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Abstract: Dynamic factor models have a wide range of applications in econometrics
and applied economics. The basic motivation resides in their capability of reducing a
large set of time series to only few indicators (factors). Ifthe number of time series is
large compared to the available number of observations thenmost information may
be conveyed to the factors. This way low dimension models maybe estimated for
explainingand forecasting one or more time series of interest. It is desirable that outlier
free time series be available for estimation. In practice, outlying observations are likely
to arise at unknown dates due, for instance, to external unusual events or gross data
entry errors. Several methods for outlier detection in timeseries are available. Most
methods, however, apply to univariate time series while even methods designed for
handling the multivariate framework do not include dynamicfactor models explicitly.
A method for discovering outliers occurrences in a dynamic factor model is introduced
that is based on linear transforms of the observed data. Somestrategies to separate
outliers that add to the model and outliers within the commoncomponent are discussed.
Applications to simulated and real data sets are presented to check the effectiveness of
the proposed method.
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1. Introduction

Dynamic factor models have been introduced to explain and forecast time series of
interest in the presence of a large set of explanatory time series. In practice, useful-
ness of dynamic factor models is apparent when the dimensionis so large that vector
autoregressive models are not able to handle the multivariate time series efficiently.
Reduction of the available time series to few factors allowsefficient and interpretable
models to be estimated. Factor extraction has to be accomplished in such a way that
only negligible or little amount of information be lost.

The study of the eigenvalues and eigenvectors of the parameter matrices was early
suggested by (18) to produce a simplified version of an autoregressive model. A canon-
ical transformation of a vector autoregressive model basedon the simultaneous rela-
tionships between variables was introduced by (2) . The relationships between different
time lags were considered by (9) and (19) in the frequency domain. The principal com-
ponent analysis was extended in the frequency domain by (3).Identification of the
number of factors in multivariate time series process was addressed by (14).

Factor models are strictly related to the diffusion indexesmethodology (for instance
20). As pointed out by (6), when the dimension is large vectorautoregressive (VAR)
and vector autoregressive moving average (VARMA) models are difficult to estimate
because the number of parameters grows with the number of time series quadratically.
On the contrary, for dynamic factor models the growth is linear.

Usually mutually uncorrelated factors are assumed, whilstindividual factor time
series may be autocorrelated. The multivariate dynamic structure of the observedN-
component time seriesyt may be modeled through the matrix factorA, that is

yt = Axt +ηt

wherext is a vector ofK independent time series andηt is the idiosyncratic disturbance.
Each factor time series may follow a linear model, that is

xi,t = θi(B)εi,t
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whereB is the back-shift operator andεi,t is uncorrelated white noise. This leads to the
dynamic factor model

yt = Aθ (B)εt +ηt

whereθ (B) = diag(θ1(B), . . .,θK(B)). This model is a special case of

yt = ψ(B)εt +ηt

as considered in (5), for instance. The equality

ψi, j(B) = ai, jθ j(B)

reduces to the assumption that the impact of any shockε j ,t on the observed time series
yi,t decays over time in similar way for anyi. This assumption may also be justified on
the ground of the asymptotic results by (6), p. 456.

Outliers in time series were introduced by (7) according to two different models,
the additive outlier (or aberrant observation) and the innovation outlier (or aberrant
innovation). This latter impacts the observed time series for some time span after the
occurrence date, the former affects only one observation atthe date of its occurrence.
In spite of this, the additive outlier has serious effects onparameter estimates and fore-
casts, while the effects of the innovation outlier is often less serious. This motivates our
choice for modeling outliers in the dynamic factor model as outlying observations of
the additive type.

The plan of the paper is as follows. In Section 2 we introduce the outlier structure
that we assume to be possibly present in a dynamic factor model. This structure and
its implications will be examined in detail in Section 3. A method for checking the
adequacy of the dynamic factor model to fit the data will be illustrated in Section 4.
Methods for estimating the dynamic factor model parametersare discussed in Section
5 and the impact of outliers on the estimates will be examinedin Section 6. In Section
7 a procedure for identifying outliers and estimating theirsize is presented and illus-
trated by an example. A simulation experiment for checking the effectiveness of the
procedure in comparison with a multivariate model-based method (23) and a projec-
tion pursuit-based procedure (8) will be reported in Section 8. Our procedure is then
applied to a set of real data, that is some quarterly economicdata on asset prices, ac-
tivity, wages, goods and commodity prices from the seven-country data set studied by
(22). Results are reported in Section 9. Section 10 concludes. Proof of theorems are
found in Appendix A.

2. The dynamic factor model with outliers

Let yt be an observedN-component vector time series and the temporal indext =
1, . . .,T. We may even assume that the number of the time series components N is
greater than the numberT of dates when observations were made. We assume further
that thoughN may be very large the observed time series is actually explained by a
much smaller numberK of unobservable time seriesxt = (x1t , . . .,xKt )

′ and an idiosyn-
craticN-dimension disturbanceηt . Then the dynamic factor model with outliers may
be written

yt = Axt +ω∆t +ηt , (2.1)
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whereA is an N ×K matrix of rankK, K ≪ N. The outliers occurrence dates are
modeled by the binary series{∆t} and by theN× 1 vectorω which represents the
outlier size.

Let us make about model (2.1) the following assumption:

1. {x1t}, {x2t}, . . ., {xKt } are mutually independent standardized random processes,
i.e.E(xit ) = 0, E(x2

it ) = 1 for anyi andt , andE(xit x js) = 0 if i 6= j .
2. The dynamics of the unobserved factor time seriesxt may be modeled as

xit = θ (0)
ii εit +θ (1)

ii εi,t−1+θ (2)
ii εi,t−2+ . . . ,

whereθ (0)
ii = 1, ∑∞

j=0(θ
( j)
ii )2 < ∞, i = 1, . . .,K, andεt = {ε1t , . . .,εKt} are Gaus-

sian white noises mutually independent at all leads and lagswith diagonal variance-
covariance matrixΣε .

3. {∆t} is a deterministic scalar binary time series andω is a non randomN×1
vector. For an outlier occurring at timet0, ∆t = 1 if t = t0 and∆t = 0 otherwise.

4. ηt = {η1t , . . .,ηNt} are Gaussian stationary time series both serially and mutually
independent at all leads and lags with diagonal variance-covariance matrixΣη .

5. The vector time seriesεt andηt are mutually independent at all leads and lags.

These assumptions are motivated by the idea that the dependence among the ob-
served time series components is entirely explained by the factors. Therefore the id-
iosyncratic terms are also independent, since otherwise they would contribute to ex-
plain correlations between two observed components and should be put into the factor
vector.

In general model (2.1) is not identified unless some assumptions are made about
either the matrixA or the vector time seriesxt . In fact, letC be any non-singularK×K
matrix. Then in model (2.1) we have

Axt = AC−1Cxt .

By lettingA∗ = AC−1 andx∗t = Cxt model (2.1) could be written as well

yt = A∗x∗t +ω∆t +ηt .

No restriction is made on the matrixA except that its rank is equal toK. Notice that
Assumption 1 does not imply any loss of generality. In fact ifΓx(0) = cov(xt ,x′t) is

not the identity matrixIK we could replacext with the transformed dataΓx(0)−
1
2 xt .

As Γx(0) is positive definite then a factorizationΓx(0) = Γx(0)
1
2 (Γx(0)

1
2 )′ exists for a

non-singular matrixΓx(0)
1
2 . The variance-covariance matrix of the transformed data

turns out to be the identity matrix.
We prove the following theorem in Appendix A.1.

Theorem 2.1. Model (2.1) under Assumptions 1 and 2 is identified up to factor sign
changes.

It has to be noticed that model (2.1) is uniquely determined by Assumptions 1—5
up to a permutation matrix and changing of sign. In fact, the order of the factors may



R.Baragona and F. Battaglia/Outliers in dynamic factor models 396

be taken arbitrarily without affecting the model’s structure. Moreover, Assumption 1
determines the factors sizes but each factor may be multiplied by±1 without affecting
its variance.

We may write the relationships that link the variance-covariance matrices of the
observed data with those of the factors and of the idiosyncratic component

Γy(0) = AΓx(0)A′ +Ση = AA′ +Ση ,

and
Γy(h) = AΓx(h)A′, h 6= 0.

Let γy
i, j(h), i, j = 1, . . .,N, denote the entry in rowi and columnj of the matrixΓy(h),

andγx
i (h), i = 1, . . .,K, denote the diagonal elements of the matrixΓx(h).

Note that Assumption 1 is used that impliesΓx(0) = I in the first equality, while the
second equality shows that the matrices{Γy(h)}’s are symmetric because the{Γx(h)}’s
are diagonal.

It is sometimes assumed that the columns ofA are orthogonal. This ensures the ad-
vantage that those columns are eigenvectors of all the covariance matrices of{yt} at any
lag (see, e.g., 14). However, we feel that such assumption, together with Assumption
1, is somewhat unrealistic and it will not be formulated here.

3. Outliers in factor models

The estimation of outliers in Equation (2.1) is greatly simplified if a linear transform
of the data exists that may highlight the impact of outlying observations. If parameters
in Equation (2.1) are assumed known, then, by taking the projection matrixZ = I −
A(A′A)−1A′, the following lemma is easily proved.

Lemma 1. Let the N×K matrix A be defined as in Equation (2.1). Then a N×N matrix
Z exists such that ZA= 0 ( 0 is the N×K zero matrix).

Lemma 1 has interesting implications concerned with the outliers estimation in
model (2.1). The matrixZ projects the vectors ofRN into the space orthogonal to the
spaceVA spanned by the columns ofA. LetV⊥

A denote this orthogonal space. By letting
V be the space of the vectors inRN we haveV = VA ⊕V⊥

A . Any vector inV may be
written as the sum of a vector inVA and a vector inV⊥

A . Then three cases may occur

1. Zω = 0. In this caseω ∈VA, that is there exist coefficientsc1,c2, . . .,cK such that

ω = a1c1 +a2c2 + . . .+aKcK ,

wherea1,a2, . . .,aK denote the columns ofA. We may writeω = Ac, where
c = (c1,c2, . . .,cK)′. Then Equation (2.1) becomes

yt = A(xt +c∆t)+ηt .

The outliers are entirely within the factors, that is the observedyt are affected by
outliers only through the factors.
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2. Zω 6= 0 andA(A′A)−1A′ω = 0. This means thatω ∈V⊥
A . The outliers impact the

observedyt but the factors are actually outlier free.
3. Zω 6= 0 andA(A′A)−1A′ω 6= 0. Thenω may be written as the linear combination

of a basis inV obtained by assuming the columns ofA as a basis inVA and a
basisM = [m1,m2, . . .,mN−K ] in V⊥

A . We have

ω =
K

∑
i=1

aici +
N−K

∑
j=1

mjµ j = Ac+Mµ = Ac+ζ (3.1)

for some coefficients vectorsc andµ. Model (2.1) becomes

yt = A(xt +c∆t )+ζ ∆t +ηt .

The observed time seriesyt is affected by an outlier of sizeζ that adds to the
whole structure and an additive outliercr in each factorxr,t .

