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Abstract: Dynamic factor models have a wide range of applications onemetrics
and applied economics. The basic motivation resides im tfagiability of reducing a
large set of time series to only few indicators (factorsjh# number of time series is
large compared to the available number of observations thest information may
be conveyed to the factors. This way low dimension models bestimated for
explaining and forecasting one or more time series of isteles desirable that outlier
free time series be available for estimation. In practicglying observations are likely
to arise at unknown dates due, for instance, to externalualevents or gross data
entry errors. Several methods for outlier detection in tereies are available. Most
methods, however, apply to univariate time series whilenewethods designed for
handling the multivariate framework do not include dynafaittor models explicitly.
A method for discovering outliers occurrencesin a dynamitdr model is introduced
that is based on linear transforms of the observed data. Straegies to separate
outliers that add to the model and outliers within the comeamponentare discussed.
Applications to simulated and real data sets are presenigck the effectiveness of
the proposed method.
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1. Introduction

Dynamic factor models have been introduced to explain anecést time series of
interest in the presence of a large set of explanatory timessdn practice, useful-
ness of dynamic factor models is apparent when the dimensienm large that vector
autoregressive models are not able to handle the multteatirae series efficiently.
Reduction of the available time series to few factors alleffisient and interpretable
models to be estimated. Factor extraction has to be accsiegliin such a way that
only negligible or little amount of information be lost.

The study of the eigenvalues and eigenvectors of the paeamettrices was early
suggested byL(18) to produce a simplified version of an agtessive model. A canon-
ical transformation of a vector autoregressive model basethe simultaneous rela-
tionships between variables was introducecby (2) . Théiosiships between different
time lags were considered Ly (9) aigl (19) in the frequencyadiorthe principal com-
ponent analysis was extended in the frequency domairlbyid8jtification of the
number of factors in multivariate time series process wasessed byl(l4).

Factor models are strictly related to the diffusion indexethodology (for instance
200)). As pointed out byi{6), when the dimension is large veatdoregressive (VAR)
and vector autoregressive moving average (VARMA) modedsdificult to estimate
because the number of parameters grows with the number efséimes quadratically.
On the contrary, for dynamic factor models the growth isdine

Usually mutually uncorrelated factors are assumed, whildividual factor time
series may be autocorrelated. The multivariate dynamicciire of the observeN-
component time serigg may be modeled through the matrix facfgrthat is

Ve = A% + Nt

wherex; is a vector oK independent time series angis the idiosyncratic disturbance.
Each factor time series may follow a linear model, that is

Xt =6(B)&
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whereB is the back-shift operator argl; is uncorrelated white noise. This leads to the
dynamic factor model
Vi = AG(B)& + Nt

where8(B) = diag(61(B), . .., 6k(B)). This model is a special case of
Vi = Y(B)& +

as considered irli(5), for instance. The equality

,(B) = &, ;6;(B)

reduces to the assumption that the impact of any slapckn the observed time series
yi t decays over time in similar way for amyThis assumption may also be justified on
the ground of the asymptotic results [y (6), p. 456.

Outliers in time series were introduced liy (7) accordingwo different models,
the additive outlier (or aberrant observation) and the vwation outlier (or aberrant
innovation). This latter impacts the observed time semesdme time span after the
occurrence date, the former affects only one observatitimeatiate of its occurrence.
In spite of this, the additive outlier has serious effectparameter estimates and fore-
casts, while the effects of the innovation outlier is oftess serious. This motivates our
choice for modeling outliers in the dynamic factor model afyong observations of
the additive type.

The plan of the paper is as follows. In Sectllin 2 we introdieedutlier structure
that we assume to be possibly present in a dynamic factor Imdhis structure and
its implications will be examined in detail in Sectiflh 3. A tined for checking the
adequacy of the dynamic factor model to fit the data will besiltated in Sectioll 4.
Methods for estimating the dynamic factor model parametergdiscussed in Section
H and the impact of outliers on the estimates will be examineskctiorb. In Section
H a procedure for identifying outliers and estimating ttséze is presented and illus-
trated by an example. A simulation experiment for checkimg éffectiveness of the
procedure in comparison with a multivariate model-basethote (213) and a projec-
tion pursuit-based procedurz (8) will be reported in SedlloOur procedure is then
applied to a set of real data, that is some quarterly econdati& on asset prices, ac-
tivity, wages, goods and commaodity prices from the sevamty data set studied by
(22). Results are reported in Sectlfin 9. Sedli@n 10 consludmof of theorems are
found in AppendidE.

2. The dynamic factor model with outliers

Let y; be an observedN-component vector time series and the temporal index
1,...,T. We may even assume that the number of the time series comisdves
greater than the numb@r of dates when observations were made. We assume further
that thoughN may be very large the observed time series is actually exgpiaby a
much smaller numbe£ of unobservable time serigs= (i, - . ., X )’ and an idiosyn-
cratic N-dimension disturbance;. Then the dynamic factor model with outliers may
be written

Wt = A% + Wit + Ny, (2.1)
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whereA is anN x K matrix of rankK, K < N. The outliers occurrence dates are
modeled by the binary seridg\} and by theN x 1 vectorw which represents the
outlier size.

Let us make about moddI®.1) the following assumption:

1 {xu}t, {xx}, ..., {X:} are mutually independent standardized random processes,
i.e.E(xt) = 0,E(x) = 1 for anyi andt, andE(xiXjs) = 0 if i # j.
2. The dynamics of the unobserved factor time segi@say be modeled as

2
i()fi,tfz-l-.--,

Xit = 9"(0) &t + 9"(1) gt-1+6,

Whereeii(o) =1, z‘f:o(eiE”)Z <o,i=1,...,K,andg = {ey,..., & } are Gaus-
sian white noises mutually independent at all leads andd@ggliagonal variance-
covariance matrix,.

3. {A:} is a deterministic scalar binary time series ands a non randonN x 1
vector. For an outlier occurring at tinbg Ay = 1 if t =tg and/; = 0 otherwise.

4. ni={Nu,..., NNt} are Gaussian stationary time series both serially and riyitua
independent at all leads and lags with diagonal variangar@nce matrix .

5. The vector time serieg andn; are mutually independent at all leads and lags.

These assumptions are motivated by the idea that the depemdenong the ob-
served time series components is entirely explained byabtiifs. Therefore the id-
iosyncratic terms are also independent, since otherwisewould contribute to ex-
plain correlations between two observed components ardlégbe put into the factor
vector.

In general modell1) is not identified unless some asswmptare made about
either the matriA or the vector time serieg. In fact, letC be any non-singuldf x K
matrix. Then in modell1) we have

Ax = AC 'Cx.
By letting A* = AC~! andx’ = Cx model EZL) could be written as well
Wi = A" + Wby + 1.

No restriction is made on the matrix except that its rank is equal . Notice that
Assumption 1 does not imply any loss of generality. In fadt,if0) = cov(x,X) is

not the identity matrixx we could replace¢ with the transformed datEX(O)*%xt.

As I'k(0) is positive definite then a factorizatidR(0) = FX(O)% (FX(O)%)’ exists for a
non-singular matriX'X(O)%. The variance-covariance matrix of the transformed data

turns out to be the identity matrix.
We prove the following theorem in AppendBzh. 1.

Theorem 2.1. Model EZ1) under Assumptions 1 and 2 is identified up to fasigm
changes.

It has to be noticed that modgR.1) is uniquely determingddsumptions 1—5
up to a permutation matrix and changing of sign. In fact, treeoof the factors may
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be taken arbitrarily without affecting the model’s struetuMoreover, Assumption 1
determines the factors sizes but each factor may be meltiply+1 without affecting
its variance.

We may write the relationships that link the variance-c@rsze matrices of the
observed data with those of the factors and of the idiosyizaramponent

My(0) = Ary(O)A' + %, = AN+ 5,

and

Let yi’fj(h), i,j=1,...,N, denote the entry in rowand columnj of the matrixI"y(h),
andy‘(h),i=1,...,K, denote the diagonal elements of the maliikh).

Note that Assumption 1 is used that implleg0) = | in the first equality, while the
second equality shows that the matri¢€s(h) }'s are symmetric because thex(h)}'s
are diagonal.

It is sometimes assumed that the columng afe orthogonal. This ensures the ad-
vantage that those columns are eigenvectors of all theieowar matrices ofy; } at any
lag (see, e.gl.ll4). However, we feel that such assumptigetter with Assumption
1, is somewhat unrealistic and it will not be formulated here

3. OQOutliers in factor models

The estimation of outliers in Equatioi.1) is greatly siifiged if a linear transform
of the data exists that may highlight the impact of outlyitgervations. If parameters
in Equation EZL) are assumed known, then, by taking theeptioin matrixZ =1 —
A(A'A)~LA, the following lemma is easily proved.

Lemma 1. Let the Nx K matrix A be defined as in EquatidiER.1). Then a N matrix
Z exists such that ZA 0 ( Ois the Nx K zero matrix).

Lemmalll has interesting implications concerned with thdierstestimation in
model EZ1). The matriZ projects the vectors @&N into the space orthogonal to the
spaceva spanned by the columns &f Let V" denote this orthogonal space. By letting
V be the space of the vectors R\ we haveV = Va @ V.. Any vector inV may be
written as the sum of a vector Wy and a vector irVAi. Then three cases may occur

1. Zw =0. In this caseav € Vj, that is there exist coefficients, cy, . . ., ck such that
W=a1C1 +apxCx+...+akCk,

whereay,ay, ...,ak denote the columns oh. We may writeco = Ac, where
c=(c1,Cp,...,Ck)". Then EquatiorlE1) becomes

Vi = A(X + CA) + .

The outliers are entirely within the factors, that is theexledy; are affected by
outliers only through the factors.
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2. Zw # 0 andA(A'A)~ 1A' w= 0. This means thab € Vi-. The outliers impact the
observedy but the factors are actually outlier free.

