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Bayesian Model Assessment Using Pivotal

Quantities

Valen E. Johnson∗

Abstract. Suppose that S(Y, θ) is a function of data Y and a model parameter θ,
and suppose that the sampling distribution of S(Y, θ) is invariant when evaluated
at θ0, the “true” (i.e., data-generating) value of θ. Then S(Y, θ) is a pivotal
quantity, and it follows from simple probability calculus that the distribution of
S(Y, θ0) is identical to the distribution of S(Y, θY), where θY is a value of θ drawn
from the posterior distribution given Y. This fact makes it possible to define a
large number of Bayesian model diagnostics having a known sampling distribution.
It also facilitates the calibration of the joint sampling of model diagnostics based
on pivotal quantities.

Keywords: prior-predictive density, posterior-predictive density, Bayesian model
diagnostics, Bayesian chi-squared test.

1 Introduction

Within the Bayesian paradigm, a number of general approaches for model evaluation
have been proposed. Although a number of informal measures have been proposed to
assess model adequacy, many model assessment strategies have relied on the calculation
of Bayesian analogs of frequentist p values. For example, Box (1980) proposed the
calculation of Bayesian p values based on the prior-predictive distribution. In this
approach, Bayesian p-values are calculated according to

Pr[p(g(y)|A) < p(g(yd|A))],

where y denotes a value of the data generated from the joint distribution on model
parameters and data, yd denotes the value of the data actually observed, A refers to
prior information available before the observation of yd, and p(g(y)|A) represents the
prior-predictive density of a checking function g.

Unfortunately, many Bayesians have been hesitant to utilize prior-predictive model
diagnostics because the values of derived p values can depend critically on the model’s
prior density. Perhaps in response to this problem, Guttman (1967) and Rubin (1984)
proposed model diagnostics based on posterior-predictive distributions, which were later
extended to general discrepancy functions by Gelman, Meng, and Stern (1996) (see also
Meng (1994) for accompanying theory). The essential idea of posterior-predictive model
checks is to compare the observed value of a discrepancy function—that is, a function of
the observed data and unobserved model parameters—to values of the discrepancy func-
tion evaluated at replicate observations simulated from the posterior-predictive density.
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Bayarri and Berger (2000), Robins, van der Vaart, and Ventura (2000) and others
have noted a critical shortcoming of posterior-predictive p values: They are not (even
asymptotically) uniformly distributed. That is, the presumed sampling distributions
of discrepancy functions are not actually achieved in posterior-predictive simulations.
Although this fact does not preclude the use of this methodology for performing case
diagnostics, it severely limits its application for formal model assessment.

Cross-validation posterior-predictive densities can also be used to assess model fit
(e.g., Gelfand (1996)). In this approach, a subset of observations, say Yr, is omitted
from the complete data Y, while the remaining data, Y−r, is used to estimate model
parameters. Model assessment is then based on the conditional predictive ordinate
(CPO) f(yr|y−r). Often, Yr contains only a single observation. In this case, the
product of CPOs,

n
∏

i=1

f(yi|y−r),

is used as a summary measure of model fit. Because the distribution of this product is
generally not available analytically, it must be evaluated numerically. The computations
associated with this procedure can be expensive. Gelfand (1996) provides a discussion
of numerical issues surrounding the use of the CPO and offers practical advice toward
resolving them.

The purpose of this article is to explore a relation between the distribution of pivotal
quantities evaluated at the true (i.e., data-generating) parameter value and the distri-
bution of the same pivotal quantities evaluated at parameter values sampled from the
posterior distribution. In general, these two distributions are identical, which makes
it straightforward to define a large number of Bayesian model diagnostics. Such diag-
nostics can be tailored for the particular application at hand and are generally easy to
compute using available MCMC output.

The remainder of this article is organized as follows. In the next section, I demon-
strate that the distribution of a pivotal quantity evaluated at the data-generating pa-
rameter is the same as the distribution of a pivotal quantity evaluated at a posterior
draw of the model parameter. Next, several approaches for evaluating the information
contained in the joint posterior distribution of pivotal quantites based on a single, ob-
served data vector are discussed. In Section 3, two examples that illustrate the use of
pivotal quantities for assessing model adequacy are presented. A summary of findings
and suggestions for future research appears in the concluding section.

