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Bayesian Model Diagnostics Based on Artificial

Autoregressive Errors

Mario Peruggia∗

Abstract. Hierarchical Bayes models provide a natural way of incorporating
covariate information into the inferential process through the elaboration of re-
gression equations for one or more of the model parameters, with errors that are
often assumed to be i.i.d. Gaussian. Unfortunately, building adequate regression
models is a complicated art form that requires the practitioner to make numerous
decisions along the way. Assessing the validity of the modeling decisions is often
difficult.

In this article I develop a simple and effective device for ascertaining the quality
of the modeling choices and detecting lack-of-fit. I specify an artificial autoregres-
sive structure (AAR) in the probability model for the errors that incorporates
the i.i.d. model as a special case. Lack-of-fit can be detected by examining the
posterior distribution of AAR parameters. In general, posterior distributions that
assign considerable mass to a region of the AAR parameter space away from zero
provide evidence that apparent dependencies in the errors are compensating for
misspecifications of some other aspects (typically conditional means) of the model.
I illustrate the methodology through several examples including its application to
the analysis of data on brain and body weights of mammalian species and response
time data.

Keywords: Allometry, Asymptotic normality, Autocorrelation, Hierarchical mod-
els, Response times

1 Introduction

It is common statistical practice to evaluate the fit of a model by examining the be-
havior of the realized residuals. For example, in multiple linear regression analyses
(Weisberg 1985), the residuals are often plotted against one of the covariates or against
the predicted values of the corresponding cases. The plots are then scanned for the
presence of non-random patterns that would call into question the assumption of an
i.i.d. error structure. Realized residuals incompatible with i.i.d. errors may indicate
inadequacies in the model and suggest avenues to improve the fit (e.g., transformations
of the response and/or some of the predictors, introduction of new predictors, removal
of old predictors, etc.). The use of residual plots and related diagnostics (added vari-
ables plots, q-q plots, etc.) is well established in the frequentist arena and virtually all
statistical software packages provide easy access to computational and graphical tools
to perform residual-based model checks.
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Hierarchical Bayes models (Carlin and Louis 2000; Gelman, Carlin, Stern, and Rubin
2004) provide a natural way of incorporating covariate information into the inferen-
tial process through the elaboration of regression equations for one or more of the
model parameters, with errors that are often assumed to be i.i.d. Gaussian. The ap-
proach is conceptually simple and the development of efficient Markov Chain Monte
Carlo (MCMC) computational techniques has made its implementation feasible even
in rather complicated settings, especially since flexible and user-friendly computational
environments such as BUGS (Spiegelhalter, Thomas, Best, and Gilks 1996a) and Win-
BUGS (Spiegelhalter, Thomas, Best, and Lunn 2003) have become available. Unfortu-
nately, building adequate regression models is a complicated art form that requires the
practitioner to make numerous hard decisions along the way. By comparison to its
frequentist counterpart, the contents of the Bayesian model-building toolbox look quite
scanty. All the more so when the regression model to be constructed is for a parameter
at a higher stage in the hierarchy—a quantity for which, typically, the intuition is not
as well developed as the intuition for quantities that are directly observable.

In this article I demonstrate that residual analysis is also a powerful diagnostic tool
for Bayesian model building. Rather than examining the realized residuals directly (a
difficult task, especially when the regression models are for parameters that appear at
higher levels of the model hierarchy), I introduce an artificial autoregressive (AAR)
structure in the probability model for the errors that incorporates the i.i.d. model as a
special case. Lack-of-fit can be detected by examining the posterior distribution of the
AAR parameters. In general, posterior distributions that assign considerable mass to
a region of the AAR parameter space away from zero provide evidence that apparent
dependencies in the errors are compensating for misspecifications of some other aspects
(typically conditional means) of the model.

Econometricians have long recognized that, given a data vector Y whose elements
are collected sequentially over time, the misspecification of the design matrix X in a
linear regression model Y = Xθ + e can induce autocorrelation in the elements of e

(Judge, Griffiths, Hill, and Lee 1980). Within this context, the Durbin and Watson test
is the earliest and most popular frequentist technique for detecting autocorrelation in
the residuals (Durbin and Watson 1950, 1951). More recently, a Bayesian comparison of
regression models with i.i.d. and AR(1) errors was presented in Carota (1998). This work
was further extended to encompass comparisons with higher order autoregressive error
structures (as well as moving average and nonparametric error structures) in Carota
(2005). In econometric applications the misspecification of the design matrix is typically
difficult to remedy, due in part to the fact that some of the important regressors may
not be known or measurable. Thus, econometricians end up retaining the misspecified
X and are principally concerned with the impact that the presence of autocorrelation
has on the estimation of θ and how to optimally estimate θ in its presence. Bayesian
estimation in this context is considered, for example, by Zellner and Tiao (1964) using
locally uniform priors on the model parameters and in Judge et al. (1980, chap. 5) using
Jeffreys’ prior.

The basic premise that model misspecification leads to autocorrelated errors also
motivates the development of the diagnostic tools presented in this article. However, the
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perspective here is essentially opposite than in econometrics: the aim of the diagnostics
is to assess lack-of-fit, uncover specific shortcomings of the model, and suggest possible
directions for further elaboration and improvement that would make a model with
conditionally i.i.d. errors appropriate. The applicability of the AAR error structure
to uncover lack-of-fit in the context of elaborate Bayesian hierarchical models is very
flexible and can be readily implemented using popular MCMC simulation software.
While the AAR structure implies that the observations are ordered, I need not require
that they be collected over time. As the examples presented throughout the article will
make clear, in certain cases the ordering will be indeed determined by the time when the
observations arose, in others it will be suggested naturally by the specific application,
and in others yet it will be entirely arbitrary.

An asymptotically normal approximation to the posterior distribution of the AAR
parameter based on an infill scheme provides an interpretative tool that outlines how
bias and error variance play off against each other in the assessment of lack-of-fit. The
practical strength of the proposed AAR diagnostic lies in its computational simplicity
and in the fact that the lack-of-fit of a given regression structure is numerically quantifi-
able based on the posterior distribution of a one-dimensional model parameter. Beside
examining graphically the posterior distribution of the AAR parameter, I suggest to
compute numerical diagnostics defined in terms of tail probabilities. These are very
quick to derive based on the MCMC output and provide easily interpretable summaries
of lack-of-fit conditional on the evidence given by the data. Because of their computa-
tional simplicity and low dimensionality these summaries enable exploratory analyses
for complex hierarchical models (e.g., analyses concerning joint aspects of lack-of-fit)
that would be much harder to accomplish if based on a direct examination of the residu-
als. In practice, for hierarchical models involving many regression equations, a routine,
preliminary screening based on the AAR device can be followed by a direct residual
analysis for the fits that are identified as problematic, so as to uncover specific reasons
for lack-of-fit. In addition to the appeal of computational simplicity, I show that there is
useful information contained in the posterior distribution of the AAR parameters that
cannot be recovered by a simple examination of the residuals.