3. Zw# 0 andA(A'A) 1A' w # 0. Thenw may be written as the linear combination
of a basis inv obtained by assuming the columns/fs a basis Vs and a
basisM = [mq,mp,...,my_k] in V4. We have

K N—-K
W= Z&Ci+ > mjpj =Ac+Mp =Ac+{ (3.1)
i= =1

for some coefficients vectorsand . Model Z1) becomes
Ve = A% + ) + D+ .

The observed time serigg is affected by an outlier of sizé that adds to the
whole structure and an additive outligrin each factox;.

Cases (1) and (3) may be treated by estimaxing- x +c/\ as if it were actually
the model factors. Univariate search may be performed oegtimated” factors to
discover outliers dates and estimating their sizes.

We underline that in case (1), wh&mw = 0, the dynamic model pattern is not af-
fected by any perturbation. This latter is only transmittgdhe model from factors to
observed data. In that case the projection method we prdpayeeis unable to iden-
tify the outliers, and they can only be discovered estinggtire factors and employing
univariate outlier search.

In cases (2) and (3) detection and estimation of outliersithpact the observeg
directly may be performed on the transformed model

2% =2+ 2y

where € V4. Note that in case (2) we have = { while in case (3) Equatiold.1)
holds so thatv # {. In case (3) the outlier siz® has to be estimated partly in dynamic
factor model and partly in the factors.

A similar development applies if the following dynamic médes proposed byi(5),
is assumed:

S
Vi = z Yu&—u+ Nt + Wi (3.2)
u=1

where they's areN x K matrices g is aK-dimensional completely white noise with
variances equal to BK < N and Assumptions 3, 4, 5 above hold. My denote the
space spanned by the columns of the matrigggu = 1,...,s} andRN =V, @Vj,

andZ the projection matrix ontvj. We have
2 =Znt + (Zw)Lx .
In this case also may be written (but not necessarily in an unique way) as

W=ynC1+nCr+...+ PsCs+{
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where( € Vu}, and the model may be expressed as follows:

S
Yo=Y Wu(&-u+Cul)+ni+ (L
u=1

which decomposes the effect of an outlier into two parts,thageperturbs the dynamic
structure of the model by altering the effect of the past &slof the factorsq) and
the other one simply superimposed to the observagon (

Usually the matriXA is unknown and we may apply the preceding procedure only by
computing an estimat&. The presence of the outlying observations themselves snake
the estimation difficult and often unreliable. Under somdi@onal assumptions the
following theorems allow an alternative procedure to beegained which does not
require estimatingd. In what follows, all eigenvectors are normalized, i.e.ytlage
taken with modulus equal to one.

Theorem 3.1. Let y satisfy modell1) with Assumptions 1—5 and suppose that fo
each j=1,2,...,K there exists a lag f# 0 such thaty{(h;) # 0. Then ZA = 0 if and
only if z is eigenvector associated with a zero eigenvalweaohly(h),h# 0.

Proofis in AppendilZZR. Note that the assumptions of ThedE&l are not satisfied
if one of the factors is white noise.

Theorem 3.2. Let y satisfy model&2) and Assumptions 3—5 and suppose in@adit
that

(i) rank(ys) = K

(i) There exists a lag K2 < k < s such thatank(yx) = K

then zyy, =0,u=1,2,...,sif and only if z is eigenvector associated with a zero eigen-
value of eacliy(h),h=1,2,...,s—1.

Proof is in AppendiEEB.

We note that TheoreliZ3.1 does not hold in generalhfer O since in that case
My (0) = AX +Z,. Nevertheless, if the idiosyncratic disturbances are rsmedastic
then the following theorems hold.

Theorem 3.3. Let z be any eigenvector associated to the smallest eigesedily(0).
Let us assume, additionally, that = 02l. Then ze Vi, thatis 2A = 0. The converse
is also true.

Proof is in AppendilfZ¥.
A similar result holds for the dynamic modEZlB.2).

Theorem 3.4. Let y satisfy modellE&2) and suppose tiat = o?l. Then if ¢, =
O,u=1,...,s, zis eigenvector associated to the smallest eigenvallig 0f, and the
converse is also true.

Proof is in AppendiiEE®b.

The preceding theorems suggest a procedure to computeeziioojof the multi-
variate time series that allows potential outliers to belilgaletected.

If the hypothesis of homoscedasticity is assumed, we maypatenan estimate
I'y(0) (possibly a robust estimate) of the variance-covarianceixniy,(0). Then con-
sider the eigenvectors associated to the smallest eigenwill'y(0) (the smallest
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eigenvalue may have multiplicity greater than one). zdte any such eigenvector,
then, according to TheorelliB.3 4@ 3.4, for the univariate Beriezy; we have

Zy = Zni+ (Zw)ly

Any such projection of the multivariate time series may balyred by means of uni-
variate methods to detect potential outlying observatidihen evaluate the outlier's
size by assuming the dates of occurrence of outliers frowauiaite analysis and using
estimation methods in the multivariate framework.

If the homoscedastic hypothesis may not be assumed, the resule is obtained
using Theorenl=A1 arll®.2, by takimgqual to the eigenvector associated to a zero
eigenvalue of d(h) for h > 0.

4. Factor model adequacy

A crucial pointis whether the simple factor modBj2.1) tibge with our Assumptions
fits the data adequately. Increasing the number of fagtatses not solve the problem
because not all processes may be represented by equEIBrfaRarbitraryK and
under Assumptions 1—5, since their autocovariance mattiexe to be symmetric
as seen before. This suggests that a measure of adequaeyfa€titr model might be
obtained by evaluating the differences between the elenfeny and(j,i) of I'y(h), o

the autocorrelation matrix. Let;j(h) = /(h){y/(0)y¥;(0)} */2, and denote by;j(h )

the corresponding estimate.lj(h) i |s symmetric, using classical results (see, .., 17)
we obtain that the differenag; (h) —fi(h) is asymptotically normal with mean zero

and variance
var{fij (h) —fji(h)}
:% 5 [rii (U)rj5 (W) = rij (U = rii (Wrj; (u—2h) 4 rij (Wri; (u—2h)]

and it depends both on the cross-correlation and autoetioelfunctions in a compli-
cated way; furthermore, such differences are correlatedifterent indexes and j.
Therefore the differences; (h) — fji (h) cannot be used in any plausible way to test the
hypothesis thdty(h) is symmetric. However, a possible solution is found turrimtine
frequency domain, in an analogue way as proposeti by (9) wdtenating parameters
of factor models.

In the frequency domain the symmetry of the covariance wesfiy(h) for anyhis
equivalent to a real spectral density matrix for any fregquehet

1 7|)\h
F(A) = Zﬂhz,oory

denote the spectral density matrixypf We prove the following theorem in Appendix

Theorem 4.1. If ['y(h) is symmetric for any h, then(®) is real for anyA and vice
versa.
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We shall therefore test the hypothesis théd ) is real for anyA.
Let us define the Fourier transforms as bhe 1 complex vectors

(LI
v e
t=

From Theorem 4.4.1 o(3) it follows that the re® % 1 vector[Redr (A)’, Imdy (A)]
converges a$ — o to a normal random vector with mean zero and variance coweia
matrix:

dr(A) =

1| ReF(A) —ImF(A)
2 [ ImF(A) ReF(A) ]
If the spectral matrix is real, IfA(A) = 0, thus Relr (A) and Imdr (A) are (asT — o)
independently identically distributed normal vectorshwiero means and variance co-
variance matrix%F()\). Therefore the hypothesis of real spectral density is edg@int
to the independence of two normal vectors and may be testeaebys of likelihood
ratio. However, only one observation would be availablesfieh fixed\ . To overcome
such difficulty, and to test reality for any, we use a device similar ti (9).

Let A; = 2m1j /T denote the Fourier frequencies, and supposeThatsufficiently
large so that for a set of frequencighj,a < j < b} we can assumg(Aj) ~ F. Also.
letJ=b—aand

XR=Red(Aarj) X| =Imd(Aas)) , j=1,....

where we have dropped for convenience the dependende Bor T large we may

assume that
XjR N 0) 1/ Re&F —ImF
Xj' 0 /’2\ ImF ReF
while under the null hypothesidy: F reaI,XJR and XjI are independently identically

distributed normal vectors with zero means and variancarcance matrix%F. Define
the variance estimates:

1(2 1(¢
=73 (ZlXF<XF>’+x,-' <x}>’> 873 <Zl><j' <XF>’—XF<X}>’) -
i= =
The following theorem provides the likelihood ratio test.

Theorem 4.2. The likelihood ratio test statistic for the null hypothebig F real is
given by

I+ (&'s)?|
and its distribution under Hlis equal to that of the statisticlh j—n—1 Of (X, chap. 9).

Proof is in AppendifZZ¥ . Some approximations are discuss€tl), which for our
statistic imply approximating-mlogU (m=J—N — %) by a chi—square variable with
N? degrees of freedom. The test of TheolEl 4.2 may be emplopedtedly on non-
overlapping frequency intervals, and the usual caveatmifdtiple testing apply (see,
e. g..11, chap. 5.4).
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5. Estimation problems

Outliers identification is only concerned with the detegctad time points where outly-
ing observations occur. When this task is performed by emargia univariate projec-
tion series, as is suggested in this paper, little may beeadzodit the multivariate out-
liers size. The model parameters matrices, eithierthe model’'s formulatiorEd1) or
{yn, yn,...} inthe model's formulatiorflfd2), have to be estimated framilable data
{w,t=1,...,T}, along with the common components and the variance co\aiama-
trix Z, of the idiosyncratic component. This way outliers size meyebtimated while
the estimated model is available for studying the relatiam®ng the observed time
series or for forecasting purpose.

We shall distinguish in estimation procedures whether di@siyncratic covariance
matrix is constrained to the relationstip = o?l, or to be a diagonal matrix, or no
special constraints are imposed on its entries. Also, wesiden here the unperturbed
case of absence of outliers. The distortioninduced by tesgumrce of an outlier will be
considered in the next section.

