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Ergodic averages for monotone functions using

upper and lower dominating processes

Jesper Møller∗ and Kerrie Mengersen†

Abstract. We show how the mean of a monotone function (defined on a state
space equipped with a partial ordering) can be estimated, using ergodic averages
calculated from upper and lower dominating processes of a stationary irreducible
Markov chain. In particular, we do not need to simulate the stationary Markov
chain and we eliminate the problem of whether an appropriate burn-in is deter-
mined or not. Moreover, when a central limit theorem applies, we show how
confidence intervals for the mean can be estimated by bounding the asymptotic
variance of the ergodic average based on the equilibrium chain. Our methods are
studied in detail for three models using Markov chain Monte Carlo methods and
we also discuss various types of other models for which our methods apply.

Keywords: Asymptotic variance; Bayesian models; Burn-in; Ergodic average; Ising
model; Markov chain Monte Carlo; Mixture model; Monotonocity; Perfect simu-
lation; Random walk; Spatial models; Upper and lower dominating processes

1 Introduction

Suppose that π is a given target distribution on a state space Ω and we wish to estimate
the mean

µ =

∫

φ(x)π(dx) (C.1)

for a given real function φ. In many applications it is not known or at least not straight-
forward to generate a stationary chain, so instead a non-stationary chain Y1, Y2 . . . is
generated by Markov chain Monte Carlo (MCMC) and µ is estimated by the ergodic

average
∑N

t=M+1 φ(Yt)/(N−M), where M ≥ 0 is an “appropriate” burn-in and N � M
is “sufficiently” large, (see, for example, Robert and Casella 2004). This estimator is
consistent provided the chain is irreducible and M is independent of the Y chain. The
problem is to determine M and N so that the estimator is close to µ with a high degree
of confidence.

Propp and Wilson (1996) showed how upper and lower dominating processes can
be used for generating a perfect (or exact) simulation of a stationary Markov chain at
a fixed time, provided the chain is monotone with respect to a partial ordering on Ω
for which there exist unique maximal and minimal states. In this paper we introduce
similar ideas but our aim is to obtain reliable estimates of mean values rather than
perfect simulations.
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More specifically, we consider irreducible Markov chains with π as the invariant
distribution and make the following additional assumptions. Let X = (Xt; t = 1, 2, . . .)
denote the possibly unknown equilibrium chain, i.e. X1 ∼ π and hence Xt ∼ π for all
t ≥ 1, and let

φ̄t =
1

t

t
∑

s=1

φ(Xs)

denote the ergodic average estimating µ. Assume there exist stochastic processes U =
(Ut; t = 1, 2, . . .) and L = (Lt; t = 1, 2, . . .) so that

φ̄L
t ≤ φ̄t ≤ φ̄U

t , t = 1, 2, . . . , (C.2)

where the ergodic averages

φ̄L
t =

1

t

t
∑

s=1

φ(Ls), φ̄U
t =

1

t

t
∑

s=1

φ(Us) (C.3)

are consistent estimators of µ. Though U and L will be Markov chains in most of our
detailed examples, they do not need to be so as exemplified in Section C.1 (explaining
why we write “processes”). To ensure (C.2) we assume that with respect to a partial
ordering ≺ on Ω, U and L are bounding X , i.e.

Lt ≺ Xt ≺ Ut, t = 1, 2, . . . , (C.4)

and φ is monotone

x ≺ y =⇒ φ(x) ≤ φ(y) (C.5)

(or, as discussed later on, φ is a linear combination of monotone functions). Then (C.2)
holds, and so it suffices to consider the processes (φ̄L

t ; t = 1, 2, . . .) and (φ̄U
t ; t = 1, 2, . . .).

Consequently, we do not need to simulate the equilibrium chain and we eliminate the
problem of whether an appropriate burn-in is determined or not. Assuming a central
limit theorem applies, we show how confidence intervals for the mean can be estimated
by using Lt and Ut to bound the asymptotic variance of φ̄t. Note also that to assess if
the process (φ(Xt); t = 1, 2, . . .) has stabilised into equilibrium, it suffices to consider
the processes (φ(Lt); t = 1, 2, . . .) and (φ(Ut); t = 1, 2, . . .). Our methods are studied
in detail for three models using MCMC methods and we also discuss various types of
other models for which our methods apply.

Note that in contrast to the Propp-Wilson algorithm we do not require that Lt and
Ut coalesce for all sufficiently large t. Equivalently, we do not require that X is uniformly
ergodic (Foss and Tweedie 1998). For extensions of the Propp-Wilson algorithm which
may be of relevance for our methods, see the references in Section 5.