The remainder of the article is organized as follows. Section 2 builds some intuition
for the technique by considering an elementary example and deriving some asymptotic
properties. Sections 3 and 5 evaluate the performance of the technique in a variety
of settings using simulated and real data respectively. Section 4 illustrates how to
quantify numerically the lack-of-fit on the basis of the posterior distribution of the
AAR parameters. Section 6 contains a brief discussion and some concluding remarks.

2 Intuition and Asymptotic Considerations

In this section, I consider a simple model for which direct closed-form calculation can be
performed and present some asymptotic results to develop intuition and motivate the
development of model diagnostics based on the specification of AAR error structures.

Example 2.1. I am planning to collect n i.i.d. observations, yi, from a N(µy, σ2
y)
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distribution with known variance σ2
y and to make inference about the unknown mean µy.

My friend Pythia claims she has the ability to make inferences without seeing the data
and tells me that the value of the mean is equal to some fixed real number a. Pythia has
a spotty track-record of reporting the right mean and I wish to verify her assertion by
actually collecting the data and analyzing them. To do so, always assuming conditional
independence unless stated otherwise, I specify the following model with AAR errors for
the yi. For i = 1, . . . , n, let

yi = a + ηi,

where a is a fixed constant, and η1 ∼ N(0, σ2
1). Furthermore, for i = 2, . . . , n, let

ηi = φηi−1 + εi,

with εi ∼ N(0, σ2
ε ) and φ ∼ N(0, σ2

φ), where σ2
1 , σ2

ε , and σ2
φ are fixed and known. The

model has conjugate structure, and the posterior distribution of φ is easily seen to be
normal with mean and variance

E(φ|y) =

∑n
i=2(yi − a)(yi−1 − a)

(σ2
ε /σ2

φ) +
∑n

i=2(yi−1 − a)2
and V (φ|y) =

[
1

σ2
φ

+
1

σ2
ε

n∑

i=2

(yi−1 − a)2

]
−1

.

Suppose the true mean of the yi is µy = 0. Then, denoting by ρy the lag-1 autocorrelation
of the yi (which is zero because of the independence assumption),

limn→∞

1

(n − 1)

n∑

i=2

(yi − a)(yi−1 − a) =

= limn→∞

n∑

i=2

yiyi−1

n − 1
− a

n∑

i=2

yi

n − 1
− a

n∑

i=2

yi−1

n − 1
+ a2 n − 1

n − 1

= ρy − aµy − aµy + a2 = a2.

Similar calculations show that limn→∞(n − 1)
−1 ∑n

i=2(yi−1 − a)2 = σ2
y − 2aµy + a2 =

σ2
y+a2. Thus, limn→∞E(φ|y) = a2/(a2+σ2

y) and limn→∞(n−1)V (φ|y) = σ2
ε /(a2+σ2

y).
The asymptotic posterior mean of φ is zero if Pythia is right (i.e., when a = 0). The
further she is from the truth (i.e., the larger a2 is), the closer the asymptotic posterior
mean of φ will be to one. The asymptotic variance, in turn, is determined by the relative
sizes of σ2

ε and a2 + σ2
y. These considerations suggest that draws from the posterior

distribution of φ can be used to diagnose Pythia’s accuracy. A histogram of posterior φ
values centered somewhere in the neighborhood of zero would give no indication that her
guess should be questioned.

From a more general perspective, let f and g be smooth functions on a finite closed
interval, that, without loss of generality, can be taken to be [0, 1]. I will consider
regular infill asymptotics, assuming that the true data generating mechanism is given by
yi = f(i/n)+ui, where, for i = 0, . . . , n, the ui are independent normal errors with mean
zero and variance σ2

u. The fitted model with AAR errors is given by yi = g(i/n)+ηi, with
ηi = φηi−1 + εi, where the i.i.d. zero-mean normal noise process {εi} has variance σ2

ε .
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Let r(t) = f(t) − g(t) denote the bias at the point t induced by fitting the wrong
regression function g. Simple algebraic manipulations yield:

[r(i/n) + ui] = φ [r((i − 1)/n) + ui−1] + εi.

Treating the process zi = [r(i/n) + ui] as zero-mean stationary, φ is estimated consis-
tently by

φ̂n =
(n + 1)−1

∑n
i=1 zizi−1

(n + 1)−1
∑n

i=0(zi)2
. (1)

As n goes to infinity, the numerator of Equation (1) converges to the limit of

n∑

i=1

r(i/n)r((i − 1)/n)

n + 1
+

n∑

i=1

r(i/n)ui−1

n + 1
+

n∑

i=1

r((i − 1)/n)ui

n + 1
+

n∑

i=1

uiui−1

n + 1
.

By the definition of a Riemann sum, the first term in the summation converges to∫ 1

0 r2(t) dt. Also, because of the smoothness assumptions on f and g and of the various
distributional assumptions, the SLLN implies that the last three terms converge to zero.

Hence the numerator converges to
∫ 1

0 r2(t) dt. Similarly, the denominator converges to∫ 1

0
r2(t) dt + σ2

u. Thus, φ̂n converges with probability one to

∫ 1

0 r2(t) dt
∫ 1

0
r2(t) dt + σ2

u

. (2)

The expression in Equation (2) can be interpreted as a signal to noise ratio for detecting
unmodeled trend: the integrated squared bias in the numerator quantifies the amount
of unmodeled trend and the denominator quantifies the amount of unmodel trend plus
the amount of noise in the data.

