
Electronic Journal of Statistics

Vol. 1 (2007) 307–330
ISSN: 1935-7524
DOI: 10.1214/07-EJS069

Generalization error for multi-class

margin classification

Xiaotong Shen

School of Statistics
The University of Minnesota

Minneapolis, MN 55455
e-mail: xshen@stat.umn.edu

Lifeng Wang

Department of Biostatistics
University of Pennsylvania

Philadelphia, PA 19104
e-mail: lifwang@mail.med.upenn.edu

Abstract: In this article, we study rates of convergence of the general-
ization error of multi-class margin classifiers. In particular, we develop an
upper bound theory quantifying the generalization error of various large
margin classifiers. The theory permits a treatment of general margin losses,
convex or nonconvex, in presence or absence of a dominating class. Three
main results are established. First, for any fixed margin loss, there may be
a trade-off between the ideal and actual generalization performances with
respect to the choice of the class of candidate decision functions, which
is governed by the trade-off between the approximation and estimation
errors. In fact, different margin losses lead to different ideal or actual per-
formances in specific cases. Second, we demonstrate, in a problem of linear
learning, that the convergence rate can be arbitrarily fast in the sample
size n depending on the joint distribution of the input/output pair. This
goes beyond the anticipated rate O(n−1). Third, we establish rates of con-
vergence of several margin classifiers in feature selection with the number
of candidate variables p allowed to greatly exceed the sample size n but no
faster than exp(n).
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1. Introduction

Large margin classification has seen significant developments in the past several
years, including many well-known classifiers such as Support Vector Machine
(SVM, (7)) and Neural Networks. For margin classifiers, this article investigates
their generalization accuracy in multi-class classification.

In the literature, the generalization accuracy of large margin classifiers has
been investigated in two-class classification. Relevant results can be found in,
for example, (3), (29) and (14). For multi-class classification, however, there are
many distinct generalizations of the same two-class margin classifier; see Section
3 for a further discussion of this aspect. As a result, much less is known with
regard to the generalization accuracy of large margin classifiers, particularly
its relation to presence/absence of a dominating class, which is not of concern
in the two-class case. Consistency has been studied in (30), and (21). To our
knowledge, rates of convergence of the generalization error have not been yet
studied for general margin classifiers in multi-class classification.

In the two-class case, the generalization accuracy of a large margin classifier
is studied through the notion of Fisher consistency (cf., (15); (30)), where the

Bayesian regret Regret(f̂ , f̄) is used to measure the discrepancy between an es-

timated decision function f̂ and f̄ , the (global) Bayes decision function over all
possible candidate functions. When a specific class of candidate decision func-
tions F and a surrogate loss V are used in classification, f̄ is often not the
risk minimizer defined by V over F . Then an approximation error of F to f̄
with respect to V is usually assumed to yield an upper bound of Regret(f̂ , f̄),
expressed in terms of an approximation error plus an estimation error of es-
timating the decision function. One major difficulty with this formulation is
that the approximation error may dominate the corresponding estimation error
and be non-zero. This occurs in classification with linear decision functions; see
Section 5.1 for an example. In such a situation, well-established bounds for the
estimation error become irrelevant, and hence that such a learning theory breaks
down when the approximation error does not tend to zero.

To treat the multi-class margin classification, and circumvent the aforemen-
tioned difficulty, we take a novel approach by targeting at Regret(f̂ , fV ) with
fV the risk minimizer over F given V . Toward this end, we study the ideal gen-
eralization performance of fV and the mean-variance relationship of the cost
function. This permits a comparison of various margin classifiers with respect
to the ideal and actual performances respectively described in Sections 3 and
4, bypassing the requirement of studying the Fisher consistency. As illustrated
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in Section 5.2, we show that the rate of convergence of the generalization error
of certain large margin classifiers can be arbitrarily fast in linear classification,
depending on the joint distribution of the input/output pair. Moreover, in lin-
ear classification, the ideal generalization performance is more crucial than the
actual generalization performance, whereas in nonlinear classification the ap-
proximation error becomes important to the actual generalization performance.
Finally, we treat variable selection in sparse learning in a high-dimensional sit-
uation. There the focus has been on how to utilize the sparseness structure
to attack the curse of high dimensionality, c.f, (31) and (12). Our formulation
permits the number of candidate variables p greatly exceeding the sample size
n. Specifically, we obtain results for several margin classifiers involving feature
selection, when p grows no faster than exp(n). This illustrates the important
role of penalty in sparse learning.

This article is organized as follows. Section 2 introduces the notation of gener-
alized multi-class margin losses to unify various generalizations of two-class mar-
gin losses. Section 3 discusses the ideal generalization performance of fV with
respect to V , whereas Section 4 establishes an upper bound theory concerning
the generalization error for margin classifiers. Section 5 illustrates the general
theory through four classification examples. The Appendix contains technical
proofs.

2. Multi-class and generalized margin losses

In k-class classification, a decision function vector f = (f1, · · · , fk), with fj rep-
resenting class j, mapping from input space X ⊂ R

d to R, is estimated through
a training sample Zi = (Xi, Yi)

n
i=1, independent and identically distributed ac-

cording to an unknown joint probability P (x, y), where Yi is coded as {1, · · · , k}.
For an instance x, classification is performed by rule arg max1≤j≤k fj(x), as-
signing x to a class with the highest value of fj(x); j = 1, · · · , k. The classifier
defined by arg max1≤j≤k fj(x) partitions X into k disjoint and exhaustive re-

gions X1, · · · ,Xk. To avoid redundancy in f , a zero-sum constraint
∑k
j=1 fj = 0

is enforced. Note that fj; j = 1, · · · , k are not probabilities.
In multi-class margin classification, there are a number of generalizations of

the same two-class method. We now introduce a framework using the notion
of generalized margin, unifying various generalizations. Define the generalized
functional margin u(f(x), y) as (fy(x) − f1(x), . . . , fy(x) − fy−1(x), fy(x) −
fy+1(x), . . . , fy(x) − fk(x)) ≡ (u1, · · · , uk−1), comparing class y against the
remaining classes. When k = 2, it reduces to the binary functional margin
fy − fc 6=y, which, together with the zero-sum constraint, is equivalent to yf(x)
with y = ±1. Within this framework, we define a generalized margin loss

V (f , z) = h(u(f(x), y))

for some measurable function h and z = (x, y), where V is called large margin if
it is nondecreasing with respect to each component of u(f(x), y), and V is often
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called a surrogate loss when it is not the 0-1 loss. For import vector machine
(33),

h(u) ≡ hlogit(u) = log(1 +

k−1
∑

j=1

exp(−uj)).

For multi-class SVMs, several versions of generalized hinge loss exist. The gen-
eralized hinge loss proposed by (23), (26), (5), (8), and (11) is defined by

h(u) ≡ h1(u) =

k−1
∑

j=1

[1 − uj ]+;

the generalized hinge loss in (13) is defined by

h(u) ≡ hsvm2(u) =

k−1
∑

j=1

[

∑k−1
c=1 uc
k

− uj + 1]+;

the generalized hinge loss in (16) is defined by

h(u) ≡ hsvm3(u) = [1 − min
{1≤j≤k−1}

uj]+.

For multi-class ψ-learning, h(u) ≡ hψ(u) = ψ(min{1≤j≤k−1} uj) is the general-
ized ψ-loss by (16), with ψ(x) = 0 for x > 1; 2 for x < 0; 2(1−x) for 0 ≤ x ≤ 1.
For multi-class boosting (32), h(u) ≡ hl2(u) = (1 − min{1≤j≤k−1} uj)

2 is a
generalized squared loss. Interestingly, for the 0-1 loss, h(u) ≡ L(f , Z) =
I[min{1≤j≤k−1} uj < 0].

For classification, a penalized cost function is constructed through V (f , Z):

n−1
n
∑

i=1

V (f , Zi) + λJ(f) (2.1)

where J(f) is a nonnegative penalty penalizing undesirable properties of f , and
λ > 0 is a tuning parameter controlling the trade-off between training and J(f).

The minimizer of (2.1) with respect to f ∈ F = {(f1, · · · , fk) ∈ F :
∑k

j=1 fj =

0}, a class of candidate decision function vectors, yields f̂ = (f̂1, · · · , f̂k) thus

classifier arg maxj=1,··· ,k f̂j.
In classification, J(f) is often the inverse of the geometric margin defined by

various norms or the conditional Fisher information (6). For instance, in linear
SVM classification with feature selection, the inverse geometric margin with re-
spect to a linear decision function vector f is defined as 1

2

∑k
j=1 ‖wj‖1, cf., (4),

where fj(x) = 〈wj ,x〉+bj, j = 1, · · · , k, with 〈·, ·〉 the usual inner product in R
d,

bj ∈ R, and ‖·‖1 is the usual L1 norm. In standard kernel SVM learning, the in-

verse geometric margin becomes 1
2

∑k
j=1 ‖gj‖2

K = 1
2

∑n
i=1

∑n
k=1 α

j
iα

j
kK(xi,xj),

where fj has a kernel representation of gj(x)+ bj ≡
∑n
i=1 α

j
iK(x,xi)+ bj. Here

K(·, ·) is symmetric and positive semi-definite, mapping from X ×X to R, and
is assumed to satisfy Mercer’s condition (17) so that ‖g‖2

K is a norm.
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3. Ideal generalization performance

The generalization error (GE) is often used to measure the generalization accu-
racy of a classifier defined by f , which is

Err(f) = P (Y 6= arg max
j=1,··· ,k

fj(X)) = EL(f , Z),

with multi-class misclassification (0-1) loss L(f , z) = I(Y 6= arg max
j=1,··· ,k

fj(X)).

