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Abstract: A coordinate system free definition of complex structure multi-
dimensional item response theory (MIRT) for dichotomously scored items
is presented. The point of view taken emphasizes the possibilities and sub-
tleties of understanding MIRT as a multidimensional extension of the “clas-
sical” unidimensional item response theory models. The main theorem of
the paper is that every monotonic MIRT model looks the same; they are
all trivial extensions of univariate item response theory.
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1. Introduction

Complex structure multidimensional item response theory (MIRT) is built on
the idea that a single item, however simple it might be, carries the possibility of
an inner structure. That is, in usual terminology one speculates that it is possible
to measure several cognitive areas with one item. The number of cognitive areas
so measured may vary among items, even though usual models assume that it
is fixed for a collection of items (a test) and let a factor analysis type procedure
decide on the number and mixture of cognitive areas measurable by the items.

The point of view taken in this note is that any unidimensional item re-
sponse theory (IRT) model can be thought of as a specialization of a MIRT
model. Hence, the major task is to identify how much of the well established
tools and nomenclature of unidimensional IRT can be preserved in the multidi-
mensional context and, from the other direction, how different multidimensional
notions may specialize to the same unidimensional entity. When the latter hap-
pens, that is when two different multidimensional objects yield the same unidi-
mensional specialization, then both multidimensional notions could be consid-
ered proper generalizations of the underlying unidimensional quantity. A careful
study should then be devised to decide which generalization is more appropriate
with respect to the application at hand.

There is, on the other hand, the possibility of not finding proper multidimen-
sional generalization for some unidimensional notions. This topic also deserves
careful research and understanding.

Here, we consider what is termed complex structure MIRT. Usually, IRT mod-
els have two components: the item likelihood and the population distribution.
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In simple structure MIRT one item represents only one dimension and without
a multivariate population distribution the entire likelihood of the model would
factor as a product of univariate pieces. In complex structure MIRT this fac-
torization is impossible, by definition, irrespective of population model chosen.
Our main theorem will hold irrespective of the complexity of the structure.

The structure of the paper is as follows. A short overview of unidimensional
IRT is followed by the absolute, that is coordinate system free, definition of
MIRT. The connection with the usual approach is also shown via a discussion
of two widely accepted models. Then, the development of the main thesis follows.
In this we prove that MIRT models are all alike and they all can be obtained as a
trivial extension of an appropriate unidimensional item response theory model.
Two sections on some thoughts about capturing cognitive dimensions and on
understanding the role of the notion of dimension-wise independence close the
presentation.

2. Unidimensional Item Response Theory

To make the generalization to the multidimensional framework easier, let us first
summarize some features of unidimensional IRT. Measurement takes place dur-
ing the formation of the response matrix X ∈MN×I(N) with elements xni ∈ N

for student n = 1, . . . , N and item i = 1, . . . , I. In a dichotomous setting (which
is assumed throughout the paper to simplify the presentation) xni = 1 if student
n responded correctly to item i, otherwise it is zero. As a major simplification of
the modeling of the cognitive process it is assumed that the response to an item
is stochastically determined by the ability θ and item parameters βi := (ai, bi, ci)
via the item response function ([1]):

P 3pl(θ, βi) := Prob(xni = 1 | θ, βi) = ci +
1 − ci

1 + e−ai(θ−bi)
. (1)

There are, of course, many different item response functions in use, the three pa-
rameter logistic model is chosen here only as an illustration. The other substan-
tial simplification used in building the model is the assumption of independence
of conditional probabilities P 3pl

ni across an arbitrary subset S ⊂ {1, . . . , N} ×
{1, . . . , I} of student-item pairs.