Cases (1) and (3) may be treated by estimatingx+
t = xt +c∆t as if it were actually

the model factors. Univariate search may be performed on theestimatedx+
t factors to

discover outliers dates and estimating their sizes.
We underline that in case (1), whenZω = 0, the dynamic model pattern is not af-

fected by any perturbation. This latter is only transmittedby the model from factors to
observed data. In that case the projection method we proposehere is unable to iden-
tify the outliers, and they can only be discovered estimating the factors and employing
univariate outlier search.

In cases (2) and (3) detection and estimation of outliers that impact the observedyt

directly may be performed on the transformed model

Zyt = Zζ ∆t +Zηt

whereζ ∈ V⊥
A . Note that in case (2) we haveω = ζ while in case (3) Equation (3.1)

holds so thatω 6= ζ . In case (3) the outlier sizeω has to be estimated partly in dynamic
factor model and partly in the factors.

A similar development applies if the following dynamic model, as proposed by (5),
is assumed:

yt =
s

∑
u=1

ψuεt−u +η t +ω∆t (3.2)

where theψu’s areN×K matrices,εt is aK-dimensional completely white noise with
variances equal to 1,sK < N and Assumptions 3, 4, 5 above hold. LetVψ denote the
space spanned by the columns of the matrices{ψu,u = 1, . . .,s} andR

N = Vψ ⊕V⊥
ψ ,

andZ the projection matrix ontoV⊥
ψ . We have

Zyt = Zηt +(Zω)∆t .

In this case alsoω may be written (but not necessarily in an unique way) as

ω = ψ1c1 +ψ2c2 + . . .+ψscs +ζ
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whereζ ∈V⊥
ψ , and the model may be expressed as follows:

yt =
s

∑
u=1

ψu(εt−u +cu∆t)+η t +ζ ∆t

which decomposes the effect of an outlier into two parts, onethat perturbs the dynamic
structure of the model by altering the effect of the past values of the factors (cu) and
the other one simply superimposed to the observation (ζ ).

Usually the matrixA is unknown and we may apply the preceding procedure only by
computing an estimatêA. The presence of the outlying observations themselves makes
the estimation difficult and often unreliable. Under some additional assumptions the
following theorems allow an alternative procedure to be entertained which does not
require estimatingA. In what follows, all eigenvectors are normalized, i.e. they are
taken with modulus equal to one.

Theorem 3.1. Let yt satisfy model (2.1) with Assumptions 1—5 and suppose that for
each j= 1,2, . . .,K there exists a lag hj 6= 0 such thatγx

j (h j) 6= 0. Then z′A = 0 if and
only if z is eigenvector associated with a zero eigenvalue ofeachΓy(h),h 6= 0.

Proof is in Appendix A.2. Note that the assumptions of Theorem 3.1 are not satisfied
if one of the factors is white noise.

Theorem 3.2. Let yt satisfy model (3.2) and Assumptions 3—5 and suppose in addition
that
(i) rank(ψ1) = K
(ii) There exists a lag k,2≤ k ≤ s such thatrank(ψk) = K
then z′ψu = 0,u= 1,2, . . .,s if and only if z is eigenvector associated with a zero eigen-
value of eachΓy(h),h= 1,2, . . .,s−1.

Proof is in Appendix A.3.
We note that Theorem 3.1 does not hold in general forh = 0 since in that case

Γy (0) = AA′ + Ση . Nevertheless, if the idiosyncratic disturbances are homoscedastic
then the following theorems hold.

Theorem 3.3. Let z be any eigenvector associated to the smallest eigenvalue ofΓy(0).
Let us assume, additionally, thatΣη = σ2I. Then z∈V⊥

A , that is z′A= 0. The converse
is also true.

Proof is in Appendix A.4.
A similar result holds for the dynamic model (3.2).

Theorem 3.4. Let yt satisfy model (3.2) and suppose thatΣη = σ2I. Then if z′ψu =
0,u = 1, . . .,s, z is eigenvector associated to the smallest eigenvalue ofΓy(0), and the
converse is also true.

Proof is in Appendix A.5.
The preceding theorems suggest a procedure to compute a projection of the multi-

variate time series that allows potential outliers to be readily detected.
If the hypothesis of homoscedasticity is assumed, we may compute an estimate

Γ̂y(0) (possibly a robust estimate) of the variance-covariance matrix Γy(0). Then con-
sider the eigenvectors associated to the smallest eigenvalue of Γ̂y(0) (the smallest
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eigenvalue may have multiplicity greater than one). Letz be any such eigenvector,
then, according to Theorem 3.3 and 3.4, for the univariate time seriesz′yt we have

z′yt ≈ z′ηt +(z′ω)∆t .

Any such projection of the multivariate time series may be analyzed by means of uni-
variate methods to detect potential outlying observations. Then evaluate the outlier’s
size by assuming the dates of occurrence of outliers from univariate analysis and using
estimation methods in the multivariate framework.

If the homoscedastic hypothesis may not be assumed, the sameresult is obtained
using Theorem 3.1 and 3.2, by takingz equal to the eigenvector associated to a zero
eigenvalue of âΓy(h) for h> 0.

4. Factor model adequacy

A crucial point is whether the simple factor model (2.1) together with our Assumptions
fits the data adequately. Increasing the number of factorsK does not solve the problem
because not all processes may be represented by equation (2.1) for arbitraryK and
under Assumptions 1—5, since their autocovariance matrices have to be symmetric
as seen before. This suggests that a measure of adequacy of the factor model might be
obtained by evaluating the differences between the elements (i, j) and( j , i) of Γy(h), or
the autocorrelation matrix. Letr i j (h) = γy

i j (h){γy
ii (0)γy

j j (0)}−1/2, and denote by ˆr i j (h)

the corresponding estimate. IfΓy(h) is symmetric, using classical results (see, e.g., 17)
we obtain that the difference ˆr i j (h)− r̂ ji(h) is asymptotically normal with mean zero
and variance

var{r̂ i j (h)− r̂ ji(h)}

≃ 2
T

∞

∑
u=−∞

[r ii (u)r j j (u)− r i j (u)2− r ii (u)r j j (u−2h)+ r i j (u)r i j (u−2h)]

and it depends both on the cross-correlation and autocorrelation functions in a compli-
cated way; furthermore, such differences are correlated for different indexesi and j .
Therefore the differences ˆr i j (h)− r̂ ji (h) cannot be used in any plausible way to test the
hypothesis thatΓy(h) is symmetric. However, a possible solution is found turningto the
frequency domain, in an analogue way as proposed by (9) when estimating parameters
of factor models.

In the frequency domain the symmetry of the covariance matricesΓy(h) for anyh is
equivalent to a real spectral density matrix for any frequency. Let

F(λ ) =
1

2π

∞

∑
h=−∞

Γy(h)e−iλ h

denote the spectral density matrix ofyt . We prove the following theorem in Appendix
A.6.

Theorem 4.1. If Γy(h) is symmetric for any h, then F(λ ) is real for anyλ and vice
versa.



R.Baragona and F. Battaglia/Outliers in dynamic factor models 400

We shall therefore test the hypothesis thatF(λ ) is real for anyλ .
Let us define the Fourier transforms as theN×1 complex vectors

dT(λ ) =
1√
2πT

T

∑
t=1

yte
−iλ t .

From Theorem 4.4.1 of (3) it follows that the real 2N×1 vector[RedT(λ )′, ImdT(λ )′]′

converges asT →∞ to a normal random vector with mean zero and variance covariance
matrix:

1
2

[

ReF(λ ) −ImF(λ )
ImF(λ ) ReF(λ )

]

.

If the spectral matrix is real, ImF(λ ) = 0, thus RedT(λ ) and ImdT(λ ) are (asT → ∞)
independently identically distributed normal vectors with zero means and variance co-
variance matrix1

2F(λ ). Therefore the hypothesis of real spectral density is equivalent
to the independence of two normal vectors and may be tested bymeans of likelihood
ratio. However, only one observation would be available foreach fixedλ . To overcome
such difficulty, and to test reality for anyλ , we use a device similar to (9).

Let λ j = 2π j/T denote the Fourier frequencies, and suppose thatT is sufficiently
large so that for a set of frequencies{λ j,a < j ≤ b} we can assumeF(λ j) ≃ F . Also.
let J = b−a and

XR
j = Red(λa+ j) XI

j = Imd(λa+ j) , j = 1, . . .,J

where we have dropped for convenience the dependence onT . For T large we may
assume that

(

XR
j

XI
j

)

∼ N

[(

0
0

)

,
1
2

(

ReF −ImF
ImF ReF

)]

while under the null hypothesisH0: F real,XR
j andXI

j are independently identically

distributed normal vectors with zero means and variance covariance matrix1
2F . Define

the variance estimates:

SR =
1
J

(

J

∑
j=1

XR
j (XR

j )′ +XI
j (X

I
j )
′
)

, SI =
1
J

(

J

∑
j=1

XI
j (X

R
j )′−XR

j (XI
j )
′
)

.

The following theorem provides the likelihood ratio test.

Theorem 4.2. The likelihood ratio test statistic for the null hypothesisH0: F real is
given by

∣

∣I +(S−1
R SI )

2
∣

∣

and its distribution under H0 is equal to that of the statisticUN,N,J−N−1 of (1, chap. 9).

Proof is in Appendix A.7. Some approximations are discussedin (1), which for our
statistic imply approximating−mlogU (m= J−N− 3

2) by a chi–square variable with
N2 degrees of freedom. The test of Theorem 4.2 may be employed repeatedly on non-
overlapping frequency intervals, and the usual caveats formultiple testing apply (see,
e. g., 11, chap. 5.4).
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5. Estimation problems

Outliers identification is only concerned with the detection of time points where outly-
ing observations occur. When this task is performed by examining a univariate projec-
tion series, as is suggested in this paper, little may be saidabout the multivariate out-
liers size. The model parameters matrices, eitherA in the model’s formulation (2.1) or
{ψ1,ψ2, . . .} in the model’s formulation (3.2), have to be estimated from available data
{yt , t = 1, . . .,T}, along with the common components and the variance covariance ma-
trix Ση of the idiosyncratic component. This way outliers size may be estimated while
the estimated model is available for studying the relationsamong the observed time
series or for forecasting purpose.

We shall distinguish in estimation procedures whether the idiosyncratic covariance
matrix is constrained to the relationshipΣη = σ2I , or to be a diagonal matrix, or no
special constraints are imposed on its entries. Also, we consider here the unperturbed
case of absence of outliers. The distortion induced by the presence of an outlier will be
considered in the next section.

The log-likelihoodof{y1,y2, . . .,yT} according to model (2.1) under the assumption
Ση = σ2I is

L = −NT
2

log2π −NT logσ2− 1
2σ2

T

∑
t=1

(yt −Axt )
′(yt −Axt ).

Let us define theN×T matrix

Y = [y1,y2, . . .,yT],

where theyt ’s areN×1 arrays, and theK ×T matrix

X = [x1,x2, . . .,xT ],

where thext ’s areK ×1 arrays. Then the sum of squares in the log-likelihood may be
written

tr{(Y−AX)′(Y−AX)},
and its minimization is equivalent to maximizing the likelihood.