2 Methodology

2.1 A Property of Pivotal Quantities

Let Y denote a random vector defined on a sample space Y ⊂ Rn and having a probabil-
ity density function belonging to a parametric family {f(y|θ), θ ∈ Θ ⊂ Rs}. Similarly,
let π(θ) denote the prior density function assigned to θ, and let p(θ|y) denote the pos-
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terior distribution of θ given y. Also, suppose that Y has marginal density function
m(y) defined as

m(y) =

∫

Θ

f(y|θ)π(θ)dθ.

For simplicity, I assume that all densities are defined with respect to Lebesgue measure,
although extensions to more general settings are straightforward.

Define a pivotal quantity to be a function S : (Y , Θ) → Rt for which the integral

G(s) ≡
∫

Y

I
A(θ,y)

f(y|θ) dy, A(θ,y) = {(y, θ) : S(y, θ) ≤ s} (1)

depends only on the value of the vector s ∈ Rt for all θ ∈ Θ. In other words, the sampling
distribution of S is invariant when the value of its second argument (θ) determines the
sampling density of the first (Y).

With these definitions, the following relation between pivotal quantities evaluated
at the true parameter value and a value sampled from the posterior distribution holds:

Lemma: Let S(Y, θ) denote a pivotal quantity, and suppose that θ0 is a random vector

drawn from density π. Given θ0, let Y denote a random vector sampled from density

f(y|θ0), and let θY denote a parameter vector drawn from the posterior distribution

on θ given Y. Then S(Y, θY) and S(Y, θ0) are identically distributed.

Demonstration of this lemma follows easily from properties of pivotal quantities and
the specified joint sampling distribution on (θ,Y):

Pr [S(Y, θY) ≤ s] =

∫

Θ

∫

Y

∫

Θ

IA(θy,y) p(θy|y)f(y|θ0) π(θ0) dθ0 dy dθy

=

∫

Θ

∫

Y

∫

Θ

IA(θy,y)

f(y|θy)π(θy)

m(y)
f(y|θ0) π(θ0) dθ0 dy dθy

=

∫

Θ

∫

Y

∫

Θ

IA(θy,y)

f(y|θ0) π(θ0)

m(y)
f(y|θy)π(θy) dθy dy dθ0

=

∫

Θ

∫

Y

IA(θy,y) f(y|θy) dy π(θy) dθy

=

∫

Θ

G(s) π(θy) dθy

= Pr[S(Y, θ0) ≤ s]

This result extends also to arbitrary functions T (θ,Y). To see why, note that sam-
ples of θ drawn from a posterior distribution given Y have marginal density π whenever
Y is drawn from its marginal density m(y). In general, however, the distribution of
T (θ0,Y) will not be available as a reference distribution for T (θy,Y) when T is not
pivotal, and so extensions to non-pivotal functions are not considered further here.
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This property of pivotal quantities makes it possible to define model diagnostics in
most Bayesian models. In particular, pivotal quantities can be defined in any model
for which observations are assumed to have absolutely continuous density functions and
to be conditionally independent given the value of the model parameter—in such cases
the values of each observation’s distribution function evaluated at a posterior draw of
the parameter vector represent independent uniform random deviates. Extension to
discrete models can be obtained by additional randomization over the probability mass
assigned to individual observations.

2.2 Joint distributions of pivotal quantities

An important limitation of the property delineated in the previous section is that it ap-
plies to the marginal distribution of pivotal quantities defined using a single, independent
draw of (Y, θY) from its joint distribution. It does not describe the joint distribution
of pivotal quantities based on multiple draws of (Y, θi

Y) from the same posterior dis-
tribution, where {θi

Y} denote posterior samples of θ based on the same data vector Y.
This difficulty was discussed in Johnson (2004) for the special case of pivotal statis-
tics based on Pearson’s chi-squared goodness-of-fit test. However, several strategies for
combining information from multiple values of a pivotal quantity defined from the same
posterior distribution may be considered. The most direct is numerical evaluation of
the joint sampling distribution of the pivotal quantity using prior-predictive-posterior
(PPP) simulation (e.g., Dey, Gelfand, Swartz, Vlachos (2003), Hjort, Dahl, Steinbakk
(2006)).