The log-likelihood of{y1, >, . .., yr } according to modelld 1) under the assumption
3, =0%is

L= —NT0g21— NTIogo? iT( Ax) (vt — Ax)
=——log2m— g _Zo_zt;Yt— %) (Yt — Ax).

Let us define th&\l x T matrix

Y =[y1,¥2,..,¥1],

where they's areN x 1 arrays, and th& x T matrix
X = [X1,%2, ..., %T],

where theg’s areK x 1 arrays. Then the sum of squares in the log-likelihood may be
written

tr{(Y — AX)'(Y —AX)},
and its minimization is equivalent to maximizing the likediod.

Model &) is considered by.{20) and(21) who assume notynalj = 0?1, and
treat the factor§x } as deterministic components. They show that, on maximittieg
likelihood with respect to botkix } and A, the maximum likelihood estimate éf is
given by the matrix formed by thi€ eigenvectors associated to tdargest eigenval-
ues offy(O). They assum&'A = |; if we want to dispense with such hypothesis, we
may use instead the fact thag(0) = I (actuallyXX' =1 is assumed for simplicity).
This leads to the following different estimate.

Theorem 5.1. Let {y} satisfy modelE1) with Assumption 4 wiih = ¢?I, and
suppose thafx } are constants and X%= I. Let r be the rank of Y and K be a known
pre-specified integer, so th@t< K <r <min(N, T), and letA; > A2 > ... > At be the
eigenvalues of % with associated orthogonal eigenvectogsuy, . .., ur in RT. Then
the problem

min{tr((Y —AX)(Y —AX)")} subject to XX =Ig
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is solved by A
X = [ug, Uy, ..., ux]’
and A A
A=YX.

Further, the formula foA reduces to

A 1/2

A=WAY?,
where W = [wq,...,wk] (w1, Wy, ..., Wk are the eigenvectors associated to the K

largest eigenvalues of Y)Y andAi/2 =diag VA1, ..., VAK).

Proof is in AppendiEEB. The estimate of the mathxgiven by TheorenE=Rl1 is
consistent as the estima¥ey’ /T is known to be consistent and its eigenvalues and
eigenvectors (which are continuous functions of the elemefithe matrixy'Y'/T) are
consistent as well. If the observed data are not standaldirel if the eigenvalues are
all distinct and the true variance covariance matrix is diefipositive, then it may be
shown that the eigenvalues are asymptotically indepehdeatmally distributed. The
difference between estimated eigenvalues and actual eoésider ¥+/T in probabil-
ity. The estimates of the eigenvectors are asymptoticatynally distributed but they
are not independent (see, elgl, 16, p. 290). Rate of com@&rde actual eigenvectors
is of order 2/+/T in probability.

If we assume that the factofs; } are random processes, the method of linear factor
analysis may be employed. To overcome the problem that thereare autocorrelated,
() has introduced a frequency domain extension of the faamalysis which may
be directly applied to modelld.1) assuming tBat is diagonal but not necessarily
homoscedastic.

An alternative estimation method is using a Kalman filter istate space formu-
lation of the model, wherdl.1) is considered as a measunteetpiation andx; } is
the state vector. In that case, a transition equation has gpécified for the factorg
which may be convenient if we assume that the pro¢ggsis easily modeled in state
space form (if, for example, it is assumed a low order autesegon).

Finally, an estimation method which does not rely on any mggion onZ, may
be obtained using a technique of temporal blind source aépay for instance the
temporal decorrelation source separation metiad (25)wises an algorithm for ap-
proximate simultaneous diagonalization of several cewvaré matrices. Under model

&) we have
Fy(h) = Arg(h)A h+£0,

and, taking the generalized inveBe= (A'A) 1A,

Sincely(h) is diagonal for anyh # 0, we may determin® in such a way that the
off diagonal elements dBl'y(h)B’ are as small as possible. Formally, the maBiis
obtained by the following approximation problem

mm%;@m@gﬁ

B =i
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Let B denote the solution, then
A=B(BB)!

A maximum lagH has to be chosen. This may be selected by estimating the co-
variance matrices of the da‘t'@( ) and takingH the minimum lag such that all entries
of Fy(h) for h> H, are not significantly different from zero. Moreover, in erdo
recover the matriA is necessary thdBB')~! exists, therefore the solution matrik
should have full rank. Though it is easily seen that under eh@) this method is
consistent, its sample properties appear very hard to Heatkv

If model E2) seems more suitable to describe the data, dtimaion methods
proposed byi{5) may be applied.

6. Bias induced by the outliers on the estimates

We turn now to consider the bias induced on the estimatemeftomain and frequency-
domain indexes by the presence of an outlier.

Suppose that the observed time sefigst = 1,..., T} contains an outlier at time
to and size measured by the vectorLet z denote the unperturbed data,

if t#£t
Zt—{ w o if t#to

Wi —w if t=tg

We compare the autocovariance or spectral density essncat@puted on the actu-
ally observed series with the corresponding unbiased astgithat would have been
obtained from the unperturbed time serzes

Note first that for the averagewe have

_ 1 1 1 -1
Y=g IN=T)a+T0=Z+z0,

therefore 1
“W—Y=2%—-2— Tw+wAt,

where/\s =1 if t =tg and zero otherwise. If we denote

=7 Zl ~2)(zn—2)

the unperturbed autocovariance estimates (computed amtieserved time serieg),
the actual estimates may be written

17-h 17- _ 1
=7 Zl(yt—y)(yvrh—y)/—f Zt Z——w‘i‘wAt)(ZtJrh—Z—fw-l-wAtJrh)/,
t=

and a simple calculation gives

f(0>:F(0)+$+ a7tz -7} -2
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and

P () = F(0) + 7 {(Zgn—~ D + 00— D)
1 T—h

B PR CRL LRI R

TT3hwod. (6.1)

It follows that the difference between unperturbed andalastimates is of order/T
in probability. We prove in AppendEA9 the following themm which states a more
precise result.

Theorem 6.1. Let {y, t =1,..., T} be part of a realization of a second order station-
ary process with finite covariance matrices and supposedttaine  an outlier equal

to w is added. Then if the;j(h)’s denote the covariance estimates and {héh)’s
denote the correspondent estimates computed on the unpadttime series,

E{T (#s(0) — #s(0))} = s+ O(T %)

var{T (#s(0) — #s(0))} = &&yir (0) + @ yss(0) + 2 s (0) + O(T ),
and, for h#£ 0,
E{T (#s(h) — fis(h))} = O(T 1)
Var(T (frs(h) — is(1)} = ¥ (0) + 6Pyes(0) + 262k yis(2) + O(T ).

Results in the frequency domain may also be obtained, witutual asymptotic
approximations. On denoting by

- 1 4 :
d(A) = ﬁt;(zt —Z)exp(—iAt)

the Fourier transforms of the unperturbed data, we may write

d(A) = ! T(y—y‘)exp(—im: L T(zt—z+wA—9)exp(_iAt)
2T & \/ﬁt; T

- T

1 : 1l w :
=d(A)+ ﬁwexp(—u\to) - \/z—ﬁ?tZAexp(—Mt).

If we consider only the Fourier frequencigs= ZT"j, the third term disappears and

d(Aj) =d(A})+ \/%wcos()\jto) —i%

and simple calculations show that for the actual and unpgestiiperiodograms

wsin(Ajto),

-/ ~ ~ ~ /

1(A)=d(A)d(2)

—
>
~—
Il
o
—~
>
~—
o
—~
>
~—

we have



R.Baragona and F. Battaglia/Outliers in dynamic factor retsd 405

where ;
— 1 !/
A = 57 3 coshto—tH{wl@— + (2~ Du}
and .
— 1 H !/
BA) = g7 3 SinA (to—t){(~ 2/ — w(z -2}
We prove in AppendilEE2J0 the following theorem which givesmaspecific results

as regards each entry of the matrix of differences betweeadmgrams.

Theorem 6.2. Let {y, t =1,..., T} be part of a realization of a second order station-
ary process with spectral density matriX4) and suppose that at timeg &n outlier
equal tow is added to the time series. Then ([#Al) denotes the periodogram matrix
andi(A) denotes the periodogram matrix of the correspondent unpeet series, for

eachl<r <s<N, o
ET Re{lrS()‘j)—FrS()‘j)}: o

and
ETIm{lis(A}) — E’s()‘j)} =0.

Let T) be a sequence such thefT ) = 2r15(T) tends tok as T— . Then, as T— oo,
vary/TT)Re{ls(A ()~ is(A ()} = 2 (6P o) +-68 fr(A) 6 Fis(A) + fs(~A)))
and

vary/(T)Im{lis(A(T)) —is(A (T))} — %T{uffss()\)—i-wszf" (A)—ar axs(frs(A)+ frs(—A)) -

The preceding results enable also to evaluate the biaseddwcan outlier on spec-
tral estimates. Let

. T/2
F =2 1WA -A)
j=—T/2

be a consistent spectral estimate whigyre- ZT"j andwr (.) is a spectral window (see,
e.g.,.17), and denote Hy(A) the same form computed difA ). We assume that for
eachT atruncation poinM = M(T) has been selected such that

- ZWT()\J-)Z =coM
]

and, asT — o, M — co butM /T — 0.
Theorem 6.3. Under our assumptions asF oo

ET{Fs(A) ~Fs0)} = 32,
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var{% Re(Fis(A) —Fis(A) — %)}

— SHTss) + @ e () + araa(fs(2) + fis(~A)} (6:2)

var{\/—m Im(Fs(A)—Fs(A))} — %{‘UrszS()\)‘i‘wsz frr (A) — ax ws(frs(A) + frs (=)}

Proof is in AppendiZZal.

The preceding discussion offers some arguments for chga@sitong estimation
methods. The methods based on the variance-covariancix oradn the spectral den-
sity of the observed data have the drawback that the esnmady be biased by the
presence of the outlier. The influence of the outlier on themedes is of order AT
and this would suggest that for large samples the two methaysperform equally
well. Spectral methods, however, seem to constitute tharitavdevice to be used for
checking dynamic factor model adequacy. The methods baséehtporal decorrela-
tion on the average are not affected by the presence of thierotihis would suggest
that these methods are likely to yield more reliable restdtsvever a treatment of the
sampling properties is not available and model adequacyohas checked in any case
to ensure that temporal decorrelation may be applied plpumming up, it seems
that no estimation method may be declared the best one, ynd tfifferent methods
seems advisable.