Model (2.1) is considered by (20) and (21) who assume normality, Ση = σ2I , and
treat the factors{xt} as deterministic components. They show that, on maximizingthe
likelihood with respect to both{xt} andA, the maximum likelihood estimate ofA is
given by the matrix formed by theK eigenvectors associated to theK largest eigenval-
ues ofΓ̂y(0). They assumeA′A = I ; if we want to dispense with such hypothesis, we
may use instead the fact thatΓx(0) = I (actuallyXX′ = I is assumed for simplicity).
This leads to the following different estimate.

Theorem 5.1. Let {yt} satisfy model (2.1) with Assumption 4 withΣη = σ2I, and
suppose that{xt} are constants and XX′ = I. Let r be the rank of Y and K be a known
pre-specified integer, so that0< K ≤ r ≤ min(N,T), and letλ1 ≥ λ2 ≥ . . .≥ λT be the
eigenvalues of Y′Y with associated orthogonal eigenvectors u1,u2, . . .,uT in R

T . Then
the problem

min{tr((Y−AX)(Y−AX)′)} subject to XX′ = IK
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is solved by
X̂ = [u1,u2, . . .,uK]′

and
Â= YX̂′.

Further, the formula forÂ reduces to

Â = WKΛ1/2
K ,

where WK = [w1, . . .,wK ] (w1, w2, . . ., wK are the eigenvectors associated to the K

largest eigenvalues of YY′), andΛ1/2
K = diag(

√
λ1, . . .,

√
λK).

Proof is in Appendix A.8. The estimate of the matrixA given by Theorem 5.1 is
consistent as the estimateYY′/T is known to be consistent and its eigenvalues and
eigenvectors (which are continuous functions of the elements of the matrixYY′/T) are
consistent as well. If the observed data are not standardized, and if the eigenvalues are
all distinct and the true variance covariance matrix is definite positive, then it may be
shown that the eigenvalues are asymptotically independently normally distributed. The
difference between estimated eigenvalues and actual ones is of order 1/

√
T in probabil-

ity. The estimates of the eigenvectors are asymptotically normally distributed but they
are not independent (see, e.g., 16, p. 290). Rate of convergence to actual eigenvectors
is of order 1/

√
T in probability.

If we assume that the factors{xt} are random processes, the method of linear factor
analysis may be employed. To overcome the problem that the factors are autocorrelated,
(9) has introduced a frequency domain extension of the factor analysis which may
be directly applied to model (2.1) assuming thatΣη is diagonal but not necessarily
homoscedastic.

An alternative estimation method is using a Kalman filter in astate space formu-
lation of the model, where (2.1) is considered as a measurement equation and{xt} is
the state vector. In that case, a transition equation has to be specified for the factorsxt

which may be convenient if we assume that the process{xt} is easily modeled in state
space form (if, for example, it is assumed a low order autoregression).

Finally, an estimation method which does not rely on any assumption onΣη may
be obtained using a technique of temporal blind source separation, for instance the
temporal decorrelation source separation method (25) which uses an algorithm for ap-
proximate simultaneous diagonalization of several covariance matrices. Under model
(2.1) we have

Γy(h) = AΓx(h)A′ h 6= 0,

and, taking the generalized inverseB = (A′A)−1A′,

Γx(h) = BΓy(h)B′.

SinceΓx(h) is diagonal for anyh 6= 0, we may determineB in such a way that the
off diagonal elements ofBΓy(h)B′ are as small as possible. Formally, the matrixB is
obtained by the following approximation problem

min
B

H

∑
h=1

∑
i 6= j

(BΓy(h)B′)2
i j .
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Let B̂ denote the solution, then

Â = B̂′(B̂B̂′)−1.

A maximum lagH has to be chosen. This may be selected by estimating the co-
variance matrices of the dataΓ̂y(.) and takingH the minimum lag such that all entries
of Γ̂y(h), for h > H, are not significantly different from zero. Moreover, in order to
recover the matrixA is necessary that(B̂B̂′)−1 exists, therefore the solution matrix̂B
should have full rank. Though it is easily seen that under model (2.1) this method is
consistent, its sample properties appear very hard to be devised.

If model (3.2) seems more suitable to describe the data, the estimation methods
proposed by (5) may be applied.

6. Bias induced by the outliers on the estimates

We turn now to consider the bias induced on the estimates of time-domain and frequency-
domain indexes by the presence of an outlier.

Suppose that the observed time series{yt , t = 1, . . .,T} contains an outlier at time
t0 and size measured by the vectorω. Let zt denote the unperturbed data,

zt =

{

yt if t 6= t0
yt0 −ω if t = t0

.

We compare the autocovariance or spectral density estimates computed on the actu-
ally observed series with the corresponding unbiased estimates that would have been
obtained from the unperturbed time serieszt .

Note first that for the average ¯y we have

ȳ =
1
T ∑yt =

1
T ∑zt +

1
T

ω = z̄+
1
T

ω,

therefore

yt − ȳ= zt − z̄− 1
T

ω +ω∆t ,

where∆t = 1 if t = t0 and zero otherwise. If we denote

Γ̃(h) =
1
T

T−h

∑
t=1

(zt − z̄)(zt+h− z̄)′

the unperturbed autocovariance estimates (computed on theunobserved time serieszt ),
the actual estimates may be written

Γ̂(h)=
1
T

T−h

∑
t=1

(yt −ȳ)(yt+h−ȳ)′ =
1
T

T−h

∑
t=1

(zt −z̄− 1
T

ω +ω∆t )(zt+h−z̄− 1
T

ω +ω∆t+h)
′,

and a simple calculation gives

Γ̂(0) = Γ̃(0)+
ωω′

T
+

1
T
{(zt0 − z̄)ω′ +ω(zt0 − z̄)′}− ωω′

T2
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and

Γ̂(h) = Γ̃(h)+
1
T
{(zt0−h− z̄)ω′ +ω(zt0+h− z̄)′}

− 1
T2

T−h

∑
t=1

{(zt − z̄)ω′ +ω(zt+h− z̄)′}− T +h
T3 ωω′ . (6.1)

It follows that the difference between unperturbed and actual estimates is of order 1/T
in probability. We prove in Appendix A.9 the following theorem which states a more
precise result.

Theorem 6.1. Let {yt , t = 1, . . .,T} be part of a realization of a second order station-
ary process with finite covariance matrices and suppose thatat time t0 an outlier equal
to ω is added. Then if thêγi j (h)’s denote the covariance estimates and theγ̃i j (h)’s
denote the correspondent estimates computed on the unperturbed time series,

E{T(γ̂rs(0)− γ̃rs(0))} = ωr ωs +O(T−1)

var{T(γ̂rs(0)− γ̃rs(0))} = ω2
s γrr (0)+ω2

r γss(0)+2ωsωr γrs(0)+O(T−1),

and, for h6= 0,
E{T(γ̂rs(h)− γ̃rs(h))} = O(T−1)

var{T(γ̂rs(h)− γ̃rs(h))} = ω2
s γrr (0)+ω2

r γss(0)+2ωsωr γrs(2h)+O(T−1).

Results in the frequency domain may also be obtained, with the usual asymptotic
approximations. On denoting by

d̃(λ ) =
1√
2πT

T

∑
t=1

(zt − z̄)exp(−iλ t)

the Fourier transforms of the unperturbed data, we may write

d(λ ) =
1√
2πT

T

∑
t=1

(yt − ȳ)exp(−iλ t) =
1√
2πT

T

∑
t=1

(zt − z̄+ω∆t −
ω
T

)exp(−iλ t)

= d̃(λ )+
1√
2πT

ω exp(−iλ t0)−
1√
2πT

ω
T

T

∑
t=1

exp(−iλ t).

If we consider only the Fourier frequenciesλ j = 2π
T j , the third term disappears and

d(λ j) = d̃(λ j)+
1√
2πT

ω cos(λ jt0)− i
1√
2πT

ω sin(λ jt0),

and simple calculations show that for the actual and unperturbed periodograms

I(λ ) = d(λ )d(λ )
′

, Ĩ(λ ) = d̃(λ )d̃(λ )
′

we have

I(λ j) = Ĩ(λ j)+
ωω′

2πT
+A(λ j )+ iB(λ j),
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where

A(λ ) =
1

2πT

T

∑
t=1

cosλ (t0− t){ω(zt − z̄)′ +(zt − z̄)ω′},

and

B(λ ) =
1

2πT

T

∑
t=1

sinλ (t0− t){(zt − z̄)ω′ −ω(zt − z̄)′}.

We prove in Appendix A.10 the following theorem which gives more specific results
as regards each entry of the matrix of differences between periodograms.

Theorem 6.2. Let {yt , t = 1, . . .,T} be part of a realization of a second order station-
ary process with spectral density matrix F(λ ) and suppose that at time t0 an outlier
equal toω is added to the time series. Then if I(λ ) denotes the periodogram matrix
andĨ(λ ) denotes the periodogram matrix of the correspondent unperturbed series, for
each1≤ r ≤ s≤ N,

ET Re{Irs(λ j)− Ĩrs(λ j)} =
ωr ωs

2π
and

ET Im{Irs(λ j)− Ĩrs(λ j)} = 0.

Let s(T) be a sequence such thatλ (T)= 2πs(T) tends toλ as T→∞. Then, as T→∞,

var
√

(T)Re{Irs(λ (T))− Ĩrs(λ (T))}→ 1
4π

{ω2
r fss(λ )+ω2

s frr (λ )+ωr ωs( frs(λ )+ frs(−λ ))}

and

var
√

(T) Im{Irs(λ (T))− Ĩrs(λ (T))}→ 1
4π

{ω2
r fss(λ )+ω2

s frr (λ )−ωr ωs( frs(λ )+ frs(−λ ))}.

The preceding results enable also to evaluate the bias induced by an outlier on spec-
tral estimates. Let

F̂(λ ) =
2π
T

T/2

∑
j=−T/2

I(λ j)wT(λ −λ j)

be a consistent spectral estimate whereλ j = 2π
T j andwT(.) is a spectral window (see,

e.g., 17), and denote bỹF(λ ) the same form computed oñI(λ ). We assume that for
eachT a truncation pointM = M(T) has been selected such that

2π
T ∑

j
wT(λ j)

2 = c0M

and, asT → ∞, M → ∞ butM/T → 0.

Theorem 6.3. Under our assumptions as T→ ∞

ET{F̂rs(λ )− F̃rs(λ )} =
ωr ωs

2π
,
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var{ T√
M

Re(F̂rs(λ )− F̃rs(λ )− ωr ωs

2π
)}

→ c0

2
{ω2

r fss(λ )+ω2
s frr (λ )+ωr ωs( frs(λ )+ frs(−λ ))} (6.2)

var{ T√
M

Im(F̂rs(λ )−F̃rs(λ ))}→ c0

2
{ω2

r fss(λ )+ω2
s frr (λ )−ωr ωs( frs(λ )+ frs(−λ ))}.

Proof is in Appendix A.11.
The preceding discussion offers some arguments for choosing among estimation

methods. The methods based on the variance-covariance matrix or on the spectral den-
sity of the observed data have the drawback that the estimates may be biased by the
presence of the outlier. The influence of the outlier on the estimates is of order 1/T
and this would suggest that for large samples the two methodsmay perform equally
well. Spectral methods, however, seem to constitute the favorite device to be used for
checking dynamic factor model adequacy. The methods based on temporal decorrela-
tion on the average are not affected by the presence of the outlier. This would suggest
that these methods are likely to yield more reliable results. However a treatment of the
sampling properties is not available and model adequacy hasto be checked in any case
to ensure that temporal decorrelation may be applied properly. Summing up, it seems
that no estimation method may be declared the best one, and trying different methods
seems advisable.

