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Hidden Markov Dirichlet Process: Modeling

Genetic Inference in Open Ancestral Space

Eric P. Xing∗ and Kyung-Ah Sohn†

Abstract. The problem of inferring the population structure, linkage disequi-
librium pattern, and chromosomal recombination hotspots from genetic polymor-
phism data is essential for understanding the origin and characteristics of genome
variations, with important applications to the genetic analysis of disease propen-
sities and other complex traits. Statistical genetic methodologies developed so far
mostly address these problems separately using specialized models ranging from
coalescence and admixture models for population structures, to hidden Markov
models and renewal processes for recombination; but most of these approaches
ignore the inherent uncertainty in the genetic complexity (e.g., the number of ge-
netic founders of a population) of the data and the close statistical and biological
relationships among objects studied in these problems. We present a new statis-
tical framework called hidden Markov Dirichlet process (HMDP) to jointly model
the genetic recombinations among a possibly infinite number of founders and the
coalescence-with-mutation events in the resulting genealogies. The HMDP posits
that a haplotype of genetic markers is generated by a sequence of recombination
events that select an ancestor for each locus from an unbounded set of founders
according to a 1st-order Markov transition process. Conjoining this process with
a mutation model, our method accommodates both between-lineage recombina-
tion and within-lineage sequence variations, and leads to a compact and natural
interpretation of the population structure and inheritance process underlying hap-
lotype data. We have developed an efficient sampling algorithm for HMDP based
on a two-level nested Pólya urn scheme, and we present experimental results on
joint inference of population structure, linkage disequilibrium, and recombination
hotspots based on HMDP. On both simulated and real SNP haplotype data, our
method performs competitively or significantly better than extant methods in un-
covering the recombination hotspots along chromosomal loci; and in addition it
also infers the ancestral genetic patterns and offers a highly accurate map of an-
cestral compositions of modern populations.

Keywords: Dirichlet Process, Hierarchical DP, hidden Markov model, MCMC,
statistical genetics, recombination, population structure, SNP.

1 Introduction

The availability of nearly complete genome sequences for organisms such as humans
makes it possible to begin to explore individual differences between DNA sequences,
known as genetic polymorphisms, on a genome-wide scale, and to search for associations
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of such genotypic variations with diseases and other phenotypes. Most human variation
that is influenced by genes can be related to a particular kind of genetic polymorphism
known as the single nucleotide polymorphisms, or SNPs. A SNP refers to the existence
of two possible kinds of nucleotides from {A,C,G, T} at a single chromosomal locus (i.e.,
a position on the chromosome) in a population; each variant is called an allele ∗. A
haplotype is a list of alleles at contiguous sites in a local region of a single chromosome.
Assuming no recombination in this local region, a haplotype is inherited as a unit. But
under many realistic biological or genetic scenarios, repeated recombinations between
ancestral haplotypes during generations of inheritance may confound the genetic origin
of modern haplotypes (Figure 1).

Recombinations between ancestral chromosomes during meiosis play a key role in
shaping the patterns of linkage disequilibrium (LD)—the non-random association of
alleles at different loci—in a population. When a recombination occurs between two loci,
it tends to decouple the alleles carried at those loci in its decedents and thus reduce LD;
uneven occurrence of recombination events along chromosomal regions during genetic
history can lead to “block structures” in molecular genetic polymorphisms such that
within each block only low level of diversities are present in a population.