7. Outlier identification and size estimation procedure

LetY be the observed data arranged as a matriX adws andT columns. The entry
Yi: stands for the observation at tinheof the i-th time seriest = 1,...,T andi =
1,...,N. We assume that a dynamic factor model may be tentativedgftti the data
with unknown number of factors and possibly outlying obaénns of unknown size at
unknown dates. The idiosyncratic component is unknown dis Gigen Assumptions
1—4 and the observed data set, molE&l(2.1) is to be identifié@stimated.

A procedure for estimating the unknown components of md&a) @nd performing
outlier identification and estimation may be described devis.

1. The optimal direction for locating the occurrence of pintly observations re-
quires the computation of the variance-covariance mafrtke datal y(0) and
of its smallest eigenvalug, i.e.

whereY = y1’. TheN x 1 arrayyis the components average computed over time
and 1 is the all-on& x 1 vector. Then the eigenvaldeand the associatdd x 1
eigenvectorz may be computed. The linear transfown= ZY vyields the 1x T
time series that may be searched for the outlier occurreamsdlLetw and g,
be the mean and standard errorvofThen the outlier is identified at tinteif
|wt| is the largest value such thiat —w| > a g, wherea is a suitable constant.
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Since this procedure is based on TheolBlh 3.3, it strictlg$ohly in the ho-
moscedastic case, and is only approximately appropriaenwhich hypothesis
does not hold. An alternative would be computing the eigetoreassociated to
a zero eigenvalue of one of the matridggh) for h > 0, for examplefy(1),
according to Theorelidl.1 alilk.2.

. If an outlier is detected, then the multivariate time egnnay be adjusted by
interpolating (by multivariate linear interpolator) orrézasting (by vector au-
toregressive (VAR) model) its value at the outlier date. theo strategy may
consist in assuming that there is a missing value at the tintieeooutlier pos-
sible occurrence. Anyway, the potential outlier is eithegslaced by its condi-
tional mean or a missing value is assumed, and the outlier dstimates of
variance-covariance and lagged covariance matrices mayptputed up to a
pre-specified maximum lag. Robust estimation methods may constitute a valu-
able choice. Either outlier free or robust estimates of feesal density matri-
ces have to be computed at the Fourier frequentjesihereA; = 2mtj /T and
j=-T/2+1,-T/2+2,...,T/2.

. Checking conformity of the observed data to the dynamitofanodel may be
done by using the spectral density estimates. For instégicthe frequency in-
terval 0< A < mrbe divided in 4 sub-intervals and assume for simplicity that
integer multiple of 4. More than four sub-intervals may awsly be used, also
according to the number of the data. If there is no reasonrfeitgging any fre-
guency components, equally wide sub-intervals may betseleBymmetry con-
siderations allow us to consider only the inter{@lr) instead the whole interval
(—m, ). Thenin each sub-intervéA, 1, Ap) there arel = T /4 Fourier frequen-
cies,i.e{Aj,j=a+1,a+2,...,a+J=Db}. Inthel-th sub-intervab = ({—1)J
andb = ¢J. The likelihood ratio test statistld is provided by Theoref.2. The
null hypothesidig that the covariance matrices are symmetric, i.e. the dymami
factor model may not be rejected, has to be checked by usegpproximate
statistic—mlogU (m=J—N— %) which, undeHy, is distributed as a chi-square
with N? degrees of freedom.

. Once the model has been found appropriate, the numbestof$& has to be es-
timated. A simple device is based on the eigenvalues of than@e-covariance
matrix I"y(0) that isfy(0) corrected for potential outliers. Let

v={vi,Vo,...,Un}

be the eigenvalues cﬁy(O) arranged in non increasing order and consider the
cumulated sums

Vi=viy, Vo=Vi+vy, ..., W=W_1+VUn.

We assumeK as the number of factors if it is the smallest integer such tha
Vk /W > 1—a, wherea is a small real number,.05 for instance. That is, the
number of factors is chosen so as the cumulated normaliged\&lues of'y(O)
exceed a fraction £ a that is judged large enough. We may want to take into
account that the smallest eigenvalues may be greater thanSe a better ap-
proximation to the correct number of factors may be obtalmedssumindg as
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the smallestinteger such that + (N —K)Anin} /W > 1— a. More information
may be used for choosingalong these same guidelines by using the eigenvalues
of the (corrected) spectral density matrix at frequency zehnich is essentially
the sum of the covariance matrices for lagM,—M +1,...,0,1,...,M. The
covariance matrices may be used as well separately, ance Sp#ctral matri-
ces at non zero frequencies. However, different matriceg leed to different
estimates oK though the same value is to be expected in most cases.

. Estimation of matrixA and factorsX allows the dynamic factor model to be
specified completely. In addition, bo#handX are needed to estimate the outlier
size and to distinguish if the factors, the model or both dfieceed by the out-
lying observations. Several methods are available, fomgka we may list the
following ones.

(a) Temporal decorrelation,i.e.a matAxot necessarily squared nor orthogo-
nal may be computed by approximate joint diagonalizatien (i matrices

fy(h),h=1,...,K. Let theN x K matrixA be such matrix, that is
Fy(h)=ADpA, h=1,...,K

IR 5

where theDy,’s are diagonaK x K matrices. Then we may let

B=(AA) A
and o
X =BY.
It follows . o .
Bry(h)B =Tx(h) =Dy h=1,...,K
for 1 1
Fx(h) = ?fo“(’ = ?éwé’ = Bry(h)B = Dp.

(b) Assuming, for the purpose of estimatiaAgthat the factors are not random,
as suggested b Ll21122), the method outlined in Theff@m &ylbe used,
which only requires th& eigenvectors associated to téargest eigenval-
ues of the matri¥'Y be computed. Assumingk theN x K matrix whose
columns are the column eigenvectors dadthe diagonal matrix with the
largest eigenvalues dfY’ on its diagonal, the estimate Afis given by the
simple formulaA :Wk/\i/z.

(c) Methods developed in the factor analysis framework neayded. Consider
again the log-likelihood of the dynamic factor model

L= —N—ZT log2m— ;Iog 1Zn| — %tr{(Y —AX)'Z (Y — AX)}.

Let us assume at this stage that the mafrjxis known. Maximizing the
likelihood with respect to matriA only yields

A=57Q(A — k)Y,
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where/\k is the diagonal matrix with thi€ largest eigenvalue of the matrix

pa 1/2ry(0)z,, Y2 onits diagonal an@ is the matrix whose columns are the
correspondlng eigenvectors. On the other hand, givethe likelihood is
maximized by lettingz, = diag(l’y(0) — AX). By substituting& to A we
have the approximate formula

5, = diag(ly(0) — AX).

Given an appropriate starting value fay we may apply iteratively the
formulas that yleIdA and Z,, until some convergence criterion is met. For
instance, the algorithm may stop if the difference betweendonsecutive
values of the maximized log-likelihoodis less than a preesffed tolerance
constant. Proofs of formulas are provided iyl (13), pp. 360;8ho warn
that this method does not guarantee convergence. Newsthtie algo-
rithm is simple and effective in most cases, and the entndaste diagonal
of Z, are not constrained to be all equal.

6. Finally the outlier size&v may be estimated. Note thaj fnay possibly include
a within-factor outliera. For the static model, if an outlier has been detected at
t = tp and givenA andX, we may write the log-likelihood off,

L= 2 log(270) — 3 1og AR+ 2| — 2 (o ~ ARy~ 2)' (AR +23) 3ty ~ A% Q).
Maximization of the likelihood with respect ®yields

{ = Yio — A,
To estimate the outlier siz® we will obtain an estimaté so that

O=Aa+. (7.1)

According to EZL) the vecto® may be written as the sum of a vector that is
obtained as a linear combination of the columné\aind a vector which is or-
thogonal to the space spanned by the columA.cThe outliera impacts the
factors while{ impacts the model structure as a whole. We may estimate the
size ofa for each one of the componentg .. ., X« essentially by building the
linear interpolator of eacl,, i = 1,...,K, based on values observedt gt to,

and identifying an outlier at each time when the interpalattoo different from

the estimatedi, (see e.gll4, for details).

As an example, let us simulate= 100 observations of the multivariaiex 1 time
series{y; } with N = 5 generated by the model

Ve = Ax + Wb + Nt

We assumé = 4 factors, so that the matrikhas 5 rows and 4 columns. Let

>

I
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FiG 1. Plot of eigenvalues of the observed time series spectraboa frequency zero

The factors have been simulated according to the VAR model
% = ®%-1+ &,

where® = diag.7,—.7,.7,—.7) and{&} is normal white noise with zero mean and
varianceog? = 1— 0.7%. This ensures that the (theoretical) variance of each rfasto
unity. In addition, asb is diagonal, and by normality assumption, (theoreticat)des
are independent. The idiosyncratic compongmt} is assumed a zero mean normal
white noise sequence with variano% = 0.04. The outlier was located at= 100,
that is at the end of the series. Most outlier detection nagttawe not able to discover
potential outliers at the end (or beginning) of the obsetiree series.

Outlier size wasw = (1.5,—1,0,—4,5)". Each component of the generated time
seriesy; has (theoretical) variance equal t@9, excepted the first and the last one that
have variances.04 and 029 respectively. The outlying observation is rather langky o
compared to component series 4 and 5, in the remaining daseaitlier size does not
exceed twice the standard error of the component seriesstlinelard errors of the
simulated time serie§y; } with outlier are(1.0970 1.28581.1967,1.1906 0.7415).