7. Outlier identification and size estimation procedure

Let Y be the observed data arranged as a matrix ofN rows andT columns. The entry
Yit stands for the observation at timet of the i-th time series,t = 1, . . .,T and i =
1, . . .,N. We assume that a dynamic factor model may be tentatively fitted to the data
with unknown number of factors and possibly outlying observations of unknown size at
unknown dates. The idiosyncratic component is unknown as well. Given Assumptions
1—4 and the observed data set, model (2.1) is to be identified and estimated.

A procedure for estimating the unknown components of model (2.1) and performing
outlier identification and estimation may be described as follows.

1. The optimal direction for locating the occurrence of outlying observations re-
quires the computation of the variance-covariance matrix of the dataΓ̂y(0) and
of its smallest eigenvalueλ , i.e.

Γ̂y(0) =
1
T

(Y−Ȳ)(Y−Ȳ)′

whereȲ = ȳ1′. TheN×1 arrayȳ is the components average computed over time
and 1 is the all-oneT×1 vector. Then the eigenvalueλ and the associatedN×1
eigenvectorz may be computed. The linear transformw = z′Y yields the 1×T
time series that may be searched for the outlier occurrence dates. Let ¯w andσw

be the mean and standard error ofw. Then the outlier is identified at timet if
|wt | is the largest value such that|wt − w̄|> ασw whereα is a suitable constant.
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Since this procedure is based on Theorem 3.3, it strictly holds only in the ho-
moscedastic case, and is only approximately appropriate when such hypothesis
does not hold. An alternative would be computing the eigenvector associated to
a zero eigenvalue of one of the matricesΓ̂y(h) for h > 0, for exampleΓ̂y(1),
according to Theorem 3.1 and 3.2.

2. If an outlier is detected, then the multivariate time series may be adjusted by
interpolating (by multivariate linear interpolator) or forecasting (by vector au-
toregressive (VAR) model) its value at the outlier date. Another strategy may
consist in assuming that there is a missing value at the time of the outlier pos-
sible occurrence. Anyway, the potential outlier is either replaced by its condi-
tional mean or a missing value is assumed, and the outlier free estimates of
variance-covariance and lagged covariance matrices may becomputed up to a
pre-specified maximum lagM. Robust estimation methods may constitute a valu-
able choice. Either outlier free or robust estimates of the spectral density matri-
ces have to be computed at the Fourier frequenciesλ j , whereλ j = 2π j/T and
j = −T/2+1,−T/2+2, . . .,T/2.

3. Checking conformity of the observed data to the dynamic factor model may be
done by using the spectral density estimates. For instance,let the frequency in-
terval 0< λ ≤ π be divided in 4 sub-intervals and assume for simplicity thatT is
integer multiple of 4. More than four sub-intervals may obviously be used, also
according to the number of the data. If there is no reason for privileging any fre-
quency components, equally wide sub-intervals may be selected. Symmetry con-
siderations allow us to consider only the interval(0,π) instead the whole interval
(−π,π). Then in each sub-interval(λa+1,λb) there areJ = T/4 Fourier frequen-
cies, i.e.{λ j , j = a+1,a+2, . . .,a+J= b}. In theℓ-th sub-intervala= (ℓ−1)J
andb = ℓJ. The likelihood ratio test statisticU is provided by Theorem 4.2. The
null hypothesisH0 that the covariance matrices are symmetric, i.e. the dynamic
factor model may not be rejected, has to be checked by using the approximate
statistic−mlogU (m= J−N− 3

2) which, underH0, is distributed as a chi-square
with N2 degrees of freedom.

4. Once the model has been found appropriate, the number of factorsK has to be es-
timated. A simple device is based on the eigenvalues of the variance-covariance
matrix Γ̃y(0) that isΓ̂y(0) corrected for potential outliers. Let

ν = {ν1,ν2, . . .,νN}

be the eigenvalues of̃Γy(0) arranged in non increasing order and consider the
cumulated sums

V1 = ν1, V2 = V1 +ν2, . . . , VN = VN−1 +νN.

We assumeK as the number of factors if it is the smallest integer such that
VK/VN > 1−α, whereα is a small real number, 0.05 for instance. That is, the
number of factors is chosen so as the cumulated normalized eigenvalues of̃Γy(0)
exceed a fraction 1−α that is judged large enough. We may want to take into
account that the smallest eigenvalues may be greater than zero. So a better ap-
proximation to the correct number of factors may be obtainedby assumingK as
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the smallest integer such that{VK +(N−K)λmin}/VN > 1−α. More information
may be used for choosingK along these same guidelines by using the eigenvalues
of the (corrected) spectral density matrix at frequency zero which is essentially
the sum of the covariance matrices for lags−M,−M + 1, . . .,0,1, . . .,M. The
covariance matrices may be used as well separately, and so the spectral matri-
ces at non zero frequencies. However, different matrices may lead to different
estimates ofK though the same value is to be expected in most cases.

5. Estimation of matrixA and factorsX allows the dynamic factor model to be
specified completely. In addition, bothA andX are needed to estimate the outlier
size and to distinguish if the factors, the model or both are affected by the out-
lying observations. Several methods are available, for example we may list the
following ones.

(a) Temporal decorrelation, i.e. a matrixÂnot necessarily squared nor orthogo-
nal may be computed by approximate joint diagonalization (24) of matrices
Γ̂y(h), h = 1, . . .,K. Let theN×K matrix Â be such matrix, that is

Γ̂y(h) = ÂD̂hÂ′, h = 1, . . .,K,

where theD̂h’s are diagonalK ×K matrices. Then we may let

B̂= (Â′Â)−1Â′

and
X̂ = B̂Y.

It follows
B̂Γ̂y(h)B̂′ = Γ̂x(h) = D̂h h = 1, . . .,K

for

Γ̂x(h) =
1
T

X̂X̂′ =
1
T

B̂YY′B̂′ = B̂Γ̂y(h)B̂′ = D̂h.

(b) Assuming, for the purpose of estimatingA, that the factors are not random,
as suggested by (21; 22), the method outlined in Theorem 5.1 may be used,
which only requires theK eigenvectors associated to theK largest eigenval-
ues of the matrixYY′ be computed. AssumingWK theN×K matrix whose
columns are the column eigenvectors andΛK the diagonal matrix with the
largest eigenvalues ofYY′ on its diagonal, the estimate ofA is given by the
simple formulaÂ = WKΛ1/2

K .

(c) Methods developed in the factor analysis framework may be used. Consider
again the log-likelihood of the dynamic factor model

L = −NT
2

log2π − T
2

log|Ση |−
1
2

tr{(Y−AX)′Σ−1
η (Y−AX)}.

Let us assume at this stage that the matrixΣη is known. Maximizing the
likelihood with respect to matrixA only yields

Â= Σ1/2
η Q(ΛK − IK)1/2,
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whereΛK is the diagonal matrix with theK largest eigenvalue of the matrix

Σ−1/2
η Γ̃y(0)Σ−1/2

η on its diagonal andQ is the matrix whose columns are the
corresponding eigenvectors. On the other hand, givenA, the likelihood is
maximized by lettingΣη = diag(Γ̃y(0)−AA′). By substitutingÂ to A we
have the approximate formula

Σ̂η = diag(Γ̃y(0)− ÂÂ′).

Given an appropriate starting value forΣη we may apply iteratively the
formulas that yieldÂ andΣ̂η until some convergence criterion is met. For
instance, the algorithm may stop if the difference between two consecutive
values of the maximized log-likelihood is less than a pre-specified tolerance
constant. Proofs of formulas are provided by (13), pp. 367-370, who warn
that this method does not guarantee convergence. Nevertheless the algo-
rithm is simple and effective in most cases, and the entries on the diagonal
of Ση are not constrained to be all equal.

6. Finally the outlier sizeω may be estimated. Note that ˆxt0 may possibly include
a within-factor outlierα. For the static model, if an outlier has been detected at
t = t0 and givenÂ andX̂, we may write the log-likelihood ofηt0

L =−N
2

log(2π)− N
2

log|ÂÂ′+Ση |−
1
2
(yt0 −Âx̂t0−ζ )′(ÂÂ′+Ση)−1(yt0−Âx̂t0 −ζ ).

Maximization of the likelihood with respect toζ yields

ζ̂ = yt0 − Âx̂t0.

To estimate the outlier sizeω we will obtain an estimatêα so that

ω̂ = Âα̂ + ζ̂ . (7.1)

According to (7.1) the vector̂ω may be written as the sum of a vector that is
obtained as a linear combination of the columns ofÂ and a vector which is or-
thogonal to the space spanned by the column ofÂ. The outlierα impacts the
factors whileζ impacts the model structure as a whole. We may estimate the
size ofα for each one of the components ˆx1, . . ., x̂K essentially by building the
linear interpolator of each ˆxit0, i = 1, . . .,K, based on values observed att 6= t0,
and identifying an outlier at each time when the interpolator is too different from
the estimated ˆxit0 (see e.g. 4, for details).

As an example, let us simulateT = 100 observations of the multivariateN×1 time
series{yt} with N = 5 generated by the model

yt = Axt +ω∆t +ηt .

We assumeK = 4 factors, so that the matrixA has 5 rows and 4 columns. Let

A=













1 0 0 0
.5 1 0 0
0 .5 1 0
0 0 .5 1
0 0 0 .5













.



R.Baragona and F. Battaglia/Outliers in dynamic factor models 410

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FIG 1. Plot of eigenvalues of the observed time series spectral matrix at frequency zero

The factors have been simulated according to the VAR model

xt = Φxt−1 + εt ,

whereΦ = diag(.7,−.7, .7,−.7) and{εt} is normal white noise with zero mean and
varianceσ2

ε = 1−0.72. This ensures that the (theoretical) variance of each factor is
unity. In addition, asΦ is diagonal, and by normality assumption, (theoretical) factors
are independent. The idiosyncratic component{ηt} is assumed a zero mean normal
white noise sequence with varianceσ2

η = 0.04. The outlier was located att = 100,
that is at the end of the series. Most outlier detection methods are not able to discover
potential outliers at the end (or beginning) of the observedtime series.

Outlier size wasω = (1.5,−1,0,−4,5)′. Each component of the generated time
seriesyt has (theoretical) variance equal to 1.29, excepted the first and the last one that
have variances 1.04 and 0.29 respectively. The outlying observation is rather large only
compared to component series 4 and 5, in the remaining cases the outlier size does not
exceed twice the standard error of the component series. Thestandard errors of the
simulated time series{yt} with outlier are(1.0970,1.2858,1.1967,1.1906,0.7415).

The assessment of the number of factors has been performed byexamining the
eigenvalues of both variance-covariance and spectral density matrices. In Fig. 1 the
cumulated eigenvalues of̂F(0) are plotted. It has to be noticed that the smallest eigen-
value is greater than zero, so that the threshold that servesas a decision rule about the
number of factors has been computed accordingly (see point 4above in this Section).
This way the correct number of factorsK = 4 may be identified.
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FIG 2. Univariate time series obtained by projecting the multivariate one along optimal direction

The optimal direction for detecting outlying observationshas been computed

z= (−0.5684,0.4436,−0.3448,−0.1664,0.5775)′.

