤
∑

m′≤m2

(p
(2)
2 (m,m′) + p3(m,m

′) − p1(m,m
′) − p

(1)
2 (m,m′)) ≤ C(m2)

n

and (14) holds.
Finally, combining (12), (13) and (14), we obtain

E‖Π̃ − Π‖2
A ≤ 2‖Πm − Π‖2

A +
4

n
(‖Π‖4

A + C0(1 + ‖Π‖2
A))

+2(1 + 2‖Π‖2
A)9f−1

0

[

4
C1 + C2 + C3 + C(m2)

n
+ 4‖f‖∞,A1‖Π − Πm‖2

A

]

+2(1 + 2‖Π‖2
A)6f−1

0 pen(m).

Then, by letting C = max(2 + 72f−1
0 ‖f‖∞,A1(1 + 2‖Π‖2

A), 12f−1
0 (1 + 2‖Π‖2

A)),

E‖Π̃ − Π‖2
A ≤ C inf

m∈Mn

(‖Πm − Π‖2
A + pen(m)) +

C′

n

We still have to verify that 12p(m,m′) ≤ pen(m)+pen(m′). But, if γ > 3/4,

12p(m,m′) = 24K1
D4γ+2

m′′

n
= 24K1

dim(Sm + Sm′)4γ+2

n
≤ pen(m) + pen(m′)

with pen(m) ≥ 24K1D
4γ+2
m /n. And if γ = 3/4,

12p(m,m′) = 24(K1 +K2‖Π‖2
A)
D5

m′′

n
≤ pen(m) + pen(m′)

with pen(m) ≥ 24(K1 +K2‖Π‖2
A)D4γ+2

m /n.

6.4. Proof of Corollary 1

It follows from Meyer (1990) Chapter 6, Section 10 that Π belongs to Bα
2,∞if and

only if supj≥J 22jα(
∑

k,l |ajkl|2)1/2 <∞ with ajkl =
∫

Π(x, y)ϕjk(x)ϕjl(y)dxdy.
Then

d2
A(Π, Sm) =

∑

j>m

∑

k,l

|ajkl|2 ≤ C
∑

j>m

2−4jα ≤ C′D−2α
m

Since d2
A(Π, Sm) = O(D−2α

m ), Theorem 1 becomes

E‖Π̃ − Π‖2
A ≤ C′′ inf

m∈Mn

{D−2α
m +

D4γ+2
m

n
}.

with C′′ a positive constant. By setting Dm1 the integer part of n1/(4γ+2α+2),
then

E‖Π̃ − Π‖2
A ≤ C′′{D−2α

m1
+
D4γ+2

m1

n
} = O(n− 2α

4γ+2α+2 ).
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6.5. Proof of Proposition 2

We first remark that P (Ωc) ≤ P (Ω∗c
X ) + P (∆c ∩ Ω∗

X). In the geometric case
βqn ≤ e−θc ln(n) ≤ n−θc and in the other case βqn ≤ (qn)−θ ≤ n−θc. Then

P (Ω∗c
X ) ≤ 2pnβqn ≤ n1−cθ.

But, cθ > 3 and so P (Ω∗c
X ) ≤ n−2.We still have to bound P (∆c∩Ω∗

X).To do this,
we observe that if ω ∈ ∆c, then there exists T in S such that ‖T‖2

f > (3/2)Ψn(T )

and then ‖T‖2
f > (3/2)EXΨn(T ). But EXΨn(T ) = 1

n

∑n
k=1

∫

T 2(Xk, y)dy. So
P (∆c ∩ Ω∗

X) ≤ P (∆′c ∩ Ω∗
X) with

∆′ = {∀T ∈ S ‖T‖2
f ≤ 3

2

1

n

n
∑

k=1

∫

T 2(Xk, y)dy}.

Let us remark that (1/n)
∑n

k=1

∫

T 2(Xk, y)dy − ‖T‖2
f = νn(T 2) with

νn(T ) =
1

n

n
∑

i=1

∫

[T (Xi, y) − E(T (Xi, y))]dy.

Hence
P (∆′c ∩ Ω∗

X) ≤ P (sup
T∈B

|νn(T 2)| Ω∗
X
> 1/3)

with B = {T ∈ S ‖T‖f = 1}.
A function T in S can be written T (x, y) =

∑m0

j=J

∑

kl ajklϕjk(x)ϕjl(y) where
m0 is such that S = Sm0 . Then

νn(T 2) Ω∗
X

=
∑

jkk′l

ajklajk′lν̄n(ϕjkϕjk′)

where

ν̄n(u) =
1

n

n
∑

i=1

[u(X∗
i ) − E(u(X∗

i ))]. (15)

Let bjk = (
∑

l a
2
jkl)

1/2, then |νn(T 2)| Ω∗
X

≤
∑

jkk′ bjkbjk′ |ν̄n(ϕjkϕjk′)| and, if

T ∈ B,
∑

jk b
2
jk =

∑

jkl a
2
jkl = ‖T‖2 ≤ f−1

0

Thus,

sup
T∈B

|νn(T 2)| Ω∗
X
≤ f−1

0 sup
∑

b2
jk

=1

∑

jkk′

bjkbjk′ |ν̄n(ϕjkϕjk′)|.