The two most popular models built out of these blocks are the joint unidi-
mensional IRT and the marginal unidimensional IRT. Joint IRT states that the
total likelihood depends explicitly on the ability of the given students:

Ljoint(X ; Θ,B) =
∏

n,i

P 3pl(θn, βi)
xni(1 − P 3pl(θn, βi))

1−xni (2)

with corresponding log-likelihood:

Ljoint(X ; Θ,B) =
∑

n,i

xni log(P 3pl(θn, βi)) + (1− xni) log(1− P 3pl(θn, βi)). (3)
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Here, Θ = (θ1, . . . , θN ) and B = (β1, . . . , βI) are the collections of all abilities
and item parameters, respectively.
In the marginal theory the likelihood depends only on the distributional prop-
erties of student’s population:

Lmarg(X ;B,Φ) =
∏

n

∫

R

∏

i

P 3pl(θ, βi)
xni(1 − P 3pl(θ, βi))

1−xnidµn(θ) (4)

with log-likelihood

Lmarg(X ;B,Φ) =
∑

n

log

∫

R

∏

i

P 3pl(θ, βi)
xni(1 − P 3pl(θ, βi))

1−xnidµn(θ), (5)

where µn is the density measure of student n over R and Φ is the collection of
distributional parameters for student’s ability. In parametric setting usually µn

is given as
dµn(θ) = ϕn(θ)dθ

with some density function ϕn.

The quantities

Lst
n (X ; θ,B) =

∏

i

P 3pl(θ, βi)
xni(1 − P 3pl(θ, βi))

1−xni (6)

and
Lit

i (X ; Θ, β) =
∏

n

P 3pl(θn, β)xni(1 − P 3pl(θn, β))1−xni (7)

are the student and item likelihoods, respectively.
A maximization of the joint model can be achieved by iteratively maximizing

all the student likelihoods with fixed item parameters to obtain the next approx-
imation of the abilities and all the item likelihoods with fix abilities to obtain
the next approximation of item parameters. Starting values can be constructed
from careful item analysis.

It is worthwhile to analyze the shape of the student likelihood function. It
is a product of the conditional probabilities of the actual responses over all the
items administered to the student. As a function of θ the probability of the
correct response is increasing when the actual response is correct and decreas-
ing for incorrect actual response. As a consequence, a student likelihood will
be increasing if all the actual responses are correct and decreasing if all the ac-
tual responses are incorrect. This in turn pushes the location of the maximum
likelihood solution for the given student to plus or minus infinity. For the item
likelihood a similar statement holds. When at least two responses are different in
each row and in each column of the dichotomous response matrix the existence
of the unique maximum place is guaranteed in every step of the iteration. This,
however does not necessarily imply that the iterative method will be convergent
([4] gives a necessary and sufficient condition for the convergence of the joint
Rasch model). The student likelihood can be well approximated by a normal
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distribution (especially when the number of items is large enough) and its cur-
vature will be inversely proportional to the asymptotic standard error of the
ability estimates.

The marginal model does not suffer from the same restriction so severely, be-
cause the population density function, when chosen according to usual practice,
will be sufficient to ensure the existence of a finite maximum place at each step
of the iteration. In this case, the standard errors associated with the given row
or column will be higher when constant response pattern is present.

For this discussion to even make sense, we had to use the trivially available
ordering of real numbers (playing the role of ability space in the unidimensional
case) to use such notion as “increasing ability”. This point will be central to the
multidimensional extension, since there will be no natural choice of ordering of
multidimensional abilities.

3. Multidimensional Item Response Theory

3.1. Introduction

In what follows we explore the possibility of defining MIRT in geometric terms
without direct reference to coordinates. As before, the full response likelihood for
a student is formed by multiplying single item conditional probabilities together
(invoking the assumption of local independence). The likelihood of an MIRT
model is then constructed by incorporating some sort of population model with
these response likelihoods similar to the joint and marginal univariate cases
(Equations 2, 4).

The classification of MIRT is achieved at the level of a single item conditional
probability in the same way as we would characterize a univariate IRT model as
Rasch, 2PL or 3PL model. This does not mean that we restrict our presentation
to single item tests. Realistic tests are treated using the local independence
assumption as discussed before (Equations 2, 4, and 6).

With this now clarified, from what follows, unless noted otherwise, we shall
drop any reference to any particular student and item. This will also help us
avoiding overflow of indices in the multidimensional context.

3.2. Basic Models

Even though widely investigated, MIRT is not yet widespread as an operational
model. Hence, identifying the major players among the competing MIRT models
is difficult. Here, only two models are discussed, one by [12] and another one by
[10].