The univariate time series obtained as the linear combination {z′yt} is displayed in
Fig. 2. The outlier att = 100 is clearly highlighted. Mean and standard error of{z′yt}
have been computed equal to 0.0902 and 0.6463 respectively. The standardized value
at t0 = 100 results equal to 4.7738, larger than the Tchebychev upper bound 4.47 which
corresponds to the 5% level.

A VAR has been estimated for the observed time series{yt} and the one-step-ahead
forecast has been taken to replace the last observation. Thecorrected time series was
then used to compute the variance-covariance matrix, the covariance matrices at lags
1—4 and the spectral density matrices for 100 Fourier frequencies from−π to π. For
checking that the estimated covariance matrices could be assumed symmetric, the in-
terval(0,π) has been divided in 4 non overlapping intervals, each of which included 25
frequencies. We obtained for the test statistic the values 10.64, 8.93, 8.77 and 12.32,
with 25 degrees of freedom: the critical value at the 5% levelis 37.65. As it is greater
than the computed statistics, we may not reject the dynamic factor model hypothesis.

The estimateŝA andX̂ have been computed by using the three techniques described
in this Section, that is approximate temporal decorrelation, eigenvalues-based and iter-
ative maximization of the likelihood function. The latter two methods are similar and
yield indeed similar results. The first method is an entirelydifferent approach that takes
explicitly into account the covariance matrices at higher lags.

Nevertheless, the estimated dynamic factor model fits the data quite well no matter
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FIG 3. Observed time series (blue line) and estimated dynamic factor model (red line)

what method has been used. We report only the plot of the simulated time series (blue
line) along with its estimate yielded by the approximate temporal decorrelation algo-
rithm (red line). Other methods yield estimates that overlap almost exactly. In Fig. 3 the
observed (simulated) and forecasted (estimated) series are plotted for each component.
We may notice that the outlier is not generally apparent by the visual inspection of the
graphics.

Then the outlier size has been estimated as the sum of the two components, the first
one in the dynamic factor model and the second one in the factors. The two components
are orthogonal to each other. Also the first one is orthogonalto the space spanned by
the columns ofÂ while the other one impacts the dynamic factor model as a linear
combination of the columns of̂A. The estimates are displayed in Table 1. The three
methods yield similar estimates of the total outlier sizeω̂ and of the component̂ζ that
impacts the overall model. The sizes of the outlierα̂ within the factors differ because
the estimated factors themselves depend on the matricesÂ estimated by each of the
three methods. The differences are small, however, if we compare the arrayŝAα̂ .

The results reported in Table 1 seem reliable as regards the recovering of the outlier
sizeω. We may compute from the ’true’ outlier sizeω the arrays

α = (1.161,−0.903,−0.903,−0.839)′
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TABLE 1
Outlier size estimates yielded by temporal decorrelation,eigenvalue analysis and maximum likelihood

methods

temporal eigenvalue maximum
decorrelation analysis likelihood

ζ̂ 0.0944 0.2326 0.6805
−0.0534 −0.6887 −1.1582
1.2871 1.4950 1.9913
−2.8438 −2.7532 −2.8597
5.4193 5.3500 4.9343

α̂ 0.4381 1.4664 0.9291
−1.5874 1.1927 1.8030
1.2749 −0.4097 0.9445
−0.1808 0.0576 1.2409

Âα̂ 1.1473 1.0374 0.6822
−1.0463 −0.9231 −0.5516
−2.0511 −2.2148 −2.6060
−1.1319 −1.2080 −1.1289
−0.2297 −0.1667 −0.1739

ω̂ 1.2417 1.2701 1.3627
−1.5793 −1.6118 −1.7098
−0.7640 −0.7198 −0.6147
−3.9757 −3.9613 −3.9886
5.1896 5.1833 5.1082

and
ζ = (0.3387,−0.6774,1.3548,−2.7097,5.4194)′.

This latter is close to its estimated counterpart (in each ofthe three versions). As far as
α is concerned we have to consider that the product

Aα = (1.1613,−0.3226,−1.3548,−1.2903,−0.4194)′

is close toÂα̂ .

8. A simulation experiment

We performed a simulation experiment by replicating 1000 times a dynamic factor
model and applying three methods for outlier detection and estimation. This way we
wanted to test the effectiveness of the method that we are proposing in this paper (let us
call it ODFM). Then, we made a comparison with two methods that were available for
detecting and estimating outliers in multivariate time series. The first one was proposed
by (23) to detect and estimate four types of outliers in multivariate time series modeled
by a vector autoregressive integrated moving-average (VARIMA) model (let us call it
OARMA). The second one was proposed by (8) as a projection pursuit approach to
detect and estimate four types of outliers in multivariate time series not necessarily
generated by a VARIMA model (let call it OPP).

We confine our attention only to the most common types of outliers, namely the
additive outliers (AO). An AO impacts the series only at the time of its occurrence,
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while neighboring observations remain unaffected. Other outlier types were defined in
the literature: innovation outliers (IO), level changes (LS) and temporary changes (TC).
However, IO’s are only defined when the data are assumed to follow a VARMA model,
which is not our case. LS’s arise when the mean levels of each component series change
at once, and then remain constant. They are equivalent to AO in the difference, and may
be identified by analyzing the differenced data. Finally, a TC in multivariate time series
data is defined att = t0 if a constantω which defines the outlier size is added toyt0 and
δ kω is added toyt0+k, k > 0, where 0< δ < 1 is a scalar constant. We feel that a TC is
a very unlikely behavior in real data, in any case it is easilyidentified by the existence
of an exponentially decaying impulse at rateδ in the univariate projection seriesz′yt .

The method of (23) assumes that the (N-dimensional) multivariate time series{yt}
may be modeled as

yt = xt +α(B)ωξ (h)
t ,

where the unobservable multivariate time series{xt} is generated by the VARIMA
model

Φ(B)xt = c+Θ(B)εt .

In the latter equality,
Φ(B) = I −Φ1B− . . .−ΦpBp

and
Θ(B) = I −Θ1B− . . .−ΘqBq

areN×N matrix polynomials of finite degreesp andq, c is aN-dimensional constant
vector, and{εt} is a sequence of independent and identically distributed normal random
vectors with zero mean and covariance matrixΣε . Some assumptions are needed to
ensure that

xt = c∗ +Φ(B)−1Θ(B)εt = c∗ +Ψ(B)εt

is a well defined moving average model. Then,α(B) = Ψ(B) defines an IO andα(B) =

I an AO. The date of the outlier is defined by the binary variableξ (h)
t which equals 1 if

t = h (that is, the outlier occurs att = h) and 0 otherwise.
The method of (8) aims at discovering the univariate projections of the multivariate

time series that best highlight the presence of outliers. The directions that yield the
most useful projections are given by the projections that either maximize or minimize
the kurtosis. Moreover, orthogonal directions are to be taken into account as well. The
number of projections to be examined for outlier detection is 2N, whereN denotes the
dimension of the multivariate time series. If IO’s have to bedetected, then the method
applies to the residual multivariate time series computed from a suitable model fitted
to the observed data.

We simulated 200 observations from theN-dimensional dynamic factor model

yt = Axt +ω∆t +ηt .

We assumedN = 20 andK = 4 factors, simulated according to the VARMA model

xt −Φxt−1 = εt −Θεt−1, (8.1)
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whereΦ = diag(0.7,−0.5,0.5,−0.7), Θ = diag(−0.5,0.7,−0.7,0.5) and{εt} is nor-
mal white noise with zero mean and variance-covariance matrix Σε = IK −ΘΦ′−(Φ−
Θ)Θ′. This choice ofΣε ensures that the (theoretical) variance-covariance matrix of
{xt} is the unit matrix. The matrixA was chosen to have 20 rows and 4 columns. We
let

A =


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The matrixA may be verified to have full rank. The (theoretical) factors are inde-
pendent because bothΦ andΘ are diagonal matrices and the{εt}’s are uncorrelated
normal random variables. All idiosyncratic components{ηt} were assumed zero mean
normal with varianceσ2

η = 0.04.
We checked two outlier configurations. The first one was an isolated multivariate

outlier at t = 100. The second one was a patch, that is a sequence of neighboring
outliers att = 99,100,101. The size of each and every outlier was chosen equal to
0.6. This figure was chosen in comparison with the standard error ση = 0.2 of each of
the idiosyncratic components. The total multivariate outlier size is theN-dimensional
vectorω with entries all equal to 0.6. The outlierω may be split in a termζ orthogonal
to the columns ofA, that is

ζ = (I −A(A′A)−1A′)ω,

and a termAα which is a linear combination of the columns ofA with coefficients

α = (A′A)−1A′ω.

The coefficientsα may be thought of as the sizes of an outlier that impacts the factors.
All computations were performed by using the Matlab package. For each of 1000

replications we generated 300 independent identically normally distributedK-variate
random vectors and 200 independent identically distributed N-dimensional random
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TABLE 2
Percentages of estimated number of factors in the presence of outliers

Outlier Estimated number of factors
type K = 3 K = 4

isolated 0.3% 99.7%
t = 100
patch 0.2% 99.8%

t = 99,100,101

vectors all with mean zero and variance-covariance equal tothe unit matrix. From the
300K-dimensional random vectors 300 observations were generated from the ARMA
model (8.1). Then, the data were transformed as explained before, to obtain unit vari-
ance factors. The first 100K-dimensional data were discarded to remove the effect of
the (random) initial values. As a result, aK-dimensional factor time series of length
200 was obtained. TheN-dimensional white noise was pre-multiplied by the inverseof
the square root of the matrixΣη . This was the artificial idiosyncratic component that
was added to the factor data. Finally the two outlier structures were superimposed to
the artificial data generated from the dynamic factor model.In each replication, and
for each of the two outlier structures, the methods ODFM, OARMA and OPP were
applied for outlier detection and estimation. The usual Monte Carlo simulation proce-
dures were used to compute the percentages of both correct and false identifications
and the average and standard errors of the estimates. A synthetic measure of the dis-
tance between the estimated and true outlier was obtained bycomputing the norm of
the vector difference between the estimated and true outlier size.

In the present context it seems of interest to report some results concerned with the
validity of a dynamic factor model to fit the data. We divided the frequency interval
(0,π) into four sub-intervals of equal size, namely[ 2π

T , π
4 ], [ π

4 + 2π
T , π

2 ], [ π
2 + 2π

T , 3
4π],

and[ 3
4π + 2π

T ,π]. Each sub-interval includedT/8−1 frequencies (here 24 frequencies
asT = 200), and the sub-interval centers wereπ

8 , 3
8π, 5

8π, and 7
8π respectively. The

null hypothesis,H0: variance-covariance matrices are symmetric, tested using the LRT
statistics of Theorem 4.2 was never rejected at significancelevel 5% neither in the
presence of an isolated outlier nor an outlier patch.

Table 2 shows that the number of factors(K = 4) was correctly estimated in almost
all replications.