For the sake of simplicity, we denote λ = (j, k) and λ′ = (j, k′) so that

sup
T∈B

|νn(T 2)| Ω∗
X
≤ f−1

0 sup
∑

b2
λ
=1

∑

λλ′

bλbλ′ |ν̄n(ϕλϕλ′)|.
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Lemma 3. Let Bλ,λ′ = ‖ϕλϕλ′‖∞ and Vλ,λ′ = ‖ϕλϕλ′‖2. Let, for any sym-
metric matrix (Aλ,λ′)

ρ̄(A) = sup
∑

a2
λ
=1

∑

λ,λ′

|aλaλ′ |Aλ,λ′

and L(ϕ) = max{ρ̄2(V ), ρ̄(B)}. Then there exists Φ0 > 0 such that L(ϕ) ≤
Φ0D2.

This lemma is proved in Baraud et al. (2001) for an orthonormal basis veri-
fying ‖

∑

λ ϕ
2
λ‖∞ ≤ Φ0D, that is ensured by property P3.

Now let x =
f2
0

24‖f‖∞,A1L(ϕ)
and

D =

{

∀λ∀λ′ |ν̄n(ϕλϕλ′)| ≤
[

Bλ,λ′x+ Vλ,λ′

√

2‖f‖∞,A1x

]}

.

On D:

sup
T∈B

|νn(T 2)| Ω∗
X
≤ f−1

0 sup
∑

b2
λ
=1

∑

λ,λ′

bλbλ′

[

Bλ,λ′x+ Vλ,λ′

√

2‖f‖∞,A1x

]

≤ f−1
0

[

ρ̄(B)x + ρ̄(V )
√

2‖f‖∞,A1x

]

≤ f0
24‖f‖∞,A1

ρ̄(B)

L(ϕ)
+

1√
12

(

ρ̄2(V )

L(ϕ)

)1/2

≤ 1

24
+

1

2
√

3
<

1

3
.

Then P

(

sup
T∈B

|νn(T 2)| Ω∗
X
> 1/3

)

≤ P (Dc). But ν̄n(u) = ν̄n,1(u)/2+ν̄n,2(u)/2

with

ν̄n,s(u) =
1

pn

pn−1
∑

l=0

Yl,s(u) s = 1, 2

with















Yl,1(u) =
1

qn

∑(2l+1)qn

i=2lqn+1[u(X
∗
i ) − E(u(X∗

i ))],

Yl,2(u) =
1

qn

∑(2l+2)qn

i=2(2l+1)qn+1[u(X
∗
i ) − E(u(X∗

i ))].

To bound P (ν̄n,1(ϕλϕλ′) ≥ Bλ,λ′x+Vλ,λ′

√

2‖f‖∞,A1x), we will use the Bern-
stein inequality given in Birgé and Massart (1998). A fast computation gives
E|Yl,1(ϕλϕλ′)|p ≤ 2p−2(Bλ,λ′)p−2(

√

‖f‖∞,A1Vλ,λ′)2. And then

P (|ν̄n,s(ϕλϕλ′)| ≥ Bλ,λ′x+ Vλ,λ′

√

2‖f‖∞,A1x) ≤ 2e−pnx.

Let C = f2
0 [48‖f‖∞,A1 ]

−1, so that x = 2C/L(ϕ). Given that P (∆c ∩ Ω∗
X) ≤

P (Dc) ≤
∑

λ,λ′ P
(

|ν̄n(ϕλϕλ′)| > Bλ,λ′x+ Vλ,λ′

√

2‖f‖∞,A1x
)

,

P (∆c ∩ Ω∗
X) ≤ 4D2 exp

{

−
2pnC

L(ϕ)

}

≤ 4n1/(2γ+1) exp

{

−C
n

qnL(ϕ)

}

.



C. Lacour/Estimation of the transition of a hidden Markov chain 27

But L(ϕ) ≤ Φ0D2 ≤ Φ0n
1/(2γ+1) and qn ≤ n1/2 so

P (∆c ∩ Ω∗
X) ≤ 4n1/(2γ+1) exp

{

− C

Φ0
n

2γ−1
2(2γ+1)

}

≤ C′

n2

because γ > 1/2.