The paper is organised as follows. Section 2 presents our ideas in a simple setting
for a random walk, while Section 3 considers a general setting. Section 4 illustrates how
our methods apply on the Ising model and a mixture model in which the weights are
unknown. Finally, Section 5 discusses extensions and application areas of the methods.
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2 A simple example

Despite its conceptual ease, the random walk example below is a challenging platform
on which to evaluate the performance of our proposed methods in Section 3.

C.1 Upper and lower bounds for a random walk

Consider a stationary random walk X = (Xt; t = 1, 2, . . .) on a finite state space
Ω = {0, 1, . . . , k} with transition probabilities

pi = P (Xt+1 = min{i + 1, k}|Xt = i) > 0,

qi = P (Xt+1 = max{i− 1, 0}|Xt = i) = 1 − pi > 0,

for i = 0, 1, . . . , k, and invariant distribution π = (π0, π1, . . . , πk) given by

πi = π0

i−1
∏

j=0

pj/qj+1, i = 1, . . . , k.

We can construct this by a so-called stochastic recursive sequence (SRS). Let X1, R1, R2, . . .
be independent random variables with X1 ∼ π and Rt ∼ Uniform [0, 1], t = 0, 1, . . ..
Define a so-called updating function χ : Ω × [0, 1] → Ω by

χ(i, r) =

{

min{i + 1, k} if r ≤ pi

max{i− 1, 0} otherwise.

Then the SRS is given by

Xt+1 = χ(Xt, Rt), t = 1, 2, . . . .

This construction allows us to bound the equilibrium chain by an upper chain U =
(Ut; t = 1, 2, . . .) and a lower chain L = (Lt; t = 1, 2, . . .) defined by

U1 = k, Ut+1 = χ(Ut, Rt), t = 1, 2, . . . ,

L1 = 0, Lt+1 = χ(Lt, Rt), t = 1, 2, . . . .

Thereby
Lt ≤ Xt ≤ Ut, t = 1, 2, . . . , (C.6)

and hence also for the ergodic averages

L̄t =
1

t

t
∑

s=1

Ls, X̄t =
1

t

t
∑

s=1

Xs, Ūt =
1

t

t
∑

s=1

Us,

we have that
L̄t ≤ X̄t ≤ Ūt, t = 1, 2, . . . . (C.7)

By irreducibility, as t grows, L̄t and Ūt converge to µ. Note that (C.4) and (C.5) are
satisfied with ≺ given by ≤ and φ the identity function. Indeed (C.4)-(C.7) are satisfied
if we replace X by any Markov chain Y using the same coupling construction as above,
i.e. when Y1 ∈ Ω is an arbitrary initial state and Yt+1 = χ(Yt, Rt), t = 1, 2, . . ..
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C.2 Bounding the asymptotic variance for the ergodic average

In this simple example, the mean µ =
∑k

i=1 iπi is easily determined, and so there
is no need for estimating it by an ergodic average. Moreover, it is of course easy to
generate X1 from π, and hence to generate X̄t. However, in more complex situations as
considered later in Sections 3-5, the mean value of interest is unknown and it is usually
hard to make a draw from the invariant distribution. We can instead generate the upper
and lower chains and use (C.7) (or the extensions considered in the following sections)
together with the following considerations.

Since X is ergodic and Ω is finite, a central limit theorem (CLT) applies:
√

t(X̄t − µ) converges in distribution to Normal(0, σ2) as t → ∞ (C.8)

where

σ2 =

∞
∑

t=−∞

γ|t| < ∞, γt = Cov(X1, Xt+1). (C.9)

We estimate σ2 using for example a window type estimator (Geyer 1992) or batch means
(Ripley 1987). For specificity, we consider in the sequel a window type estimator

σ̂2
N =

m
∑

t=−m

γ̂|t|,N (C.10)

based on X1, . . . , XN , but similar considerations will apply for batch means. Here

γ̂t,N =
1

N

N−t
∑

s=1

(Xs+t − X̄N )(Xs − X̄N ), (C.11)

see, for example, Priestly (1981). Geyer’s initial series estimator is given by letting
m = 2l + 1 where l is the largest integer so that the sequence γ̂2t,N + γ̂2t+1,N , t =
0, . . . , l, is strictly positive, strictly decreasing and strictly convex. For an irreducible
and reversible Markov chain this provides a consistent conservative estimator of σ2, cf.
Geyer (1992). By (C.6), (C.7) and (C.11), σ̂2