For method ODFM we computed theN−K univariate projections obtained as linear
combination of the multivariate time series

wi,t = (vi)
′yt , i = 1, . . .,N−K,

wherevi is the eigenvector of the variance-covariance matrixΓ̂y(0) of the observed
multivariate time series associated with the eigenvalueλi. The eigenvalues were ar-
ranged in ascending order, that is the eigenvectorsv1, . . .,vN−K belong to the smallest
eigenvaluesλ1, . . .,λN−K respectively. Then, the presence of an outlier in the multivari-
ate time series{yt} was detected at timet if

|wi,t − w̄i| > kα σwi
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for some (that is, at least one) 1-dimensional time series{wi,t}. w̄i andσwi were the
wi,t sample mean and standard deviation respectively. The threshold parameterkα may
be computed according to the Tchebychev inequality. We chose the significance level
α = 0.05 so that approximatelykα = 4.47.

The parameters of the dynamic factor model were estimated along the guidelines
given by Theorem 5.1 in Section 5 (see step 5(b) in Section 7 aswell). The difference
between the observed time series and the estimated dynamic factor model values was
assumed to yield the estimate of the outlier sizeζ̂ . Then outliersα̂ were estimated in
each factor by using Formula (2.2b) p. 194 of (4). The total outlier size was obtained
asω̂ = ζ̂ + Âα̂.

The OARMA method was implemented along the guidelines givenby (23). A VAR
model of orderM = 4 was fitted to the multivariate time series{yt}. We assumed that
only outliers of either additive or innovation type could bepresent. The Mahalanobis
type statistic for either type of outliers

Ji,h = (ω̂i,h)
′Σ−1

i,h ω̂i,h

was computed for each timet = h and i = I for IO andi = A for AO. Σi,h denotes the
covariance matrix of the estimator. If the maximum across time ofJA,h or JI,h exceeded
their respective 95-th percentile, then either an AO or an IOwas assumed ath = hmax

according to which statisticsJmax(i,hi) = maxhJi,h, i = I ,A, was the greatest. Then the
outlier size was estimated and its effect removed from the multivariate time series. The
procedure was iterated until no more outliers were found. Tables of percentiles of the
statisticsJmax(I ,hI) or Jmax(A,hA) are available only up to dimension 10 (see (23),
Table 1 p. 797, and (8), Table 4 p. 664). So we computed empirical percentiles from
10000 artificial multivariate time series generated by the dynamic factor model with
N = 20 andT = 200. We obtainedJmax(A,hA) = 47.7911 andJmax(I ,hI) = 46.6493 at
the 5% significance level.

The estimates of the outlier size were computed by using the Formulasω̂I,h for
innovation outliers and̂ωA,h for additive outliers provided by (23) p. 794.

As far as the OPP method is concerned the direction that maximizes the kurtosis of
the linear projection of the multivariate time series{yt} and all orthogonal directions
had to be computed. The direction that minimizes the kurtosis and its orthogonal direc-
tions had to be computed as well. To compute these 2N projections we used the Matlab
routines by (15) available on the web (http:// halweb.uc3m.es/fjp/download.html). In
this case too we confined ourselves only to AO and IO. In this latter case, the procedure
was applied to the multivariate residual time series{at} computed by fitting a VAR of
orderM = 4 to{yt}. Then, each and every projection was searched for outliers by using
the univariate counterpart of the statistic in the OARMA method. The maximum across
time and across projections was computed and letΛA denote the maximum found on
the projections of the multivariate time series{yt} andΛI denote the maximum found
on the projections of the multivariate residual time series{at}. BothΛA andΛI were
compared with their appropriate thresholds and either an AOor an IO was detected if
the greatest ofΛA andΛI exceeded its threshold. As tables of percentiles ofΛA and
ΛI are available only up toN = 10 (see (8), Table 2, p. 663), we computed the 95-th
percentiles by simulation from the dynamic factor model with N = 20 andT = 200. In
this case we obtained after 10000 replicationsΛA = 5.9772 andΛI = 6.0392.



R.Baragona and F. Battaglia/Outliers in dynamic factor models 418

TABLE 3
Isolated outlier percentage detection by the ODFM, OARMA and OPP methods

ODFM OARMA OPP
outlier id. percent outlier id. percentage outlier id. percentage

correct false correct AO correct IO false correct AO correctIO false

96.9 1.7 2.56 94.64 100 58.2 40.9 4.3
(3.5199) (2.3473) (2.21) (2.99) (8.1462) (8.2698) (4.2320)

Once date and type of outliers were determined, to estimate their size we fitted a
VAR model of orderM = 4 to the multivariate time series{yt} and computed̂ωI,h for
innovation outliers and̂ωA,h for additive outliers as in (23) p. 794.

The results obtained by applying the three procedures to discover the outlying ob-
servation in the artificial data set with an isolated outlierare displayed in Table 3. The
Monte Carlo statistics were computed on 1000 replications.In order to compute the
standard errors of the estimates of the percentages of detection, we divided the replica-
tions in 40 groups of length 25 each. The percentages were computed for each group
of replications, then we could compute the standard error ofeach percentage by using
40 values. The percentage of correct detection of the isolated outlier int = 100 was
greater than 95% for all methods. The standard errors are comparable as regards meth-
ods ODFM and OARMA but the standard error is slightly larger for the OPP method.
Both OARMA and OPP methods identified in most cases an outlierof innovation type
possibly because the IO allows for greater flexibility as faras fitting the observed data
is concerned. On the other hand, if we constrained the OARMA and OPP methods to
search for AO only, then the percentages of correct detection dropped dramatically. We
recorded false outlier detections as well. The number of replications (percentage) where
one or more wrong detections occurred was low for methods ODFM and OPP while
the method OARMA wrongly detected outlying observations inevery replication. As
overall figures, the observations detected as outlying onesover 1000 replications (se-
ries length 200) were 17, 80, and 9003 for the ODFM, OPP, and OARMA methods
respectively.

The results for the data set with a patch at timest = 99,100,101 are displayed in
Table 4. Considering the outlier separately, the ODFM method detected each of the
three outliers about 99%, while for the OARMA and OPP methodshigh percentages
were recorded only for the detection of the first outlier in the patch. Again, these latter
methods almost always identified the outlying observationsas IO. As a consequence,
the outliers int = 100 andt = 101 could be well explained by the innovation outlier
structure. The percentages of false identifications were rather low for the ODFM and
OPP methods, while the OARMA method wrongly identified outliers in all 1000 mul-
tivariate time series. The average number of false outlierswas in this case about 7, that
is less than in the case of multivariate time series with an isolated outlier. By consider-
ing the patch as a whole, correct identification was performed 97.5% by ODFM, only
about 58% by OARMA and never by OPP. At least an outlier in the patch was detected
by ODFM, OARMA and OPP 100%, 85.09% and 85.4% respectively.

Outlier size estimates are displayed in Table 5 for the case of the isolated outlier
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TABLE 4
Outlier patch percentage detection by the ODFM, OARMA and OPP methods

Method ODFM OARMA OPP
id. percent iden. percentage iden. percentage

AO IO AO IO

Outlier 98.9 0.1 83.09 0.0 82.9
t = 99 (1.9975) (0.24) (3.79) (7.9492)
Outlier 99.8 0.2 63.72 0.0 1.4
t = 100 (0.8718) (0.42) (4.79) (2.1071)
Outlier 98.8 4.34 60.06 2.9 0.0
t = 101 (2.7129) (2.23) (4.69) (3.3451)
False 1.5 100 4.8

detection (2.1331) (3.9192)

and in Table 6 for the case of the outlier patch. The adequacy of the estimates was
evaluated by the norm of the difference between the estimated and true outlier size
vectors. This figure yields a kind of distance measure which accounts both for bias
and variability of the estimates. We may remind that the outlier size is equal to 0.6
for all component time series. For the ODFM method we distinguish the total outlier
from its orthogonal part. This is of interest because the dynamic factor model structure
is directly impacted by the array orthogonal to the columns of the matrix A, while
the rest impacts the factors. For the other methods, OARMA and OPP, we distinguish
between AO and IO identification. We may notice that as far as the ODFM method is
concerned, the orthogonal part is close to its true counterpart while the estimated total
outlier seems more variable. The distance is about 7 in all cases. As regards the other
methods OARMA and OPP the distance between the estimated andtrue outlier size is
smaller, approximately between 4 and 5. In the case of OPP this figure is even smaller
(about 2.5) if the outlier is identified as AO.

Such distances depend both on bias and variability. To distinguish between these
two sources, we present the bias and standard errors of the estimates ofωi in Table 7
for the case of isolated outlier. Figures are bias and standard errors of estimated outlier
sizes in each component, over the correctly identified replications, and averaged on
the 20 components. It may be seen that the proposed ODFM method provides less
biased estimates of the outlier size, while the variabilityis larger than the projection
pursuit method. Since the distances of the estimatedζ̂ from the true values are generally
small (see Table 5 and 6), we conclude that estimation of univariate outliers in the
(estimated) factors, or interaction between them and the estimates of the factor matrix
A, are responsible for such a larger variability. This may be caused by the method
employed in Theorem 5.1 for estimating{xt}. A more efficient method is currently
under investigation.

9. Application to real data

We used a quarterly economic data set which covers three countries, France, Germany
and Italy, from 1960 to 1999, for illustrating method ODFM. The data are taken from
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TABLE 5
Deviation from true values of isolated outlier size estimates yielded by the ODFM, OARMA and OPP

methods

Method ODFM OARMA OPP
‖ζ̂ − ζ‖ ‖ω̂−ω‖ ‖ω̂A−ω‖ ‖ω̂I −ω‖ ‖ω̂A−ω‖ ‖ω̂I −ω‖

Outlier 0.7805 7.06 3.3778 4.5135 2.5843 4.3167
t = 100 (0.1364) (2.8675) (1.4531) (3.4293) (0.6581) (1.5351)

TABLE 6
Deviation from true values of outlier patch size estimates yielded by the ODFM, OARMA and OPP methods

Method ODFM OARMA OPP
‖ζ̂ − ζ‖ ‖ω̂−ω‖ ‖ω̂A−ω‖ ‖ω̂I −ω‖ ‖ω̂A−ω‖ ‖ω̂I −ω‖

Outlier 0.7817 7.1861 3.9729 4.5533 4.3767
t = 99 (0.1386) (2.8408) (1.29) (1.6458) (1.5117)
Outlier 0.7829 7.1386 3.9406 6.1979 4.6051
t = 100 (0.1381) (2.8656) (1.1391) (2.4194) (1.0134)
Outlier 0.7773 7.2700 4.0333 5.1087 2.4556
t = 101 (0.1415) (2.7589) (1.4710) (1.9191) (0.4919)

TABLE 7
Bias and standard errors of the outlier size estimates, averaged on the 20 components (isolated outlier at

t = 100)

Method ODFM OPP–AO OPP–IO

correctly identified repl.ns 969 582 409
average bias 0.014 -0.373 -0.231
average standard error 1.70 0.46 0.99
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TABLE 8
French (f), German (g) and Italian (i) quarterly economic data and preliminary transformations

Label Description Transform. Countries

cpi Consumer price index ∆2ln f g i
ip Index of industrial production ∆ln f g i
pgdp Gross domestic product deflator ∆2ln g i
rbndl Interest rate of long-term government bonds ∆ f g i
rbndm Interest rate of medium-term government bonds ∆ i
rcommod Real commodity price index ∆ln f g i
rgdp Real gross domestic product ∆ln g i
roil Real oil prices ∆ln f g i
rgold Real gold prices ∆ln f g i
rstock Real stock price index ∆ln f g i
unemp Unemployment rate ∆ i

the seven-country data set used by (22) to compute combination forecasts of output
growth. The preliminary transformations suggested in the aforementioned paper were
applied. Then, 154 transformed data for each time series were available from III quarter
1960 to IV quarter 1999. We considered only the time series indicated by ‘a’ in Table
Ib in (22).