A full Bayesian model would typically specify a parametric family g(t|θ) to which
g(t) belongs as well as a prior distribution for the model parameters θ, φ, and σ2

ε . For all
fixed n, the model will define a likelihood pn(yn|(θ, φ, σ2

ε )) for the data yn = (y0, . . . , yn)
collected under the regular infill scheme. Let (θ∗, φ∗, (σ∗

ε )2)n be the value of (θ, φ, σ2
ε ))

that minimizes the Kullback-Leibler divergence of pn(yn|(θ, φ, σ2
ε )) from the true dis-

tribution of the data, pn(yn), let (θ∗, φ∗, (σ∗

ε )2) = limn→∞(θ∗, φ∗, (σ∗

ε )2)n, and let
V (θ, φ, σ2

ε ) = limn→∞(n + 1)[In(θ, φ, σ2
ε )]−1, where In(θ, φ, σ2

ε ) denotes the Fisher in-
formation matrix based on a sample of size n + 1. Under suitable regularity condi-
tions (see Gelman et al. (2004) for the case of i.i.d. observations), the joint posterior
distribution of

√
n + 1 [(θ, φ, σ2

ε ) − (θ∗, φ∗, (σ∗

ε )2)] will converge to a normal distribu-
tion with mean 0 and covariance matrix V [(θ∗, φ∗, (σ∗

ε )2)]. Marginally, the posterior
of

√
n + 1 (φ − φ∗) will converge to a univariate normal distribution with mean 0 and

variance (σ∗

ε )2/(
∫ 1

0
[r∗(t)]2 dt + σ2

u), where

φ∗ =

∫ 1

0
[r∗(t)]2 dt

∫ 1

0 [r∗(t)]2 dt + σ2
u

(3)
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The expression for the asymptotic mean φ∗ is the same as expression (2) (and can
be interpreted similarly), except that r(t) is replaced by r∗(t) = f(t) − g(t|θ∗), where
g(t|θ∗) is the member of the family g(t|θ) that best approximates f(t) in the sense of

minimizing
∫ 1

0 (f(t) − g(t|θ))2 dt. An illustration of this asymptotic approximation is
presented in Example 3.1.

3 Examples Using Simulated Data

In this section, I examine the finite sample and asymptotic performance of the AAR
diagnostic device by presenting some simulated data examples. To explain the intu-
ition behind the methodology, the examples in this section deal with simple models for
which more direct diagnostics can be readily developed. In several cases the posterior
distributions of the AAR parameters could be derived using low dimensional numeri-
cal integration, but I chose to estimate them by MCMC simulation to reflect the way
in which the diagnostic device would typically be used for general hierarchical Bayes
models.

Example 3.1. This example illustrates the methodology in the context of a linear
regression model. The data set is comprised of n = 101 pairs of observations (xi, yi)
simulated from the model yi = 1.0 + (0.1)xi + ui, where, for i = 0, . . . , n, xi = i and the
ui are independent standard normal errors.

Using BUGS, I fit several regression models with an AAR error structure and a
possibly misspecified slope. For i = 0, . . . , n, I assume that yi = α + bxi + ηi, where b is
a fixed constant and α ∼ N(0, 103). The errors ηi have the same basic AAR structure
as in Example 2.1, but now the variances σ2

1 and σ2
ε are given inverse gamma prior

distributions. Specifically, η1 ∼ N(0, σ2
1), and, for i = 1, . . . , n, ηi = φηi−1 + εi, with

εi ∼ N(0, σ2
ε ), 1/σ2

1 ∼ Gamma(2.5, 10.0), 1/σ2
ε ∼ Gamma(0.1, 0.1), and φ ∼ N(0, 1.0).

Figure 1 displays the data and five fitted regression lines corresponding to five specifi-
cations of the slope b in the regression equation. The five values of b under consideration
are b1 = 0.10, b2 = 0.09, b3 = 0.07, b4 = 0.05, and b5 = 0.00. For 1 ≤ j ≤ 5, the equa-
tion of the fitted regression line is given by y = α̂j + bjx, where α̂j is an estimate of the

posterior mean of α obtained by averaging 1, 000 posterior draws α
(k)
j , k = 1, . . . , 1, 000,

generated by BUGS based on the model with slope bj . In each of the five cases, I dis-
carded the first 10, 000 draws and subsampled every tenth of the subsequent 10, 000 ones.
Denoting by ȳ the sample mean of the observed y values, each estimated intercept α̂j

arises from the shrinkage of the value ȳ − bj ∗ 50 towards the prior mean of zero.

As evidenced by the figure, the horizontal line (corresponding to slope b5) provides
the worst fit. As x increases, the residuals from the fitted line progressively shift from
having large negative values to having large positive values (see the bottom left panel of
Figure 2). This increasing trend is due to the erroneous specification of the conditional
mean for the observations. Failure to remove the trend induces strong positive autocor-
relations in the residuals that are captured by the AAR model. As a consequence, the
posterior distribution of the AAR parameter φ, illustrated by the histogram in the bot-
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Figure 1: Simulated Data and Five Fitted Lines for the Linear Regression Model of
Example 3.1.

tom right panel of Figure 2, is concentrated near one. Based on the 1,000 draws from
the posterior distribution of φ used to construct the histogram, the posterior mean is
estimated at 0.93 and the 95% equal-tailed posterior probability interval is [0.83, 1.01]).

The best fitting line appears to be the one rising most rapidly (corresponding to slope
b1 = 0.1). This, of course, is not surprising because the data were simulated from a
regression model with slope equal to 0.1. In this case, a model of independence for the
AAR error structure (φ = 0) would be appropriate as evidenced by the absence of trends
in the residual plot in the top left panel of Figure 2. Accordingly, the posterior distri-
bution of the AAR parameter φ, illustrated by the histogram in the top right panel of
Figure 2, is centered in the vicinity of zero. Based on the 1,000 draws from the posterior
distribution of φ used to construct the histogram, the posterior mean is estimated at 0.02
and the 95% equal-tailed posterior probability interval is [−0.19, 0.24]. The intermediate
cases corresponding to slopes b2, b3, and b4, are characterized by correspondingly wors-
ening fits (see the left intermediate panels of Figure 2) and posterior distributions of the
AAR parameter φ that become progressively more concentrated about a central location
that shifts from zero towards one (see the right intermediate panels of Figure 2).

The asymptotic posterior mean φ∗ of φ under regular infill can be computed using
Equation (3), adjusting for the fact that the unit interval in the original derivation of
Section 2 is here replaced by an interval of length 100. Note that the initialization of
the AAR process with the specification of the variance of η1 is not considered explicitly
in the derivations of Section 2 because it does not impact on the asymptotic arguments.