6.6. Proof of Proposition 3

First we need to isolate even terms from odd terms in Z
(1)
n (T ) to avoid overlaps:

Z
(1)
n (T ) =

1

2
(Z

(1,1)
n (T ) + Z

(1,2)
n (T )) with























Z(1,1)
n (T ) =

1

n

n
∑

i=1,i odd

VT (Yi, Yi+1) − EX [VT (Yi, Yi+1)]

Z(1,2)
n (T ) =

1

n

n
∑

i=1,i even

VT (Yi, Yi+1) − EX [VT (Yi, Yi+1)]

It is sufficient to deal with the first term only, as the second one is similar. For
each i, let Ui = (Y2i−1, Y2i), then

Z(1,1)
n (T ) =

1

n/2

n/2
∑

i=1

{VT (Ui) − EX [VT (Ui)]} .

Notice that conditionally to X1, . . . , Xn, the Ui’s are independent. Thus we can
use the Talagrand inequality recalled in Lemma 6 to bound

E

([

sup
T∈Bf (m,m′)

Z(1,1)
n (T )2 − p1(m,m

′)

]

+

)

.

We first remark that Property P1 entailsBf (m,m′)⊂Sm′′ withm′′ = max(m,m′).
Then, if T belongs to Bf (m,m′),

T (x, y) =

m′′
∑

j=J

∑

kl

ajklϕjk(x)ϕjl(y)

with
∑

jkl a
2
jkl = ‖T‖2 ≤ f−1

0 .
• Let us bound ‖VT‖∞ for T inBf (m,m′). If T (x, y) =

∑

jkl ajklϕjk(x)ϕjl(y),

|VT (x, y)|2 ≤
∑

jkl

a2
jkl

∑

jkl

|Vϕjk⊗ϕjl (x, y)|2.

Then, since Vs⊗t(x, y) = vs(x)vt(y),

sup
T∈Bf (m,m′)

|VT (x, y)|2 ≤ f−1
0

∑

jkl

|vϕjk(x)vϕjl(y)|2.
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But, according to Property P4, ‖
∑

k |vϕjk |2‖∞ ≤ Φ1(2
j)2γ+2. So, using Lemma 4,

sup
T∈Bf (m,m′)

‖VT ‖2
∞ ≤ f−1

0 Φ2
1

m′′
∑

j=J

(2j)4γ+4 ≤ f−1
0 Φ2

1

24γ+4

24γ+4 − 1
D4γ+4

m′′

and M1 = f
−1/2
0 Φ1

√

24γ+4/(24γ+4 − 1)D2γ+2
m′′ .

• To compute H2 we write

EX [ sup
T∈Bf (m,m′)

Z(1,1)
n (T )2] ≤ f−1

0

∑

jkl

EX [Z(1,1)
n (ϕjk ⊗ ϕjl)

2]

≤ f−1
0

∑

jkl

VarX





1

n

n
∑

i=1,i odd

vϕjk(Yi)vϕjl(Yi+1)





≤ f−1
0

∑

jkl

1

n
VarX

(

vϕjk(Y1)vϕjl(Y2)
)

≤ f−1
0

n

∑

jkl

EX [|vϕjk (Y1)|2|vϕjl(Y2)|2] (16)

Here VarX denotes the variance conditionally to X1, . . . , Xn+1. Now, for any
function G, the following relation holds

EX [|G|2(Y1, Y2)] = EX [|G|2(X1 + ε1, X2 + ε2)]

=

∫∫

|G|2(X1 + z1, X2 + z2)q(z1)q(z2)dz1dz2

=

∫∫

|G|2(u1, u2)q(u1 −X1)q(u2 −X2)du1du2 ≤ ‖q‖2
∞‖G‖2

Now, coming back to (16),

EX

[

sup
T∈Bf (m,m′)

Z(1,1)
n (T )2

]

≤ f−1
0

n
‖q‖2

∞
∑

jkl

‖vϕjk ⊗ vϕjl‖2

≤ f−1
0 ‖q‖2

∞
n

∑

j

(

∑

k

‖vϕjk‖2

)2

≤ Φ2
1f

−1
0 ‖q‖2

∞
n

m′′
∑

j=J

(2j)4γ+2,

using P5. Then, according to Lemma 4, H2 = Φ2
1f

−1
0 ‖q‖2

∞24γ+2/(24γ+2 −

1)
D4γ+2

m′′

n
.