The corresponding empirical generalization error (EGE) is n−1
∑n

i=1 L(f , Zi).
Often a surrogate loss V is used in (2.1) as opposed to the 0-1 loss for

a computational consideration. In such a situation, (2.1) targets at the min-
imizer fV = arg inff∈F EV (f , Z), which may not belong to F . Consequently,
EV (fV , Z) represents the ideal performance under V , whereas EL(fV , Z) is
the ideal generalization performance of fV when V is used in (2.1). Now define,
for f ∈ F ,

e(f ,fV ) = EL(f , Z) − EL(fV , Z),

eV (f ,fV ) = EV (f , Z) − EV (fV , Z).

Note that for f ∈ F , eV (f ,fV ) ≥ 0 but e(f ,fV ) may not be so, depending
on the choice of V . In this article, we provide a bound of |e(f ,fV )| to measure
the discrepancy between the actual performance and ideal performance of a
classifier defined by f in generalization.

It is worthwhile to mention that for two margin losses Vi; i = 1, 2, the
ideal generalization performances determine the asymptotic behavior of their
actual generalization performances of the corresponding classifiers defined by
f̂i. Therefore, if EL(fV1 , Z) < EL(fV2 , Z) then EL(f̂1, Z) < EL(f̂2, Z) even-

tually provided that |e(f̂i,fVi)| → 0 as n → ∞. Consequently, a comparison

of |e(f̂1,f
V1)| with |e(f̂2,f

V2)| is useful only when their ideal performances are
the same, that is, EL(fV1 , Z) = EL(fV2 , Z).

To study the ideal generalization performance of fV with respect to V ,
let f̄ be the (global) Bayes rule, obtained by minimizing Err(f) with re-
spect to all f , including f /∈ F . Note that the (global) Bayes rule is not
unique but its error is unique with respect to loss L, because any f̄ , satis-
fying argmaxj f̄j(x) = argmaxjPj(x) with Pj(x) = P (Y = j|X = x), yields

the same minimal. Without loss of generality, we define f̄ = (f̄1, . . . , f̄k) with
f̄l(x) = k−1

k if l = argmaxPj(x), and − 1
k otherwise.

Let Vsvmj and Vψ be margin losses defined by hsvmj and hψ, respectively.

Lemma 1. If F is a linear space, then

EL(fV , Z) ≥ EL(fVψ , Z) = EL(fL, Z) ≥ EL(f̄ , Z),

for any margin loss V . If, in addition, for generalized hinge losses Vsvmj , j ∈
{1, 3}, it is separable in that EV (fVsvmj , Z) = 0, then

EL(fV , Z) ≥ EL(fVsvmj , Z) = EL(fVψ , Z) = EL(fL, Z) ≥ EL(f̄ , Z).
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Lemma 1 concerns Vψ in both the separable and nonseparable cases, and
Vsvmj ; j = 1, 3, in the separable case, in relation to other margin losses. For
other margin losses, such an inequality may not hold generally, depending on F

and V . Therefore a case by case examination may be necessary; see Section 5.1
for an example.

4. Actual generalization performance

In our formulation, F is allowed to depend on the sample size n; so is fV defined
by F . When fV depends on n and approximates f∗ (independent of n) in that
|eV (fV ,f∗)| → 0 as n → ∞, it seems sensible to use |e(f ,f∗)| to measure
the actual performance as opposed to |e(f ,fV )|. Without loss of generality, we
assume that V ≥ 0.

Let f0 = f∗ when f∗ ∈ F ; otherwise f0 ∈ F is chosen such that eV (f0,f
∗) ≤

ε2n/4 with εn defined in Assumption C. Now define truncated V -loss V T to be

V T (f , Z) = V (f , Z) ∧ T,

for any f ∈ F and some truncation constant T > 0, where ∧ defines the
minimum. Define

eV T (f ,f∗) = E(V T (f ,Z) − V T (f∗, Z)).

The following conditions are assumed based on the bracketing L2 metric
entropy and the uniform entropy.

Assumption A: (Conversion) There exists a constant T > 0 independent
of n such that T > max(V (f0, Z), V (f∗, Z)) a.s., and there exist constants
0 < α ≤ ∞ and c1 > 0 such that for all 0 < ǫ ≤ T and f ∈ F ,

sup
{f∈F :eV T (f ,f∗)≤ǫ}

|e(f ,f∗)| ≤ c1ǫ
α.

Assumption B: (Variance) For some constant T > 0, there exist constants
β ≥ 0 and c2 > 0 such that for all 0 < ǫ ≤ T and f ∈ F ,

sup
{f∈F :eV T (f ,f∗)≤ǫ}

V ar(V T (f , Z) − V (f∗, Z)) ≤ c2ǫ
β.

To specify Assumption C, we define the L2-bracketing metric entropy and
the uniform metric entropy for a function space G = {g} consisting of function
g’s. For any ǫ > 0, call {(gl1, gu1 ), . . . , (glm, g

u
m)} an ǫ-bracketing set of G if for

any g ∈ G there exists an j such that glj ≤ g ≤ guj and ‖guj − glj‖2 ≤ ǫ, where

‖g‖2 = (Eg2)1/2 is the usual L2-norm. The metric entropy HB(ǫ,G) of G with
bracketing is then defined as the logarithm of the cardinality of ǫ-bracketing set
of G of the smallest size. Similarly, a set (g1, · · · , gm) is called an ε-net of G, if for
any g ∈ G, there exists an j such that ‖gj−g‖Q,2 ≤ ε, where ‖·‖Q,2 is the L2(Q)-
norm with respect to Q, defined as ‖g‖Q,2 = (

∫

g2dQ)1/2. The L2(Q)-metric
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entropy HQ(ε,G) is the logarithm of the covering number—minimal size of all
ε-nets. The uniform metric entropy is defined as HU (ε,G) = supQHQ(ε,G).

Let J0 = max(J(f0), 1), and FV (s) = {Z 7→ V T (f , Z) − V (f0, Z) : f ∈
F , J(f) ≤ J0s}.
Assumption C: (Complexity) For some constants ci > 0; i = 3, · · · , 5, there

exists εn > 0 such that

sup
{s≥1}

φ(εn, s) ≤ c3n
1/2, (4.1)

where φ(εn, s) =
∫ c

1/2
4 Lβ/2

c5L
H1/2(u,FV (s))du/L and L = L(εn, λ, s) = min(ε2n +

λJ0(s/2 − 1), 1), where H(·, ·) is HB(·, ·) or HU (·, ·).
Assumption A specifies a relationship between e(f ,f∗) and eV T (f ,f∗), which

is a first moment condition. Assumption B, on the other hand, relates e(f ,f∗)
to variance of (V T (f , Z)− V (f∗, Z)). Evidently V ar(V T (f , Z) − V (f∗, Z)) ≤
min(V ar(V (f , Z)− V (f∗, Z)), T 2), which implies that β = 0 in the worst case.
Exponents α and β in Assumptions A and B are critical to determine the speed
of convergence of e(f ,f∗), although eV T (f ,f∗) may not converge fast. As il-
lustrated in Section 5.2, an arbitrarily fast rate is achievable in large margin
linear classification, because α can be arbitrarily large. Assumption B appears
to be important in discriminating several classifiers in the linear and non-linear
cases. Assumption C measures the complexity of F . However, if c1 and c2 in
Assumptions B and C depend on n, then they may enter into the rate.

Two situations are worthwhile mentioning, depending on richness of F . First,
when F is rich, f∗ = f̄ , and margin classification depends only on the behavior
of the marginal distribution of X near the decision boundary. This is character-
ized by the values of α and β. For instance, in nonlinear multi-class ψ-learning,
α = 1 and 0 < β ≤ 1, cf., (16). This corresponds to the case of the n−1 rate
in the separable case and n−1/2 in the non-separable case, as described in (2).
Second, when F is not rich, as in linear classification, f∗ 6= f̄ is typically the
case, where α and β depend heavily on the distribution of (X,Y ); see Section
5.2 for an example. As a result, actual generalization performances of various
margin classifiers are dominated by different ideal generalization performances;
see Section 5.1 for an example.

Theorem 1. If Assumptions A-C hold, then, for any estimated decision func-
tion vector f̂ defined in (2.1), there exists a constant c6 > 0 depending on c1-c5
such that

P
(

e(f̂ ,f∗) ≥ c1δ
2α
n

)

≤ c7 exp(−c6n(λJ0)
2−min(β,1)),

provided that λ−1 ≥ 2δ−2
n J0, where c7 = 3.5 for the bracketing entropy HB(·, ·)

and c7 = (1+(20(1− 1
32c6n(λJ0)2−min(β,1) )

−1)1/2) for the uniform entropy HU (·, ·),
and δ2n = min(ε2n + 2eV (f0,f

∗), 1).

Corollary 1. Under the assumptions of Theorem 1, |e(f̂ ,f∗)| = Op(δ
2α
n ),

E|e(f̂ ,f∗)| = O(δ2αn ), provided that n(λJ0)
2−min(β,1) is bounded away from zero.
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The rate δ2n is governed by two factors: (1) ε2n determined by the complexity of F

and (2) the approximation error eV (f∗,f0) defined by V . When e(f∗,f0) 6= 0,
there is usually a trade-off between the approximation error and the complexity
of F with respect to the choice of f0; see Section 5.3.
Remark 1: The results in Theorem 1 and Corollary 1 continue to hold if
the “global” entropy is replaced by its corresponding “local” version; see e.g.,
(24). That is, FV (s) is replaced by F1

V (s) = FV (s) ∩ {V T (f , Z) − V (f0, Z) :
eV (f ,f∗) ≤ 2s}. The proof requires only a slight modification. The local en-
tropy allows us to avoid to loss of log(n) in linear classification, although it may
not be useful for nonlinear classification.
Remark 2: For ψ-learning, Theorem 1 may be strengthened by replacing F
by the corresponding set entropy if the problem structure is used; cf., (19).
Remark 3: The preceding formulation can be easily extended to the situation
of multiple regularizers by replacing λJ(f) by its vector version, i,e, λTJ(f) =
∑l
j=1 λjJj(f) with λ = (λ1, · · · , λl)T and J(f) = (J1(f), · · · , Jl(f)).