Observing that
∫ 100

0
(1 − 0.10t − (α + bt))2 dt is minimized at α∗ = 6 − 50b, yields

100−1
∫ 100

0 [r∗(t)]2 dt = (10b− 1)2(25/3) and

φ∗ =
(25/3)(10b− 1)2

(25/3)(10b− 1)2 + 1
, (4)

with (25/3)(10b − 1)2 capturing the amount of unmodeled trend and σ2
u = 1 capturing

the amount of noise in the data. Figure 3 illustrates the convergence of the posterior
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Figure 2: Residuals from the Five Fitted Lines and Corresponding Histograms of the
AAR Parameters for the Linear Regression Model of Example 3.1. The triangular
symbols represent the estimated posterior means of the AAR parameters.

distribution of φ to normality for the case of b4 = 0.05, The three panels display, from
bottom to top, histograms of posterior draws of φ based on samples of sizes 101, 1,001,
and 10,001, respectively. As the sample size increases, the histograms become more
symmetric and concentrate more closely around the asymptotic mean value of 0.676
calculated according to Equation (4). In each panel, the value of the asymptotic mean
is represented by the vertical segment and the sample mean of the posterior draws is
represented by a triangular symbol.

Example 3.2. In this example, building on Examples 3.1 and on additional evidence
(not reported to conserve space) that the methodology can successfully detect if the true
conditional mean of the observations is a polynomial of a higher degree than the one
specified by the model, I assess the performance of the AAR diagnostic in the context
of a linear repeated measures model. I simulated repeated measurements yij according
to the model yij = ai + bixj + cix

2
j + ui,j , where i, 1 ≤ i ≤ 10, can be thought of as

indexing an experimental subject and j, 1 ≤ j ≤ 20, indexes a measurement taken at
xj = j. For the sake of discussion, I can think of the xj as representing successive time
points at which the measurements were taken. For 1 ≤ i ≤ 9, I sampled independently
ai from a N(3, (0.5)2) distribution and bi from a N(0.2, (0.05)2) distribution, and set
ci = 0. Furthermore, I set a10 = 2.26787, b10 = 0.44321, and c10 = −0.01108. Thus,
the regression curves for the first nine subjects are linear with expected measurements of
3.2 at x1 = 1 and 7.0 at x20 = 20. The regression curve for the last subject is quadratic,
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Figure 3: Convergence to Normality Under Regular Infill of the Posterior Distributions
of the AAR Parameters in the Linear Regression Model of Example 3.1 for the Case
b4 = 0.05. The vertical segments represent the value of the asymptotic mean and the
triangular symbols represent the estimated posterior means of the AAR parameters.

takes on values 2.7 at x1 = 1 and 6.7 at x20 = 20, and has a horizontal tangent at
x20 = 20. I generated the measurement errors uij from a N(0, (0.2)2) distribution. The
longitudinal regression curves and corresponding simulated data are depicted in the two
panels of Figure 4, where the thicker lines represent the curves corresponding to the last
subject.

The correct assessment of the functional form of the regression curves for the various
subjects is of paramount importance in the analysis of repeated measures data. Often, the
regression curves are modeled as low degree polynomials. Naturally the question arises of
whether a straight line is appropriate or a higher degree polynomial is needed to improve
the fit. With this question in mind, I fit the model yij = αi+βixj +ηi,j , where the subject
specific regression parameters are independently distributed as αi ∼ N(α0, σ

2
α) βi ∼

N(β0, σ
2
β), 1 ≤ i ≤ 10, with α0, β0 ∼ N(0, 103) and 1/σ2

α, 1/σ2
β ∼ Gamma(0.1, 0.1), all

independently.

For each subject, the error terms ηi,j follow the same AAR structure introduced in
Example 3.1. Thus, there is an AAR parameter φi corresponding to each of the ten
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Figure 4: Simulated Longitudinal Regression Curves (left panel) and Data (right panel)
for Example 3.2. The thicker lines correspond to the last subject who has a quadratic
regression.

subjects. The posterior distributions of the ten AAR parameters are summarized by
the histograms of Figure 5, based on 1,000 MCMC draws generated by BUGS with a
burn-in of 10,000 and a thinning rate of 1 in 10. While the posterior distributions
of the first nine AAR parameters do not appear to indicate any substantial lack-of-fit,
the posterior mass of φ10 is concentrated well to the right of 0, with a posterior mean
estimated at 0.75. The AAR diagnostic tool is thus very sensitive to the inadequacy in
the specification of the regression curve for subject 10.

4 Quantifying the Lack-of-Fit

The examples and asymptotic results presented in the previous sections motivate the use
of the posterior distribution of the AAR parameter to probe a regression model for lack-
of-fit. In particular, the large sample derivation based on an in-fill argument provides
very helpful interpretative insight. The mean of the limiting posterior distribution of
the AAR parameter can be regarded as a signal-to-noise ratio for lack-of-fit constructed
by dividing the squared bias in the numerator by the squared bias plus the variance of
the true noise process in the denominator (cf. Equation (3)).

By incorporating the AAR diagnostic parameter into the Bayesian framework, the
uncertainty about its importance can be assessed as a direct byproduct of the model
fitting procedure. Such an assessment is conditional on the data and, in general, cannot
be retrieved from a direct examination of the residuals. As an illustration, reconsider

Example 3.1. For each of the 1,000 values of α
(k)
j , k = 1, . . . , 1, 000, generated by the

MCMC algorithm, a set of residuals could be computed according to yi − (α
(k)
j + bjxi),

i = 1, . . . , 101. The autocorrelation of these residuals could be viewed as a proxy for
the AAR parameter. However, any two sets of residuals corresponding to two different

values of α
(k)
j only differ by a shift and, therefore, yield the same autocorrelation. For

instance, for bj = b4 = 0.05 this common autocorrelation is equal to 0.692. This is, of
course, a large value, but, by itself, it fails to convey the overall information about the
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Figure 5: Histograms of the AAR Parameters for Example 3.2. The triangular symbols
represent the estimated posterior means of the AAR parameters.

strength of evidence for lack-of-fit that is contained in the posterior distribution of the
AAR parameter given the data (cf. Figure 2). For more general models, the residuals
corresponding to different MCMC draws will not have constant autocorrelation, but the
empirical distribution of the realized autocorrelations does not relate in any simple form
to the distribution of the AAR diagnostic parameter. Thus, the posterior distribution
of the AAR parameter conveys information about the lack-of-fit of the model beyond
what can be uncovered by examining the residuals directly.

In light of the considerations above, I suggest that features of the posterior distribu-
tion of the AAR parameter, estimated directly from the MCMC fit, constitute the most
direct and effective means of assessing lack-of-fit. Beside examining the histograms of
the AAR parameters, one can compute posterior numerical summaries. One numerical
summary of special interest is the posterior tail-probability that the AAR parameter be
larger than a given threshold t, i.e.,

pt = P (φ ≥ t | data). (5)
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Slope bj

0.10 0.09 0.07 0.05 0.00
Threshold t

0.3 0.002 0.027 0.951 1.000 1.000
0.5 0.000 0.000 0.325 0.997 1.000
0.7 0.000 0.000 0.001 0.534 1.000

Table 1: Posterior Probabilities that φ ≥ t Estimated as the Frequencies of the 1,000
MCMC Posterior Draws of φ that exceed t.