• There remains to find v. First

VarX(VT (Yi, Yi+1)) ≤ EX |VT (Yi, Yi+1)|2 ≤ ‖q‖2
∞‖VT ‖2
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We now observe that ‖VT‖2 = ‖V ∗
T ‖2/(4π2) and then

‖VT ‖2 =
1

4π2

∫∫
∣

∣

∣

∣

T ∗(u, v)

q∗(−u)q∗(−v)

∣

∣

∣

∣

2

dudv

≤ 1

4π2

√

∫∫ |T ∗(u, v)|2
|q∗(−u)q∗(−v)|4 dudv

√

∫∫

|T ∗(u, v)|2dudv

≤ 1

4π2

√

√

√

√

∑

jkl

a2
jkl

∑

jkl

∫∫ |ϕ∗
jk(u)ϕ∗

jl(v)|2
|q∗(−u)q∗(−v)|4 dudv

√

4π2‖T‖2

For T ∈ Bf (m,m′),

‖VT ‖2 ≤ f
−1/2
0

2π

√

√

√

√f−1
0

∑

j

∑

kl

∫ |ϕ∗
jk(u)|2

|q∗(−u)|4 du
∫ |ϕ∗

jl(u)|2
|q∗(−u)|4 du.

But (ϕjk)∗(u) = 2−j/2eiuk/2j

ϕ∗(u/2j) and then

∫ |ϕ∗
jk(u)|2

|q∗(−u)|4 du ≤
∫

2−j |ϕ∗(u/2j)|2
|q∗(−u)|4 du

≤
∫ |ϕ∗(v)|2

|q∗(−v2j)|4 dv ≤ k−4
0 (2j)4γ

∫

|ϕ∗(v)|2(v2 + 1)2γdv

Since r > 2γ + 1/2, Lemma 5 gives

∑

(k,l)∈Λj

∫ |ϕ∗
jk(u)|2

|q∗(−u)|4 du
∫ |ϕ∗

jl(u)|2
|q∗(−u)|4 du ≤ 3.22jC2

2,4γk
−8
0 (2j)8γ

Then, using Lemma 4 with ρ = 8γ + 2,

‖VT ‖2 ≤ C2,4γf
−1
0 k−4

0

2π

√

√

√

√

m′′
∑

j=J

3(2j)8γ+2 ≤ C2,4γf
−1
0 k−4

0

2π

(

3.28γ+2

28γ+2 − 1

)1/2

D4γ+1
m′′

and v = ‖q‖2
∞C2,4γf

−1
0 k−4

0

√
3.28γ+2D4γ+1

m′′ /(2π
√

28γ+2 − 1).
We can now apply inequality (19)

E[ sup
T∈Bf (m,m′)

|Z(1,1)
n (T )|2 − 6H2]+ ≤ C

(

v

n
e−k1

nH2

v +
M2

1

n2
e−k2

nH
M1

)

≤ C′
(

D4γ+1
m′′

n
e−k′

1Dm′′ +
D4γ+4

m′′

n2
e−k′

2

√
n/Dm′′

)

.

Yet there exists a positive constant K such that
∑

m′∈Mn

D4γ+1
m′′ e−k′

1Dm′′ ≤ K.
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Moreover, since Dm′′ ≤ n
1

4γ+2 , D4γ+4
m′′ e−k′

2

√
n/Dm′′ /n ≤ n1/(2γ+1)e−k′

2nγ/(2γ+1)

so that
∑

m′∈Mn

D4γ+4
m′′ e−k′

2

√
n/Dm′′ /n2 ≤ K ′/n.

Then, setting K1 = 6Φ2
1f

−1
0 ‖q‖2

∞24γ+2/(24γ+2 − 1),

∑

m′∈Mn

E[ sup
T∈Bf (m,m′)

|Z(1,1)
n (T )|2 −K1

D4γ+2
m′′

n
]+ ≤ C′′

n

and the proposition is proved.

6.7. Proof of Proposition 4

Since Πm belongs to Sm, it can be written

Πm(x, y) =
m
∑

j′=J

∑

(k′,l′)∈Λj′

bj′k′l′ϕj′k′(x)ϕj′l′(y)

with
∑

j′k′l′ b
2
j′k′l′ = ‖Πm‖2 ≤ ‖Π‖2

A. From the embedding Bf (m,m′) ⊂ Sm′′

(where m′′ = max(m,m′)), we have, if T belongs to Bf (m,m′),

T (x, y) =

m′′
∑

j=J

∑

(k,l)∈Λj

ajklϕjk(x)ϕjl(y)

with
∑

jkl a
2
jkl = ‖T‖2 ≤ f−1

0 .
We use the Talagrand inequality (19) in Lemma 6. But the variables Yi are

not independent. We shall use the following approximation variables

∀1 ≤ i ≤ n+ 1 Y ∗
i = X∗

i + εi.

These variables have the same properties as regards the Yi’s as the X∗
i ’s as

regards the Xi’s (see (11)). More precisely, let, for l = 0, . . . , pn − 1, Cl =
(Y2lqn+1, ..., Y(2l+1)qn

), Dl = (Y(2l+1)qn+1, . . . , Y(2l+2)qn
), C∗

l = (Y ∗
2lqn+1, ...,

Y ∗
(2l+1)qn

), D∗
l = (Y ∗

(2l+1)qn+1, ..., Y
∗
(2l+2)qn

). Then, since Al and A∗
l have the

same distribution and the sequences (εi) and (Xi) are independent, Cl and
C∗

l have the same distribution. Moreover the construction of A∗
l via Berbee’s

coupling Lemma implies that C∗
l and C∗

l′ are independent if l 6= l′. At last
P (Cl 6= C∗

l ) ≤ βqn .