N is bounded from above and below by

σ̂2
max,N =

m
∑

t=−m

a|t|,N , σ̂2
min,N =

m
∑

t=−m

b|t|,N , (C.12)

where for t ≥ 0,

at,N =
1

N

N−t
∑

s=1

(Us+tUs − Ls+tL̄N − LsL̄N + Ū2
N )

and

bt,N =
1

N

N−t
∑

s=1

(Ls+tLs − Us+tŪN − UsŪN + L̄2
N )

are upper and lower bounds on γ̂t,N . As illustrated below, though σ̂2
max,N is more

conservative than σ̂2
N , it can still provide a useful bound.
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C.3 Experimental results: Random walk

We illustrate the difficulties with using these ergodic averages and the bounds of asymp-
totic variances with a random walk when pi = p is constant. Further experimental re-
sults are given in Section C.3. The running mean X̄t and corresponding upper and lower
bounds Ūt and L̄t, t = 1, . . . , N are shown in Figure 1 for a run length of N = 10000
iterations when k = 5 and p = 1/2, i.e. µ = 2.5. The corresponding upper bound on
the variance, σ̂2

max,N , given by (C.12) is depicted in Figure 2 for N = 1, . . . , 1000. We

have also obtained results (not included here) and compared values of L̄N , X̄N and
ŪN together with values of σ̂2

min,N , σ̂2
N and σ̂max,N for various values of p, k and N .

As expected, the bounds become wider as the range k of the random walk increases
and become narrower as the value of p moves away from 0.5. In cases with k ≤ 10,
0.2 ≤ p ≤ 0.5 and N larger than 5000, σ̂2

min,N and σ̂2
max,N are close to σ̂2

N , and the
running means seem to stabilise. However, this can be somewhat misleading because
although σ̂max,N may be small, it may not follow that L̄N ≤ µ ≤ ŪN . This is illustrated
in Figures 1 and 2.

The performance of the bounds should be evaluated in light of the very high autocor-
relation in the chain which increases the conservativeness of Geyer’s variance estimate,
and the inherent variability of a random walk itself. The latter point is exemplified in
Figure 3, which illustrates the behaviour of 100 independent replications of the running
mean of a stationary random walk with k = 5 and p = 0.5 over 1000 iterations. Al-
though the average of the 100 estimates is close to k/2 at each iteration, the individual
estimates vary considerably: 95% confidence intervals for k/2 are (1.26, 3.70), (1.94,
3.02) and (2.12, 2.88) for t = 100, 500 and 1000, respectively. Figure 4 illustrates the
persistence of this variability for five replications of the running mean of the same ran-
dom walk over a longer run length of 100000 iterations. As in Figure 4, the estimates
are quite unstable at t = 1000, ranging from 2.33 to 2.63, but noticeable differences
persist even at t = 100000 with estimates ranging from 2.476 to 2.513.

3 General setting and methods

In this section we consider the general setting in Section 1: Assume that (C.4)-(C.5)
and hence (C.2) are satisfied, where the equilibrium chain X is irreducible and φ̄L

t and
φ̄U

t are consistent estimators of µ given by (C.1). Moreover, as in (C.8) assume that a
CLT applies:

√
t(φ̄t − µ) converges in distribution to Normal(0, σ2) as t → ∞ (C.13)

where σ2 is defined as in (C.9) but now γt = Cov(φ(X1), φ(Xt+1)) for t ≥ 0. Sufficient
conditions for the CLT to hold can be found in Meyn and Tweedie (1993), Geyer (1996),
Chan and Geyer (1994) and Roberts and Rosenthal (1998). For instance, it suffices to
establish that X is geometrically ergodic and, if X is reversible, that Eφ(Xt)

2 < ∞.

Assuming that X is reversible, Geyer’s initial series estimator applies (Section C.2
with Xt replaced by φ(Xt)): If we for the moment imagine that X1, . . . , XN are observed,
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Figure 1: Random walk with k = 5 and p = 0.5. Running mean and upper and lower
bounds over 10000 iterations.
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Figure 2: Random walk with k = 5 and p = 0.5. Upper bound on the variance of the
mean, and the variance of the mean based on the stationary chain, over the first 1000
iterations.
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Figure 3: Random walk with k = 5 and p = 0.5. One hundred independent simulations
of the running mean over 1000 iterations.
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Figure 4: Random walk with k = 5 and p = 0.5. Five independent simulations of the
running mean over 100000 iterations.
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then σ2 is estimated by (C.10) where now for 0 ≤ t < N ,

γ̂t,N =
1

N

N−t
∑

s=1

(φ(Xs+t) − φ̄N )(φ(Xs) − φ̄N ).