The assessment of the number of factors has been performeralyining the
eigenvalues of both variance-covariance and spectralitgenatrices. In FigllL the
cumulated eigenvalues éﬂO) are plotted. It has to be noticed that the smallest eigen-
value is greater than zero, so that the threshold that sasvaglecision rule about the
number of factors has been computed accordingly (see p@ibbde in this Section).
This way the correct number of factdfs= 4 may be identified.
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FiG 2. Univariate time series obtained by projecting the multiate one along optimal direction

The optimal direction for detecting outlying observatidras been computed
z=(—0.56840.4436 —0.3448 —0.1664 0.5775)'.

The univariate time series obtained as the linear comlindtZy; } is displayed in
Fig.@. The outlier at = 100 is clearly highlighted. Mean and standard errof2; }
have been computed equal t®902 and 06463 respectively. The standardized value
atto = 100 results equal to.4738, larger than the Tchebychev upper boudd 4vhich
corresponds to the 5% level.

A VAR has been estimated for the observed time sdiygsand the one-step-ahead
forecast has been taken to replace the last observatiorcorhected time series was
then used to compute the variance-covariance matrix, th@iemce matrices at lags
1—4 and the spectral density matrices for 100 Fourier freqies from—rr to 1. For
checking that the estimated covariance matrices could ©ievesd symmetric, the in-
terval (0, 1) has been divided in 4 non overlapping intervals, each of wimcluded 25
frequencies. We obtained for the test statistic the val@e841 893, 877 and 1232,
with 25 degrees of freedom: the critical value at the 5% |ev8[7.65. As it is greater
than the computed statistics, we may not reject the dynaawiof model hypothesis.

The estimateé andX have been computed by using the three techniques described
in this Section, that is approximate temporal decorrefatigenvalues-based and iter-
ative maximization of the likelihood function. The latterd methods are similar and
yield indeed similar results. The first method is an entidéfferent approach that takes
explicitly into account the covariance matrices at higlagsl

Nevertheless, the estimated dynamic factor model fits tteeglsite well no matter
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FiG 3. Observed time series (blue line) and estimated dynamiorffacodel (red line)

what method has been used. We report only the plot of the ateditime series (blue
line) along with its estimate yielded by the approximatepenal decorrelation algo-
rithm (red line). Other methods yield estimates that oyealanost exactly. In Fidll3 the
observed (simulated) and forecasted (estimated) seeqdatted for each component.
We may notice that the outlier is not generally apparent leyikual inspection of the
graphics.

Then the outlier size has been estimated as the sum of theolwpanents, the first
one in the dynamic factor model and the second one in therfadtbe two components
are orthogonal to each other. Also the first one is orthogtintile space spanned by
the columns ofA while the other one impacts the dynamic factor model as atine
combination of the columns dk. The estimates are displayed in Talle 1. The three
methods yield similar estimates of the total outlier sizand of the componerd that
impacts the overall model. The sizes of the outfiewithin the factors differ because
the estimated factors themselves depend on the matiessimated by each of the
three methods. The differences are small, however, if wepenenthe array8a.

The results reported in Taldlk 1 seem reliable as regardedbeering of the outlier
sizew. We may compute from the 'true’ outlier sizethe arrays

a = (1.161,—0.903 —0.903 —0.839)’
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TABLE 1
Outlier size estimates yielded by temporal decorrelat@genvalue analysis and maximum likelihood
methods

temporal eigenvalue  maximum
decorrelation  analysis likelihood

Z 0.0944 02326 06805
—0.0534 —0.6887 —1.1582
1.2871 14950 19913
—2.8438 —2.7532 —2.8597
5.4193 53500 49343

a 0.4381 14664 09291
—1.5874 11927 18030
1.2749 —0.4097 09445
—0.1808 00576 12409

Aad  1.1473 10374 06822
—1.0463 —0.9231 —0.5516
—2.0511 —2.2148 —2.6060
—1.1319 —1.2080 —1.1289
—0.2297 —0.1667 —0.1739

@ 1.2417 12701 13627
—1.5793 -1.6118 —1.7098
—0.7640 —0.7198 —0.6147
—3.9757 —3.9613 —3.9886
5.1896 51833 51082

and
{ = (0.3387,—0.6774 1.3548 —2.7097,5.4194’".

This latter is close to its estimated counterpart (in eadhethree versions). As far as
a is concerned we have to consider that the product

Aa = (1.1613 —0.3226 —1.3548 —1.2903 —0.4194)

is close toAG.

8. A simulation experiment

We performed a simulation experiment by replicating 1008e8 a dynamic factor
model and applying three methods for outlier detection astiimation. This way we
wanted to test the effectiveness of the method that we apopiog in this paper (let us
call it ODFM). Then, we made a comparison with two methodswete available for
detecting and estimating outliers in multivariate timeesrThe first one was proposed
by (28) to detect and estimate four types of outliers in matiate time series modeled
by a vector autoregressive integrated moving-average (M#} model (let us call it
OARMA). The second one was proposed [y (8) as a projectiosuyftiuapproach to
detect and estimate four types of outliers in multivaridteet series not necessarily
generated by a VARIMA model (let call it OPP).

We confine our attention only to the most common types of exg)inamely the
additive outliers (AO). An AO impacts the series only at thee of its occurrence,
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while neighboring observations remain unaffected. Otlwier types were defined in
the literature: innovation outliers (10), level changeS)land temporary changes (TC).
However, 10’s are only defined when the data are assumedltavfal VARMA model,
which is not our case. LS’s arise when the mean levels of eawwiponent series change
at once, and then remain constant. They are equivalent tmA2idifference, and may
be identified by analyzing the differenced data. FinallyGaiit multivariate time series
data is defined at= tg if a constantv which defines the outlier size is addedgpand
S wis added toh,+k, K> 0, where 0< 0 < 1 is a scalar constant. We feel thata TC is
a very unlikely behavior in real data, in any case it is edasigntified by the existence
of an exponentially decaying impulse at r@e the univariate projection seriesy.
The method ofifZ3) assumes that thedimensional) multivariate time serigs: }
may be modeled as

o =x+aB)wg"”,

where the unobservable multivariate time sef®&s is generated by the VARIMA
model
®(B)x =c+0O(B)&.

In the latter equality,
®B)=1—-PB—...—dBP

and
OB)=1-0:B—. ..—Oqu

areN x N matrix polynomials of finite degregsandq, c is aN-dimensional constant
vector, and & } is a sequence of independent and identically distributeshabrandom
vectors with zero mean and covariance majx Some assumptions are needed to
ensure that

% =c, +®(B) 'O(B)g =c, + ¥(B)&

is a well defined moving average model. ThetiB) = W(B) defines an |10 and (B) =

| an AO. The date of the outlier is defined by the binary vari:ﬂﬁ'féwhich equals 1 if
t = h (that is, the outlier occurs at= h) and 0 otherwise.

The method ofi8) aims at discovering the univariate pragestof the multivariate
time series that best highlight the presence of outlierg dinections that yield the
most useful projections are given by the projections thhieeimaximize or minimize
the kurtosis. Moreover, orthogonal directions are to berekto account as well. The
number of projections to be examined for outlier detect®?N, whereN denotes the
dimension of the multivariate time series. If 10’s have todegected, then the method
applies to the residual multivariate time series computethfa suitable model fitted
to the observed data.

We simulated 200 observations from tedimensional dynamic factor model

Ve = A% + Wb + .
We assumedN = 20 andK = 4 factors, simulated according to the VARMA model

% —Px 1=6&—0Og 1, (8.1)
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where® = diag0.7,-0.5,0.5,-0.7), ® = diag(—0.5,0.7,—0.7,0.5) and{& } is nor-

mal white noise with zero mean and variance-covarianceixBfr= lx — Od’ — (d —
©@)@'. This choice ofz; ensures that the (theoretical) variance-covariance xnafri
{%} is the unit matrix. The matriA was chosen to have 20 rows and 4 columns. We
let

2 1 0 0
1 0 2 0

1 0 0 2

0o 2 1 0

o 1 o0 2

o 0 1 -2

1 1 -2 0

1 2 0 1

2 0 1 1

o 1 -2 1

A=l 1 2 0 o
2 0 1 0

2 0 0 1

0o 1 2 0

o 2 o0 1

o 0 -2 1

1 2 1 0

2 1 0 1

1 0 1 -2
0o -2 1 1 |

The matrixA may be verified to have full rank. The (theoretical) factames iade-
pendent because both and© are diagonal matrices and tHe }'s are uncorrelated
normal random variables. All idiosyncratic componefrjs} were assumed zero mean
normal with variancer,% = 0.04.

We checked two outlier configurations. The first one was alaied multivariate
outlier att = 100. The second one was a patch, that is a sequence of ndigbor
outliers att = 99,100 101. The size of each and every outlier was chosen equal to
0.6. This figure was chosen in comparison with the standard efre= 0.2 of each of
the idiosyncratic components. The total multivariate ieatize is theN-dimensional
vectorw with entries all equal to.®. The outlierw may be splitin aternd orthogonal
to the columns oA, that is

= (1-AANANA)w,
and a termAa which is a linear combination of the columnsAfvith coefficients
a=ANAAw

The coefficientsr may be thought of as the sizes of an outlier that impacts itterfs
All computations were performed by using the Matlab pack&ge each of 1000

replications we generated 300 independent identicallynadly distributedK-variate

random vectors and 200 independent identically distribtdedimensional random
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TABLE 2
Percentages of estimated number of factors in the presermélers

Outlier Estimated number of factors
type K=3 K=4
isolated 03% 997%
t =100
patch 02% 998%
t=99,100101

vectors all with mean zero and variance-covariance equéietonit matrix. From the
300K-dimensional random vectors 300 observations were gextefaim the ARMA
model ). Then, the data were transformed as explainedeyeo obtain unit vari-
ance factors. The first 100-dimensional data were discarded to remove the effect of
the (random) initial values. As a resultKadimensional factor time series of length
200 was obtained. The-dimensional white noise was pre-multiplied by the inverke
the square root of the matri,. This was the artificial idiosyncratic component that
was added to the factor data. Finally the two outlier stmedwere superimposed to
the artificial data generated from the dynamic factor mobtekach replication, and
for each of the two outlier structures, the methods ODFM, @kRand OPP were
applied for outlier detection and estimation. The usual MdDarlo simulation proce-
dures were used to compute the percentages of both corr@dtlae identifications
and the average and standard errors of the estimates. Aesigntieasure of the dis-
tance between the estimated and true outlier was obtainedroputing the norm of
the vector difference between the estimated and true oustiie.