5. Examples

5.1. Linear classification: Ideal and actual performances

This section illustrates that the ideal generalization performances of various
margin classifiers, defined by fV , may differ, dominating the corresponding
actual ones, where e(fV , f̄) 6= 0. This reinforces our discussion in Section 3.

Consider, for simplicity, a two-class case with X generated from probability
density q(x) = 2−1(γ + 1)|x|γ for x ∈ [−1, 1] and some γ ≥ 0. Given X = x,
Y is sampled from {0, 1} according to P (Y = 1|X = x) that is θ1 if x > 0 and
θ2 otherwise, for constants θ1 > 1/2, θ2 < 1/2, and θ1 + θ2 6= 1. Here decision
function vector f is (f,−f) with F = {f = ax+ b}, u(f(x),y) is equivalent to
yf(x) for coding y = ±1 with J(f) = |a|.

Four margin losses are compared with respect to their ideal and actual per-
formances measured by e(fVj , f̄) ≥ 0 and |e(f̂ ,fVj )|. They are exponential,
logistic, hinge and ψ losses, denoted as V1 = exp(−yf(x)), V2 = log(1 +
exp(−yf(x))), V3 = [1 − yf(x)]+, and V4 = I[yf(x) ≤ 0] + (1 − yf(x))I[0 <
yf(x) ≤ 1].

To obtain an expression of eV (f , f̄ ) and e(f , f̄ ), let RVj (a, b) = EVj(f , Z)
and R(a, b) = EL(f , Z). Let (a∗j , b

∗
j) = arg inf RVj (a, b), j = 1, · · · , 4, and

(ā, b̄) = arg inf R(a, b). The expression ofRVj (a, b) is given in the proof of Lemma
2 of the Appendix, with its properties stated in Lemma 2.

Lemma 2. The minimizer (ā, b̄) = (1, 0), (a∗j , b
∗
j), j = 1, · · · , 3 are finite, and

(a∗4, b
∗
4) = (∞, 0), or equivalently, RV4(a, b) attains its minimal as a→ +∞ and

b = 0.
Based on Lemma 2, we compare the ideal performances e(fVj , f̄) = R(a∗j , b

∗
j )−

R(1, 0) for j = 1, · · · , 4. Since e(fVj , f̄) is not analytically tractable, we provide
a numerical comparison in the case of θ1 = 3/4, γ = 0 and θ2 ∈ [1/8, 3/8].
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As displayed in Figure 1, e(fVj , f̄) decreases as j increases from 1 to 4 with
e(fV4 , f̄) = 0, indicating that V4 dominates V1 − V3. Note that e(fVj , f̄) = 0;
j = 1, · · · , 4, when θ1 = 3/4 and θ2 = 1/4, because of symmetry of q(x) in x.

0.15 0.20 0.25 0.30 0.35
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00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

theta2
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Fig 1. Plot of e(fVj , f̄) as a function of θ2, when θ1 = 3/4 and γ = 0. Solid circle, circle,
square and solid square (from the top curve to the bottom curve) represent Vj; j = 1, · · · , 4.

We now verify Assumptions A-C for Vj ; j = 1, · · · , 4, with Assumptions A
and B checked in Lemma 3.

Lemma 3. Assumptions A and B are for Vj, j = 1, · · · , 3, with α = 1/2
and β = 1. For V4, Assumptions A and B hold with α = 1 and β = 1. To
verify Assumption C, let f0 = fVj for Vj ; j = 1, · · · , 3, and compute the local
entropy of F1

Vj
(s) = FVj (s) ∩ {Vj(f , ·) − Vj(f

Vj , ·) : eVj (f ,f
Vj ) ≤ 2s}. Note

that eVj (f ,f
Vj ) ≤ 2s implies that ‖(a, b) − (a∗, b∗)‖ ≤ c′s1/2 for the Euclidean

norm ‖ ·‖ and some c′ > 0. In addition, for any g1, g2 ∈ F1
Vj

(s), |g1(z)−g2(z)| ≤
|(a1−a2)x+(b1−b2)| ≤ 2 max(|a1−a2|, |b1−b2|). Direct calculation yields that
HB(u,F1

V (s)) ≤ c(log(min(s1/2, c′u1/2)/u1/2)) for some constant c > 0. Easily,
sups≥1 φ(εn, s) ≤ c4/εn, when λ ∼ ε2n ≤ 1. Solving (4.1) yields εn = n−1/2.

By Corollary 1, e(f̂ ,fVj ) = Op(ε
2α
n ) = Op(n

−1/2), and Ee(f̂ ,fVj ) = O(n−1/2)
when λ ∼ n−1.

For V4, let f0 = (nx,−nx). Similarly, e(f̂ , f̄ ) = Op(n
−1) and Ee(f̂ , f̄) =

O(n−1) when λ ∼ n−1 for ψ-learning.
In conclusion, the ideal performances for V1 − V4 are usually not equal, with

V4 the best as suggested by Lemma 1. The actual performances are dominated
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by their ideal performances when θ1 + θ2 6= 1, although e(f̂ ,fVj ) = Op(n
−1/2);

j = 1, · · · , 3, and Ee(f̂ ,fV4) = O(n−1).

5.2. Multi-class linear classification: Arbitrarily fast rates

This section illustrates that the rates of convergence for the hinge and logis-
tic losses can be arbitrarily fast even in linear classification. This is because
the conversion exponent α in Assumption A can be arbitrarily large, although
eV (f̂ ,fV ) = OP (n−1/2).

Consider four-class linear classification in which X is sampled according to
probability density q(x1, x2) = λmin(|x1|, |x2|)γ for (x1, x2) ∈ [−1, 1]2, with γ ≥
0 and normalizing constant λ > 0. Let Sj ; j = 1, · · · , 4, be four regions {x1 ≥
0, x2 ≥ 0}, {x1 ≥ 0, x2 < 0}, {x1 < 0, x2 ≥ 0}, and {x1 < 0, x2 < 0}. Now Y is
assigned to class c = j with probability θ (1/4 < θ < 1) and to the remaining
three classes with probability (1−θ)/3 for each, when x ∈ Sj ; j = 1, · · · , 4. The
(global) Bayes rule f̄ = (x1 + x2,−x1 + x2,−x1 − x2, x1 − x2)

T . In this case,
decision function vector f(x) is parameterized as (wT

1 x,wT
2 x,wT

3 x,−(wT
1 +

wT
2 + wT

3 )x)T , defined by w = (w11, w12, w21, w22, w31, w32). Here F consists

of such f ’s and J(f) =
∑4

c=1

∑4
j=1 w

2
cj .

For the hinge loss V (f , z) = h(u(f(x), y)) with

h(u) ≡ hsvm2(u) =
k−1
∑

j=1

[

∑k−1
c=1 uc
k

− uj + 1]+,

write EV (f , Z) and EL(f , Z) as RV (w) and R(w). Then RV (w) is piecewise
differentiable, convex, and is minimized by w∗ = r(1, 1,−1, 1,−1,−1), where r is
the largest negative root of a polynomial in x: 9(θ−1)−16(θ−1)x+12(θ−1)x2+
(64θ − 4)x4 = 0. By symmetry of q(·, ·), RV (w) is twice-differentiable at w∗

with positive definite Hessian matrix H1, implying that fV = (fV1 , · · · , fV4 ) =
((w∗

1)Tx, (w∗
2)
Tx, (w∗

3)
Tx,−((w∗

1)
T + (w∗

2)T + (w∗
3)T )x)T , and e(fV , f̄) = 0.

We verify Assumptions A-C, with Assumptions A-B checked in Lemma 4.

Lemma 4. In this example, Assumptions A and B are met for V with α = 1/2
and β = 1.

For Assumption C, we compute the local entropy of F1
V (s) = FV (s) ∩

{V (f , ·) − V (fV , ·) : eV (f ,fV ) ≤ 2s}. Note that eV (f ,fV ) ≤ 2s implies that
‖w − w∗‖ ≤ c′s1/2 for some c′ > 0, and for any g, g′ ∈ F1(s), |g(z) − g′(z)| ≤
∑4
c=1 |fc(x)−f ′

c(x)| ≤ 12 max1≤c≤4,1≤j≤3(|wcj−w′
cj |). Direct calculation yields

that HB(u,F1
V (s)) ≤ O(log(min(s1/2, c′s1/2)/u1/2)), and that sups≥1 φ(εn, s) ≤

c4/εn, when λ ∼ ε2n ≤ 1. Solving (4.1) yields εn = n−1/2. By Corollary 1,

e(f̂ , f̄) = e(f̂ ,fV ) = |e(f̂ ,fV )| = Op(n
−(γ+1)/2) and E|e(f̂ ,fV )| = n−(γ+1)/2

when λ ∼ n−1.
For the logistic loss, an application of the same argument yields that the

same w∗ = r(1, 1,−1, 1,−1,−1) as the minimizer of RV (w). Furthermore, α =
(γ + 1)/2 and β = 1, yielding that the same rates as the hinge loss.
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Interestingly, the fast rate e(f̂ , f̄) = e(f̂ ,fV ) = Op(n
−(γ+1)/2) is because

classification is easier than its counterpart-function estimation, as measured by
γ ≥ 0. This is evident from that eV (f̂ ,fV ) = Op(n

−1/2). This rate is arbitrarily
fast as γ → ∞.