For a real number or function f , write f+ = max{0, f} for its positive part and f− =
max{0,−f} for its negative part, so f = f+ − f−. By (C.4)-(C.5) we have that

0 ≤ φ+(Lt) ≤ φ+(Xt) ≤ φ+(Ut), 0 ≤ φ−(Ut) ≤ φ−(Xt) ≤ φ−(Lt),

0 ≤ φ̄L
N+ ≤ φ̄N+ ≤ φ̄U

N , 0 ≤ φ̄U
N− ≤ φ̄N− ≤ φ̄L

N−.

Hence σ̂2
N is bounded by σ̂2

max,N and σ̂2
min,N given by (C.12) where now for t ≥ 0,

at,N =
1

N

N−t
∑

s=1

{

φ+(Us+t)φ+(Us) − φ−(Us+t)φ+(Ls) − φ+(Ls+t)φ−(Us) + φ−(Ls+t)φ−(Ls)

− φ+(Ls+t)φ̄
L
N+ + φ+(Us+t)φ̄

L
N− + φ−(Ls+t)φ̄

U
N+ − φ−(Us+t)φ̄

U
N− − φ+(Ls)φ̄

L
N+

+ φ+(Us)φ̄
L
N− + φ−(Ls)φ̄

U
N+ − φ−(Us)φ̄

U
N− + φ̄U 2

N − 2φ̄L
N+φ̄U

N− + φ̄L 2
N

}

(C.14)

and

bt,N =
1

N

N−t
∑

s=1

{

φ+(Ls+t)φ+(Ls) − φ−(Ls+t)φ+(Us) − φ+(Us+t)φ−(Ls) + φ−(Us+t)φ−(Us)

− φ+(Us+t)φ̄
U
N+ + φ+(Ls+t)φ̄

U
N− + φ−(Us+t)φ̄

L
N+ − φ−(Ls+t)φ̄

L
N− − φ+(Us)φ̄

U
N+

+ φ+(Ls)φ̄
U
N− + φ−(Us)φ̄

L
N+ − φ−(Ls)φ̄

L
N− + φ̄L 2

N − 2φ̄U
N+φ̄L

N− + φ̄U 2
N

}

.

(C.15)

These bounds depend entirely on the upper and lower processes and not on the equi-
librium chain.

C.1 Method 1

Our first method is based on combining (C.2), (C.13) and the upper bound on σ̂2
N to

obtain a conservative confidence interval for µ: Asymptotically with at least probability
2α − 1,

φ̄L
N − qασ̂max,N ≤ µ ≤ φ̄U

N + qασ̂max,N (C.16)

where 0.5 ≤ α < 1, qα is the α-quantile in the standard normal distribution and

σ̂max,N =
√

σ̂2
max,N .
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C.2 Method 2

One potential problem with Method 1 is meta-stability: the processes φ̄L
N and φ̄U

N may
appear to have converged at time N , but they have not yet done so, cf. Section C.3. A
more conservative alternative is to use i.i.d. blocks of upper and lower processes; details
follow below. As illustrated in Sections C.3, C.2 and C.4, the relative merit of one
method over the other depends on the particular model.

Assume that there exist unique elements 0̂, 1̂ ∈ Ω so that 0̂ ≺ x ≺ 1̂ for all x ∈ Ω.
For example, for the random walk in Section 2.1, 0̂ = 0 and 1̂ = k. Further, suppose

that ((U
(1)
t , L

(1)
t ), t=1,...,T1

, T1), ((U
(2)
t , L

(2)
t ), t=1,...,T2

, T2), . . . are i.i.d. “blocks”, where
T1, T2, . . . are either equal fixed times or i.i.d. random times so that

U
(i)
1 = 1̂, L

(i)
1 = 0̂, i = 1, 2, . . . ,

U
(1)
t = Ut, L

(1)
t = Lt, t = 1, . . . , T1,

L
(2)
t ≺ Lt+T1

≺ Ut+T1
≺ U

(2)
t , t = 1, . . . , T2,

L
(3)
t ≺ Lt+T1+T2

≺ Ut+T1+T2
,≺ U

(3)
t , t = 1, . . . , T3,

and so on. For instance, in the case of the random walk in Section 2, we obtain such
i.i.d. blocks when

U
(2)
t+1 = χ(U

(2)
t , Rt+T1

), L
(2)
t+1 = χ(L

(2)
t , Rt+T1

), t = 1, . . . , T2 − 1,

U
(3)
t+1 = χ(U

(3)
t , Rt+T1+T2

), L
(3)
t+1 = χ(L

(3)
t , Rt+T1+T2

), t = 1, . . . , T3 − 1,

etc. We may, for example, choose Ti as the first time ni at which

1

ni

ni
∑

t=1

(

φ(U
(i)
t ) − φ(L

(i)
t )

)

≤ ε (C.17)

where ε > 0 is a user-specified parameter.