Now we split Z
(2)
n into two terms: Z

(2)
n (T ) Ω = (1/2)Z

(2,1)
n (T )+(1/2)Z

(2,2)
n (T )

where


























Z(2,1)
n (T ) =

1

pn

pn−1
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

QTΠm(Y ∗
i ) − E[QTΠm(Y ∗

i )]

Z(2,2)
n (T ) =

1

pn

pn−1
∑

l=0

1

qn

(2l+2)qn
∑

i=(2l+1)qn+1

QTΠm(Y ∗
i ) − E[QTΠm(Y ∗

i )]
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Then we apply Talagrand’s inequality to Z
(2,1)
n (T ).

• Let us first compute M1. We have to bound ‖QTΠm‖∞ for T in Bf (m,m′).
By linearity of Q

QTΠm(x) =
∑

jkl

ajkl

∑

j′k′l′

bj′k′l′Qϕjkϕj′k′⊗ϕjlϕj′l′
(x)

Then, since Qs⊗t(x) = vs(x)
∫

t(y)dy, using the Schwarz inequality,

|QTΠm(x)|2 ≤
∑

a2
jklb

2
j′k′l′

∑

|vϕjkϕj′k′ (x)

∫

ϕjlϕj′l′ |2

≤ f−1
0 ‖Π‖2

A

∑

jkk′l

|vϕjkϕjk′ (x)|2

since the ϕjl are orthonormal. The property P6 gives then

‖QTΠm‖2
∞ ≤ f−1

0 ‖Π‖2
AΦ1

m′′
∑

j=J

(2j)2γ+32j

so that (using Lemma 4 again) M1 = f
−1/2
0 ‖Π‖A

√

Φ122γ+4/(22γ+4 − 1)Dγ+2
m′′ .

• Now, we compute H2. For T ∈ Bf (m,m′),

|Z(2,1)
n (T )|2 ≤

∑

jkl

a2
jkl

∑

jkl

|Z(2,1)
n (ϕjk ⊗ ϕjl)|2

Thus

E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ f−1
0

∑

jkl

E

[

Z(2,1)
n (ϕjk ⊗ ϕjl)

2
]

≤ f−1
0

∑

jkl

Var





1

pn

pn−1
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

Q(ϕjk⊗ϕjl)Πm
(Y ∗

i )





The variables (C∗
l ) are independent and identically distributed so

E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ f−1
0

∑

jkl

1

pn
Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Y ∗

i )

]

However, on Ω, C1 and C∗
1 have the same distribution, so that

Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Y ∗

i )

]

= Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Yi)

]

.

And, coming back to the definition of QT , for i1 6= i2,

Cov(Q(ϕjk⊗ϕjl)Πm
(Yi1), Q(ϕjk⊗ϕjl)Πm

(Yi2))

=
1

4π2

∫∫

E(eiYi1ue−iYi2v)
[(ϕjk ⊗ ϕjl)Πm]∗(u, 0)

q∗(−u)
[(ϕjk ⊗ ϕjl)Πm]∗(−v, 0)

q∗(v)
dudv

=
1

4π2

∫∫

E(eiXi1ue−iXi2v)[(ϕjk ⊗ ϕjl)Πm]∗(u, 0)[(ϕjk ⊗ ϕjl)Πm]∗(−v, 0)dudv
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since E(eiεi1ue−iεi2 v) = q∗(−u)q∗(v). Now using (10),

cov(Q(ϕjk⊗ϕjl)Πm
(Yi1), Q(ϕjk⊗ϕjl)Πm

(Yi2))

= cov(

∫

(ϕjk ⊗ ϕjl)Πm(Xi1 , y)dy,

∫

(ϕjk ⊗ ϕjl)Πm(Xi2 , y)dy)

It implies that

Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Yi)

]

≤ 1

q2n

qn
∑

i=1

Var[Q(ϕjk⊗ϕjl)Πm
(Yi)]

+Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

And then

E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ f−1
0

∑

jkl

1

pnqn
Var[Q(ϕjk⊗ϕjl)Πm

(Y1)]

+ f−1
0

∑

jkl

1

pn
Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

(17)

For the second term in (17), we use Lemma 7 to write

∑

jkl

Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

≤ 4
∑

k βk

qn
‖
∑

jkl

|
∫

(ϕjk ⊗ ϕjl)Πm(., y)dy|2‖∞

For all real x
∫

(ϕjk ⊗ ϕjl)Πm(x, y)dy =
∑

k′

bjk′lϕjkϕjk′(x)