5.3. Nonlinear classification: Spline kernels

This section examines one nonlinear learning case and the issue of dominat-
ing class with regard to generalization error for multi-class SVM with Vsvm1 ≡
hsvm1 ≡ ∑k−1

j=1 [1 − uj(f(x), y)]+ and multi-class ψ-learning with Vψ ≡ hψ =
ψ(min{1≤j≤k−1} uj), as defined in Section 2. Consider three-class classification
with spline kernels, where X is generated according to the uniform distribu-
tion over [0, 1]. Given X = x, Y = (Y1, · · · , Y3) is sampled from (P (Y =
1|X = x), P (Y = 2|X = x), P (Y = 3|X = x)) ≡ (p1(x), p2(x), p3(x)), which is
(5/11, 3/11, 3/11) when x ≤ 1/3, (3/11, 5/11, 3/11) when 1/3 < x ≤ 2/3, and
(3/11, 3/11, 5/11) when x > 2/3. Evidently, for each x ∈ [0, 1], there does not
exist a dominating class because max1≤i≤3 pi(x) = 5/11 < 1/2.

In this example, F = {(f1, f2, f3) : fi ∈ Wm[0, 1],
∑3
i=1 fi = 0} is de-

fined by a Sobolev space Wm[0, 1] = {f : f (m−1)is absolutely continuous, f (m) ∈
L2[0, 1]} with the degree of smoothness m measured by the L2-norm, generated
by spline kernel K(·, ·) whose expression can be found in (10) or (23). In what
follows, we embed {(f1, f2, f3) : fc =

∑n
i=1 αicK(xi, x)} with penalty J(f) =

∑3
c=1

∫ 1

0 f
(m)
c (u)2du in (2.1) into F with penalty J(f) =

∑3
c=1

∑m−1
j=0 f

(j)
c (0)2+

∫ 1

0 f
(m)
c (u)2du. It follows from the reproducing kernel Hilbert spaces (RKHS)

representation theorem (cf., (10)) that minimization of (2.1) over F is equiv-
alent to that over its subspace {(f1, f2, f3) : fc =

∑n
i=1 αicK(xi, x)} with

J(f) =
∑3

c=1

∫ 1

0
f

(m)
c (u)2du.

We now verify Assumptions A-C. Some useful facts are given in Lemmas 5-7.

Lemma 5. (Global Bayes rule f̄) In this example, f̄(x) = (I[0 ≤ x ≤ 1/3] −
1/3, I[1/3 < x ≤ 2/3] − 1/3, I[2/3 < x ≤ 1] − 1/3) = arg inff EV (f ,Z) for
V = Vsvm1, Vψ.

Lemma 6. (Assumption A) In this case, eV T (f ,f∗) ≥ Ce(f ,f∗) for V =
Vsvm1, some constant C > 0, any T ≥ 9 and any measurable f ∈ R

3.

Lemma 7. (Assumption B) In this example, E(V T (f ,Z) − V (f∗,Z))2 ≤
CE(V T (f ,Z) − V (f∗,Z)) for some constant C > 0, any T ≥ 9 and any mea-
surable f ∈ R

3, where V = Vsvm1.
By Lemma 5, f̄(x) = (I[0 < x ≤ 1/3]− 1/3, I[1/3 < x ≤ 2/3]− 1/3, I[2/3 ≤

x ≤ 1]−1/3), which can be approximated by F with respect to the L1-norm ‖·‖1

(‖f‖1 = E|f(X)|). Hence f∗ = f̄ = fV = arg inff EV (f , Z) for V = Vsvm1, Vψ .
SVM: Let f0 = (f (1),−f (1) − f (3), f (3)) with f (1) = 2/3− (1 + exp(−τ(x−

1/3)))−1, f (3) = (1+exp(−τ(x−1/3)))−1−1/3, with parameter τ > 0 to be spec-
ified. Set T = 4. Then T ≥ max(supz Vsvm1(f0, z), supz Vsvm1(f

∗, z)) ≥ 0. By
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Lemmas 6 and 7, Assumptions A and B are met with α = 1 and β = 1. For As-

sumption C, it can be verified that eVsvm1(f0,f
∗) ≤ 2

∫ 1

0 ‖f0(u)− f∗(u)‖1du =
O(τ−1), and J(f0) = O(τ2m−1). By Proposition 6 of (9), HB(u,FVsvm1(s)) =
O(((J0s)

1/2/u)1/m) with J0 = O(τ2m−1). Solving (4.1) yields a rate ε2n =

O((J
1

4m
0 n−1/2)

4m
2m+1 ) when J0λ ∼ ε2n. As a result, we have eVsvm1(f̂ ,f

∗) =

OP (max(ε2n, eV1(f0,f
∗)) = OP (max(τ

2m−1
2m+1n− 2m

2m+1 , 1
τ )) = OP (n−1/2), with a

choice of τ ∼ n1/2 and λ ∼ n−m.
ψ-learning: Set T ≥ 1 as 0 < V4 ≤ 1. For Assumption A, α = 1 by The-

orem 3.1 of (16). For Assumption B, β = 1 following an argument similar to
that in (16). For Assumption C, let f0(x) = τ(4 − 9x, 1, 9x − 5) when m ≥ 2;
f0 = (f (1),−f (1) − f (3), f (3)) with f (1) = 2/3 − (1 + exp(−τ(x − 1/3)))−1,
f (3) = (1 + exp(−τ(x − 1/3)))−1 − 1/3, when m = 1. Then eVψ (f0,f

∗) =
O(τ−1), J(f0) = O(τq) with q = 1 when m = 1 and q = 2 when m ≥ 2,
and HB(u,FVψ(s)) = O(((J0s)

1/2/u)1/m). Solving (4.1) yields a rate ε2n =

O((J
1

4m
0 n−1/2)

4m
2m+1 ) when J0λ ∼ ε2n. By Corollary 1, when m ≥ 2, e(f̂ , f̄) =

OP (max(ε2n, eVψ (f0, f̄ ))) = OP (max(τ
2

2m+1n− 2m
2m+1 , 1

τ )) = OP (n−2m/(2m+3));

whenm = 1, e(f̂ , f̄) = Op(n
−1/2) τ ∼ n1/2 and λ ∼ n−1. This yields Ee(f̂ , f̄) =

O(n−2m/(2m+3)) when m ≥ 2, with τ = n2m/(2m+3) and λ ∼ n−6m/(2m+3);

Ee(f̂ , f̄) = O(n−1/2) when m = 1 with τ ∼ n1/2 and λ ∼ n−1.
Evidently, the approximation error eV (f0, f̄) and J0 = max(J(f0), 1) play a

key role in rates of convergence. With different choices of approximating f0 for
ψ-loss and the hinge loss, ψ-learning and SVM have different error rates with
the ψ-loss yielding a faster rate when m ≥ 2 and the same rate when m = 1.
Moreover, in this example, the dominating class does not seem to be an issue.

5.4. Feature selection: High-dimension p but low sample size n

This section illustrates applicability of general theorem to the high-dimension,
low sample size situation. Consider feature selection in classification, where the
number of candidate covariates p is allow to greatly exceed the sample size n
and to depend on n. For the L1 penalty, (22) and (28) obtained the rates of
convergence for the binary SVM when p < n and multi-class SVM when p > n.

Here we apply the general theory to the elastic-net penalty (see (31)) for
binary SVM (27) to obtain a parallel result of (28). We use linear representations
in (2.1) as in (27), because of over-specification of non-linear representations.
Here decision function vector f is (f,−f) with f ∈ F = {f(x) = wTx : x ∈
[−1, 1]p}, and J(f) = Jθ(f) = θ‖w‖1 + (1 − θ)‖w‖2

2 is a weighted average of
the L1 and L2 norms with a weighting parameter θ ∈ [0, 1], cf., (31).

In this example, (X = (X1, · · · , Xp), Y ) are generated as follows. First, ran-
domly sample X according to the uniform distribution [−1, 1]p. Second, given
X = x, Y is sampled according to P (Y = 1|X1 = x1), which is τ > 1/2 if
x1 > 0, and 1 − τ if x1 ≤ 0. This is a version of Example 5.1 with γ = 0 and
θ1 = τ and θ2 = 1 − τ in a high-dimensional situation. Evidently, (X2 · · · , Xp)
are redundant variables.
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We now verify Assumptions A-C for the hinge loss V . Because X1 and Y
are independent of (X2, . . . , Xp), one can verify that the minimal of EV (f ,Z)
is that of EV (f1(X1), Y ) over {f1 : f1(x) = ax1 + b}, attained by f∗

1 = a∗x1

for some a∗ > 0. For Assumptions A-B, we apply the result in Example 5.1 to
obtain α = 1/2 and β = 1.

For Assumption C, we apply Lemma 8 to compute HU (ε,FV (s)).

Lemma 8. For Gp(s) = {f(x) = wTx : w,x ∈ [−1, 1]p, ‖w‖1 ≤ s} and any
ε > 0, there exists a constant c > 0 such that HU (ε,Gp(s)) ≤ cs2(p log(1+ 1

pε2 )+

ε−2 log(pε2 + 1)).
Note that F(s) ⊂ Gp(θ−1s), by Lemma 8, HU (ε,FV (s)) = O(p log(1+ 1

pε2 )+

ε−2 log(pε2+1)). Set λ ∼ ε2n/(2J(f∗)). To solve sups φ(εn, s) ≤ c2n
1/2, note that

sups φ(εn, s) = φ(εn, s
∗) for some finite s∗. Then it suffices to solve φ(εn, s

∗) ≤
c2n

1/2, involving

∫ c3(2
−1ε2n)1/2

c42−1ε2n

(p log(1 +
1

pu2
) + u−2 log(pu2 + 1))1/2 du

≤
∫ c3(2

−1ε2n)1/2

c4(2−1ε2n)

(p1/2 log1/2(1 +
1

pu2
) + u−1 log1/2(pu2 + 1)) du

=

∫ c23p(2
−1ε2n)

c24p(2
−1ε2n)2

t1/2 log1/2(1 +
1

t
) dt+

∫ c23p(2
−1ε2n)

c24p(2
−1ε2n)2

t−1 log1/2(t+ 1) dt

≡ I1 + I2.