Defining Ai(Y) ≡ {(Y, θi
Y) : S(Y, θi

Y) ≤ si}, i = 1, . . . , c, the joint sampling
distribution of {S(Y, θi

Y)} can be expressed

Pr
[

S(Y, θ1
Y) ≤ s1, . . . , S(Y, θc

Y) ≤ sc
]

= (2)
∫

Θ

· · ·
∫

Θ

∫

Y

∫

Θ

IA1
· · · IAc

f(y|θ0) π(θ0) λ(dθ0) µ(dy)
∏

i

p(θi
y|y)λ(dθ

i
y).

This expression corresponds to Box’s (1980) prior predictive density for the joint distri-
bution on the pivotal quantity S and can be estimated by repeatedly drawing values of
Y from its marginal distribution m(y).

It is interesting to compare the joint distribution specified in (2) to that based on
posterior-predictive simulations. Posterior-predictive simulations can be implemented
in at least two ways. In one, the discrepancy function is evaluated at pairs of posterior
parameter draws and posterior-predictive data values drawn from the sampling distri-
bution given the same parameter value. In the case of pivotal quantities, this procedure
hardly makes sense (though it is frequently implemented) because the distribution of the
discrepancy function for such pairs is known: it is the distribution of the pivotal quan-
tity. Furthermore, draws of the pivotal quantity generated in this way are independent
whenever draws from the sampling distribution are independent.

Alternatively, posterior-predictive approximations to the joint distribution of pivotal
quantities might be based on the joint distribution of pivotal quantities evaluated at
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posterior-predictive data vectors Z and values of θ
j
Y not used in the generation of Z.

Such a procedure leads to a joint posterior distribution that can be expressed

Pr
[

S(Z, θ1
Y) ≤ s1, . . . , S(Z, θc

Y) ≤ sc
]

= (3)
∫

Θ

· · ·
∫

Θ

∫

Z

∫

Θ

IA1
· · · IAc

f(z|θ0
y) p(θ0

y|y) dθ
0
y dz

c
∏

i=1

p(θi
y|y)dθ

i
y.

The precise nature of the relation between (3) and (2) is difficult to study analyti-
cally, although Meng (1994) describes theoretical properties of psuedo-Bayesian p values
based on posterior-predictive schemes. In general, however, it is clear that the marginal
distribution of S(Z, θY) is not the same as the nominal distribution of S(Y, θY).

The primary disadvantage of PPP simulation is its high computational burden. In
realistic statistical models applied to complex data, implementing a MCMC algorithm
for the observed data can be computationally expensive; running the same algorithm
10,000 or more times for data simulated from the prior model will often not be feasible.
Such computations are particularly problematic in the model refinement stages of data
analysis. To avoid PPP simulations, several strategies can be considered.

One approach toward avoiding PPP simulation is to base model assessments on
informal graphical comparisons of the posterior distribution of a pivotal quantity (or
several pivotal quantities) to their nominal sampling distribution. In many cases, simple
graphical diagnostics based on pivotal quantities provide a clear indication of model
inadequacy. If the posterior distribution of the pivotal quantity does suggest model
lack-of-fit and a p value is required, then PPP simulation can be implemented to more
formally assess the model deviation.

In performing graphical assessments, it is important to consider the complexity of
the model being assessed. Simple models with low dimensional parameters generally
produce posterior samples of pivotal quantities that are highly correlated. In contrast,
models containing large numbers of parameters usually produce posterior samples of
pivotal quantities that are less highly correlated. Because the realized pivotal quanti-
ties in more complex models are less dependent, the posterior distribution of pivotal
quantities from such models should be expected to more closely match their marginal
distribution. Thus, even small deviations from the nominal distribution may be associ-
ated with extreme PPP p values when the posterior distribution of the pivotal quantity
has approximately the same dispersion as the nominal distribution of a single value.

With these considerations in mind, it is often useful to summarize evidence con-
tained in the posterior distribution of a pivotal quantity by the proportion of posterior
pivotal quantities that result in the rejection of the null hypothesis of model adequacy
at a specified level of significance. For example, one might report that 50% of the piv-
otal quantities generated from the posterior distribution result in rejection of the null
hypotheses at the 5% level of significance. Such summaries do not, however, account
for the dispersion of the posterior distribution of the pivotal quantity or the complexity
of the fitted model.
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Beyond informal summaries of model assessment, it is also possible to obtain proba-
bilistic bounds on PPP p values using bounds on order statistics of dependent samples
of random variables. This procedure is discussed in more detail in the next section.
Other approaches for approximating PPP p values are discussed in the final section of
this article and are currently the topic of active investigation.