Therefore

∑

jkl

|
∫

(ϕjk ⊗ ϕjl)Πm(x, y)dy|2 ≤ ‖Π‖2
A

∑

jkk′l

|ϕjkϕjk′(x)|2 ≤ ‖Π‖2
AΦ2

1D
3
m′′

using property P3. Then

∑

jkl

Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

≤ 4
∑

k βk

qn
‖Π‖2

AΦ2
1D

3
m′′

Thus we have bound the second term in (17) by 2f−1
0

∑

k βk‖Π‖2
AΦ2

1D
3
m′′/n.
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For the first term in (17), we bound
∑

jkl E[|Q(ϕjk⊗ϕjl)Πm
(Y1)|2]:

∑

jkl

E[|Q(ϕjk⊗ϕjl)Πm
(Y1)|2] ≤

∑

j′k′l′

b2j′k′l′

∑

jkl

∑

j′k′l′

|
∫

ϕjlϕj′l′ |2E|vϕjkϕj′k′ (Y1)|2

≤ ‖Π‖2
A

∑

jkk′

2j
E|vϕjkϕjk′ (Y1)|2

But E|vϕjkϕjk′ (Y1)|2 =
∫

|vϕjkϕjk′ (x)|2p(x)dx where p is the density of Y1. Since
p = q ∗ f , |p(x)| ≤ ‖q‖∞ for all x. Then

E|vϕjkϕjk′ (Y1)|2 ≤ ‖q‖∞
∫

|vϕjkϕjk′ (x)|2dx

and

∑

jkl

E[|Q(ϕjk⊗ϕjl)Πm
(Y1)|2] ≤ ‖Π‖2

A‖q‖∞
m′′
∑

j=J

2j
∑

kk′

∫

|vϕjkϕjk′ (x)|2dx

≤ ‖Π‖2
A‖q‖∞Φ1

m′′
∑

j=J

(2j)2γ+3 ≤ ‖Π‖2
A‖q‖∞Φ1

22γ+3

22γ+3 − 1
D2γ+3

m′′ ,

applying Property P7 and Lemma 4. We finally obtain

E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ 2f−1
0 ‖Π‖2

A‖q‖∞Φ1
22γ+3

22γ+3 − 1

D2γ+3
m′′

n

+ 2f−1
0

∑

k

βk‖Π‖2
AΦ2

1

D3
m′′

n

Since the order of nH2 has to be larger than the one of v, we choose

H2 = 2f−1
0 ‖Π‖2

AΦ1 max(‖q‖∞22γ+3/(22γ+3−1),Φ1)

[

D
2γ+7/2
m′′

n
+ (
∑

k

βk)
D3

m′′

n

]

.

• Lastly, using Lemma 7 again,

Var(
1

qn

(2l+1)qn
∑

i=2lqn+1

Q2
TΠm

(Y ∗
i )) = Var(

1

qn

(2l+1)qn
∑

i=2lqn+1

Q2
TΠm

(Yi))

≤ 4

qn
E[|QTΠm |2(Y1)b(Y1)] ≤

4

qn
‖QTΠm‖∞(E[|QTΠm |2(Y1)])

1/2(E[b2(Y1)])
1/2

≤ 4
√

2
∑

k(k + 1)βk

qn
‖QTΠm‖∞(E[|QTΠm |2(Y1)])

1/2 (18)

We have already proved that ‖QTΠm‖∞ ≤ f
−1/2
0 ‖Π‖A

√

Φ122γ+4/(22γ+4 − 1)Dγ+2
m′′ .
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Now we need a sharp bound on E[|QTΠm(Y1)|2]. We have

E[|QTΠm(Y1)|2] ≤ ‖q‖∞
∫

|QTΠm |2 =
‖q‖∞
2π

∫
∣

∣

∣

∣

(TΠm)∗(u, 0)

q∗(−u)

∣

∣

∣

∣

2

du

Then it follows from the Schwarz inequality that

E[|QTΠm(Y1)|2] ≤
‖q‖∞
2π

√

∫ |(TΠm)∗(u, 0)|2
|q∗(−u)|4 du

√

∫

|(TΠm)∗(u, 0)|2du

We will evaluate the two terms under the square roots. First observe that

(TΠm)∗(u, 0) =
∑

jkl

∑

j′k′l′

ajklbj′k′l′(ϕjkϕj′k′)∗(u)(ϕjlϕj′l′)
∗(0)