Three cases are examined: First, when pε2n = o(1), and I1 + I2 ≤ 2I1 =
O((pε2n log((pε2n)

−1))1/2). Solving φ(εn, a
∗) ≤ c2n

1/2 is equivalent to solving

(pǫ2n)
1/2 log1/2((pε2n)

−1) = O(n1/2ε2n) with respect to ε2n, which yields ε2n =
O((p/n) log(n/p)). When pε2n = O(1), there exist two constants 0 < B1, B2 <
∞ such that B1 < I1 + I2 < B2, implying ε2n = O(n−1/2). When pε2n →
∞, I1 ≥ I2 and I1 + I2 ≤ 2I2 = O(log1/2(pε2n) log(ε2n

−1
)). Solving equation

log1/2(pε2n) log(ε2n
−1

) = O(n1/2ε2n) yields ε2n = (n−1 log(tnp))
1/2 log(n) when

tn = (n−1 log p)1/2 log(n/ log p).
As a result, the rate is ε2n = ( pn log(np ))1/2 when p ≪ n1/2, ε2n = n−1/2

when p = O(n1/2), and εn = [(n−1 log(tnp))
1/2 log(n)]1/2 with a choice of tn =

(n−1 log p)1/2 log( n
log p ) when p ≫ n1/2 but log p/n = o(1). Note that in the

last case Assumption B plays no role when F is too large. By Corollary 1,
e(f̂ , f̄) = Op(εn) when λ ∼ ε2n.

6. Conclusion

This article develops a statistical learning theory for quantifying the generaliza-
tion error of large margin classifiers in multi-class classification. In particular,
the theory develops upper bounds for a general large margin classifier, which
permits a theoretical treatment for the situation of high-dimension but low sam-
ple size. Through the theory, several learning examples are studied, where the
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generalization errors for several large margin classifiers are established. In a lin-
ear case, fast rates of convergence are obtained, and in a case of sparse learning,
rates are derived for feature selection in which the number of variable greatly
exceeds the sample size.

To compare various large margin classifiers with regard to generalization, we
may need to develop a lower bound theory. Otherwise, a comparison may be
inconclusive although our learning theory provides an upper bound result.
Acknowledgments. The author would like to thank the reviewers for helpful
comments and suggestions. This research was supported in part by National
Science Foundation Grants IIS-0328802 and DMS-0604394.

Appendix A: Technical proofs

Proof of Lemma 1: To prove EL(fVψ , Z) = EL(fL, Z), note that it follows
from the definition of fL that EL(fV , Z) ≥ EL(fL, Z). Then for any ε > 0
there exists f0 ∈ F such that EL(f0, Z) ≤ EL(fL, Z) + ε. It follows from
linearity of F that cf0 ∈ F for any constant c > 0. The result then follows from
the fact that limc→∞EVψ(cf0, Z) = EL(f0, Z).

It follows from the fact that EL(fV , Z) ≥ EL(fL, Z) that EL(fV , Z) ≥
EL(fVψ , Z) = EL(fL, Z).

For V ≡ hsvmj , in the separable case, the result follows from that hsvm1(z) ≥
hsvm3(z) = 1

2Vψ(z) for z ≥ 0.
Proof of Theorem 1: First we introduce some notations to be used. Let
Ṽ (f , Z) = V (f , Z) + λJ(f) and Ṽ T (f , Z) = V T (f , Z) + λJ(f). Define the
scaled empirical process En(V

T (f , Z) − V T (f0, Z)) as n−1
∑n

i=1(V
T (f , Zi) −

V T (f0, Zi). Let Ai,j = {f ∈ F : 2i−1δ2n ≤ eV T (f ,f∗) < 2iδ2n, 2
j−1 max(J0, 1) ≤

J(f) < 2j max(J0, 1)} and Ai,0 = {f ∈ F : 2i−1δ2n ≤ eV T (f ,f∗) < 2iδ2n, J(f) <
max(J0, 1)}, for j = 1, 2, · · · , and i = 1, 2, · · · .

The treatment here is to use a large deviation inequality in Theorem 3 of (20)
for the bracketing entropy and Lemma 9 below for the uniform entropy. Our

approach for bounding P
(

|e(f̂ ,f∗)| ≥ δ2n

)

is to bound a sequence of empirical

processes induced by the cost function l over P (Aij); i, j = 1, · · · , n. Specifically,
we apply a large deviation inequality for empirical processes, by controlling the
mean and variance defined by V (f , Zi) and penalty λ. This yields an inequality

for empirical processes and thus for e(f̂ ,f∗). In what follows, we shall prove the
case of the bracketing entropy as that for the uniform entropy is essentially the
same.

First we establish a connection between e(f ,f∗) and the cost function. By

the definition of f̂ , f0 (eV T (f0,f
∗) ≤ eV (f0,f

∗) < δ2n), and Assumption A,
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{

|e(f̂ ,f∗)| ≥ c1δ
2α
n

}

⊂
{

eV T (f̂ ,f∗) ≥ δ2n

}

is a subset of

{

sup
{f∈F :e

V T
(f ,f∗)≥δ2n}

n
∑

i=1

(Ṽ (f0, Zi) − Ṽ (f , Zi)) ≥ 0

}

⊂
{

sup
{f∈F :e

V T
(f ,f∗)≥δ2n}

n
∑

i=1

(Ṽ (f0, Zi) − Ṽ T (f , Zi)) ≥ 0

}

.

Hence P
(

|e(f̂ ,f∗)| ≥ c1δ
2α
n

)

is upper bounded by

I ≡ P ∗
(

sup
{f∈F :eV T (f ,f∗)≥δ2n}

n−1
n
∑

i=1

(Ṽ (f0, Zi) − Ṽ T (f , Zi)) ≥ 0

)

,

≤ I1 + I2,

where P ∗ is the outer probability, and

I1 =
∑

i,j≥1

P ∗
(

sup
f∈Ai,j

n−1
n
∑

i=1

(Ṽ (f0, Zi) − Ṽ T (f , Zi)) ≥ 0

)

I2 =

∞
∑

i=1

P ∗
(

sup
f∈Ai,0

n−1
n
∑

i=1

(Ṽ (f0, Zi) − Ṽ T (f , Zi)) ≥ 0

)

.

To bound I1, consider P ∗
(

supf∈Ai,j n
−1
∑n

i=1(Ṽ (f0, Zi) − Ṽ T (f , Zi)) ≥ 0
)

,

for each i = 1, · · · , j = 0, · · · . Let M(i, j) = 2i−1δ2n + λ2j−1J(f0). For the
mean, using the assumption that δ2/2 ≥ λJ0 and the fact that eV T (f0,f

∗) =
eV (f0,f

∗) < δ2n/2, it follows that infAi,j E(Ṽ T (f , Z1) − Ṽ (f0, Z1)) is lower
bounded by

inf
Ai,j

E(V T (f , Z1) − V (f∗, Z1) + λ(J(f) − J(f0))) − eV T (f0,f
∗) ≥M(i, j),

i = 1, · · · , j = 0, · · · . Similarly, for the variance, it follows from Assumption B
and the fact that V ar(V T (f , Z1)−V (f0, Z1)) ≤ 2[V ar(V T (f , Z1)−V (f∗, Z1))+
V ar(V (f0, Z1) − V (f∗, Z1))] that

sup
Ai,j

V ar(V T (f , Z1) − V (f0, Z1)) ≤ 4c2M
β(i, j);

i = 1, · · · , j = 0, · · · , .
Note that 0 < δn ≤ 1 and λmax(J0, 1) ≤ δ2n/2. An application of Theorem

3 of (20) with M = n1/2M(i, j), v = 4c2M
β(i, j), ε = 1/2, and |V (f0, Zi) −
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V T (f , Zi)| ≤ 2T , yields, by Assumption C, that

I1 ≤
∑

i,j:M(i,j)≤T
3 exp

(

− (1 − ε)nM(i, j)2

2(4Mβ(i, j) +M(i, j)T/3)

)

≤
∞
∑

j=1

∞
∑

i=1

3 exp(−c6nM(i, j)2−min(1,β))

≤
∞
∑

j=1

∞
∑

i=1

3 exp(−c6n[2i−1δ2n + (2j−1 − 1)λJ0]
2−min(1,β))

≤
∞
∑

j=1

∞
∑

i=1

3 exp(−c6n[(2i−1δ2n)
2−min(1,β) + ((2j−1 − 1)λJ0)

2−min(1,β)])

≤ 3 exp(−c6n(λJ0)
2−min(1,β))/[(1 − exp(−c6n(λJ0)

2−min(1,β)))]2.

Here and in the sequel c6 is a positive generic constant. Similarly, I2 can be
bounded.

To prove the result with the uniform entropy, we use Lemma 9 with a slight
modification of the proof.

Finally,

I ≤ I1 + I2 ≤ 6 exp(−c6n(λJ0)
2−min(1,β))/[(1 − exp(−c5n(λJ0)

2−min(1,β)))]2.

This implies that I1/2 ≤ (5/2+ I1/2) exp(−c6n(λJ0)
2−min(1,β)). The result then

follows from the fact I ≤ I1/2 ≤ 1. 2

Now we derive Lemma 9 as a version of Theorem 1 of (20) using the uniform
entropy.