In the present context it seems of interest to report sométsasoncerned with the
validity of a dynamic factor model to fit the data. We dividéx tfrequency interval
(0, 71) into four sub-intervals of equal size, namék¥, 7, [F + 2, ], (2 + 2 3,
and[3m+ 22, ri]. Each sub-interval includetl/8 — 1 frequencies (here 24 frequencies
asT = 200), and the sub-interval centers wefe3 i, 37, and 41t respectively. The
null hypothesisHo: variance-covariance matrices are symmetric, testedjtbaLRT
statistics of TheoredZA.2 was never rejected at significdena 5% neither in the
presence of an isolated outlier nor an outlier patch.

Tablel® shows that the number of fact@is= 4) was correctly estimated in almost
all replications.

For method ODFM we computed the— K univariate projections obtained as linear
combination of the multivariate time series

Wit=(\)y%, i=1,...,N-K,

wherev; is the eigenvector of the variance-covariance mdﬁgjéO) of the observed

multivariate time series associated with the eigenvadludhe eigenvalues were ar-
ranged in ascending order, that is the eigenveatgrs ., vn_k belong to the smallest
eigenvalued, ..., An_k respectively. Then, the presence of an outlier in the maditiv

ate time serie$y: } was detected at timeif

|Wit —Wi| > Ko O,
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for some (that is, at least one) 1-dimensional time sefvas}. w; and g, were the
w; + sample mean and standard deviation respectively. Thertbliceparametek, may
be computed according to the Tchebychev inequality. Weeelios significance level
o = 0.05 so that approximateky = 4.47.

The parameters of the dynamic factor model were estimatathahe guidelines
given by TheorerlE=l1 in Sectidh 5 (see step 5(b) in Seflionwelly. The difference
between the observed time series and the estimated dynaatar model values was
assumed to yield the estimate of the outlier sjz&hen outliersy were estimated in
each factor by using Formula.gb) p. 194 of[{4). The total outlier size was obtained
as® = +Aa.

The OARMA method was implemented along the guidelines giwe(283). A VAR
model of ordeM = 4 was fitted to the multivariate time seriég }. We assumed that
only outliers of either additive or innovation type could fiesent. The Mahalanobis
type statistic for either type of outliers

Jn=(Qn)E a@n
was computed for each tinte= h andi = | for 10 andi = A for AO. 5 j, denotes the
covariance matrix of the estimator. If the maximum acrasetdfJ , or J , exceeded
their respective 95-th percentile, then either an AO or a3 assumed &t = hmax
according to which statistichax(i, ) = max,J n, i = I, A, was the greatest. Then the
outlier size was estimated and its effect removed from thitivauate time series. The
procedure was iterated until no more outliers were foundl€gaof percentiles of the
statisticsInax(1, hi) or Jnax(A, ha) are available only up to dimension 10 (se€l (23),
Table 1 p. 797, anc(8), Table 4 p. 664). So we computed erappiercentiles from
10000 artificial multivariate time series generated by thigamhic factor model with
N =20 andT = 200. We obtainedmax(A, ha) = 47.7911 andInax(l, h;) = 46.6493 at
the 5% significance level.

The estimates of the outlier size were computed by using then#asd j, for
innovation outliers andn 1, for additive outliers provided by.(23) p. 794.

As far as the OPP method is concerned the direction that nizesnthe kurtosis of
the linear projection of the multivariate time serigs} and all orthogonal directions
had to be computed. The direction that minimizes the kustaisd its orthogonal direc-
tions had to be computed as well. To compute théspidjections we used the Matlab
routines by [(I5) available on the web (http:// halweb.u&fiip/download.html). In
this case too we confined ourselves only to AO and IO. In thisiaase, the procedure
was applied to the multivariate residual time sefiag computed by fitting a VAR of
orderM =4 to{y: }. Then, each and every projection was searched for outleusing
the univariate counterpart of the statistic in the OARMA hoet. The maximum across
time and across projections was computed andJetienote the maximum found on
the projections of the multivariate time serigs} and/\; denote the maximum found
on the projections of the multivariate residual time sefiag. BothAa and/\; were
compared with their appropriate thresholds and either aroAgn 10 was detected if
the greatest of\p and/\; exceeded its threshold. As tables of percentiledgfand
/| are available only up tdl = 10 (seel{8), Table 2, p. 663), we computed the 95-th
percentiles by simulation from the dynamic factor modeh#Mt= 20 andT = 200. In
this case we obtained after 10000 replicatidips= 5.9772 and\; = 6.0392.
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TABLE 3
Isolated outlier percentage detection by the ODFM, OARMA @RPP methods

ODFM OARMA OPP
outlier id. percent outlier id. percentage outlier id. pertage
correct false correct AO  correctlO false correct AO cori€ct  false
96.9 17 2.56 9464 100 582 409 43
(35199 (2.3473 (2.21) (2.99) (8.1462 (8.2698 (4.2320

Once date and type of outliers were determined, to estinhaie size we fitted a
VAR model of ordefM = 4 to the multivariate time seriggt } and computedy , for
innovation outliers ando , for additive outliers as irl{23) p. 794.

The results obtained by applying the three procedures twwdis the outlying ob-
servation in the artificial data set with an isolated outtier displayed in Tab# 3. The
Monte Carlo statistics were computed on 1000 replicatitmgrder to compute the
standard errors of the estimates of the percentages otidetewe divided the replica-
tions in 40 groups of length 25 each. The percentages werputach for each group
of replications, then we could compute the standard erreaoh percentage by using
40 values. The percentage of correct detection of the mwlatitlier int = 100 was
greater than 95% for all methods. The standard errors arpa@hle as regards meth-
ods ODFM and OARMA but the standard error is slightly largarthe OPP method.
Both OARMA and OPP methods identified in most cases an owtfigmovation type
possibly because the IO allows for greater flexibility asa@fitting the observed data
is concerned. On the other hand, if we constrained the OARKEA@PP methods to
search for AO only, then the percentages of correct detedtiopped dramatically. We
recorded false outlier detections as well. The number dit&ons (percentage) where
one or more wrong detections occurred was low for methods\BRd OPP while
the method OARMA wrongly detected outlying observationsvery replication. As
overall figures, the observations detected as outlying oses 1000 replications (se-
ries length 200) were 17, 80, and 9003 for the ODFM, OPP, an&I@A methods
respectively.

The results for the data set with a patch at tirhes99, 100,101 are displayed in
Tablel. Considering the outlier separately, the ODFM metttietected each of the
three outliers about 99%, while for the OARMA and OPP methuidb percentages
were recorded only for the detection of the first outlier ia gatch. Again, these latter
methods almost always identified the outlying observatami0. As a consequence,
the outliers int = 100 andt = 101 could be well explained by the innovation outlier
structure. The percentages of false identifications weafreerdow for the ODFM and
OPP methods, while the OARMA method wrongly identified ariin all 2000 mul-
tivariate time series. The average number of false outivassin this case about 7, that
is less than in the case of multivariate time series with ataied outlier. By consider-
ing the patch as a whole, correct identification was perfdr8ie5% by ODFM, only
about 58% by OARMA and never by OPP. At least an outlier in thtelpwas detected
by ODFM, OARMA and OPP 100%, 839% and 84% respectively.

Outlier size estimates are displayed in Tdllle 5 for the céskeoisolated outlier
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TABLE 4
Outlier patch percentage detection by the ODFM, OARMA an& @fethods

Method ODFM OARMA OPP
id. percent  iden. percentage iden. percentage
AO 10 AO 10
Outlier 989 0.1 8309 00 829
t=99 (1.9975  (0.24) (3.79) (7.9492
Outlier 998 0.2 6372 00 14
t =100 (0.8718  (0.42) (4.79) (2.107)
Outlier 988 434 6006 29 0.0
t=101 (27129  (2.23) (469 (3.345)
False 15 100 48
detection  (2.1331) (3.9192

and in Tabldlb for the case of the outlier patch. The adequédtiyeoestimates was
evaluated by the norm of the difference between the estimanel true outlier size
vectors. This figure yields a kind of distance measure whiadoants both for bias
and variability of the estimates. We may remind that theieutize is equal to ®
for all component time series. For the ODFM method we distisigthe total outlier
from its orthogonal part. This is of interest because theadyio factor model structure
is directly impacted by the array orthogonal to the columhshe matrix A, while
the rest impacts the factors. For the other methods, OARMAQIRP, we distinguish
between AO and IO identification. We may notice that as fahasQDFM method is
concerned, the orthogonal part is close to its true couatevghile the estimated total
outlier seems more variable. The distance is about 7 in afsaAs regards the other
methods OARMA and OPP the distance between the estimateniendutlier size is
smaller, approximately between 4 and 5. In the case of ORHithire is even smaller
(about 25) if the outlier is identified as AO.

Such distances depend both on bias and variability. Tondjsish between these
two sources, we present the bias and standard errors oftiheatss ofwy in Tablell
for the case of isolated outlier. Figures are bias and stdreteors of estimated outlier
sizes in each component, over the correctly identified capitns, and averaged on
the 20 components. It may be seen that the proposed ODFM thettovides less
biased estimates of the outlier size, while the variabiltiarger than the projection
pursuit method. Since the distances of the estimétiedm the true values are generally
small (see Tablfl5 arlll 6), we conclude that estimation ofauigite outliers in the
(estimated) factors, or interaction between them and ttimates of the factor matrix
A, are responsible for such a larger variability. This may hesed by the method
employed in Theorerd.1 for estimatidg; }. A more efficient method is currently
under investigation.