For France 7 series were available from 1960 to 1999, 9 seriesfor Germany and
11 series for Italy. Time series labels, description, transformations and countries are
displayed in Table 8.

The data set was composed of 27 time series of lengthT = 154. The number of
factors was checked by using the eigenvalues of the variance-covariance matrix. The
eigenvalues were computed and arranged in descending order. The cumulated sum is
plotted in Fig. 4. The smallest integer such that the cumulated sum exceeded 0.95 was
6, so that we assumed the number of factorK = 6.

The symmetry of the variance-covariance matrices computedfor lags 1, 2, 3 and 4
was checked along the guidelines given in Section 4. Two statistics for this test were
computed by averaging the periodogram in two frequency bands, centered inλ = π/4
the first one and inλ = 3π/4 the second one. We obtained respectively 174.81 and
143.88 which are not significant, so that the null hypothesis was not rejected.

The identification stage required the computation ofN−K = 14 projections that
were searched for outlying observations along the guidelines given in Section 8. The
projections that exceeded the thresholds computed by the Tchebychev inequality sug-
gested the presence of outliers at timest = 23,24,37,63,124. The graphical display of
these projections in Fig. 5 shows that each projection disclosed an outlier separately,
excepted the third projection (outliers att = 23 andt = 24).

Examination of the estimated outlier sizes allowed the timeseries that most con-
tributed to the multivariate outlier to be discovered. We could see that the outlier at
t = 23 (I/1966) was apparent in time series rbndl (g) and pgdp, rbndl, rstock, unemp
(i). The outlier att = 24 (II/1966) was mainly determined by roil (f), roil and rstock
(g), and pgdp, rbndl, rstock, unemp (i). The outlier att = 37 (III/1969) was mainly
determined by rbndl (f), rbndl (g), and rbndl and unemp (i). The main influence on the
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FIG 5. Projections of the multivariate time series where the presence of outliers may be detected
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outlier att = 63 (I/76) came from rbndl and rgold (f), rbndl and rgold (g), and rbndl,
rbndm, rcommod, roil (i). The outlier att = 124 (II/1991) was apparent only in time
series rbndl (f). The interest rate of long-term governmentbonds (rbndl) was present
in all outliers, that is this time series produced most of theunexpected values observed
in the multivariate time series. Its effect was common to thethree countries att = 37
andt = 63 while its effect was limited to Germany and Italy att = 23, Italy att = 24,
and France att = 124. Some time series were available for Italy only, so it seemed of
interest to apply the procedure to the data set which included only the quarterly eco-
nomic Italian data. We could fit a dynamic factor model with 3 factors and 4 outliers
were found, att = 23 (pgdp, rbndl, rbndm, rstock),t = 24 (pgdp, rbndl),t = 55 (rbndm,
roil, rgold, rstock, unemp), andt = 103 (rbndl, rbndm, roil, rstock, unemp). Observa-
tion at t = 55 corresponds to I/1974 andt = 103 to I/1986. By comparing the results
for Italy with those for the three countries together we could argue that some outliers
were ‘international’ while others regarded only one or two countries. So we had to
consider outliers att = 23 andt = 24 as ‘international’ while outliers att = 55 and
t = 103 as ‘national’. Some of the time series that originated these two outliers, that
is rbndm and unemp, were present in the Italian data set only.Similarly we could not
consider the outlier att = 124 as ‘international’ but ‘national’ limited to the quarterly
economic French data. Note that the outlier att = 23 was not considered present in
the French data, but datest = 23 andt = 24 are close so that the outlying observations
were possibly related to some common circumstance.

10. Conclusions

We presented a method to discover outliers in multivariate time series generated by a
dynamic factor model. This method was found to yield best results compared to two
other methods aimed at discovering outliers in multivariate time series in a different
framework. Our method relies on the assumption that the multivariate time series is
generated by a dynamic factor model, therefore the procedure to check the dynamic
model adequacy for fitting the data should be carefully applied to ensure that genuine
outliers could be discovered. If assumptions were carefully checked and requirements
met, both the simulation experiment and the application to real data showed that the
method presented in this article was effective for outlier detection and estimation, cau-
tious against false outlier identification and, in addition, simple to implement. The es-
timates of the total outlier size were found less biased, butmore variable than those
obtained by using the other two methods. On the contrary the estimates of the size
of the part of outlier that impacts the dynamic factor model without affecting the fac-
tors were found accurate and close to their respective true values. Improvements of the
estimation method is currently subject of further research.
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Appendix A: Appendix

A.1. Proof of Theorem 2.1

Proof. Suppose thatx∗t = Cxt and Assumptions 1 and 2 hold, then

x∗t =
∞

∑
j=0

Θ∗
j εt− j ,

whereΘ∗
j = CΘ j andΘ j = diag(θ ( j)

11 , . . .,θ ( j)
KK). But since thex∗t ’s are mutually inde-

pendent, eachΘ∗
j , j = 0,1, . . ., is diagonal, therefore∑k cskθ

( j)
kr = 0, r 6= s. TheΘ j ’s

are diagonal, thereforecsrθ
( j)
rr = 0, r 6= s. Since for eachr at least oneθ j

rr is non-zero
(otherwisexr,t would be equal to zero for each and everyt) it follows thatC too has to
be diagonal. Thus, again from Assumption 1,

Γ∗
x(0) = cov(x∗t , (x

∗
t )

′) = CΓx(0)C′ = CC′ = I ,

that isc2
kk = 1, k = 1, . . .,K, which impliesC = I up to a change of sign.

A.2. Proof of Theorem 3.1

Proof. Note first that, forh 6= 0, Γy(h) = AΓx(h)A′ has rank≤ K, thereforeΓy(h) has
at least(N−K) eigenvalues equal to zero for anyh 6= 0 (zero is not necessarily the
smallest eigenvalue becauseΓy(h) is not positive definite).
If z′A = 0, thenΓy(h)z= AΓx(h)A′z= 0, thereforez is eigenvector associated with a
zero eigenvalue of each matrixΓy(h) for anyh 6= 0.
On the other hand, letz be an eigenvector associated with a zero eigenvalue of each
matrix Γy(h),h 6= 0 (the set of such vectors is not empty because it includesV⊥

A ).
ThenΓy(h)z= AΓx(h)A′z= 0 for anyh and on multiplying by the generalized inverse
(A′A)−1A′ we getΓx(h)A′z= 0. If we letc= A′z the last equation readsΓx(h)c= 0 or,
sinceΓx(h) is diagonal,

γx
j (h)c j = 0 , j = 1,2, . . .,K ,h= 1,2, . . .

which under our hypotheses impliesc j = 0, j = 1,2, . . .,K and thereforeA′z= 0.

A.3. Proof of Theorem 3.2

Proof. We note first that

Γy(h) =
s−h

∑
u=1

ψuψ′
u+h , h = 1,2, . . .,s−1

andΓy(h) = 0 for h ≥ s. Moreover, the matrix[ψ1,ψ2, . . .,ψs] has rank≤ sK(< N),
thus there exists a vectorzsuch thatz′ψu = 0 for anyu. For such a vector we have

Γy(h)z=
s−h

∑
u=1

ψu
(

ψ′
u+hz

)

= 0 , h = 1,2, . . .,s−1
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and it also follows thatΓy(h) has a zero eigenvalue for eachh = 1,2, . . .,s−1.
Suppose now thatz is eigenvector associated with a zero eigenvalue of eachΓy(h), and
write cu = ψ′

uz. Then
0 = Γy(s−1)z= ψ1ψ′

sz= ψ1cs

and since the rank ofψ1 is K it follows cs = 0. Now,

0 = Γy(s−2)z= ψ1ψ′
s−1z+ψ2ψ′

sz= ψ1cs−1 +ψ2cs = ψ1cs−1

andcs−1 = 0. On repeating the same argument for lagss−3,s−2, . . .,2,1 we obtain
cs−2 = cs−3 = . . . = c2 = 0. It remains to show thatc1 = 0 also. From assumption (ii)
for a fixedk the rank ofψk is K, and

0= z′Γy(k−1)= z′
s−k+1

∑
u=1

ψuψ′
u+k−1 = c′1ψ′

k +c′2ψ′
k+1+c′3ψ′

k+2+ . . .+c′s−k+1ψ′
s = c′1ψ′

k

and it followsc1 = 0, which completes the proof.

A.4. Proof of Theorem 3.3

Proof. Let us recall that rank(AA′) = rank(A) = K. ThenAA′ hasN−K eigenvalues
equal to zero. We have thatΓy(0) = AA′ +σ2I is symmetric and positive definite. From
the relationship

AA′−λ I = Γy(0)− (λ +σ2)I

it follows that Γy(0) has minimum eigenvalues equal toσ2 with multiplicity N−K.
Let z be a corresponding eigenvector. Then,

σ2 = z′Γy(0)z= z′AA′z+σ2,

and‖z′A‖ = 0 follows. On the other hand, ifz′A= 0 thenΓy(0)z= AA′z+σ2zandz is
eigenvector associated to the smallest eigenvalueσ2.

A.5. Proof of Theorem 3.4

Proof. Since

Γy(0) =
s

∑
u=1

ψuψ′
u +σ2I

and for anyv such that‖v‖2 = 1 we have

v′Γy(0)v=
s

∑
u=1

‖v′ψu‖2 +σ2 ≥ σ2

it follows that the smallest eigenvalue ofΓy(0) is at leastσ2. If ψ′
uz= 0,u= 1,2, . . .,s

then
Γy(0)z= ∑

u
ψu(ψ′

uz)+σ2z= σ2z
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andz is eigenvector associated withσ2, the smallest eigenvalue ofΓy(0).
On the other hand, letz denote an eigenvector associated with the smallest eigenvalue
σ2, it follows thatz′Γy(0)z= σ2. Then

z′Γy(0)z=
s

∑
u=1

‖ψ′
uz‖2 +σ2 = σ2.

Hence∑u‖ψ′
uz‖2 = 0, thereforeψ′

uz= 0 for anyu.

A.6. Proof of Theorem 4.1

Proof. If Γy(h) is symmetric for anyh we can write

F(λ ) =
1

2π

∞

∑
h=−∞

Γy(h)e−iλ h =
1

2π

{

Γy(0)+2
∞

∑
h=1

Γy(h)cos(λh)

}

which is real for anyλ . On the other side, ifF(λ ) is real thenF(λ ) = F(λ ) = F(−λ )
and

Γy(h)′ = Γy(−h) =
∫

F(λ )e−iλ hdλ =
∫

F(ω)eiωhdω = Γy(h).