2.3 Probabilistic bounds on PPP p values

Gascuel and Caraux (1992) and Rychlik (1992) derived bounds on the distribution of
order statistics from identically distributed, dependent random variables and provided
constructions in which these bounds were obtained. Letting X(1), . . . , X(n) denote order
statistics from a dependent sample of random variables each having distribution function
G, and letting Pm:n denote the distribution function for the m’th order statistic out of
n, one such bound can be expressed

Pm:n(t) ≥ max

{

0,
nG(t) − m + 1

n − m + 1

}

. (4)

To apply this bound to a posterior sample of pivotal quantities, let S(m) denote the m’th
order statistic from n values of sampled pivotal quantities, and assume that large values
of the pivotal quantity are associated with model misspecification. If G now denotes
the sampling distribution of a single value of the pivotal quantity S, then it follows that

Pr(S(m) > t) ≤ 1 − max

(

0,
nG(t) − m + 1

n − m + 1

)

. (5)

For example, if t represents the 0.99 quantile from G, it follows for large n that the
probability that the S(.8n) > t is less than or equal to 0.05. In other words, a finding
that the .8 quantile from the posterior distribution of pivotal quantities exceeds the .99
quantile from the nominal distribution implies that the PPP p value is less than .05.

In applying this bound, two facts should be considered. First, to avoid producing
a bound that is dependent on the particular posterior sample of pivotal quantities
generated, the value of m/n should be bounded below 1 and should be selected so that
uncertainty in the m/n’th quantile of the posterior distribution of pivotal quantities is
small. Second, if the distribution of the pivotal quantity is not exact (e.g., Pearson’s
χ2 statistic), extreme values of m/n should be regarded with caution since in that case
the marginal distribution of the pivotal quantity in the extreme tails of the distribution
will also not be exact.

3 Examples

In this section, the use of pivotal quantities to define Bayesian model diagnostics is
explored in two examples. The purpose of the first example is to illustrate differences
between model diagnostics defined using prior-predictive methodology and diagnostics
obtained using posterior-predictive methodology. The second is intended to provide
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insight regarding the accuracy of the bounds and approximations to the joint posterior
distribution on pivotal quantites described in Sections 2.2 and 2.3, and to illustrate the
definition of graphical diagnostics based on pivotal quantities.

3.1 Mortality tables

To facilitate comparison with posterior-predictive model diagnostics, consider the mor-
tality data presented in Broffitt (1988). These data were subsequently analyzed by
Carlin (1992) and Gelman, Meng, and Stern (1996). The data consist of observed
deaths, by age, for participants in a health insurance policy. Letting yt denote the
number of deaths out of Nt participants of age t, Gelman, Meng, and Stern (1996) as-
sume a Poisson model of the form

P (y|θ) ∝
64
∏

t=35

θyt

t exp(−Ntθt) (6)

for the age-specific mortality rates θ = {θt}. The prior distribution for θ is assumed
only to be an increasing convex function of θt with respect to age. In order to obtain a
proper prior distribution on θ, I impose the additional constraint that the components
of θ be bounded in the interval (0,0.05) (the highest observed mortality rate was less
than 0.02; Gelman, Meng and Stern also assume a uniform distribution for θ but do not
specify the corresponding interval). A plot of yt/Nt appears in Figure 1; the possibility
that mortality rates decrease at the higher ages may suggest that θ may not, in fact,
be convex.

The pivotal quantity chosen by Gelman, Meng and Stern for assessing the fit of the
Poisson model to the mortality data was the Pearson-type discrepancy measure

S(y, θ) =
∑

t

(yt − Ntθt)
2

Ntθt
.

Gelman, Meng and Stern provide a thorough analysis of the distribution of S(θ,y)
under a variety of distributional assumptions for various estimates of θ and for various
assumptions regarding the number of degrees of freedom that should be associated with
the distribution on S. They report a posterior-predictive p-value of 10% for the mini-
mum χ2 statistic, and a posterior-predictive p-value of 6.3% for the realized discrepancy.

The analysis based on the recognition that S is approximately a pivotal quantity is
more direct. By evaluating this quantity at a draw from the posterior distribution θ

i
y,

it follows that the marginal distribution of S(y, θi
y) is (for large Nt) approximately that

of a χ2
30 random variable.