Lemma 9. Let F be a collection of functions f with 0 ≤ f ≤ 1, Pn(f) =
n−1

∑n
i=1 f(Yi), Pf = Ef(Y1) = 0, Yi ∼ i.i.d, and let v > supf∈F Pf

2 =

supf∈F V ar(f). For M > 0 and real θ ∈ (0, 1), let ψ(M,n, v) = nM2

128v and

s = θM
8
√

6
. Suppose

HU (v1/2,F) ≤ θ

4
ψ(M,n, v), (A.1)

M ≤ 16(1 − 3θ/4)1/2v, (A.2)

and, if s ≤ v1/2,

I(s/4, v1/2) =

∫ v1/2

s/4

HU (u,F)1/2du ≤ θ3/2n1/2M

256
. (A.3)

Then

P ∗(sup
h∈F

|Pnh−Ph| > 4M) ≤ 10
(

1− 1

32ψ(M,n, v)

)−1

exp(−(1− θ)ψ(M,n, v)).
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Proof: The proof uses conditioning and chaining. The first step is conditioning.
Let Z1, . . . ,ZN be an i.i.d. sample from P , and let (R1, . . . , RN ) be uniformly
distributed over the set of permutations of (1, . . . , N), where N = mn, with

m = 2. Define n′ = N − n, P̃n,N = n−1
∑n

i=1 δZRi , and PN = N−1
∑N

i=1 δZi ,
with δZi the Dirac measure at observation Zi. Then the following inequality
can be thought of as an alternative to the classical symmetrization inequality
(cf., (25) Lemma 2.14.18 with a = 2−1 and m = 2),

P ∗(sup
h∈F

|Pnh− Ph| > 4M) ≤
(

1 − v

4nM2

)−1

P ∗(sup
F

|P̃n,Nh− PNh| > M).

(A.4)
Conditioning on Z1, . . . ,ZN , it suffices to consider P ∗

|N (supF |P̃n,Nh− PNh| >
M), where P|N be the conditional distribution given Z1, . . . ,ZN .

The second step is to bound P ∗
|N (supF |P̃n,Nh − PNh| > M) by chaining.

Let ε0 > ε1 > . . . > εT > 0 be a sequence to be specified. Denote by Fq
the minimal εq-net for F with respect to the L2(PN )-norm. For each h, let
πqh = argming∈Fq ‖g − h‖PN ,2. Evidently, ‖πqh − h‖PN ,2 ≤ εq, and |Fq| =

N(εq,F , L2(PN )), the covering number. Then P ∗
|N (supF |P̃n,Nh − PNh| > M)

is bounded by

P ∗
|N (sup

F
|(P̃n,N − PN )(π0h)| > (1 − θ

4
)M)

+P ∗
|N (sup

H
|(P̃n,N − PN )(π0h− πTh)| >

θM

8
)

+P ∗
|N (sup

F
|(P̃n,N − PN )(πTh− h)| > θM

8
)

≤ |F0| sup
F
P ∗
|N (|(P̃n,N − PN )(π0h)| > (1 − θ

4
)M)

+

T
∑

q=1

|Fq||Fq−1| sup
F
P ∗
|N (|(P̃n,N − PN )(πqh− πq−1h)| > ηq)

+ sup
F
P ∗
|N (|(P̃n,N − PN )(πTh− h)| > θM

8
)

: = P1 + P2 + P3,

where

ηq = εq−1(
16HU (εq,F)

θn
)1/2; q = 1, . . . , T, (A.5)

and ε0 = HU ( θ4ψ(M,n, v),F)−, εq+1 = s ∨ sup{x ≤ εq/2 : HU (x,F) ≥
4HU (εq,F)}; q = 0, . . . , T , and T = min{q : εq ≤ s}. Note that ε0 ≤ v1/2

by construction. Furthermore, by (A.3) and Lemma 3.1 of (1),

T
∑

q=1

ηj =

T
∑

q=1

εq−1(
16HU (εq,F)

θn
)1/2 ≤ 32

(θn)1/2
I(s/4, v1/2) ≤ θM/8. (A.6)
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We now proceed to bound P1-P3 separately.
On CN = (supF PNh

2 ≤ 64v), σ2
N = PN (π0f − PNπ0)

2 ≤ PN (π0f)2 ≤ 64v,
by Massart’s inequality, cf., (25), Lemma 2.14.19, P ∗

|N (|(P̃n,N−PN )(π0h)| > (1−
θ
4 )M) ≤ 2 exp(−n(1− θ/4)2M2/(2σ2

N)) ≤ 2 exp(−(1− θ/4)2ψ(M,n, v)). By the
choice of ε0, P1 ≤ 2 exp(HU (ε0,F)) exp(−(1 − θ/4)2ψ(M,n, v)) ≤ 2 exp(−(1 −
θ)ψ(M,n, v)). On CcN , it follows from Lemma 33 of (18) that P ∗(CcN ) is bounded
by P ∗(supF (PNh

2)1/2 ≥ 8v1/2) ≤ 4 exp(−Nv +HU (v1/2,F)) ≤ 4 exp(−2nv +
θ
4ψ(M,n, v)) ≤ 4 exp(−(1 − θ)ψ(M,n, v))

For P2, if ǫ0 ≤ s, let εT = ε0. Then P2 = 0. Otherwise, consider the case of
ǫ0 > s. Note that PN (πqh − πq−1h)

2 ≤ 2(PN (πqh − h)2 + P (h − πq−1h)
2) ≤

2ε2q+2ε2q−1 ≤ 4ε2q−1. By Massart’s inequality, P ∗
|N (|(P̃n,N−PN)(πqh−πq−1h)| >

ηq) ≤ 2 exp(−nη2
q/(2σ

2
N)) with σ2

N ≤ PN (πqh − πq−1h)
2 ≤ 4ε2q−1, and by the

choice of ηq, q = 1, . . . , T ,

P2 ≤
N
∑

q=1

|Fq|2 sup
F
P ∗
|N (|(P̃n,N − PN )(πqh− πq−1h)| > ηq)

≤ 2

T
∑

q=1

exp(2HU (εq,F) −
nη2

q

4mε2q−1

) = 2

T
∑

q=1

exp((2 − 2/θ)HU (εq,F))

≤ 2

∞
∑

q=1

exp((2 − 2/θ)4qHU (ε0,F)) ≤ 4 exp(−(1 − ε)ψ(M,n, v)).

For P3, note that P̃n,Nf ≤ 2PNf for any f ≥ 0, and PN (πTh− h)2 ≤ ε2T by

the definition of πT . Then |(P̃n,N−PN )(πTh−h)|2 ≤ 2(P̃n,N +PN )(πTh−h)2 ≤
6ε2T ≤ (θM/8)2 because εT ≤ s = θM

8
√

6
. So P3 = 0.

Now

P |N∗
(sup

F
|P̃n,Nh− PNh| > M) ≤ P1 + P2 + P3

≤ 6 exp(−(1 − θ)ψ(M,n, v)).

After taking the expectation with respect to Z1, . . . ,ZN , we have, from (A.4),
that P ∗(supF |Pnh− Ph| > 4M) is upper bounded by

10
(

1 − 1

32ψ(M,n, v)

)−1

exp(−(1 − θ)ψ(M,n, v)).

This completes the proof.
Proof of Lemma 2 : It can be verified that, with λj > 0 constants,

RV1(a, b) = λ1

(

θ1e
−b
∫ 1

0

e−axxγdx+ (1 − θ1)e
b

∫ 1

0

eaxxγdx+

θ2e
−b
∫ 0

−1

e−ax(−x)γdx+ (1 − θ2)e
b

∫ 0

−1

eax(−x)γdx
)

;
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RV2(a, b) can be expressed as

λ2

(

θ1

∫ 1

0

log(1 + e−ax−b)xγdx+ (1 − θ1)

∫ 1

0

log(1 + eax+b)xγdx+

θ2

∫ 0

−1

log(1 + e−ax−b)(−x)γdx+ (1 − θ2)

∫ 0

−1

log(1 + eax+b)(−x)γdx
)

;

RV3(a, b) can be written, in the region of interest {(a, b) : a ≤ 0,−1 ≤ −(1 +
b)a−1 ≤ 0, 0 ≤ (1 − b)a−1 ≤ 1}, as

λ3(θ1((γ + 1)(γ + 2))−1(1 − b)γ+2a−γ−1 + (1 − θ1)(
1 + b

γ + 1
+

a

γ + 2
) +

θ2(
1 − b

γ + 1
+

a

γ + 2
) + (1 − θ2)((γ + 1)(γ + 2))−1(1 + b)γ+2a−γ−1);

RV4(a, b) can be written as, when a > 0 and b > 1,

λ4

( θ1
(γ + 1)(γ + 2)

(
(1 − b)γ+2

aγ+1
− (−b)γ+2

aγ+1
) + (1 − θ1)

(
1

γ + 1
− 1

(γ + 1)(γ + 2)
(
(−b)γ+2

aγ+1
− (−b− 1)γ+2

aγ+1
)) + θ2/(γ + 1)

)

;

when a > 0 and 0 < b ≤ 1,

λ4

( θ1
(γ + 1)(γ + 2)

(
(1 − b)γ+2

aγ+1
− (−b)γ+2

aγ+1
) + (1 − θ1)(

1

γ + 1

− 1

(γ + 1)(γ + 2)
(
(−b)γ+2

aγ+1
)) + θ2/(γ + 1) +

1 − θ2
(γ + 1)(γ + 2)

(1 + b)γ+2

aγ+1

)

;

when a > 0 and −1 < b ≤ 0,

λ4

( θ1
(γ + 1)(γ + 2)

(1 − b)γ+2

aγ+1
+ (1 − θ1)/(γ + 1) + θ2(

1

γ + 1

− 1

(γ + 1)(γ + 2)
(
bγ+2

aγ+1
)) +

1 − θ2
(γ + 1)(γ + 2)

(
(1 + b)γ+2

aγ+1
− bγ+2

aγ+1
)
)

;

when a > 0 and b ≤ −1,

(1 − θ1)/(γ + 1) + θ2(
1

γ + 1
− 1

(γ + 1)(γ + 2)
(
bγ+2

aγ+1
− (b− 1)γ+2

aγ+1
))

+
1 − θ2

(γ + 1)(γ + 2)
(
(1 + b)γ+2

aγ+1
− bγ+2

aγ+1
)).