By (C.4)-(C.5), for N = T1 + . . . + Tm and m = 1, 2, . . .,

φ̃L
N ≤ φ̄L

N ≤ φ̄N ≤ φ̄U
N ≤ φ̃U

N

where we set

φ̃U
N =

1

N

m
∑

i=1

W U
i , W U

i =

Ti
∑

s=1

φ(U
(i)
s+T0+...+Ti−1

),

φ̃L
N =

1

N

m
∑

i=1

W L
i , W L

i =

Ti
∑

s=1

φ(L
(i)
s+T0+...+Ti−1

),

and T0 = 0. On one hand these new bounds are more conservative: in Method 1, φ̄U
N

and φ̄L
N are consistent estimators of µ, whereas φ̃U

N and φ̃L
N almost surely converge to

EW U
1 /ET1 and EW L

1 /ET1, respectively, which in general are different from µ. On the
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other hand, since the blocks are i.i.d., we may better “trust” the bounds φ̃U
N and φ̃L

N : if
these bounds are close, we may expect that φ̄U

N and φ̄L
N have been stabilised. If Ti = ni

is specified by (C.17) then of course

φ̃U
N − φ̃L

N ≤ ε.

Finally, the classical CLT and strong law of large numbers apply for the i.i.d. blocks
so that as m → ∞, φ̃U

N and φ̃L
N are approximately normally distributed with vari-

ances (VarW U
1 )/(m(ET1)

2) and (VarW L
1 )/(m(ET1)

2) provided the moments exist. It is
straightforward to estimate these moments from the i.i.d. blocks and thereby obtain con-
sistent estimates σ̃max,N and σ̃min,N for the standard deviations. Thus asymptotically
with at least probability 2α − 1,

φ̃L
N − qασ̃min,N ≤ µ ≤ φ̃L

U + qασ̃max,N . (C.18)

C.3 Experimental results: Random walk continued

Consider again a random walk with k = 5 and all pi = p = 0.5, and let φ be the identity
function. Conservative 95% confidence bounds on the running mean based on (C.16) for
Method 1 are shown in Figure 5. Note that longer runs of least 10000 iterations seem to
be necessary, since many of the confidence intervals do not contain 2.5; see also Figures 3
and 4. The procedure for taking i.i.d. blocks under Method 2 is illustrated in Figure 6.
Blocks were identified using the criterion given in (C.17), with ε arbitrarily chosen to be
equal to 0.1. For this example, m = 280 such blocks were identified from N = 100000

iterations. The solid lines in the figure represent L
(i)
t and U

(i)
t when t = 1, . . . , 1000.

Runs of varying length N were simulated for other random walks with different
ranges k = 5, 10, values of p = 0.2, 0.5 and values of ε = 0.1, 0.01. Comparison of
Methods 1 and 2 under these conditions confirmed the greater meta-stability of Method
1, gained at the expense of a larger variance, for the same number of iterations. The
relative merit of one method over the other depends in particular on the values of k
and ε. For example, for the same N and ε under Method 2, as k increases the value of
m decreases and VarW L

1 and VarW U
1 increase because the lower and upper processes

are re-initiated at 0 and k, respectively, for each i.i.d. block. In comparison, under
Method 1 the processes are initiated at 0 and k only at time t = 0 and the variances
are computed using all N iterations. The same behaviour is observed for fixed k and
N as ε decreases. The comparative performance of the means and the upper bound on
the variances under the two methods is illustrated in Figures 7 and 8 for k = 5, p = 0.5,
ε = 0.1 and N ranging from 10000 to 500000.

4 Other examples

In this section we consider two examples of more complicated models where the methods
in Section 3 are helpful.
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Figure 5: Random walk with k = 5 and p = 0.5. Conservative 95% confidence bounds
(indicated by crosses) on the running mean when t = 1, . . . , 10000 and Method 1 is
used.
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Figure 6: Random walk with k = 5 and p = 0.5. Method 2 for obtaining L
(i)
t and U

(i)
t

when t = 1, . . . , 1000.
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Figure 7: Random walk with k = 5, p = 0.5, ε = 0.1 and N = 1, .., 500000, depicted at
every 10000th iteration: φ̄L

N and φ̄U
N under Method 1 (solid line) and φ̃L

N and φ̃U
N under

Method 2 (dashed lines). Note that φ̄L
N and φ̄U

N are effectively equal for these values of
N .
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Figure 8: Random walk with k = 5, p = 0.5, ε = 0.1 and N = 1, .., 500000, depicted at
every 10000th iteration: σ̂max,N under Method 1 (solid line) and σ̃max,N under Method
2 (dashed line).
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C.1 Ising model

Consider an Ising model defined on a square lattice V = {1, ..., M}2 and with the set of
first order edges

E = {{(i1, i2), (j1, j2)} ⊆ V : (i1 − j1)
2 + (i2 − j2)

2 = 1}

defining the neighbourhood relation. The state space is Ω = {±1}V and

π(x) ∝ exp



β
∑

{i,j}∈E

xixj



 , x = (xi)i∈V ∈ Ω,

where β is a real parameter.