A.7. Proof of Theorem 4.2

Proof. Assuming normality,(XR
j ,XI

j ) and(XR
k ,XI

k) for 1≤ j < k ≤ J are independent,
therefore the unrestricted likelihood may be written

L
(

XR
1 ,XI

1, ...,X
R
J ,XI

J

)

=

π−NJ

∣

∣

∣

∣

ReF −ImF
ImF ReF

∣

∣

∣

∣

−J/2

exp

{

−
J

∑
j=1

(

(XR
j )′, (XI

j )
′)
(

ReF −ImF
ImF ReF

)−1( XR
j

XI
j

)

}

.

(A.1)

Therefore the maximum likelihoodestimate of

(

ReF −ImF
ImF ReF

)

equals

(

SR −SI

SI SR

)

(10) and the unrestricted maximum likelihood is

L̂ = π−NJ

∣

∣

∣

∣

SR −SI

SI SR

∣

∣

∣

∣

−J/2

exp{−2NJ} .

UnderH0, F = ReF , bothXR
j andXI

j are independentlyN(0, 1
2F), thus

L(XR
1 ,XI

1, ...,X
R
J ,XI

J) = π−NJ |ReF |−J exp
{

−J tr
{

(ReF)−1SR

}}

.
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On maximizing with respect to ReF , we find that the maximum likelihood estimate of
ReF is SR and the maximum equals

L̂0 = π−NJ |SR|−J exp{−2NJ} .

The likelihood ratio is
L̂0

L̂
= |SR|−J

∣

∣

∣

∣

SR −SI

SI SR

∣

∣

∣

∣

J/2

.

Using
∣

∣

∣

∣

SR −SI

SI SR

∣

∣

∣

∣

= |SR|
∣

∣SR+SIS
−1
R SI

∣

∣

it follows that the likelihood ratio is a monotonic functionof the statistic

U = |SR|−1 ∣
∣SR+SI S

−1
R SI

∣

∣=
∣

∣I +(S−1
R SI)

2
∣

∣

and the rejection region isU < c. The distribution ofU is analyzed in Chapter 8 of (1),
and corresponds in his notation toUN,N,J−N−1.

A.8. Proof of Theorem 5.1

Proof. The first part of the theorem follows directly from proposition (4) in (12), p. 46.

So we only have to prove thatYX̂′ = WKΛ1/2
K . Let the singular value decomposition of

Y be written as in proposition (1) in (12), p. 60, that is

Y = WDV′.

TheN×T matrixD may be written

D =







Λ1/2
K 0K×(r−K) 0K×(T−r)

0(r−K)×K Λ1/2
r−K 0(r−K)×(T−r)

0(N−r)×K 0(N−r)×(r−K) 0(N−r)×(T−r)






,

whereΛ1/2
r−K = diag(

√

λK+1, . . .,
√

λr) and theλi ’s are the singular values ofY′Y. The
columns of theN×N orthogonal matrixW are the eigenvectors ofYY′ (arranged ac-
cording to the non increasing order of the associated eigenvalues) and the columns of
theT×T orthogonal matrixV are the eigenvectors ofY′Y. Note that some or all of the
submatrices disappear whenr = K, and/orr = N, and/orr = T.

Let the matrixW be partitioned in such a way that it is conformable to the partitioned
matrixD, that is

W =





W(1 : K,1 : K) W(1 : K,K +1 : r) W(1 : K, r +1 : N)
W(K +1 : r,1 : K) W(K +1 : r,K +1 : r) W(K +1 : r, r +1 : N)
W(r +1 : N,1 : K) W(r +1 : N,K+1 : r) W(r +1 : N, r +1 : N)



 ,
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whereW(u : v,k : h) is used to denote the submatrix ofW which includes all entrieswi j

with u≤ i ≤ v andk ≤ j ≤ h. Multiplication byD yields

WD=







W(1 : K,1 : K)Λ1/2
K W(1 : K,K +1 : r)Λ1/2

r−K 0K×(T−r)

W(K +1 : r,1 : K)Λ1/2
K W(K +1 : r,K +1 : r)Λ1/2

r−K 0(r−K)×(T−r)

W(r +1 : N,1 : K)Λ1/2
K W(r +1 : N,K+1 : r)Λ1/2

r−K 0(N−r)×(T−r)






.

On the other hand, we have obviouslyX̂′ = [u1, . . .,uK] and multiplication ofV′ by X̂′

yields

V′X̂′ = [u1, . . .,uT]′[u1, . . .,uK] =

[

IK
0(T−K)×K

]

=





IK
0(r−K)×K
0(T−r)×K



 .

Some or all of the zero submatrices disappear whenr = K and/orr = T. Summing up,
we obtain

YX̂′ = WDV′X̂′ =






W(1 : K,1 : K)Λ1/2
K W(1 : K,K +1 : r)Λ1/2

r−K 0K×(T−r)

W(K +1 : r,1 : K)Λ1/2
K W(K +1 : r,K +1 : r)Λ1/2

r−K 0(r−K)×(T−r)

W(r +1 : N,1 : K)Λ1/2
K W(r +1 : N,K+1 : r)Λ1/2

r−K 0(N−r)×(T−r)











IK
0(r−K)×K

0(T−r)×K





=







W(1 : K,1 : K)Λ1/2
K

W(K +1 : r,1 : K)Λ1/2
K

W(r +1 : N,1 : K)Λ1/2
K






=





W(1 : K,1 : K)
W(K +1 : r,1 : K)
W(r +1 : N,1 : K)



Λ1/2
K .

It is easily recognized that




W(1 : K,1 : K)
W(K +1 : r,1 : K)
W(r +1 : N,1 : K)



= WK ,

so that the desired result
Â= WKΛ1/2

K

follows.

A.9. Proof of Theorem 6.1

Proof. The result for the mean is obvious. For the variance we have, for example,

var{T(γ̂rs(0)− γ̃rs(0))} = E{(zrt0 − z̄r)ωs+ωr (zst0 − z̄s)}2

= ω2
s E(zrt0 − z̄r)

2 +2ωsωrE{(zrt0 − z̄r)(zst0 − z̄s)}+ω2
r E(zst0 − z̄s)

2.

Then, by recalling that
E(γ̃rs(0)) = γrs(0)+O(T−1),

(e.g. 17, vol. 2, p. 693, Formula 9.5.4) the result follows. The proof for var{T(γ̂rs(h)−
γ̃rs(h))} is similar.
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A.10. Proof of Theorem 6.2

Proof. We have

Re{Irs(λ j)− Ĩrs(λ j)} =
ωr ωs

2πT
+Ars(λ j)

and
Im{Irs(λ j)− Ĩrs(λ j)} = Brs(λ j),

and obviouslyEArs(λ ) = EBrs(λ ) = 0 for eachr, s, andλ .
We evaluate now the second moments

var
√

TArs(λ j) =
1

(2π)2T
E{

T

∑
t=1

T

∑
u=1

cosλ j(t0− t)cosλ j(t0−u)

×(ωr(zst− z̄)+(zrt − z̄)ωs)(ωr(zsu− z̄)+(zru − z̄)ωs)}

=
1

(2π)2T

T

∑
t=1

T

∑
u=1

cosλ j(t0− t)cosλ j(t0−u)

×{ω2
r γss(t −u)+ω2

s γrr (t −u)+ωr ωs(γrs(t −u)+ γrs(u− t))}

=
1

(2π)2T

T−1

∑
h=−T+1

{ω2
r γss(h)+ω2

s γrr (h)+ωr ωs(γrs(h)+γrs(−h))}∑
v

cosλ jvcosλ j(v+h),

where we have putv= t0−t and are neglecting end effects. Ifλ j is a Fourier frequency,

∑
v

cosλ jvcosλ j(v+h) = ∑
v

cosλ jv(cosλ jvcosλ jh−sinλ jvsinλ jh)

= cosλ jh∑
v

cos2 λ jv−sinλ jh∑
v

cosλ jvsinλ jv

=
T
2

cosλ jh,

and finally

var
√

TArs(λ j)=
1

(2π)2T

T−1

∑
h=−T+1

{ω2
r γss(h)+ω2

s γrr (h)+ωr ωs(γrs(h)+γrs(−h))}T
2

cosλ jh

→ 1
4π

{ fss(λ j)ω2
r + frr (λ j)ω2

s +ωr ωs( frs(λ j)+ frs(−λ j))}.

On repeating the same argument forBrs(λ j) we obtain

var
√

TBrs(λ j) =
1

(2π)2T

T

∑
t=1

T

∑
u=1

sinλ j(t0− t)sinλ j(t0−u)

×{ω2
r γss(t −u)+ω2

s γrr (t −u)−ωr ωs(γrs(t −u)+ γrs(u− t))},
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and since

∑
v

sinλ jvsinλ j(v+h) = ∑
v

sinλ jv(sinλ jvcosλ jh+cosλ jvsinλ jh)

= cosλ jh∑
v

sin2 λ jv+sinλ jh∑
v

sinλ jvcosλ jv

=
T
2

cosλ jh,

it follows

var
√

T Brs(λ j) →
1

4π
{ fss(λ j)ω2

r + frr (λ j)ω2
s −ωr ωs( frs(λ j)+ frs(−λ j))}.

Noting that √
T Re{Irs(λ j(T))− Ĩrs(λ j(T))} =

√
T Ars(λ j(T))

and √
T Im{Irs(λ j(T))− Ĩrs(λ j(T))} =

√
T Brs(λ j(T))

the result follows.

A.11. Proof of Theorem 6.3

Proof. Since

F̂rs(λ )− F̃rs(λ ) =
2π
T

T/2

∑
j=−T/2

wT(λ −λ j){A(λ j )+ iB(λ j)}+
ωr ωs

2πT
,

we have

varRe{F̂rs(λ )− F̃rs(λ )} = (
2π
T

)2∑
j
∑
k

wT(λ −λ j)wT(λ −λk)cov{Ars(λ j)Ars(λk)}

and

var Im{F̂rs(λ )− F̃rs(λ )} = (
2π
T

)2∑
j
∑
k

wT(λ −λ j)wT(λ −λk)cov{Brs(λ j)Brs(λk)},

and it may be easily seen that cov{Ars(λ j)Ars(λk)} and cov{Brs(λ j)Brs(λk)} tend to
zero asT → ∞ if λ j 6= λk while the results forλ j = λk are given in the previous the-
orem. AsT → ∞, the window bandwidth tends to zero,(2π/T)∑wT(λ −λ j)

2 tends
to c0M and therefore var{Re(Frs(λ )− F̃rs(λ ))} has the same asymptotic behavior as
2πM
T2 var(

√
TArs(λ )) while var{Im(Frs(λ )− F̃rs(λ ))} has the same asymptotic behav-

ior as 2πM
T2 var(

√
T Brs(λ )). On substituting the expressions for the variance the thesis

follows.
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[23] TSAY, R. S., PEÑA , D., AND PANKRATZ , A. E. (2000). Outliers in multivariate
time series.Biometrika87, 789–804. MR1813975

[24] YEREDOR, A. (2002). Non-orthogonal joint diagonalization in the least-squares
sense with application in blind source separation.IEEE Transactions on Signal
Processing50, 1545–1553. MR1931239
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