First, for an item we associate a vector of discriminations a = (a1, . . . , aD) ∈
R

D and a vector of difficulties b = (b1, . . . , bD) ∈ R
D. With these the functional

representation of the dimension-wise independent MIRT response likelihood of
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[12] has the form

fw
a,b : R

D → [0, 1], θ 7→ fw
a,b(θ) =

D
∏

d=1

1

1 + e−ad(θd−bd)
, (8)

where θ = (θ1, . . . , θD) ∈ R
D. If the conditional probability of passing the

dth dimension of the item is given by 1
1+e−a

d
(θ

d
−b

d
) , then (8) can indeed be

understood as the joint probability of passing all the independent dimensions of
the item. Unless there are separate observed scores for each dimension, language
like “correct response on dimension d” cannot be used. In lack of this we used
the “passing a dimension” term, which may refer to an unobservable event.
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Fig 1. Dimension-wise independent and Scalar Product MIRT hypersurface

[8] (see also [10]) put forward a model in which the response likelihood takes
the functional representation

fsp
a,b : R

D → [0, 1], θ 7→ fsp
a,b(θ) =

1

1 + e−〈〈a θ〉〉−b
, (9)

where a is as before and b ∈ R. 〈〈x y〉〉 =
∑D

d=1 xdyd is the usual scalar product
of x, y ∈ R

D. We use the term Scalar Product MIRT to refer to this model.
As a last step before embarking on the dimension free definition of MIRT

let us write the marginal likelihood of the Scalar Product model assuming mul-
tivariate normal population distribution. Using the notation of the previous
section, the conditional probability of the response xni for item i and student n
is given by

P
(

xni | θ, βi = (ai, bi) ∈ R
D × R

)

=
1

1 + e−(2xni−1)(〈〈ai θ〉〉+bi)
. (10)

Then, the likelihood of the Scalar Product MIRT model is given by

L(X ;B,Φ) =
∏

n

∫

RD

∏

i

P (xni | θ, βi)ϕ(θ; νn,Σn)dDθ, (11)
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where ϕ(θ; νn,Σn) is the multivariate normal density with (possibly) student
dependent mean νn and covariance Σn. Moreover, B = (β1, . . . , βI) is the collec-
tion of item parameters and Φ = (ν1,Σ1, . . . , νN ,ΣN ) is that of the population
parameters.

The multidimensional student likelihood is given by the product of individual
conditional probabilities over items administered to a given student n:

∏

i

P (xni | θ, βi). (12)

Figure 4 depicts a possible student likelihood in the two dimensional case.
The likelihood (11) is a multidimensional generalization of the univariate

marginal likelihood given by (4).

3.3. Definition of MIRT

Our goal in this section is to give a definition of MIRT with as few assumption as
possible. Multidimensional item response theory postulates that with one single
item multiple cognitive abilities could be detected. To accommodate this idea,
one has to change the model for the ability space from the one dimensional vector
space R to a finite dimensional vector space Vθ. While any finite dimensional
vector space V is linearly isomorphic to R

D for D = dim(V ) (see (14) for
an explicit way of constructing such an isomorphism), this isomorphism is not
canonical (there is not a unique isomorphism V → R

D). By this, and other
reasons that will become clear as we proceed, we chose not to use R

D as a
mathematical model of ability space.

The reader unfamiliar with these notions is referred to [5] for an excellent
introduction to linear algebra. Also, an intuitive understanding of the basic no-
tions of smooth manifolds should help understanding of what follows, although
not strictly necessary. Among the many fine references to the topic the interested
reader may find [11] useful.

The basic object in unidimensional IRT is the item response function (IRF)
and its graph, the item response curve (IRC). Recall, that the graph of a function
f : A → B is a subset graph(f) = {(x, f(x)) ∈ A× B | x ∈ A} of A × B. IRC
is a one dimensional smooth submanifold of R × [0, 1]. While there is a scaling
freedom even in the one dimensional case (e.g. the (in)famous 1.7 multiplier
in the logistic models), the possibility of ambiguous interpretation is minimal
and one may use the functional (IRF) and the geometrical (IRC) representation
almost interchangeably.