For simplicity we consider first a Gibbs sampler with a simple random updating
scheme. The updating function is χ : Ω × V × [0, 1] → Ω with

χ(x, i, r) =

{

(x(1,1), . . . , 1, . . . , x(M,M)) if (1 + exp(−2β
∑

j:{i,j}∈E xj))
−1 ≤ r

(x(1,1), . . . ,−1, . . . , x(M,M)) else

where the 1 or −1 is placed at the ith coordinate. The Gibbs sampler is the SRS

Xt+1 = χ(Xt, It, Rt), t = 0, 1, . . . ,

where I0, R0, I1, R1, . . . are mutually independent, It ∼ Uniform(V ) and Rt ∼ Uniform[0, 1].

Define a partial ordering on Ω by

x ≺ y ⇐⇒ xi ≤ yi for all i ∈ V (C.19)

with x = (xi)i∈V and y = (yi)i∈V . Then 1̂ = (1, . . . , 1) and 0̂ = (−1, . . . ,−1) are the
unique maximal and minimal elements. Suppose first that β ≥ 0. Then the Gibbs
sampler is monotone in the sense that

x ≺ y =⇒ χ(x, ·, ·) ≤ χ(y, ·, ·).

Hence we can define upper and lower chains in a similar way as in Section C.1:

U0 = 1̂, L0 = 0̂, Ut+1 = χ(Ut, It, Rt), Lt+1 = χ(Lt, It, Rt), t = 0, 1, . . . . (C.20)

If instead β < 0, the Gibbs sampler becomes anti-monotone, and we can use the cross-
over trick of Kendall (1998) (see also Häggström and Nelander, 1998 and Møller, 1999):

U0 = 1̂, L0 = 0̂, Ut+1 = χ(Lt, It, Rt), Lt+1 = χ(Ut, It, Rt), t = 0, 1, . . . .

Then (C.4) is still satisfied, but U and L are not individual Markov chains.

Since the Gibbs sampler is ergodic and Ω is finite, we obtain the CLT (C.13). As
required, φ̄L

t and φ̄U
t are consistent estimators of µ (this is obvious when β ≥ 0 and

not so hard to verify in the anti-monote case β < 0). The reason for using the Gibbs
sampler instead of the more efficient Swendson and Wang (1987) algorithm is that the
latter algorithm has a lack of monotonicity (Propp and Wilson 1996; Mira et al. 2001).
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C.2 Experimental results: Ising model

The Gibbs sampler described above is clearly reversible. For the experiments in this
section we used a slightly different algorithm with a systematic updating scheme in
which one iteration consists of 2M 2 − 1 Gibbs updates scanning through the elements
of V and back again in reverse order. This double scan Gibbs sampler is also reversible,
monotone and ergodic. The autocorrelation is much smaller under this approach.

Let φ(x) =
∑

i∈V xi which is monotone with respect to (C.19). By symmetry in the
density, µ = 0 is known. Bounds based on (C.16) were constructed for Ising models
with M = 5, 10, 64 and parameters β = 0.1, 0.5. The results are illustrated for M =
64, β = 0.1 in Figure 9, which depicts the first 100 iterations of the running mean and
corresponding upper and lower bounds under Method 1, and in Figure 10, which shows
the conservative 95% confidence intervals based on (C.16) for N = 1000.

Method 2 was employed for an Ising model with M = 5 and β = 0.5. With ε = 5,
m = 33 blocks were sampled from N = 500 iterations. The estimated mean and
standard deviation for the lower bound were φ̃L

N = −0.0248 and σ̃min,N = 0.00289. The

corresponding figures for the upper bound were φ̃U
N = 0.0321 and σ̃max,N = 0.00386.

For comparison, with the same values of M, β and N , the lower and upper bounds on
the standard deviation under Method 1 were σ̂min,N = 0.0635 and σ̂max,N = 0.0785.
In this case the 95%-confidence interval (C.16) for Method 1 is about four times wider
than the 95%-confidence interval (C.18) for Method 2.