Similarly R(a, b) = 1
2 ((1−θ1+θ2)+(I[b < 0](2θ1−1)+I[b > 0](1−2θ2))|b/a|γ+1)

when a > 0. The results can be verified through direct calculation.
Proof of Lemma 3 : For Vj , j = 1, · · · , 3, let f∗ = fVj . We verify Assumptions
A and B through the exact expression of Vj given in the proof of Lemma 2,
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although Taylor’s expansion is generally applicable. Note RVj (a, b) is strictly
convex and smooth; j = 1, 2 and RV3(a, b) is piecewise smooth and strictly
convex in the neighborhood of (a∗3, b

∗
3). For any (a, b) in the neighborhood of

(a∗j , b
∗
j ) and some constant d1 > 0, eVj (f ,f

Vj ) = RVj (a, b) − RVj (a
∗
j , b

∗
j ) ≥

d1(a − a∗j , b − b∗j )HVj (a
∗
j , b

∗
j)(a − a∗j , b − b∗j)

T with a positive definite matrix

HVj (a
∗
j , b

∗
j ). Moreover, e(f ,fVj ) = R(a, b)−R(a∗j , b

∗
j ) = (I[b < 0](2θ1−1)+I[b >

0](1−2θ2))(|b/a|γ+1−|b∗j/a∗j |γ+1)/2. By the assumption that θ1+θ2 6= 1, b∗j 6= 0,

|e(f ,fVj )| ≤ c1|bj/aj − b∗j/a
∗
j | for some constant c1 > 0, implying Assumption

A with α = 1/2. For Assumption B, note that |f | ≤ T1 for some constant
T1 > 0 when eV (f ,fVj ) is small. Then |Vj(f , z)−Vj(fVj , z)| ≤ V ′

j (−T1)|f(x)−
fVj (x)| = V ′

j (−T1)|(a − a∗j )x + (b − b∗j)|. Hence V ar(Vj(f , Z) − Vj(f
Vj , Z)) ≤

c2E((a − a∗j )X + (b − b∗j ))
2 = (a − a∗j , b − b∗j )DVj (a − a∗j , b − b∗j )

T with DVj a
positive definite matrix, implying Assumption B with β = 1.

For V4, the minimal of RV4(a, b) is attained as a→ ∞ and b = 0, independent
of θ1, θ2 and γ. Note that fV4 = f̄ since EV4(f̄ , Z) = inff∈F EV4(f , Z). Direct
calculation yields that eV (f , f̄) = RV4(a, b) − lima→∞RV4(a, 0) ≥ c4|b/a|γ+1,
and |e(f , f̄)| ≤ c5|b/a|γ+1. This implies Assumption A with α = 1. For As-
sumption B, it follows from the fact that V4(f̄ , z) = L(f̄ , z) for any z that
V ar(V4(f , Z)−V4(f̄ , Z)) ≤ 2E|V4(f , Z)−V4(f̄ , Z)| ≤ 2E|L(f , Z)−L(f̄ , Z)|+
2E(V4(f , Z)−L(f , Z)). Furthermore, E(L(f , Z)−L(f̄ , Z)) = E|2P (Y = 1|X =
x) − 1||L(f , Z) − L(f̄ , Z)| ≥ min(|2θ1 − 1|, |2θ2 − 1|)E|L(f , Z) − L(f̄ , Z)|, and
E(V4(f , Z) − L(f , Z)) ≤ E(V4(f , Z) − L(f̄ , Z)) = eV4(f , f̄ ). Therefore, As-
sumption B is met with β = 1. This completes the proof.
Proof of Lemma 4: For Assumption A, note that for any w = w∗ + ∆w in
a small neighborhood of w∗, eV (f ,fV ) = RV (w) − RV (w∗) ≥ d2∆wTH1∆w.
Furthermore, direct computation yields that e(f ,fV ) ≤ d3(∆wT∆w)(γ+1)/2,
for some constant d3 > 0. Hence, for some constant c2 > 0, |e(f ,fV )| ≤
c2eV (f ,fV )(γ+1)/2 for all small ∆w, implying Assumption A with α = (γ+1)/2.

For Assumption B, it follows from the fact |V (f , z)−V (fV , z)| ≤∑4
c=1 |fc(x)−

fVc (x)| that V ar(V (f , Z) − V (fV , Z)) is upper bounded by

E(
4
∑

c=1

|fc(X) − fVc (X)|)2 ≤ 4E(
4
∑

c=1

(fc(X) − fVc (X))2) = ∆wTH2∆w

with H2 a positive definite matrix, implying that V ar(V (f , Z) − V (fV , Z)) ≤
c3eV (f ,fV ) for some constant c3 > 0 and all small ∆w, and thus Assumption
B with β = 1. This completes the proof.
Proof of Lemma 5: We use a pointwise argument. First consider V = Vsvm1.
Note that EV (f ,Z) = E(E(

∑3
c=1 pc(X)hsvm1(u(f(X), c))|X)). Now define

hp(f) to be
∑3
c=1 pcVc(f) for any f ∈ R

3, where Vc(f) =
∑3

c=1 pc
∑

j 6=c(1 −
(fc − fj))+. We now verify that f̄ = (2/3,−1/3,−1/3) minimizes hp(f) when
p = (5/11, 3/11, 3/11), for x ∈ [0, 1/3]. The other two cases when x ∈ (1/3, 2/3]
and x ∈ (2/3, 1] can be dealt with similarly. Now reparametrize f as f̄ +
(r1, r2, r3)

T d with
∑

c rc = 0,
∑

c |rc| = 1 and d = ‖f − f̄‖1. When d is suffi-
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ciently small and p = (5/11, 3/11, 3/11),

hp(f) − hp(f̄ ) = p1((r2 − r1)+d+ (r3 − r1)+d) + p2(2 + (r1 − r2)d+ 1

+(r3 − r2)d) + p3(2 + (r1 − r3)d+ 1 + (r2 − r3)d)

−(3p2 + 3p3)

= (p1(r2 − r1)+ + p1(r3 − r1)+ + p2(r1 − r2) + p2(r1 − r3))d

≥ C1d,

where C1 = min∑
c
rc=0,

∑

c
|rc|=1(p1(r2 − r1)+ + p1(r3 − r1)+ + p2(r1 − r2) +

p2(r1 − r3)) > 0. By convexity of hp(f), f̄ is the minimizer. Combining the
three cases, we obtain with f̄ (x) = (I[0 < x ≤ 1/3] − 1/3, I[1/3 < x ≤ 2/3] −
1/3, I[2/3 ≤ x ≤ 1] − 1/3) that f∗(x) minimizes hp(x)(f(x)) for each x, thus
EV (f , Z) = Ehp(X)(f(X)). For V = Vψ, it follows from an argument similar
to the proof of Theorem 3.2 of (16). This completes the proof.
Proof of Lemma 6: We will apply an argument similar to that in the proof
of Lemma 5. Let hTp (f) be

∑3
c=1 pcV

T
c (f) with V T (f) = T ∧ Vc(f) with

Vc(f) defined in the proof of Lemma 5. Note that f∗ = f̄ and eV T (f ,f∗) =
E(E(V T (f ,Z) − V (f∗,Z)|X)) = E(hp(X)(f(X)) − hp(X)(f

∗(X))). By Theo-
rem 3.1 of Liu and Shen (2006), e(f ,f∗) = E(maxc pc(X)−pargmincfc(X)(X)).

It then suffices to show that hp(f)−hp(f∗) ≥ C(maxc pc− pargmincfc
) for any

measurable f ∈ R
3 and some constant C > 0. Suppose p = (5/11, 3/11, 3/11)

without loss of generality. Then p1 = maxc pc, and the proof becomes trivial
when f1 = maxc fc. Suppose f1 < maxc fc and further f1 < f2 without loss of
generality. Then ‖f−f∗‖1 ≥ |f1−f∗

1 |+|f2−f∗
2 | ≥ |(f∗

1−f∗
2 )+(f2−f1)| > 1 (f∗

1 =
2/3 and f∗

2 = −1/3). Two cases are treated separately. When maxc Vc(f) < T or
V Tc (f) = Vc(f), hTp (f)−hTp (f∗) ≥ C1‖f −f∗‖1 ≥ C1 by the proof of Lemma 5.

When maxc Vc(f) ≥ T or maxc V
T
c (f) = T , hTp (f) ≥ (minc pc)(

∑3
c=1 V

T
c (f)) ≥

(3/11)T , and hp(f∗) = 18/11. Then, hp(f)−hp(f∗) ≥ 3T/11−18/11 = 9/11 >
maxc pc − pargmincfc

= 2/11. The desired result follows.