The value of the threshold can be adjusted by the modeler to reflect the degree of
evidence required before the goodness-of-fit of a model is questioned. For example,
based on the values reported in Table 1 concerning Example 3.1, setting a threshold of
t = 0.7 and a requirement that pt exceed 0.95, only the model corresponding to slope
0.00 would be questioned. A stricter threshold of t = 0.5 would lead one to question,
in addition, the model with slope 0.05 and the even stricter threshold of t = 0.3 would
lead one to include also the model with slope 0.07 in the set of questionable models.

5 Examples Using Real Data

Example 5.1. This example demonstrates that the AAR method can also be employed
when the independent variable x does not play the role of time and does not take on
equally spaced values. For illustration, I consider the 100 complete pairs of brain and
body weights for placental mammalian species published in Sacher and Staffeldt (1974).
In addition to the weights, the data set also records the order and sub-order to which
each species belongs. This data set was used in MacEachern and Peruggia (2002) to
illustrate the performance of some numerical and graphical diagnostic tools in detecting
the shortcomings of a simple linear regression (SLR) model compared to a variance
component (VC) model. For mammal i, I denote by yi the natural logarithm of the brain
weight and by xi the natural logarithm of the body weight recentered about the sample
mean of the log body weights. A scatterplot of the data shown in Figure 6 suggests that
a SLR model should provide an excellent fit to the data.

The Bayesian specification of the SLR model with AAR errors says that, for i =
1, . . . , 100, yi = α+βxi+ηi, where, independently, α ∼ N(0, 104) and β ∼ N(2/3, (2/9)2)
(see MacEachern and Peruggia 2002 for a detailed justification of these prior specifica-
tions). The prior distribution of the AAR error structure follows the same specifications
given in Example 3.1.

The Bayesian VC model with AAR errors incorporates random effect terms γ` and
δm for the 13 orders and 19 sub-orders in the taxonomy by saying that, for i = 1, . . . , 100,
yi = X ′

iθ+ηi, where θ = (α, β, γ1, . . . , γ13, δ1, . . . , δ19)
′ and X is the 100×(2+13+19 =

34) design matrix constructed by adjoining a column of ones, the column x of recentered
log body weights, 13 columns of 0-1 order indicators, and 19 columns of 0-1 sub-order
indicators. The priors for α and β are specified as in the SLR model and, independently,
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Figure 6: Statterplot of Log Brain Weight vs. Centered Log Body Weight for the 100
Mammalian Species of Example 5.1. The plotting symbols are color-coded according to
the taxonomic order of the species.

γ` ∼ N(0, σ2
γ), ` = 1, . . . , 13, δm ∼ N(0, σ2

δ ), m = 1, . . . , 19, 1/σ2
γ ∼ Gamma(0.1, 0.1),

and 1/σ2
δ ∼ Gamma(0.1, 0.1). Once again, the prior distribution of the AAR error

structure is as in Example 3.1.

The histograms of Figure 7, based on 1,000 draws generated using BUGS with a
burn-in of 10,000 and a thinning rate of 1 in 10, summarize the posterior distributions
of the AAR parameter φ for the SLR and VC models. For the SLR model, the posterior
expectation of φ is estimated at 0.61 with a 95% equal-tailed posterior probability interval
given by [0.45, 0.78]. For the VC model, the posterior expectation of φ is estimated at
0.28 with a 95% equal-tailed posterior probability interval given by [−0.07, 0.59].

There is a clear indication that the SLR model is not adequately capturing the vari-
ability in the data despite the strong linear trend evidenced by the scatterplot. The rea-
sons for this are carefully outlined in MacEachern and Peruggia (2002). Essentially, the
SLR model neglects to account for dependencies of species within orders and sub-orders.
The VC model ameliorates the situation by inducing positive correlations within these
groups. In this example, the AAR diagnostic device exploits the existence of a trade-off
between the residual autocorrelation structure and the presence of random effects in the
model (cf. Pinheiro and Bates 2000, p. 398). Specifically, when the correlations between
groups are not taken into consideration by the SLR model, the residuals within each
order and sub-order tend to behave similarly and the AAR error structure is sensitive
to this grouping because the observation are arranged in the data file according to orders
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Figure 7: Histograms of the AAR Parameters for the Two Models for the Mammals
Data Fit in Example 5.1. The triangular symbols represent the estimated posterior
means of the AAR parameters.

and sub-orders.

One might wonder what role the arrangement of the species within each order and
sub-order plays in determining the strength of the results. Figure 8 helps to address
this question. All three panels display the residuals from the least squares fit of the SLR
model. What differs is the order in which the residuals are arranged along the horizontal
axis. In all three panels the species sub-orders share the same arrangement (Marsupialia,
Insectivora, Chiroptera, Prosimii, Anthropoidea, Edentata, Lagomorpha, Sciuromorpha,
Myomorpha, Hystricomorpha, Cetacea, Fissipeda, Pinnipedia, Proboscidea, Hyracoidea,
Perissodactyla, Suiformes, Tylopoda, Ruminantia). In addition, the middle panel main-
tains the species arrangement of the original data file. In the top panel the species are
rearranged in such a way that, within sub-order, the residuals come along in increasing
order, so as to maximize autocorrelation. In the bottom panel, the arrangement of the
species within each sub-order follows a random permutation. Visual inspection confirms
that the autocorrelation is highest in the top panel. The autocorrelation also appears to
be larger in the middle panel than in the bottom one. In fact, the values of the lag one
sample autocorrelations for the arrangements in the three panel are 0.6574, 0.5863, and
0.4839 from top to bottom and one would expect the posterior estimates of the AAR
parameter φ in the Bayesian SLR model to follow a similar pattern.

As it turns out, with the observations arranged as in the top panel, the posterior
distribution of φ was estimated on the basis of an MCMC run of size 1,000 as having a
mean of 0.68 with a 95% equal-tailed posterior probability interval given by [0.51, 0.83].
The arrangement depicted in the bottom panel yielded a posterior mean for φ of 0.54
and a 95% equal-tailed posterior probability interval of [0.35, 0.72], also estimated on
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Figure 8: Three Different Orderings of the Residuals from the Least Squares Fit of the
SLR Model to the Mammals Data of Example 5.1.

the basis of an MCMC run of size 1,000. These results confirm the intuition developed
in the preceding paragraph that the posterior distribution of φ for the arrangement in
the top panel is stochastically larger than the posterior corresponding to the original
arrangement depicted in the middle panel (posterior mean of 0.61 and 95% posterior
probability interval of [0.45, 0.78], as seen earlier), which in turn is stochastically larger
than the posterior corresponding to the random arrangement depicted in the bottom
panel.