C.3 Mixture model

In this section we consider a Bayesian model for a simple mixture distribution, following
similar ideas as in Robert and Casella (2004).

We assume that we have i.i.d. observations Y1 = y1, . . . , Yn = yn from a two-
component mixture given by the density

f(x|p) = pf1(x) + (1 − p)f2(x)

where the densities f1 and f2 are known and the parameter p follows a conjugate prior
Beta(λ1, λ2). Consider latent variables Zi, i = 1, .., n that allocate observation Yi to
component j = 1 or 2. Specifically, the Zi given p are i.i.d. with P (Zi = 1|p) = p and
P (Zi = 2|p) = 1 − p, and the Yi given the Zi and p are independent with Yi following
fj if Zi = j. Thus a posteriori we obtain the full conditionals

p| · · · ∼ Beta(λ1 + n1, λ2 + n2),

P (Zi = j| · · · ) ∝ ωjfj(yi), j = 1, 2, i = 1, . . . , n,

where ω1 = p, ω2 = 1 − p and nj is the number of times Zi = j, i = 1, . . . , n.

For ease of exposition, consider first a Gibbs sampler with a random updating
scheme, using inversion at each type of update from the full conditionals: The SRS
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Figure 9: Method 1 for an Ising model with M = 64 and β = 0.1. Running mean φ̄t

and upper and lower bounds φ̄U
t and φ̄L
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Figure 10: Method 1 for an Ising model with M = 64 and β = 0.1. Time series plot of
φ̄t and corresponding 95% confidence intervals.
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for the chain Xt = (pt, Zt,1, . . . , Zt,n) is given by

Xt+1 = ϕ(Xt, It, Rt), t = 0, 1, . . . ,

where It ∼ Uniform{0, 1, . . . , n}, Rt ∼ Uniform[0, 1], the I0, R0, I1, R1, . . . are mutually
independent, and the updating function is specified as follows. In case It = 0 then
Xt+1 = (pt+1, Zt,1, . . . , Zt,n) and pt+1 = F−1(Rt|nt,1), the inverse distribution function
of Beta(λ1 + nt,1, λ2 + n − nt,1) (with nt,1 equal to the number of times Zt,i = 1, i =
1, . . . , n). If It = i ∈ {1, . . . , n} then Xt+1 = (pt, Zt,1, . . . , Zt,i−1, Zt+1,i, Zt,i+1, . . . , Zt,n)
where Zt+1,i = 1 if Rt ≤ ptf1(yi)/[ptf1(yi) + (1 − pt)f2(yi)] and Zt+1,i = 2 otherwise.

This Gibbs sampler is obviously monotone with respect to the following partial
ordering on [0, 1] × {1, 2}n:

(p, z1, . . . , zn) ≺ (p′, z′1, . . . , z
′
n) ⇐⇒ p ≤ p′, zi ≥ z′i, i = 1, . . . , n.

Furthermore, 1̂ = (1, 1, . . . , 1) and 0̂ = (0, 0, . . . , 0) are the unique maximal and minimal
elements. Hence we define upper and lower chains in the same way as in (C.20).

Note that pt is the chain of the interest. Since its state space [0, 1] is compact, it can
be shown that the chain is uniformly ergodic. Consequently, for real functions φ(p), the
requirements that φ̄L

t and φ̄U
t are consistent estimators of µ, and the CLT (C.13) holds,

are satisfied.

C.4 Experimental results: Mixture model

The Gibbs sampler studied above is obviously reversible. For similar reasons as in
Section C.2, we used a systematic Gibbs sampler for the experiments in this section
(where one iteration is one scan of the n + 1 components). Reversibility of the target
chain pt is automatically ensured.

We illustrate Method 1 using a two-component normal mixture in which f1 ∼ N(0, 1)
and f2 ∼ N(2, 1). Observations y1, .., y200 were simulated from this mixture with p = 0.3.
Figure 11 depicts the running mean of p and upper and lower bounds for N = 1000 and
Figure 12 shows the corresponding 95% upper confidence bound on p computed for every
1000th iteration to N = 10000. After N = 100, 1000 and 10000 iterations, the respective
values of (φ̄L

N , φ̄U
N ) were (0.2743,0.3294), (0.2964,0.3019) and (0.2987,0.2992). The corre-

sponding values of (σ̂min,N , σ̂max,N ) at these values of N were (0,0.0286), (0,0.00313) and
(0.0363,0.000517). Conservative 95% confidence bounds for p, computed using σ̂max,N ,
were (0.2182,0.3855), (0.2903,0.3080) and (0.2977,0.3002), respectively. For comparison,
under Method 2 with ε = 0.001, the values of (φ̃L