In the multidimensional case, however, the matter is not so straightforward.
As we shall see, the functional and the geometric representations are different
in a subtle way. One way to keep the presentation coordinate system free in
multidimensional IRT is to postulate that the theory is given by an item response
hypersurface (IRHS). As in the unidimensional case, the IRHS is used to express
the probability of correct response given an ability in Vθ.
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Before defining this notion, let us fix some notations. For any v ∈ Vθ the ray
of v is defined to be the line R·v in Vθ determined by v: R·v = {λv ∈ Vθ | λ ∈ R}.
Similarly, for v, w ∈ Vθ the v-directed line going through w is defined by

w + R · v = {w + λv ∈ Vθ | λ ∈ R}.

For the notion of IRHS we then have the following

Definition 1 A dichotomous item response hypersurface (IRHS) is a D =
dim(Vθ) dimensional smooth submanifold M of Vθ × [0, 1], so that for any two
vectors v, w ∈ Vθ the intersection of (w + R · v) × [0, 1] and M is a graph of a
monotonic function w + R · v → [0, 1].

We shall say that a MIRT model is given when an IRHS is given.

Note, that while w + R · v is not canonically isomorphic to R, monotonicity of
the map

fv,w : w + R · v → [0, 1], λ 7→ fv,w(w + λv) (13)

can be unambiguously defined by requiring that either fv,w(w+λv) ≤ fv,w(w+
µv) or fv,w(w + λv) ≥ fv,w(w + µv) for all λ, µ ∈ R whenever λ ≤ µ. We shall
use the notation fv = fv,0. Figure 2 shows the intersection of (w+ R · v)× [0, 1]
and M in two dimensions.

To understand the definition better, let us first assume that we choose v to
be arbitrary and w = 0 in the definition above. Then, the line w + R · v = R · v
can be understood as an ability direction. The monotonicity requirement of
Definition 1 asks for the natural feature that as the ability given by v increases
the probability of the correct response increases as well. For non-zero w the
requirement is equivalent to the conditional probability of correct response being
monotonic with respect to one ability when the rest of the abilities are fixed to
a certain not necessarily zero value. To be precise, we should say that for w 6= 0
there exists a basis of Vθ so that the monotonicity requirement reads as the
interpretation above. Furthermore, for any basis of Vθ Definition 1 will ensure
the monotonicity of the conditional probability of correct response for any ability
direction given any fixed values for the rest of the ability directions (as defined
by the basis).

Note also that the collection of maps fv,w for v, w ∈ Vθ defines the IRHS
completely. For this reason, we shall use the notation fM , or f if no confusion
may arise, for the function describing the IRHS M ⊂ Vθ × [0, 1].

One may be tempted to object to the use of notions like manifold and hyper-
surfaces. It is very important to note, however, that the conditional probability
of correct response has been given by a hypersurface in the usual MIRT lit-
erature as well. One major difference in terminology is that it was still called
surface in any dimension, which is a correct usage only in dimension two. In
higher dimensions, the object at hand is a hypersurface, a special case of higher
dimensional manifolds.

A basis v = (v1, . . . , vD) in Vθ defines a unique isomorphism

iv : Vθ → R
D,

D
∑

i=1

λivi 7→
D

∑

i=1

λiei, (λi ∈ R), (14)
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IR v  x  [0,1]w +

v
w

IRHS

Fig 2. Intersection of w + R · v × [0, 1] and IRHS. The intersection is the bold curve, which
is required to be monotonic.

where (ei)
D
i=1 is the standard basis of R

D: (ei)j = δij (δij is the Kronecker
delta). This isomorphism can be trivially extended to a diffeomorphism

ψv : Vθ × [0, 1] → R
D × [0, 1], (v, t) 7→ (iv(v), t) (15)

and via this diffeomorphism we may transfer the IRHS from Vθ × [0, 1] to R
D ×

[0, 1]. Now, in R
D × [0, 1] the image of the IRHS may be given by the graph

of a smooth function f : R
D → [0, 1]. Note, however the important difference

between using a functional representation like this latter one and using the
hypersurface representation directly in Vθ × [0, 1]. The functional representation
depends on the basis we chose to establish the diffeomorphism ψv and different
bases may result in different functional representations.

Note: It is tempting to extend this definition to polytomous multidimensional
items by defining the polytomous collection of item response hypersurfaces for a
polytomous item by requiring that the above discussed intersection be a collec-
tion of unidimensional polytomous item response curves as produced by some
unidimensional polytomous IRT model (e.g. Muraki’s’ partial credit model [9]).
The investigation of this possibility is postponed for a forthcoming paper.