Proof of Lemma 7: The proof uses the pointwise argument and is similar
to that of Lemma 6. Note that E(V T (f ,Z) − V (f∗,Z))2 ≤ TE|V T (f ,Z) −
V (f∗,Z)| = TE(p1(X)|V T1 (f(X))−V1(f(X))|+p2(X)|V T2 (f(X))−V2(f

∗(X))|
+ p3(X)|V T3 (f(X)) − V3(f

∗(X))|), with Vc(f) defined in the proof of Lemma
5. It suffices to show that for any measurable f ∈ R

3 Left ≤ CRight for
some constant C > 0 with Left ≡ p1|V T1 (f) − V1(f

∗)| + p2|V T2 (f) − V2(f
∗)| +

p3|V T3 (f) − V3(f
∗)| and Right ≡ p1(V

T
1 (f) − V1(f

∗)) + p2(V
T
2 (f) − V2(f

∗)) +
p3(V

T
3 (f) − V3(f

∗)). Two cases are examined.
(1) If M(x) ≡ max1≤c≤3 Vc(f) ≥ T , then max1≤c≤3 V

T
c (f) = T . It follows

that Left ≤ T and Right ≥ 3T/11− 18/11, as shown in the proof of Lemma 6.
This implies that Left ≤ 11Right because T ≥ 9.

(2) If M(x) ≤ T , we prove the non-truncated version of the inequality. Note
that |Vc(f) − Vc(f

∗)| ≤ ‖f − f∗‖1, c = 1, 2, 3. Then Left ≤ ‖f − f∗‖1 for any
f ∈ R

3. Following the proof of Lemma 6, we have Right > C1‖f − f∗‖1 ≥
C1Left.
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Proof of Lemma 8: Note that HU (2sε,Gp(s)) = HU (ε,G∗
p (s)) with G∗

p(s) =
{(2s)−1f : f ∈ Gp(s)}. In addition, G∗

p(s) is the convex hull of ±xj/2, j =

1, . . . , p. Then HU (k−1/2,G∗
p(s)) ≤ log

(

2p+k−1
k

)

≤ log((2p + k)!) − log((2p)!) −
log(k!) for any integer k > 1 using the argument in the proof of Lemma 2.6.11
of (25). By Stirling’s formula,

√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n),

implying that HU (k−1/2,G∗
p (s)) is no greater than 2p log(1 + k/(2p))

+ k log(2p/k + 1) − log
√

2π + (12(2p + k))−1 − (12(2p) + 1)−1 − (12k + 1)−1.
Let ε > k−1/2. Then there exists a constant c > 0 such that HU (ε,G∗

p (s)) ≤
c(p log(1 + 1

pε2 ) + ε−2 log(pε2 + 1)). This completes the proof.

References

[1] Alexander, K. (1984) Probability inequalities for empirical processes and
a law of the iterated logarithm The Annals of Probability, 12, 1041-1067.
MR0757769

[2] Bartlett, P., and Shawe-Taylor, J. (1999). Generalization performance of
support vector machines and other pattern classifiers. In B. Scholkopf, et.
al (ed.) Advances in Kernel Methods - Support Vector Learning, 43-54, MIT
Press.

[3] Bartlett, P. L., Jordan, M. I. and McAuliffe, J. D. (2006) Convexity, classifi-
cation, and risk bounds. J. Amer. Statist. Assoc.. 101, 138-156. MR2268032

[4] Bradley, P. S. and Mangasarian, O. L. (1998) Feature selection via con-
cave minimization and support vector machines. in J. Shaclik (ed.), Ma-
chine Learning Proc the Fifteenth International Conf., Morgan Kaufmann,
San Francisco, Ca, 82-90.

[5] Bredensteiner, E. J. and Bennett, K. P. (1999) Multicategory classifica-
tion by support vector machines. Comput. Optim. and Appli., 12, 35-46.
MR1704101

[6] Corduneanu, A. and Jaakkola, T. (2003) On information regularization. Pro-
ceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelli-
gence.

[7] Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine Learn-
ing. 20, 73-297.

[8] Crammer, K., and Singer, Y. (2001). On the algorithmic implementation
of multi-class kernel-based vector machines. J. Machine Learning Res., 2,
265-292.

[9] Cucker, F. and Smale, S. (2002) On the Mathematical foundations of learn-
ing. Bulletin Amer. Math. Soc., 39, 1-49. MR1864085

[10] Gu, C. (2000). Multidimension smoothing with splines. Smoothing and Re-
gression: Approaches, Computation and Application, edited by M.G. Schimek.
MR1795148

[11] Guermeur, Y. (2002). Combining discriminant models with new multi-class
SVMs. Pattern Analy. Appli., 5, 168-179. MR1922450

http://www.ams.org/mathscinet-getitem?mr=0757769
http://www.ams.org/mathscinet-getitem?mr=2268032
http://www.ams.org/mathscinet-getitem?mr=1704101
http://www.ams.org/mathscinet-getitem?mr=1864085
http://www.ams.org/mathscinet-getitem?mr=1795148
http://www.ams.org/mathscinet-getitem?mr=1922450


X. Shen and L. Wang/Multi-class margin classification 329

[12] Lafferty, J. and Wasserman, L. (2006) Challenges in Statistical Machine
Learning. Statistica Sinica, 16, 307-323. MR2267237

[13] Lee, Y., Lin, Y. and Wahba, G. (2004) Multicategory support vector ma-
chines, theory, and application to the classification of microarray data and
satellite radiance data. J. Amer. Statist. Assoc., 99, 67-81. MR2054287

[14] Lin, Y. (2000). Some asymptotic properties of the support vector machine.
Technical report 1029, Department of Statistics, University of Wisconsin-
Madison.

[15] Lin, Y. (2002) A Note on margin-based loss functions in classification.
Statistics and Probability Letters, 68, 73-82. MR2064687

[16] Liu, Y. and Shen, X. (2006). On multicategory ψ-learning and support
vector machine. J. Amer. Statist. Assoc., 101, 500-509. MR2256170

[17] Mercer, J. (1909). Functions of positive and negative type and their con-
nection with the theory of integral equations. Philosophical Transactions of
the Royal Society, London A, 209 415-446.

[18] Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag,
New York. MR0762984

[19] Shen, X., Tseng, G., Zhang, X. and Wong, W. (2003) On ψ-Learning. J.
Amer. Statist. Assoc., 98, 724-734. MR2011686

[20] Shen, X. and Wong, W. (1994). Convergence rate of sieve estimates. Ann.
Statist., 22, 580-615. MR1292531

[21] Tewari, A., and Bartlett, P. (2005). On the consistency of multiclass classi-
fication methods. In Proceedings of the 18th Annual Conference on Learning
Theory, 3559, 143-157. Springer. MR2203259

[22] Tarigan, B., and van de Geer, SA (2004). Adaptivity of support vector
machines with l1 penalty. Technical Report MI 2004-14, University of Leiden.

[23] Vapnik, V. (1998). Statistical Learning Theory, Wiley, New York.
MR1641250

[24] Van De Geer, S. (1993). Hellinger-consistency of certain nonparametric
maximum likelihood estimators. Ann. of Statist., 21,14-44. MR1212164

[25] Van der Vaart, A. W. and Wellner, J. A. (2000) Weak Convergence and
Empirical Processes with Application to Statistics, Springer, New York.

[26] Weston, J., and Watkins, C. (1999). Support vector machines for multi-
class pattern recognition. Proceedings of the Seventh European Symposium
On Artificial Neural Networks.

[27] Wang, L., Zhu, J. and Zou, H. (2006) The doubly regularized support vector
machine. Statistica Sinica, 16, 617-634. MR2267251

[28] Wang, LF., and Shen, X. (2007). On L1-norm multi-class support vector
machines: methodology and theory. J. Amer. Statist. Asso, 102, 595-602.

[29] Zhang, T. (2004a). Statistical behavior and consistency of classifica-
tion methods based on convex risk minimization. Ann. Statist., 32, 56-85.
MR2051001

[30] Zhang, T. (2004b). Statistical analysis of some multi-category large Margin
classification Methods. J. Machine Learning Res., 5, 1225-1251.

[31] Zou, H. and Hastie, T. (2005). Regularization and Variable Selection via
the Elastic Net. J. R. Statist. Soc. B, 67, 301-320. MR2137327

http://www.ams.org/mathscinet-getitem?mr=2267237
http://www.ams.org/mathscinet-getitem?mr=2054287
http://www.ams.org/mathscinet-getitem?mr=2064687
http://www.ams.org/mathscinet-getitem?mr=2256170
http://www.ams.org/mathscinet-getitem?mr=0762984
http://www.ams.org/mathscinet-getitem?mr=2011686
http://www.ams.org/mathscinet-getitem?mr=1292531
http://www.ams.org/mathscinet-getitem?mr=2203259
http://www.ams.org/mathscinet-getitem?mr=1641250
http://www.ams.org/mathscinet-getitem?mr=1212164
http://www.ams.org/mathscinet-getitem?mr=2267251
http://www.ams.org/mathscinet-getitem?mr=2051001
http://www.ams.org/mathscinet-getitem?mr=2137327


X. Shen and L. Wang/Multi-class margin classification 330

[32] Zou, H., Zhu, J. and Hastie, T. (2005) The margin vector, admissible losses
and multi-class margin-based classifiers. Technical Report, University of Min-
nesota.

[33] Zhu, J. and Hastie, T. (2005) Kernel logistic regression and the import
vector machine. J. Comput. and Graph. Statist., 14, 185-205. MR2137897

http://www.ams.org/mathscinet-getitem?mr=2137897

	Introduction
	Multi-class and generalized margin losses
	Ideal generalization performance
	Actual generalization performance
	Examples
	Linear classification: Ideal and actual performances
	Multi-class linear classification: Arbitrarily fast rates
	Nonlinear classification: Spline kernels
	Feature selection: High-dimension p but low sample size n

	Conclusion
	Appendix A: Technical proofs
	References