=
∑

jkk′l

ajklbjk′l(ϕjkϕjk′)∗(u)

since (ϕjlϕj′l′)
∗(0) =

∫

ϕjlϕj′l′ = j=j′,l=l′ . Then
∫

|(TΠm)∗(u, 0)|2du ≤
∑

jkk′l

a2
jklb

2
jk′l

∑

jkk′l

∫

|(ϕjkϕjk′)∗(u)|2du

≤ 2πf−1
0 ‖Π‖2

A

∑

jkk′l

∫

|(ϕjkϕjk′)(u)|2du

≤ 2πf−1
0 ‖Π‖2

A

∑

j

2j‖
∑

k′

|ϕjk′ |2‖∞
k′+2N−2
∑

k=k′−2N+2

∫

|ϕjk′ |2

by taking into account the superposition of the supports. Using now (8)
∫

|(TΠm)∗(u, 0)|2du ≤ 2πf−1
0 ‖Π‖2

A

∑

j

2jC′(ϕ)2j(4N − 3)

≤ 2πf−1
0 ‖Π‖2

AΦ1(4N − 3)
2

3
D2

m′′

Now
∫ |(TΠm)∗(u, 0)|2

|q∗(−u)|4 du ≤
∑

jkk′l

a2
jklb

2
jk′l

∑

jkk′l

∫ |(ϕjkϕjk′)∗(u)|2
|q∗(−u)|4 du

≤ f−1
0 ‖Π‖2

A

∑

jkk′l

∫

2j |(ϕjkϕjk′)∗(2jv)|2
|q∗(−2jv)|4 dv

Hence, inequality (9) and Assumption H1 show that
∫ |(TΠm)∗(u, 0)|2

|q∗(−u)|4 du

≤ f−1
0 ‖Π‖2

A

∑

jkk′l

∫

2jC2
r

[

|v|2(1−r)
|v|>1 + |v|≤1

]

k−4
0 ((2jv)2 + 1)2γdv

≤ f−1
0 ‖Π‖2

AC
2
r k

−4
0 C

∑

jkk′l

(2j)4γ+1
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with C =
∫ [

|v|2(1−r)
|v|>1 + |v|≤1

]

(v2 +1)2γdv <∞ as soon as r > 2γ+ 3/2.
Then

∫ |(TΠm)∗(u, 0)|2
|q∗(−u)|4 du ≤ f−1

0 ‖Π‖2
AC

2
r k

−4
0 C

m
∑

j=J

∑

k′l

k′+2N−2
∑

k=k′−2N+2

(2j)4γ+1

≤ f−1
0 ‖Π‖2

AC
2
r k

−4
0 C3(4N − 3)

24γ+3

24γ+3 − 1
D4γ+3

m′′

Finally

E[|QTΠm(Y1)|2] ≤
‖q‖∞
π

f−1
0 ‖Π‖2

A(4N − 3)Crk
−2
0

√

C
24γ+3

24γ+3 − 1
πΦ1D

2γ+5/2
m′′

Then (18) gives

v =

√

2
∑

k

(k + 1)βk‖q‖∞f−1
0 ‖Π‖2

Ak
−1
0 C(γ, r,N,Φ1)

D
2γ+13/4
m′′

qn
.

Then replacing n by pn in inequality (19) gives

E[ sup
T∈Bf (m,m′)

|Z(2,1)
n (T )|2 − 6H2]+ ≤ C

(

v

pn
e−k1

pnH2

v +
M2

1

p2
n

e−k2
pnH
M1

)

≤ C′
(

D
2γ+13/4
m′′

n
e−k′

1D
1/4

m′′ +
D2γ+4

m′′ q2n
n2

e
−k′

2

√
n

qnD
1/4

m′′

)

where C′ and k′1 depend on r,N, γ,Φ1, f0, ‖Π‖A, ‖q‖∞,
∑

k(k+1)βk and
∑

k βk.
But there exists a positive constant K such that

∑

m′∈Mn

D
2γ+13/4
m′′ e−k′

1D
1/4

m′′ ≤ K.

Moreover D
1/4
m′′ ≤ n1/8 and qn ≤ nc with c+ 1/8 < 1/2, which implies

∑

m′∈Mn

E

[

sup
T∈Bf (m,m′)

|Z(2,1)
n (T )|2 −K2‖Π‖2

A

(

D
2γ+7/2
m′′

n
+(
∑

k

βk)
D3

m′′

n

)]

+

≤ C′′

n

with K2 = 12f−1
0 Φ1 max(‖q‖∞22γ+3/(22γ+3 − 1),Φ1). Thus, if p2(m,m

′) =

p
(1)
2 (m,m′) + p

(2)
2 (m,m′) with p

(1)
2 (m,m′) = K2‖Π‖2

AD
2γ+7/2
m′′ /n and

p
(2)
2 (m,m′) = K2‖Π‖2

A (
∑

k βk)D3
m′′/n, then

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(2)
n (T )2 − p2(m,m

′)

]

+

Ω

)