3.4. Properties of IRHS

In this section we prove the main theorem of the paper. For the sake of trans-
parency, we start with the two dimensional case which is then followed by the
more involved general theory.
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3.4.1. Two Dimensional Case

Using the monotonicity of the model we can prove an interesting elementary
property.

Lemma 1 In any 2 dimensional MIRT model there exists a line in Vθ through
the origin so that fv is constant.

Proof: Let us choose a vector v ∈ Vθ. Note, that if inf
λ∈R

fv(λv) = sup
λ∈R

fv(λv) the

lemma is proved, the sought after line is R · v. Therefore, we may assume that
inf
λ∈R

fv(λv) < sup
λ∈R

fv(λv). For such a vector either lim
λ→∞

fv(λv) = sup
λ∈R

fv(λv) or

lim
λ→−∞

fv(λv) = sup
λ∈R

fv(λv). Let P be the set of vectors satisfying the first and

N be the set of vectors satisfying the second condition. Both of these sets are
non-empty and by continuity, both sets are open. Also, they are clearly disjoint.
Therefore, there is a vector u ∈ Vθ so that u /∈ N ∪ P . Along the line R · u the
function f is constant. �

Note that the proof only uses monotonicity with w = 0. Utilizing it for general
w the same argument provides the following

Lemma 2 In any 2 dimensional MIRT model, through any point w ∈ Vθ there
exists v ∈ Vθ so that along the v-directed line going through w the function fv,w

is constant.

We introduce the term w-constant line, or simply constant line, for the v-directed
line going through w as in Lemma 2.

w

w’’

w’

f=const.

f=const.

Fig 3. Non-unique constant line results in constant MIRT model.

Analyzing the properties of these constant lines further we see that they are
actually parallel to one another. That is we have the following

Lemma 3 Let w,w′ ∈ Vθ be two points. Let v, v′ ∈ Vθ be the corresponding
directions of the two constant lines. Then v = µv′ for some µ ∈ R.



T. Antal/Coordinate Free MIRT 299

Proof: First, we note that if there is a point w ∈ Vθ so that there exist two
w-constant lines, then the model is trivial (f is constant) and the statement is
true. For, let w′ and w′′ be the intersections of a general position line in Vθ with
the two w-constant lines, respectively. Because f is monotonic along this line,
and f(w′) = f(w′′) f is constant between w′ and w′′, that is f(tw′+(1−t)w′′) =
f(w′) for all t ∈ [0, 1]. Using this argument for every line in general position
proves that f is constant everywhere (see Figure 3).

Now, we assume that the constant lines through w and w′ are unique. If the
two lines are not parallel then they will have an intersection and an argument
similar to the previous one shows that f is constant. �

The corollary of the previous observation is the

Theorem 1 Any 2 dimensional MIRT model is a trivial extension of a unidi-
mensional IRT model.

Proof: We saw in Lemma 3 that a 2 dimensional IRHS is nothing but a collection
of parallel lines. Let v ∈ Vθ be the direction of these lines. Choosing a transversal
R ·u (a line that intersects all of them) to this collection the IRHS can be given
by the function fu : R · u → [0, 1]. For, let us express an arbitrary w ∈ Vθ as a
unique linear combination w = µu+ λv and write

f(w) = f(µu+ λv) = fu(µu). (16)

This function fu can be thought of as a unidimensional IRT model. �

3.4.2. D-Dimensional Case

Technically, the D dimensional case is not that much more complicated than
the 2 dimensional one. It is just much more difficult to visualize the correspond-
ing geometric objects. As we pointed out earlier, the conditional probability
“surface” is not 2 dimensional, so strictly speaking it is not a surface in higher
dimensions. Our three dimensional training does not allow us to “see” objects
in higher dimensions. The formalism we built in the previous section, however,
will be applicable, with appropriate modifications, to this situation as well.

The proof of Lemma 1 works for any dimensions. Applying the monotonicity
argument for arbitrary (v, w) as above proves the corresponding

Lemma 4 In any MIRT model there exists a hyperplane Hw in Vθ through
w ∈ Vθ so that fHw

is constant.