A plot of the posterior distribution of S(y, θi
y) against its reference χ2

30 distribution

appears in Figure 2. For these data, the probability that an individual value of S(y, θi
y)

exceeds a randomly drawn value from a χ2
30 distribution is 95.2%, and the posterior

probability that a value of S(y, θi
y) exceeds the 0.95 quantile from a χ2

30 distribution is



726 Bayesian Model Assessment Using Pivotal Quantities

35 40 45 50 55 60 65

0.
00

0
0.

00
5

0.
01

0
0.

01
5

age

ob
se

rv
ed

 m
or

ta
lity

 ra
te

s

Figure 1: Mortality data. This plot depicts the ratio of the number of deaths to number
enrolled in an insurance plan versus age.

approximately 0.61. Both summaries provide substantial evidence that this model does
not fit these data. In many applications, plots similar to Figure 2 and the summary
statistics cited above will provide an adequate basis for model assessment. However,
it is sometimes necessary to perform more formal assessment of model adequacy using
a single, summary diagnostic derived from the joint posterior distribution of pivotal
values. As stated above, such assessments can be obtained through PPP simulation or
by the approach described at the end of Section 2.

To illustrate the more formal PPP scheme for these data, define the prior-predictive
summary statistic V (Zj) according to

V (Zj) = Pr
[

S(θZj
,Zj) > X2

]

, (7)

where Zj denotes an observation drawn from the prior-predictive distribution, X2 de-
notes an independent χ2

30 random variable, and probability is computed with respect
to the posterior distribution given Zj . An overall Bayesian p-value for model adequacy
can then be defined as the proportion of V (Zj) values that exceed V (Y), the value of
(7) evaluated at the observed data.
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Figure 2: Histogram estimate of the posterior distribution of S(θi
y,y) for the mortality

data. For comparison, the marginal χ2
30 distribution for a singe value of S(θi

y,y) is
displayed as a solid line in the plot.

In this example, the prior-predictive probability that V (Zj) exceeds V (Y) was es-
timated in the following way. First, an MCMC algorithm was used to generate 5, 000
draws from the prior distribution of θ. For each of these values, a prior-predictive
data value Zj was drawn according to (6). Samples from the posterior distribution of
S(Zj , θZj

) were then used to estimate the value of V (Zj). This resulted in a sample
of 5,000 V (Zj) values; these values provided a reference distribution for V (Y). In this
case, V (Y) = 0.952, and of the 5,000 values of V (Zj) generated by this procedure, only
156 exceeded 0.952. It follows that the Bayesian p value for lack-of-fit is approximately
0.031.

Next, bounds based on order statistics were obtained by sampling 105 values of the
pivotal quantity S from the posterior distribution. For this sample, S(96,000) (the 0.96
quantile of the empirical distribution of the sampled pivotal quantities) was 56.39. A
χ2

30 distribution function evaluated at 56.39 is .99754; applying (5) thus implies the
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Group Observations Sample mean
1 2.73, 0.56, 0.87, 0.90, 2.27, 0.82 1.36
2 1.60, 2.17, 1.78, 1.84, 1.83, 0.80 1.67
3 1.62, 0.19, 4.10, 0.65, 1.98 ,0.86 1.57
4 0.96, 1.92, 0.96, 1.83, 0.94, 1.42 1.34
5 6.32, 3.66, 4.51, 3.29, 5.61, 3.27 4.44

Table 1: Hypothetical data presented by O’Hagan (2003).

probability of seeing a value of S(96,000) that exceeds 56.39 is

Pr(S(96,000) > 56.39) < 1 − max

(

0,
99754− 96000 + 1

100000− 96000 + 1

)

= .062.

Similarly, bounds of p < 0.07 were achieved for all quantiles of order statistics between
0.7 and 0.98. Note that obtaining these bounds required essentially no additional com-
putation above that required to obtain the posterior sample for θ, and that this bound
compares favorably to the the value obtained through PPP methodology.

3.2 Hierarchical Linear Models

O’Hagan (2003) provides an analysis of a simple hierarchical linear model and compares
his model diagnostic approach—based on conflict measures—to diagnostics proposed by
Chaloner (1994). The particular model he considers may be written

yij |λi, σ
2 ∼ N(λi, σ

2), i = 1, . . . , 5, j = 1, . . . , 6,

λi|µ, τ2 ∼ N(µ, τ2), i = 1, . . . , 5,

µ ∼ N(2, 10), σ2 ∼ 22χ−2
20 , τ2 ∼ 6χ−2

20 ,

where all parameters and data y = {yi,j} are assumed to be conditionally independent.
Data to which the model were applied appear in Table 1. A cursory examination of this
table suggests that the fifth group has a mean that is not compatible with the means
of the other groups.