There are 1!×4!×1!×3!×18!×1!×2!×4!×11!×9!×3!×14!×4!×1!×1!×2!×4!×2!×15!
or approximately 1060 permutations of the species within sub-order that preserve a fixed
arrangement of the sub-orders. In addition to the permutation depicted in the bottom
panel of Figure 8, I generated another 99 random permutations and fit the Bayesian SLR
model with AAR error structure. The 100 estimates of the posterior expectation of φ
ranged from 0.47 to 0.70 with a mean value of 0.62 which is very close to the estimate of
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0.61 obtained from the original data file arrangement. All 100 estimates are well above
the value of 0.28 obtained from the fit of the VC model. This indicates that, regardless
of the arrangement of the various species within sub-orders, the AAR diagnostic device
is capable of signaling the inadequacies of the SLR model.

I also considered arrangements that would only keep the taxonomy orders fixed, al-
lowing for permutation of the species to run across sub-orders. Such arrangements
typically yield lower estimated values of the posterior mean of the AAR parameter. For
100 randomly generated arrangements of this type the smallest estimate of the posterior
expectation of φ was 0.36 and the largest was 0.61 with a mean of 0.51. Here, all 100
estimated posterior expectations were smaller than the estimate of 0.61 obtained from
the original data file arrangement but, again, they were all larger than the estimate
of 0.28 obtained from the VC model. Thus, grouping by taxonomic order alone would
still induce dependencies that are strong enough to enable the AAR diagnostic device to
detect the limitations of the SLR model compared to the VC model.

Example 5.2. In this example I look at a data set of Williams (1959). This data
set was analyzed by Carlin and Chib (1995) and Spiegelhalter, Thomas, Best, and Gilks
(1996b) to illustrate the use of Bayes factors to compare non-nested regression models.
The response variable y is the maximum compressive strength parallel to the grain mea-
sured on 42 specimens of radiata pine. There are two possible predictors: x, denoting
the density of the specimens, and z, denoting the density adjusted for resin content.
Corresponding to the two predictors, there are two competing SLR models with AAR
errors that are specified, for i = 1 . . . 42, as

Model A: yi = α + βxi + ηi and Model B: yi = γ + δzi + ηi.

Carlin and Chib (1995) and Spiegelhalter et al. (1996b) use different transformations of
the variables in their analyses with independent errors. Carlin and Chib (1995) recenter
the xi and the zi by subtracting off their means while Spiegelhalter et al. (1996b) stan-
dardize them by subtracting off their means and dividing by their standard deviations
and they also similarly standardize the response values yi. Slightly different priors are
also used. Yet, both articles report Bayes factors that demonstrate unequivocally how
Model B provides a better fit than Model A.

I will now show how the AAR error diagnostic device is able to detect the superiority
of Model B over Model A. In my analyses I used the same standardized variables x, y
and z and the same prior specification as in Spiegelhalter et al. (1996b). In particular,
I set α ∼ N(0, 10−6), β ∼ N(0, 10−4), γ ∼ N(0, 10−6), and δ ∼ N(0, 10−4), indepen-
dently within models, with the AAR error structure following the basic specification of
Example 3.1, except that the shape and scale parameters of the gamma distribution for
1/σ2

ε were set equal to 10−4.

In this example there is no natural ordering of the observations, not even a partial
ordering, such as that induced by the taxonomy of the mammals data set of Example 5.1.
If one fits Models A or B using the original ordering in the data file, the posterior
distribution of the AAR parameter φ turns out to put considerable mass around zero
and no evidence of lack-of-fit is uncovered in either case. The posterior distributions of



Mario Peruggia 833

Model A Model B
Ordering Expectation 95% Prob. Int. Expectation 95% Prob. Int.

Original −0.02 (−0.35, 0.32) −0.15 (−0.49, 0.20)
Based on x − z 0.35 (0.00, 0.72) −0.01 (−0.35, 0.32)
Based on Residuals 0.26 (−0.10, 0.63) −0.13 (−0.46, 0.19)

Table 2: Posterior Estimates of φ For the Pines Data Example.

φ corresponding to the two fits are summarized in the first line of Table 2.

Here, however, the main concern is a comparison of the fit provided by the two models
and the ordering of the observations should relate to this comparison. The models differ
in the predictor they use, so the relative quality of the fit will be determined by differences
in the two predictors. This suggest simply ordering the data according to the increasing
values of the differences xi − zi (alternatively, an ordering based on relative differences,
normalized for the size of the predictors, could also be used). The posterior distributions
of φ corresponding to the two fits of the ordered data are summarized in the second line of
Table 2. While the posterior distribution of φ in Model B continues to put considerable
mass around zero, the posterior distribution of φ in Model A is shifted to the right of
zero, thus providing evidence of lack-of-fit. Model A fits poorly systematically at those
points where the differences between the x and y predictors are large, a feature that AAR
diagnostic can readily detect.

A similar behavior of the posterior distributions of φ can be observed when the obser-
vations are ordered according to the average differences of the residuals for the models
with independent errors (or, equivalently, according to the average differences of the
fitted values). As a convenient shortcut, because of the noninformative nature of the
prior distributions, the observations can be ordered according to the differences of the
residuals from the least squares fits. This approach yields the posterior distributions for
φ summarized in the third line of Table 2. These summaries still indicate that Model B
provides a superior fit, albeit not as strongly as the summaries in the second line of
the table. The ordering based on the differences of the residuals is particularly useful in
situations when the models being compared contain several, possibly different, predictors.

Example 5.3. In this example I examine the ability of the AAR diagnostic device to
uncover aspects of model inadequacy in the context of a complex hierarchical model for
a large set of response time data. The data were collected in a series of recognition
memory trials conducted on four subjects over ten non-consecutive days.

For each trial, a subject was initially asked to study a list of 40 words randomly
selected from a database of 2337 common English words. The subject was then presented
with a sequence of 40 words, 20 selected from the study list and 20 selected from words
in the database not included in the study list. The words were displayed sequentially on
a computer monitor and the subject was asked to strike one of two keys on the keyboard
depending on whether she thought the word was an “old” word contained in the study
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list or a “new” word not contained in the study list. The times in milliseconds elapsed
between the appearances on the words on the screen and the keystrokes were recorded,
along with an indicator of the accuracy of the responses. Each subject participated in
two consecutive trials on each day. There were thus a total of 4 × 2 × 10 = 80 trials,
each contributing 40 response times.