Proof: Here, fHw
is the restriction of f to the hyperplane Hw. As before, we

prove w = 0 explicitly; the general case follows the same argument. Let us,
as before, define the open sets P and N and note that P = −N . Exclude the
trivial case of P = ∅. It is clear that P ∪ N 6= Vθ. Locally the boundary of P
(the closure of P minus P ) is a D − 1 dimensional submanifold (D = dim Vθ).
Therefore there exists a collection (c1, . . . , cD−1) of points in Vθ\(P ∪N) so that
(c1 − w, . . . , cD−1 − w) spans a hyperplane Hw. Now, along the line segment
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joining any point on R · (ci −w) with any point on R · (cj −w), for some i 6= j,
the restriction of f should be constant (Figure 3).

Repeating this argument for each pair of line segments shows that along
the entire hyperplane f is constant. If there is another hyperplane with this
property, then P = ∅, which is excluded. �

Now, a D − 1 dimensional hyperplane is to a D dimensional space as a line
is to the plane. Using this intuition it is not difficult to adapt the formal proof
of Lemma 3 to prove

Lemma 5 Let w,w′ ∈ Vθ be two points. Let Hw, Hw′ ⊂ Vθ be the corresponding
two constant hyperplanes. Then Hw and Hw′ are parallel.

Now, we are ready to rephrase our main theorem in arbitrary dimension.

Theorem 2 Any MIRT model is a trivial extension of a unidimensional IRT
model.

For the sake of explicitness let us write fM for an arbitrary IRHS in terms
of univariate IRT model. Let us fix a transversal u ∈ Vθ to the collection of
constant hyperplanes. First, we observe that for any w ∈ Vθ there is a unique
decomposition w = µu+ λv with v ∈ Hw. Then,

fM (µu + λv) = fM
u (µu). (17)

Note that if we choose the usual 2Pl or 3PL models the construction yields the
Scalar Product model. It is also interesting to note that the MIRT generalization
of the Rasch model is equivalent to the generalization of the 2PL model. This is
because, while within the univariate Rasch model one may assume that the slope
is fixed, when more dimensions are considered simultaneously the assumption of
equal slopes is not valid. The relative positions of slopes to one another should
be determined during the estimation procedure in lack of a priori information.

This kind of models were called generalized compensatory models (GMIRT)
in [13]. The link function of an IRHS as GMIRT is fM

u .

3.4.3. Absolute Functional Representation for the Scalar Product Model

A notable feature of the Scalar Product model is that using the dual of a vector
space it can be defined without referring to coordinates even in its functional
form. First, we recall that the dual V ∗ of a finite dimensional vector space
V is the finite dimensional vector space of the same dimension of linear maps
V → R :

V ∗ := {p : V → R | p is linear}. (18)

The duality is the obvious map

( | ) : V ∗ × V → R, (p, v) 7→ ( p | v) := p(v). (19)
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That is, for any p ∈ V ∗ and v ∈ V the quantity ( p | v) is a real number. It
is important to note that the duality, unlike a scalar product, does not involve
any choice.

Now, if in MIRT we make the choice, that the ability is modeled by the vector
space Vθ as before and the item is modeled by the discrimination a ∈ V ∗

θ in the
dual space and a real number b then the IRHS of the model is given as the graph
of the following function:

fd
a,b : Vθ → [0, 1], fd

a,b(θ) :=
1

1 + e−(a θ)−b
. (20)

In addition to its very satisfying and elegant nature this model has the computa-
tional advantage of having the same functional representation in any coordinate
system. As we shall see later the dimension-wise independent model does not
share this nice invariance property.

3.4.4. Interpretation of Main Theorem

The statement of the main theorem excludes many existing MIRT models from
the pool of monotonic MIRT models. The author’s reading of the main theorem
is that the only relevant MIRT model is the one defined in (17). This interpreta-
tion is backed by the fact the widely used and tested estimation tools exist only
for the Scalar Product model, the most relevant of the above extensions ([10]).
In the view of Theorem 2 there seems to be a good reason behind that. It seems
that lack of monotonicity prevents one to maximize the likelihood function of
MIRT models excluded by our approach. This certainly defines a valid future
research direction. Also, the existence of an elegant coordinate free functional
representation makes the Scalar Product model even more appealing.