The simple form of the linear hierarchical model assumed for these data makes model
assessment based on pivotal quantities straightforward. Defining

εij = (yij − λi)/σ and εi = (λi − µ)/τ,

it follows that the vectors ei = {εij} have independent, standard normal sampling dis-
tributions when evaluated at a draw of (λi, σ

2) from the posterior. So do the quantities
εi when evaluated at a posterior sample of (λi, µ, τ). Quantile-quantile plots for each of
these quantities appear in Figure 3.

Several interesting patterns are immediately apparent from Figure 3. For instance,
the points in the quantile-quantile plot for Group 5 all fall above the diagonal, clearly
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indicating that the sampled value of the mean λ5 for this group was too small. In the
quantile-quantile plot for εi, the largest value corresponds to ε5, which suggests that the
value of λ5 was too large. Furthermore, the slopes of the dashed lines fall below the 45◦

line in all groups except 5, suggesting that the observational variance was overestimated
in these groups. These patterns manifest themselves with high probability as different
samples from the posterior are drawn, and taken together clearly indicate a problem with
the fifth group’s mean parameter. These facts suggest that the posterior distribution of
λ5 is too small given the data in this group, but too large to have come from the same
population as the other λ’s. There is also evidence of a suspicious observation in the
third group, corresponding to y33, and this pattern also appears with high probability
as additional samples are drawn from the posterior.

The residual values displayed in Figure 3 can also be used to generate chi-squared
random variables for each value of the parameter vector (λi, µ, σ, τ) drawn from the
posterior. Figure 4 displays the posterior distributions of the chi-squared statistics
obtained by taking the sum-of-squared residuals for each panel in Figure 3 for each of
1,000 draws from the posterior on (λi, µ, σ, τ). In each panel, a vertical line indicates
the expected value of the chi-squared statistics. From the plot, it is clear that the
chi-squared values obtained from Group 5 (i.e.,

∑

j ε25,j) and for the group means (i.e.,
∑

i ε2i ) are too large, while the chi-squared variables for Groups 2 and 4 are unexpectedly
small.

The chi-squared values depicted in Figure 4 can be used to obtain Bayesian p values
through prior-predictive simulations similar to those illustrated for the mortality data.
Defining the summary statistic V according to (7) for each subset of residuals, prior-
predictive simulations yield p values of (0.62, 0.99, 0.09, 0.96, 0.07) for the five residual
groups, and a p value of 0.07 for the group means. Except for the first residual group,
these values tend to be either close to 0 and 1, again indicating model lack-of-fit.

4 Discussion

Results reported in this article are derived from the simple fact that the distribution
of a pivotal quantity S(Y, θY) equals the distribution S(Y, θ0) whenever θY denotes
a parameter value drawn randomly from the posterior distribution of θ given Y and
θ0 denotes the parameter value underlying the generation of Y. The simplicity of this
result makes it possible to analytically define reference distributions for many Bayesian
model diagnostics.

A potential difficulty that arises in the use of pivotal quantities to define formal
model diagnostics involves the requirement to perform PPP simulations to calibrate the
distribution of the joint sampling distribution on pivotal quantities corresponding to a
single observation vector. Bounds based on order statistics provide a useful mechanism
for avoiding this problem. Other strategies to avoid PPP simulation are currently under
investigation and include approaches based on modeling the marginal distribution of
pivotal quantities as mixtures of low-dimensional parametric densities and computing
“average” Bayes factors from the pivotal quantities themselves (e.g., Johnson (2005)).
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Figure 3: Quantile-quantile plots of residuals ei and εi for a randomly selected parameter
value drawn from the posterior distribution. The dashed lines represent the R defaults
for the function qqline, which pass through the upper and lower quartiles of the empirical
distribution function. The 45◦ line through the origin is displayed for reference.
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Figure 4: Histogram estimate of the joint posterior distribution residual chi-squared
values. The first five panels depict values of

∑6
j=1 ε2ij , while the last panel displays the

posterior distribution of
∑

ε2i . Vertical lines in each plot indicate marginal expectations.
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