9. Application to real data

We used a quarterly economic data set which covers thredroesir-rance, Germany
and lItaly, from 1960 to 1999, for illustrating method ODFMhéldata are taken from
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TABLE 5
Deviation from true values of isolated outlier size estiesatielded by the ODFM, OARMA and OPP
methods
Method ODFM OARMA OPP
=2l llo-oll [lon-w| [a-w| o=l & -l
Outlier 07805 706 33778 45135 25843 43167

t=100 (0.1364 (28675 (14531) (34293  (0.6581) (15351

TABLE 6
Deviation from true values of outlier patch size estimateklgd by the ODFM, OARMA and OPP methods

Method ODFM OARMA OPP
-2 llo-owl loa-wl [&-] [da-wl [&-w]
Outier 07817 71861 39729 45533 43767
t=99 (01386 (28408  (129)  (1.6458 (15117
Outier 07829 71386 39406 61979 46051
t=100 (0.1381) (28656 (1.1391) (24194 (1.0134)

Outier 07773 72700 40333 51087 24556
t=101 (01415 (27589 (14710 (19191  (0.4919

TABLE 7
Bias and standard errors of the outlier size estimates, aged on the 20 components (isolated outlier at
t =100
Method ODFM  OPP-AO OPP-IO
correctly identified repl.ns 969 582 409
average bias 0.014 -0.373 -0.231

average standard error 1.70 0.46 0.99




R.Baragona and F. Battaglia/Outliers in dynamic factor retsd 421

TABLE 8
French (f), German (g) and Italian (i) quarterly economiddand preliminary transformations

Label Description Transform.  Countries
cpi Consumer price index iy f g i
ip Index of industrial production Aln f g i
pgdp Gross domestic product deflator iy g i
rbndl Interest rate of long-term governmentbonds A f g i
rbndm Interest rate of medium-term governmentbonds A i
rcommod  Real commodity price index Aln f g i
rgdp Real gross domestic product Aln g i
roil Real oil prices Aln f g i
rgold Real gold prices Aln f g i
rstock Real stock price index Aln f g i
unemp Unemployment rate A i

the seven-country data set used by (22) to compute combimédrecasts of output
growth. The preliminary transformations suggested in foeeanentioned paper were
applied. Then, 154 transformed data for each time series ax@ilable from Il quarter
1960 to IV quarter 1999. We considered only the time seridcaied by ‘a’ in Table
Ibin (22).

For France 7 series were available from 1960 to 1999, 9 stieGermany and
11 series for Italy. Time series labels, description, tfamsations and countries are
displayed in TablH8.

The data set was composed of 27 time series of lefigth154. The number of
factors was checked by using the eigenvalues of the varieowariance matrix. The
eigenvalues were computed and arranged in descending dtdecumulated sum is
plotted in Figllt. The smallest integer such that the curadlatim exceeded 96 was
6, so that we assumed the number of faéter 6.

The symmetry of the variance-covariance matrices complateldgs 1, 2, 3 and 4
was checked along the guidelines given in Sedllon 4. Twastit for this test were
computed by averaging the periodogram in two frequency $iacehtered id = 17/4
the first one and ik = 3r1/4 the second one. We obtained respectively.874nd
14388 which are not significant, so that the null hypothesis was&jected.

The identification stage required the computatioNof K = 14 projections that
were searched for outlying observations along the guidslgiven in Sectiofl8. The
projections that exceeded the thresholds computed by theblchev inequality sug-
gested the presence of outliers at tirhes23, 24, 37,63,124. The graphical display of
these projections in Fifll 5 shows that each projection asgtl an outlier separately,
excepted the third projection (outlierstat 23 andt = 24).

Examination of the estimated outlier sizes allowed the tg@ees that most con-
tributed to the multivariate outlier to be discovered. Weildosee that the outlier at
t = 23 (1/1966) was apparent in time series rbndl (g) and pgdpditystock, unemp
(). The outlier att = 24 (11/1966) was mainly determined by roil (f), roil and reko
(9), and pgdp, rbndl, rstock, unemp (i). The outliett at 37 (111/1969) was mainly
determined by rbndl (f), rbndl (g), and rbndl and unemp (Heain influence on the
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outlier att = 63 (1/76) came from rbndl and rgold (f), rbndl and rgold (g)dabndl,
rbndm, rcommod, roil (i). The outlier at= 124 (11/1991) was apparent only in time
series rbndl (f). The interest rate of long-term governniearids (rbndl) was present
in all outliers, that is this time series produced most oftthexpected values observed
in the multivariate time series. Its effect was common tottivee countries dt= 37
andt = 63 while its effect was limited to Germany and Italytat 23, Italy att = 24,
and France dt= 124. Some time series were available for Italy only, so itreez of
interest to apply the procedure to the data set which indwady the quarterly eco-
nomic Italian data. We could fit a dynamic factor model witha8tbrs and 4 outliers
were found, at = 23 (pgdp, rbndl, rbondm, rstock)= 24 (pgdp, rbndl)t = 55 (rbndm,
roil, rgold, rstock, unemp), and= 103 (rbndl, rbndm, roil, rstock, unemp). Observa-
tion att = 55 corresponds to 1/1974 and= 103 to 1/1986. By comparing the results
for Italy with those for the three countries together we doarigue that some outliers
were ‘international’ while others regarded only one or tvowuiatries. So we had to
consider outliers at = 23 andt = 24 as ‘international’ while outliers @t= 55 and

t = 103 as ‘national’. Some of the time series that originated¢htwo outliers, that
is rbndm and unemp, were present in the Italian data set Sittyilarly we could not
consider the outlier at= 124 as ‘international’ but ‘national’ limited to the quare
economic French data. Note that the outliet at 23 was not considered present in
the French data, but dates- 23 andt = 24 are close so that the outlying observations
were possibly related to some common circumstance.

10. Conclusions

We presented a method to discover outliers in multivariate series generated by a
dynamic factor model. This method was found to yield bestltscompared to two
other methods aimed at discovering outliers in multivartihe series in a different
framework. Our method relies on the assumption that theivawiate time series is
generated by a dynamic factor model, therefore the proeettucheck the dynamic
model adequacy for fitting the data should be carefully &ohid ensure that genuine
outliers could be discovered. If assumptions were canefiliecked and requirements
met, both the simulation experiment and the applicatioretd data showed that the
method presented in this article was effective for outlegedtion and estimation, cau-
tious against false outlier identification and, in additisimple to implement. The es-
timates of the total outlier size were found less biased ntorte variable than those
obtained by using the other two methods. On the contrary stimates of the size
of the part of outlier that impacts the dynamic factor modghaut affecting the fac-
tors were found accurate and close to their respective alues. Improvements of the
estimation method is currently subject of further research
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Appendix A: Appendix
A.1. Proof of Theorem

Proof. Suppose that’ = Cx and Assumptions 1 and 2 hold, then

)
X{k = Z)e}kgtfj,
j=

where®j =COj andO; = diag(el({), e 6,2{2). But since theg’s are mutually inde-

pendent, eacl®?, j =0,1,..., is diagonal, thereforgkcskeérj) =0,r #s TheOj’s

are diagonal, therefor@rer(rj) =0, r # s. Since for eachr at least oneﬂrjr iS non-zero

(otherwisex;+ would be equal to zero for each and eveyit follows thatC too has to
be diagonal. Thus, again from Assumption 1,

x(0) = cov(x, (%)) =Crx(0)C’=CC =1,
that iscﬁk: 1,k=1,...,K, which impliesC = | up to a change of sign. O

A.2. Proof of TheoremExll

Proof. Note first that, foth # 0, I'y(h) = Al'y(h)A" has rank< K, thereforely(h) has

at least(N — K) eigenvalues equal to zero for ahy£ O (zero is not necessarily the
smallest eigenvalue becausgh) is not positive definite).

If ZA=0, thenly(h)z= Al'y(h)A'’z= 0, thereforez is eigenvector associated with a
zero eigenvalue of each matiiy(h) for anyh # 0.

On the other hand, let be an eigenvector associated with a zero eigenvalue of each
matrix [y(h),h # 0 (the set of such vectors is not empty because it incliies
Thenly(h)z= Ary(h)A'’z= 0 for anyh and on multiplying by the generalized inverse
(A'A)~1A we getly(h)A'z= 0. If we letc = A'zthe last equation reads(h)c = 0 or,
sincelx(h) is diagonal,

yi(hej=0, j=12,....K,h=12 ...
which under our hypotheses implies=0, j = 1,2, ...,K and therefordz=0. O

A.3. Proof of TheoremEA

Proof. We note first that

s—h
Fy(h) = z Wuln , h=12,...,s—1
u=1

andly(h) = 0 for h > s. Moreover, the matriys, Y, . . ., 5] has rank< skK(< N),
thus there exists a vectasuch thatZ y, = 0 for anyu. For such a vector we have

s—h
ry(h)Z: z Yy (l,U(HhZ) =0,h=1,2,...,5—-1
u=1
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and it also follows thaEy(h) has a zero eigenvalue for edgh-1,2,...,5— 1.
Suppose now thatis eigenvector associated with a zero eigenvalue of Eg@h, and
write ¢, = ,z Then

0="Ty(s—1)z= Y1 Pz= ynGs
and since the rank af; is K it follows ¢ = 0. Now,

0=Ty(s—2)z= Y 1Z+ YoPiz= YnCs 1+ YoCs = YaCs 1

andcs_1 = 0. On repeating the same argument for lags3,s—2,...,2,1 we obtain
Cs-2 =Cs3=...=Cp = 0. It remains to show that = 0 also. From assumption (ii)
for a fixedk the rank ofyy is K, and

s—k+1
0=2Ty(k=1)=7Z 5 Yuhyx_1=Colk+Colh1+Callicot- . +Coyp1s=Crik
u=1

and it followsc; = 0, which completes the proof. O

A.4. Proof of Theorem B

Proof. Let us recall that ranlAA') = rank(A) = K. ThenAA hasN — K eigenvalues
equal to zero. We have thij (0) = AA + g2l is symmetric and positive definite. From
the relationship