On the other hand, model building always has many steps that cannot be
entirely backed by theoretical considerations. The process sometimes is dictated
by personal preferences and tastes. It is possible that some readers may not be
willing to except the requirement of monotonicity as formulated in Definition
1 as a crucial and necessary feature of an MIRT model. For those readers the
main theorem is interpreted a bit differently. First, we note the close connection
between the notion of compensatory model to monotonicity. Usual terminology
is that the model is compensatory, if the probability of the correct response
may be high even with the lack of ability in all but one dimension. That is,
sufficiently high ability in one dimension is able to compensate for the lack of it
in other dimensions. In fact, compensatory property follows from monotonicity
as an easy application of Theorem 2. If compensatory property is understood
in a sense that it is true in any coordinate system, then the reverse is also true,
and the two notions are equivalent. With this in mind the theorem states that
any compensatory MIRT model is a direct generalization of a univariate IRT
model.

In either way, Theorem 2 establishes a prominent role for the Scalar Product
model as an MIRT model.
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3.5. Estimation in MIRT

Let us now restrict our attention to the Scalar Product model. A typical two
dimensional (D = 2) student likelihood (12) is given in Figure 4. As in unidi-
mensional IRT, the maximum place of this function plays a special role in the
estimation of MIRT model parameters. A curious feature of this graph is that a
pronounced unbalance can be observed between the standard errors of the two
ability estimates. Here, standard error is understood as the inverse of the cur-
vature of the graph at the maximum place. There is a well identified direction
in which the standard error is minimal and in the direction orthogonal to this
the standard error appears to be much bigger. One may even say that, despite
our efforts, the model shows definite signs of unidimensionality.

The reason behind this is very simple. A student likelihood is formed as a
product of probabilities of the actual responses given by item response hyper-
surfaces similar to the one shown on the RHS of Figure 1. These hypersurfaces
are always increasing towards the first quadrant (correct response) or towards
the third quadrant (incorrect response). Hence, the product of these will be the
above observed “ridge” of Figure 4. It is a ridge because the observed response
is either correct or incorrect and no distinction is made between events of the
students using only one of the dimensions correctly during the assessment. In
other words, since there is no observed data for the different dimensions, the
model will not be able to provide two distinct, meaningful estimates for the
abilities of the person on the different cognitive dimensions.
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Fig 4. Scalar Product MIRT student likelihood.
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3.6. Dimension-wise Independence

The careful reader should have noticed, that concerning one particular point
the presentation is not faithful to its own principles. That is, the notion of
dimension-wise independence was used without any discussion of its invariance,
or coordinate system independence. It is easy to see that the dimension-wise
independent model does not satisfy the requirement of monotonicity, therefore
we would not consider it as a valid MIRT model. On the other hand, it might
be useful to see explicitly how badly the the functional representation of the
dimension-wise independent model behaves to appreciate the niceties of the
Scalar Product model even more.

Invariance of dimension-wise independence for the the model

fw
a,b : R

D → [0, 1], fw
a,b(θ) =

D
∏

d=1

1

1 + e−ad(θd−bd)
(21)

would mean that the factorization property holds in any other coordinate sys-
tems.

Mathematically, this would require that for any invertible matrix G ∈ GL(D)
(G expresses change of coordinates) we have a function

hG : R × R × R → R, (a1, b1, t) 7→ hG(a1, b1, t)

and a pair of invertible matrices U, V ∈ GL(D) so that when θ = G · θ′ (θ, θ′ ∈
R

D) we have a factorization

fw
a,b(θ) =

D
∏

d=1

hG((Ua)d, (V b)d, θ
′

d) (22)

that is

fw
a,b(θ) = fw

a,b(G · θ′)

=

D
∏

d=1

1

1 + e−ad(
∑

D

d′=1
g

dd′θ′

d′
−bd)

=
D
∏

d=1

hG(a′d, b
′

d, θ
′

d), (23)

with a′d = (Ua)d and b′d = (V b)d. The role of U and V is to ensure that the
function hG is the same for all factors in the product by allowing this function
to depend on different linear combinations of the elements of a and of b.