N , φ̃U
N ) after N = 100, 1000 and 10000

iterations were (0.2374,0.5326), (0.2411,0.5148) and (0.2523,0.5115). The corresponding
values of σ̂max,N were 0.0175, 0.00742 and 0.000992, leading to much more conserva-
tive 95% confidence bounds for p than those for Method 1 above. In particular, the
asymmetry of the process is reflected in the quite conservative upper bounds φ̄N

U and
σ̃max,N . More generally, the accuracy and precision of the bounds is dependent on the
sample composition and sample size, as well as the values of p and other parameters in
the mixture model.
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Figure 11: Mixture model with p = 0.3 and normal distributions N(0, 1) and N(2, 1).
Running mean and upper and lower bounds for N = 1000.
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Figure 12: Mixture model with p = 0.3 and normal distributions N(0, 1) and N(2, 1).
95% upper confidence bounds computed at t = 1000, 2000, ..., 10000.
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5 Extensions and applications

Our methods also apply when φ is anti-monotone, i.e. when

x ≺ y =⇒ φ(x) ≥ φ(y).

We simply exploit the fact that −φ is monotone. Similarly, our methods easily apply
when φ is a linear combination of monotone functions. In fact many lattice and point
process models are of an exponential family type where the canonical sufficient statistic
t(x) is a linear combination of monotone functions (considering here for simplicity the
one dimensional case of t(x); in the higher dimensional case each coordinate function is
often a linear combination of monotone functions). For the Ising model, for example,

t(x) =
∑

{i,j}∈E

xixj =
1

2

∑

{i,j}∈E

I [Xi = Xj = 1] +
1

2

∑

{i,j}∈E

I [Xi = Xj = −1]− |E|

where the first term is monotone, the second is anti-monotone and the third is constant;
here I [·] denotes the indicator function and |E| the cardinality of E.

Method 1 easily extends to a time-continuous setting. For example, spatial birth-
death processes have been successfully used for perfect simulation of spatial point pro-
cesses (Kendall, 1998; Kendall and Møller, 2000), and Method 1 can straightforwardly
be modified to this case. However, Method 2 does not easily apply in that case, since
there is no maximal element (or more generally, since the dominating Poisson-birth-
death process in Kendall and Møller (2000) is used in a way for obtaining the upper
and lower processes which makes it difficult to obtain i.i.d. blocks). Instead the ideas
in Wilson (2000) may be exploited.

In particular, our methods apply for many stochastic models used in statistical
physics and spatial statistics. Examples include Ising and hard-core models, and many
of Besag’s auto-models (Besag 1974): the auto-logistic, the auto-binomial, the auto-
Poisson and the auto-gamma model; for coupling constructions, see Møller (1999).
Moreover, many spatial point process models, including the Strauss process and other re-
pulsive pairwise interaction point process models (Møller and Waagepetersen 2003) can
be handled, using the modification of Method 1 discussed above. For the area-interaction
point process (or mixture Widow-Rowlinson model, see Widom and Rowlinson, 1970
and Baddeley and van Lieshout, 1995) it is easier to use the coupling construction in
Häggström et al. (1999).

On the other hand, it seems that our methods so far are of rather limited impor-
tance for general Bayesian problems, since it is usually not known how to construct the
upper and lower dominating processes, or since the functions φ of interest are often not
linear combinations of monotone functions. Some exceptions are the mixture model in
Section C.3 and the following models.

The Ising model with an external field: this model is equivalent to an auto-logistic
model, and it appears, for example as posterior distributions used for reconstruction
problems in image analysis (Geman and Geman 1984).
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The auto-gamma model has been used in the Bayesian literature, see Møller (1999)
and the references therein. Møller (1999) and Wilson (2000) show how the U and L
processes can be constructed.

Our methods are suitable for posterior distributions associated with mixtures of
exponential families and conjugate priors (Casella et al. 2002) using the upper and lower
chains introduced in Mira et al. (2001), where other examples of applications also are
given.

Our methods also apply when using the upper and lower processes for the perfect sim-
ulated tempering algorithms and the Bayesian models considered in Møller and Nicholls
(1999) and Brooks et al. (2002).

In conclusion, our methods apply whenever the Propp and Wilson (1996) algorithm
does or when modifications such as those in Kendall and Møller (2000) do. Moreover,
they may also apply in situations where almost sure coalescence of the upper and lower
processes are not required (see, e.g. Møller, 1999), and it would be interesting to explore
such cases, but we shall refrain from this in the present paper.
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