AN — Al =Ty(0)— (A +0?)l

it follows thaty(0) has minimum eigenvalues equal &8 with multiplicity N — K.
Let zbe a corresponding eigenvector. Then,

0% =27ry(0)z=ZANz+ 02,

and||ZA|| = 0 follows. On the other hand, #A = 0 thenly(0)z= AA'z+ g%z andzis
eigenvector associated to the smallest eigenvafue O

A.5. Proof of Theorem B4
Proof. Since
S
My(0) =Y uy+0°l
u=1
and for anyv such that|v||?> = 1 we have

S
VIyOv=Y [Vl +0? > o
u=1

it follows that the smallest eigenvalueof(0) is at leasto?. If Y z=0,u=1,2,...,s
then

ry(0)z= Yu(W2)+0’z= 0’z
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andzis eigenvector associated witt?, the smallest eigenvalue 6(0).
On the other hand, letdenote an eigenvector associated with the smallest eilyenva
o?, it follows thatZy(0)z= 02. Then

S
Zry(0)z= Z|\lp(,z|\2+02 =02
u=
Hencey, ||¢/z||? = 0, thereforay/,z= 0 for anyu. O

A.6. Proof of TheoremEXl
Proof. If I'y(h) is symmetric for anyh we can write

F(A) = ] i ry(hye Ah = %T {Fy(O) +2h§lry(h) cogA h)}

27'rh:700

which is real for anyA. On the other side, i (A) is real therF(A) = F(A) =F(-A)
and

ry(h) =y(—h) = / F(A)e AhdA — / F(w)d“"dw = Iy(h).

A.7. Proof of Theorem

Proof. Assuming normality(XR, X} ) and(XR,X¢) for 1 < j < k < J are independent,

therefore the unrestricted likelihood may be written

L (X X1, .., XP X)) =

-J/2 J e - ° i
exp{—11(<xﬁ>’,<x,’>’>(ﬁ1p RIQZF) ();4' )}
(A1)

ReF  —ImF

—NJ
n ImF  ReF

. . : ReF  —ImF X -S
ThereforethemaxmumI|keI|hoodest|mate(Jf|mF ReE )equals( s % )

(L.0) and the unrestricted maximum likelihood is

/2
xR S exp{—2NJ} .

S

UnderHo, F = ReF, bothXR andX| are independentli (0, 3F), thus

LOR XL, xR X1) = N |ReF | exp{—Jtr{(ReF)’lSR}} :
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On maximizing with respect to Fe we find that the maximum likelihood estimate of
ReF is Sk and the maximum equals

Lo=m NS Jexp{—2NJ} .

The likelihood ratio is

Lo o 9| —s 72
T ¥ s

Using
i{* Tsf = |l [S+S:'S]|

it follows that the likelihood ratio is a monotonic functiofithe statistic
U=IS"|S%+SS'S| =] +(%'S)?
and the rejection region I3 < c. The distribution ofJ is analyzed in Chapter 8 cli(1),

and corresponds in his notationl@ n j—n-1. O

A.8. Proof of Theorem B2l

Proof. The first part of the theorem follows directly from propositi(4) in {12), p. 46.

So we only have to prove th¥fX’ = WkAi/Z. Let the singular value decomposition of
Y be written as in proposition (1) ifu{12), p. 60, that is

Y =WDV'.
TheN x T matrix D may be written

1/2
N Ole(rz—K) Ok (T 1)
Or—k)xK AréK O —kyx(T-1) |°

ON=r)xk  ON=r)x(r=k)  ON=r)x(T=r)

D:

WhereArlfzK =diag\/Ak+1,-..,VAr) and the)’s are the singular values dfY. The
columns of theN x N orthogonal matrixV are the eigenvectors &fY’' (arranged ac-
cording to the non increasing order of the associated eajees) and the columns of
theT x T orthogonal matri¥/ are the eigenvectors §fY. Note that some or all of the
submatrices disappear whege- K, and/orr = N, and/orr = T.

Let the matriXWV be partitioned in such a way that it is conformable to theipaned
matrix D, that is

W(1:K,1:K) W(1:K,K+1:r) W(1:K,r+1:N)
W= | WK+1:r,1:K) W(K+1:r,K+1:r) W(EK+1:rnr+1:N) |,
W(r+1:N,1:K) W(r+21:N,K+21:r) W(r+1:N,r+1:N)



R.Baragona and F. Battaglia/Outliers in dynamic factor retsd 428

whereW(u: v,k: h) is used to denote the submatriXfwhich includes all entrie;
with u <i <vandk < j < h. Multiplication by D yields

W(1:K,1:K)AY? W(1:K,K+1:nAY% Ok (T 1)
WD= | WK+1:r1:K)AY? WK+L:K+1:0DA% O ww(rn)
W(r+1:N, LKA W +1:NK+1:0A % On o

On the other hand, we have obviou®ly= [uy, ..., ux] and multiplication ofv’ by X’
yields

Ik
A |
V/X/: [Ul,...,UT]/[Ul,---,UK] = |: 0 ) :| = |: O(er)XK ] :
(T-K)xK 0
(T—r)xK

Some or all of the zero submatrices disappear wherK and/orr = T. Summing up,
we obtain A A
YX'=WDV'X' =
W(1:K,1:K)AY? W(1:K K+1:nAY% Okx(T—r) Ik
W(K+1:r,1:K)/\%/z W(K+1:r,K+1:r)/\¥2§ O(r—K)x(T—r)
W(r+1:N, 1A W+ LN K+1:0AY O ryron)
W(L:K,1:K)AY® W(L:K,1:K)
= | WK+1:r,1:K)AY? W(K+1:1,1:K) | AYZ
W(r+1:N,1:K)A¢? W(r+1:N,1:K)

It is easily recognized that

W(1:K,1:K)
W(EK+1:r1:K) | =Wk,
W(r+1:N,1:K)
so that the desired result A 12
A=W A/
follows. O

A.9. Proof of TheoremE=l

Proof. The result for the mean is obvious. For the variance we havesxfample,
var{T (fs(0) — #s(0))} = E{(zty — Z) s + i (25 — 2)}°

= @B (21, — & )* + 20 E{ (2t — Z) (2o — %)} + WP E(zs — %)
Then, by recalling that
E(#s(0)) = %s(0) +O(T ),
(e.gd7, vol. 2, p. 693, Formula 9.5.4) the result followise proof for vaf T (s (h) —
¥s(h))} is similar. O
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A.10. Proof of Theorem B

Proof. We have

Re(lis(Aj) ~fis(A))} = S + As(A})

and 3
Im{lrs(Aj) —Irs(Aj)} = Brs(A)),

and obviouslyEAs(A) =EBis(A) = O for eachr, s, andA.
We evaluate now the second moments

1

vary/TAs(Aj) = & ZTE{ZZ cosj(tg—t) cosA|(to — u)

X (@ (Zst—2) + (2t —Z)s) (@ (Zsu—2) + (Zu — 2 ws) }
T T
_ ﬁ . 3 coshj(to—t)coshito
t=1u=

< {6 Yaslt — U) + 6B yr (t — U) + @ (s (t — ) + Ys(u—1)) }

1 T-1
= GE Z {aPyes(h) + @ yir () +cr s (s() + s (— )} 3 coshjveosh; (v,
h=—T+1

where we have put=to —t and are neglecting end effectsAlfis a Fourier frequency,

> cosAjveosAj(v+h) = % cosAjv(cosAjveosAjh—sinAjvsinA;h)
\ \
=cosAjh§ cofAjv—sinAjh'$ cosjvsinAjv
i Z i i Z i i

T
=5 cosAjh,
and finally

(Zl)zT Z {ofyss(h) + a8 yir () -+ ar cs(Ws () + s (— ))};cos)\jh

h=-—T+1

vary/TAs(Aj) =

1
- —{fSS()‘j)wrz‘i‘ frr (A}) @€ + ar s (frs(A}) + frs(—A}))}-
On repeating the same argumentBy(Aj) we obtain

T

T
varyTBis(Aj) = (27_;21_ le sinAj(to—t)sinAj(to —u)
t=1u=1

{0 Ves(t — U) + By (t — U) — ar as(Yrs (t — U) + Ys(U—1)) },
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and since

> sinAjvsinAj(v+h) =% sinAjv(sinAjvcosAjh+cosAjvsinA;h)
v v
=cosAjh Y sirfAjv+-sinAjh 'S sinAjvcoshjv
j Z j j Z j j

:;COS)\jh,

it follows
vary/TBs(Aj) — %T{ fsod( A} + fir (A)) € — cr as(frs(Aj) + frs(—A))}-

Noting that 3

VTRe{lis(Aj(T)) ~Irs(A)(T)} = VT As(A(T))
and

VTIM{lis(A1(T)) = Trs(A)(T))} = VT Bs(Aj(T))

the result follows. O

A.11. Proof of Theorem B

Proof. Since
. . o /2 AYAN
Fs(A) —Fs(A) = — wr (A —=A{AA)) +iIBA)} + 5 —.
T j:;/z 2T
we have

varRe(Fs(1) — Fis(\)} = (212 y 3 wr 0= 2w (A = AoV AS(A ()}
J

and

varim{fs() — Fis(1)} = (212 3 wrh = Aj)wr (3 = Acov{Brs(A B}
J

and it may be easily seen that ¢@vs(Aj)Ars(Ak)} and coBrs(Aj)Brs(Ax)} tend to
zero asT — o if Aj # A while the results fodj = A, are given in the previous the-
orem. AsT — o, the window bandwidth tends to zer@m/T) 3 wr (A — Aj)? tends

to coM and therefore vdiRe(Fs(A) — Fs(A))} has the same asymptotic behavior as
ZT—"ZMvar(\/TAS()\)) while var{lm(Fs(A) — Fis(A))} has the same asymptotic behav-
ior as ZT—"ZMvar(\/'TBrS()\)). On substituting the expressions for the variance theghesi
follows. O
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