The hierarchical model considered here is a refinement of the model presented in
Peruggia, Van Zandt, and Chen (2002). For the current analysis I used a two parameter
Weibull likelihood to model the shifted response times obtained by subtracting a value
equal to 95% of the minimum response time for each list from all of the 40 response times
for that list. (A three parameter Weibull likelihood could be used to model the unshifted
response times.) Let RTi,d,l,w denote the shifted response times, where i, 1 ≤ i ≤ 4,
indexes subject, d, 1 ≤ d ≤ 10, indexes day, l, 1 ≤ l ≤ 2, indexes list, and w, 1 ≤ w ≤ 40,
indexes word. Conditional on ri,d,l and λi,d,l,w, the RTi,d,l,w are assumed to follow
independently a Weibull distribution with shape parameter ri,d,l and scale parameter
λi,d,l,w, for 1 ≤ w ≤ 40.

The logarithm of the scale parameters is endowed with a regression structure that
includes random effects αi,d,l primarily intended to model different levels of subject spe-
cific learning as days go by. The regression also includes fixed effects for the nature of
the words (“old” vs. “new”), the accuracy of the responses (“right” vs. “wrong”), and
their interaction. In summary, I assumed that ln(λi,d,l,w) = αi,d,l + β1 I.Oldi,d,l,w +
β2 I.Righti,d,l,w + β3 (I.Oldi,d,l,w × I.Righti,d,l,w) + ηi,d,l,w, with I.Old denoting a 0-1
indicator of an old word and I.Right denoting a 0-1 indicator of a correct response.
For the random effects I assumed αi,d,l ∼ N(µd, σ

2
α), independently, where, also in-

dependently, µd ∼ N(0, 10−4) and 1/σ2
α ∼ Gamma(10−1, 10−1). For the fixed effects

coefficients I assumed β1, β2, β3 ∼ N(0, 10−3), independently. For the shape parameters
I assumed that, independently, ri,d,l ∼ Exp(θd) where, also independently, θd ∼ Exp(θ0)
and θ0 ∼ Exp(10−3).

The error terms ηi,d,l,w act as diagnostic devices for the stated model of conditional
independence of the 40 response times within each list, following the basic AAR structure
used throughout the article with AAR coefficients φi,d,l that depend on subject, day,
and list. In this example, I specified a more diffuse prior for the variance of the first
innovation than in the previous examples by assuming 1/σ2

1 ∼ Gamma(0.1, 0.1) rather
than 1/σ2

1 ∼ Gamma(2.5, 10.0). I made this choice because, with 80 different lists, the
data can contribute much information about the distribution of the first innovation. The
AAR structure is specified with respect to a given ordering of the response times within
a list. In the diagnostic analysis that follows I will consider two separate orderings, the
one corresponding to the sequence in which the words were presented to the subjects and
the one corresponding to a rearrangement in which the “new” words are made to precede
the “old” words, while preserving the original ordering within each group.

For a basic diagnostic analysis, I quickly scanned the histograms of the 80 sets of
1,000 realizations from the marginal posterior distributions of the AAR parameters φi,d,l

generated using WinBUGS with a burn-in period of 20,000 and a subsequent thinning
rate of 1 in 500. Most distributions put considerable mass around zero but there are
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Figure 9: Histograms of the AAR Parameters for Two Word Lists in Example 5.3. The
triangular symbols represent the estimated posterior means of the AAR parameters.

several interesting cases in which the shapes of the posterior distributions of the AAR
parameters suggest inadequacies in the fit for certain word lists. For the purpose of
illustration I will now look at some of these cases.

The histograms of Figure 9 represent estimates of the posterior densities of φ1,2,1

and φ3,9,1. The posterior distribution of φ3,9,1 puts 0.97 of its mass to the right of zero
and has a mean of 0.67. The posterior distribution of φ1,2,1 shows similar qualitative
features (if not quantitatively as pronounced), putting 0.91 of its mass to the right of
zero and having a mean of 0.50. To understand what causes the mass of the poste-
rior distributions of the two autoregressive parameters to be so heavily shifted to the
right of zero, I computed residuals from the Bayesian fit as follows. With the super-

script (k), 1 ≤ (k) ≤ 1, 000, indexing the k-th MCMC parameter draw, let λ
(k)
i,d,l,w =

exp
[
α

(k)
i,d,l + β

(k)
1 I.Oldi,d,l,w + β

(k)
2 I.Righti,d,l,w + β

(k)
3 (I.Oldi,d,l,w × I.Righti,d,l,w)

]

and let E
(
W

(k)
i,d,l,w

)
denote the mean of a Weibull random variable with shape param-

eter r
(k)
i,d,l and scale parameter λ

(k)
i,d,l,w. The residual for the response time RTi,d,l,w is

then computed as resi,d,l,w = RTi,d,l,w − (1, 000)−1
∑1,000

k=1 E
(
W

(k)
i,d,l,w

)
. Note that these

are observation-level residuals which, although related, do not correspond directly to the
AAR error terms appearing at a higher level of the hierarchy.

The two panels of Figure 10 display the residuals for the response times of subject 1,
day 2, list 1 and subject 3, day 9, list 1. After adjusting for the values of the covariates,
the earlier response times for subject 3, day 9, list 1 appear to be slower than the model
would predict (the residuals are mainly positive) and the later response times appear to
be faster (the residuals are mainly negative). This systematic departure from a random
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Figure 10: Residuals for the Response Times based on the Two Word Lists Considered
in Figure 9. A symbol ‘N’ denotes a “new” word and a symbol ‘O’ denotes an “old”
word.

pattern in the residuals is accurately detected by the AAR parameter diagnostic. The
residuals for subject 1, day 2, list 1 also appear to exhibit a systematic pattern, corre-
sponding to four or five alternating stretches of longer and shorter response times. The
pattern in the set of residuals for subject 3 appears to be stronger than the pattern in
the set of residual for subject 1 and this difference is reflected in the fact that the pos-
terior distribution of φ3,9,1 is shifted further to the right than the posterior distribution
of φ1,2,1.