To show that this is too much to ask for in general, let us first assume that a
factorization f(x, y) = h(x)g(y) holds for some function f so that h(0) 6= 0 and
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g(0) 6= 0. Then,

h(x) =
f(x, 0)

g(0)
,

g(y) =
f(0, y)

h(0)
,

and
1

h(0)g(0)
=

f(x, y)

f(x, 0)f(0, y)
. (24)

Now, for the sake of concreteness, let us take D = 2 and a = (a1, a1) ∈ R
2 and

b = (0, 0) ∈ R
2. Also, let us take G =

(

1 1
1 −1

)

. With these, (23) becomes

1

1 + e−a1(θ′

1+θ′

2)
·

1

1 + e−a1(θ′

1−θ′

2)
= h(θ′1)g(θ

′

2) (25)

with some h, g : R → R. From (24) the function

1

h(0)g(0)
=

1

1+e
−a1(θ′

1
+θ′

2
)
· 1

1+e
−a1(θ′

1
−θ′

2
)

1

(1+e
−a1θ′

1 )2
· 1

1+e
−a1θ′

2
· 1

1+e
+a1θ′

2

(26)

should be constant. This is clearly not the case, showing that the factorization
(23) does not hold in general.

It seems that the definition of dimension-wise independence is not an absolute
one. We have a choice of either dropping it altogether, or if need arises, we
may change it. To formulate this notion we have to relax the monotonicity
requirement of MIRT in Definition 1 by requiring the monotonicity of the fv for
all v ∈ Vθ, that is assumed w is zero in Definition 1 and in 13. Let us call this
type of models ray-wise monotonic MIRT models.

Definition 2 A ray-wise monotonic MIRT model given by an IRHS is dimension-
wise independent if there exists a coordinatization of abilities so that the func-
tional representation of the model fa,b(θ) can be written as a product of factors

fa,b(θ) =

D
∏

d=1

h(ad, bd, θ
′

d). (27)

The specialty of this property comes from the fact that for a general IRHS it is
very rare that the functional representation can be factored so that one may con-
sider it dimension-wise independent. This interpretation was used throughout
the paper, when the Whitley model was called dimension-wise independent.

4. Conclusion

A coordinate free definition of MIRT has been put forward in the paper. Our
main argument is that in a coordinate free setup it is easier to tell apart genuine
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MIRT objects from potential artifacts. These artifacts can be notions and rela-
tionships that should not be considered integral parts of the model since their
key features which may be apparent in one could vanish in another coordinate
system. We showed that it is possible to provide a full classification of monotonic
models solely based on general, coordinate-free considerations.

It is important to note that the classification was carried out at the level of
a single item IRHS, but it is in no way restricted to single item tests. IRT and
MIRT models handle tests by invoking the local independence assumption and
form the likelihood of the model by multiplying single item conditional probabil-
ities together. The flavor of the test (Rasch, 2Pl, normal ogive, compensatory,
polytomous, etc.) is always given at the single item level. Our treatment is no
exception.

It is very important that the reader does not mistake the promotion of the
coordinate free description for an argument for a completely coordinate free han-
dling of the entirety of MIRT. In fact, it should be explicitly stated that without
a choice of coordinates meaningful MIRT practice cannot exist. In addition to
this, every discussion of MIRT features can be fully carried out using R

D as the
main model space for abilities. Should such a path be chosen, however, one has
to be careful to meticulously maintain the coordinate system invariance of the
theory every step of the way. The contribution of this paper is an introduction
of a framework to ease this burden by keeping the presentation absolute (with-
out choosing any coordinates) for as long as possible. The paper shows that
one may be able to formulate general statements and reach valuable insights
before switching to relative mode by an introduction of a particular basis. It is
likely that someone may observe the relevance of a notion while in a particular
coordinate system and may want to establish whether it is invariant by trying
to create a definition in the absolute framework presented here.

It is noteworthy, that the necessity of the existence of a coordinate free rep-
resentation of our physical world led Einstein to formulate both the special and
the general theories of relativity ([2; 3]). The fundamental dogma in relativity
theory is that the events of the physical world take place without being aware of
any coordinate system. Therefore, any faithful description should be invariant
of the change of coordinate system. Better yet, a description of the physical
world is sought that bypasses the use of coordinates altogether.

A reader interested in the successes of coordinate free description of the
physical world may also find the books [6; 7] useful.
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