≤ C2

n
.
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6.8. Technical Lemmas

Lemma 4. For all m ≥ J

m
∑

j=J

(2j)ρ ≤ 2ρ

2ρ − 1
Dρ

m

Proof of Lemma 4: It is sufficient to write

m
∑

j=J

(2j)ρ =
2ρ(m+1) − 2ρJ

2ρ − 1
≤ 2ρ

2ρ − 1
2ρm ≤ 2ρ

2ρ − 1
Dρ

m

Lemma 5. If |ϕ∗(x)| ≤ k3(x
2 + 1)−r/2 for all real x then

• if s and α are reals such that sr > α+ 1

∫

|ϕ∗(x)|s(x2 + 1)α/2dx ≤ Cs,α <∞

• if r > 1

∫

|ϕ∗(y)ϕ∗(x− y)|dy ≤ Cr(|x|1−r
|x|>1 + |x|≤1)

Proof of Lemma 5:
• For the first point, it is sufficient to observe that the function (x2 +

1)(−rs+α)/2 is integrable if −rs+ α > −1.
• By changing the variable (y = xu), we get

∫

|ϕ∗(y)ϕ∗(x− y)|dy =

∫

|ϕ∗(xu)ϕ∗(x(1− u))|xdu

≤
∫

|u|>1/3 and |1−u|>1/3

k3|xu|−rk3|x(1− u)|−r|x|du

+

∫

|u|≤1/3

k2
3 |x(1− u)|−r|x|du+

∫

|1−u|≤1/3

k2
3|xu|−r|x|du

∫

|ϕ∗(y)ϕ∗(x− y)|dy ≤ k2
33

r|x|1−2r

∫

|u|>1/3

du

|u|r + k2
3 |x|1−r 2

3

∣

∣

∣

∣

3

2

∣

∣

∣

∣

r

+k2
3|x|1−r 2

3

∣

∣

∣

∣

3

2

∣

∣

∣

∣

r

≤ k2
3

[

2.32r−1

r − 1
|x|1−2r + 22−r3r−1|x|1−r

]

Thus, if |x| > 1,
∫

|ϕ∗(y)ϕ∗(x− y)|dy ≤ Cr|x|1−r and if |x| ≤ 1,
∫

|ϕ∗(y)ϕ∗(x−
y)|dy ≤ Cr with Cr = k2

3(2.3
2r−1/(r − 1) + 22−r3r−1).
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Lemma 6. Let T1, . . . , Tn be independent random variables and

νn(r) = (1/n)
n
∑

i=1

[r(Ti) − E(r(Ti)],

for r belonging to a countable class R of measurable functions. Then, for ǫ > 0,

E[sup
r∈R

|νn(r)|2 − 6H2]+ ≤ C

(

v

n
e−k1

nH2

v +
M2

1

n2
e−k2

nH
M1

)

(19)

with k1 = 1/6, k2 = 1/(21
√

2) and C a universal constant and where

sup
r∈R

‖r‖∞ ≤M1, E

(

sup
r∈R

|νn(r)|
)

≤ H, sup
r∈R

1

n

n
∑

i=1

Var(r(Ti)) ≤ v.

Usual density arguments allow using this result with non-countable class of
functions R.

Proof of Lemma 6: We apply the Talagrand concentration inequality given
in Klein and Rio (2005) to the functions si(x) = r(x)− E(r(Ti)) and we obtain

P (sup
r∈R

|νn(r)| ≥ H + λ) ≤ exp

(

− nλ2

2(v + 4HM1) + 6M1λ

)

.

Then we modify this inequality following Birgé and Massart (1998) Corollary 2
p.354. It gives

P (sup
r∈R

|νn(r)| ≥ (1 + η)H + λ) ≤ exp

(

−n
3

min

(

λ2

2v
,
min(η, 1)λ

7M1

))

.

To find inequality (19) we use the formula E[X]+ =
∫∞
0
P (X ≥ t)dt with

X = supr∈R |νn(r)|2 − 6H2.

Lemma 7. (Viennet (1997)) Let (Ti) a strictly stationary process with β-mixing
coefficients βk. Then there exists a function b such that

E[b(T1)] ≤
∑

k

βk and E[b2(T1)] ≤ 2
∑

k

(k + 1)βk

and for all function ψ (such that E[ψ2(T1)] <∞) and for all N

Var(
N
∑

i=1

ψ(Ti)) ≤ 4NE[|ψ|2(T1)b(T1)].

In particular, for functions (ψλ),
∑

λ Var(
∑N

i=1 ψλ(Ti))≤ 4N (
∑

k βk)‖
∑

λ |ψλ|2‖∞.
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châınes de Markov cachées à espace d’états fini. Le cas non stationnaire. C.
R. Acad. Sci. Paris Sér. I Math. 325, 2, 2003–206. MR1467078

Baraud, Y., Comte, F., and Viennet, G. (2001). Adaptive estimation in
autoregression or β-mixing regression via model selection. Ann. Statist. 29, 3,
839–875. MR1865343
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