Another interesting case is the one illustrated in Figures 11 and 12, dealing with
subject 3, list 6, day 1. The left panel of Figures 11 summarizes the posterior distribu-
tion of φ3,6,1 when the RTs are ordered according to the sequence in which the words
were originally presented. The histogram is essentially symmetric about zero and pro-
vides no indication of lack-of-fit. Contrast this to the right panel which summarizes the
posterior distribution of φ3,6,1 when the RTs are rearranged so that those corresponding
to the “new” words are made to precede those corresponding to the “old” words, while
preserving the original ordering within each group. Now the posterior mass is heavily
shifted to the right of zero. Inspection of the residual plots of Figure 12 provides an
explanation for this difference. The top panel, corresponding to the original ordering,
does not present any systematic pattern, but the bottom panel suggests that responses to
the new words were systematically faster than the model would predict and responses to
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Figure 11: Histograms of the AAR Parameters for Two Orderings of a Word List in
Example 5.3. The triangular symbols represent the estimated posterior means of the
AAR parameters.

the old words were systematically slower.

Diagnostics based on the AAR parameter can be carried out to investigate jointly
various aspects of the model fit. As an example, consider the Bland-Altman plot of
Figure 13 (Bland and Altman 1986). There, using a threshold value of t = 0.5 and
for each subject by day combination, I plot the difference between the tail probabilities
pt defined in Equation (5) for the AAR parameters of the first and of the second list
against the average tail probability for the AAR parameters of the two lists. Different
plotting symbols are used to identify the four subjects. Several interesting features become
apparent. First, the level of variation in the differences appears to increase with the value
of the average. Second, the seven largest values of the absolute differences all correspond
to positive differences (the seven points in the upper right corner of the plot). This is
consistent with the possible presence of unmodeled disturbances in the response times
for the first list during a “settling in” phase. Such disturbances appear to weaken as the
subjects become more comfortable with the task to be performed.

In this example the AAR error devices provide a simple and reliable means of scan-
ning the 80 word lists to examine the fit of the model. The histograms of the posterior
MCMC draws of the AAR parameters and the tail probabilities defined in Equation (5)
are much quicker to derive and easier to interpret than a direct examination of the
observation-level residuals from the model fit, and, as noted in Section 4, carry addi-
tional information about the strength of the lack-of-fit. Once lack-of-fit is suspected for
a certain list a more thorough analysis, including a direct examination of the residuals,
can pinpoint more specifically the nature of the inadequacies in the model. In addition
to those described above, there are a variety of additional model deficiencies and unchar-
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Figure 12: Residuals for the Response Times based on the Two Orderings of the Word
List Considered in Figure 11. A symbol ‘N’ denotes a “new” word and a symbol ‘O’
denotes an “old” word.

acteristic observations that the diagnostic device is able to uncover. For example, there
are a few cases in which the distribution of the AAR parameter is shifted to the left of
zero, corresponding to a systematic pattern of the residuals that alternate rhythmically
between positive and negative values.

The complexity of these data makes modeling a challenge. Overall the specified model
is adequate, but there are a few lists for which the fit is not entirely satisfactory. Even
though the individual experimental tasks are relatively short (there are only 40 words in
each list) and long term trends and dependencies are not the norm, in some cases the
assumption of conditional independence is seemingly violated. For example, it appears
as if subject 3, in her reaction to the words in list 1 on day 9, is trying to compensate for
a slow start in the first half of the list by speeding up her responses to the words in the
second half of the list. This and other types of uncommon features cannot be captured
by the basic hierarchical model, but the introduction of the AAR error structure acts as
an effective screening tool for uncovering them.



Mario Peruggia 839

0.0 0.1 0.2 0.3 0.4 0.5

−0
.5

0.
0

0.
5

Average of tail_prob_phi.1 and tail_prob_phi.2

ta
il_

pr
ob

_p
hi

.1
 −

 ta
il_

pr
ob

_p
hi

.2

Figure 13: Bland-Altman Plot of the Tail Probabilities of the AAR Parameters for List 1
vs. List 2 in the RT Example. Four different plotting symbols are used to distinguish
between points corresponding to the four subjects.

6 Discussion

In this article I have proposed a general procedure based on AAR errors for detecting
lack-of-fit in hierarchical Bayes model. The principal appeal of the procedure lies in its
flexibility and its ease of implementation. All examples presented in this article were in
fact fit using publicly available software without any need to write customized programs.

The most popular Bayesian tools for performing model comparison and assessing
goodness-of-fit—such as, for example, Bayes factors (Kass and Raftery 1995) and their
generalizations (Berger and Pericchi 1996; O’Hagan 1995), posterior predictive model
checks (Gelman, Meng, and Stern 1996), and the nice, general-purpose method based
on a Bayesian version of the χ2 test for goodness-of-fit proposed in Johnson (2004)—do
not examine the residuals directly. The behavior of the residuals, however, can shed
much light on the fit of a model and suggest directions for refinement if lack-of-fit is
detected. The strength of the proposed method is that the AAR device can be applied
to assess the behavior of residuals at different levels of the hierarchy, probing different
aspects of the fit, without much conceptual or practical difficulty.

Unlike other diagnostics for model fit based on embedding (such as the decision
theoretical model elaboration strategy of Carota, Parmigiani, and Polson 1996 and its
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application to the detection of autocorrelation of the disturbances in regression models
described in Carota 1998, 2005), there is no expectation that the model providing the
embedding (the model with AAR errors in this case) be adequate. The sole purpose
of the AAR error device is to detect if, and in what ways, the embedded model with
independent errors is inadequate. In this respect, even though more elaborate models
of dependence could be considered, the first-order autoregressive structure is all that
is needed because it is sensitive to misspecifications of conditional means and is easy
to understand. In my experience, initialization of the first error term η1, though arbi-
trary, does not have a great impact on the inferential conclusions, as long as the prior
distribution of the variance σ2

1 is not too diffuse.

The potential benefits of the method when applied to complex hierarchical models
is clearly illustrated in Example 5.3. There, I introduced, at a higher level of the hier-
archy, a separate AAR error device for each of 80 sets of multidimensional observations
(the 80 sets of RTs for each of the 80 word lists). The posterior distributions of each
AAR parameter is a low dimensional summary that can quickly detect if the model of
conditional independence provides an inadequate fit to the RTs for the corresponding
list. Scanning such summaries to assess and quantify lack-of-fit (cf. Figures 9 and 11)
is much easier than scanning observation-level residual plots (cf. Figures 10 and 12).

The AAR device is based on orderings of the observations. To detect lack-of-fit, as
illustrated in the various examples, it is important not to find an ordering for which
the AAR parameter is significant (after all there will always be such an ordering) but
to find a meaningful ordering for which this is true. While a routine implementation of
the method should always consider orderings based on the size of predicted values and
of covariate values, other orderings might be suggested by application-specific consider-
ations.
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