Statistically, for a pair of loci with genetic polymorphic markers, say, X and Y , the
LD between these two loci can be characterized by a number of so-called LD measures.
For example, for bi-allelic markers (i.e., markers that have only two possible states, say
“0” and “1”), LD can be measured by the gametic disequilibrium, D = p00p11 − p01p10,
where p00 := Prob(X = 0, Y = 0), p11 := Prob(X = 1, Y = 1), p01 := Prob(X =
0, Y = 1), and p10 := Prob(X = 1, Y = 0), are the empirical frequencies of joint
allele-state configurations. Another popular LD measure is the p-value for Fisher’s
exact test over samples of X and Y . When D = 0, which means that the two loci of
interest are not arranged randomly during inheritance (due to recombination of their
host chromosomes at a position between the two loci), they often emerge (e.g., from
all possible pairs in a large number of loci being surveyed) as candidates of marker
pairs on the chromosome whose locations are physically close so that there is a low
probability of having recombination events between them. However, to the best of
our knowledge, extant LD-measures remain primarily focused on offering population-
level descriptive statistics of the sample, rather than on modeling and inferring the
underlying genetic mechanisms and processes that may have generated the data. For
example, the pairwise LD measure ignores the global context and overall pattern of the
genetic polymorphisms, and thus can not distinguish linkages due to spurious statistical
association (e.g., due to problems in sample procedures) from those resulting from true
physical proximity, or from genetic coupling due to co-evolution †. Such an approach also

∗In general, an allele represents a variant of a SNP, a gene, or some other entity associated with a
locus on DNA. In our case (SNPs), the locus harbors a single nucleotide, and therefore the alleles can
generally be assumed to be binary, reflecting the fact that “lightning doesn’t tend to strike twice in the
same place”. That is, nucleotide substitutions (i.e., mutations) do not occur to the same locus twice
during the inheritance course from a common ancestor. More generally, e.g., in case of microsatellite
polymorphism, the allele-state can be k-nary, a scenario to which our proposed model also applies.

†Co-evolution can occur for DNA sequences that are far apart in the genome if they encode genes or
regulatory elements that jointly or corporately perform an indispensable biology function. For example,
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provides no information regarding the demographical history and ancestral composites
of each individual in the study population. In this paper, we propose a new model-based
approach to address these issues.

The problem of inferring chromosomal recombination hotspots is essential for under-
standing the origin and characteristics of genome variations; several combinatorial and
statistical approaches have been developed for uncovering optimum block boundaries
from single nucleotide polymorphism haplotypes
(Daly et al. 2001; Anderson and Novembre 2003; Patil et al. 2001; Zhang et al. 2002).
For example, Zhang et al. (2002) proposed a dynamic programming algorithm for parti-
tioning single nucleotide polymorphism (SNP) haplotypes (explained in the sequel) into
low-diversity blocks; Daly et al. (2001) and Greenspan and Geiger (2004a) have de-
veloped hidden Markov models for locating recombination hotspots in haplotypes; and
Anderson and Novembre (2003) proposed a minimum description length (MDL) method
for optimal haplotype block finding. Some recent studies resorted to more sophisticated
population genetics arguments that more explicitly capture the mechanistic and pop-
ulation genetic foundations underlying recombination and LD pattern formation. For
example, Li and Stephens (2003) used a tractable approximation to the recombinational
coalescence, via a (latent) genealogy of the population, to capture the conditional de-
pendencies between haplotypes. Rannala and Reeve (2001) also use a coalescence-based
model and an MCMC method to integrate over the unknown gene genealogy and coales-
cence times. These advances have important applications in genetic analysis of disease
propensities and other complex traits.

The deluge of SNP data also fuels the long-standing interest of analyzing patterns
of genetic variations to reconstruct the evolutionary history and ancestral structures
of human populations, using, for example, variants of admixture models on genetic
polymorphisms (Pritchard et al. 2000; Rosenberg et al. 2002; Falush et al. 2003). These
models are instances of a more general class of hierarchical Bayesian models known as
mixed membership models (Erosheva et al. 2004), which postulate that genetic markers
of each individual are iid (Pritchard et al. 2000) or spatially coupled (Falush et al. 2003)
samples from multiple population-specific fixed-dimensional multinomial-distributions
of marker alleles. However, the admixture models developed so far do model genetic drift
due to mutations from the ancestor allele and therefore do not enable inference of the
founding genetic patterns and the age of the founding alleles (Excoffier and Hamilton
2003).

This progress notwithstanding, the statistical methodologies developed so far mostly
deal with LD analysis and ancestral inference separately, using specialized models that
do not capture the close statistical and genetic relationships of these two problems.
Moreover, most of these approaches ignore the inherent uncertainty in the genetic com-
plexity (e.g., the number of genetic founders of a population) of the data and rely on
inflexible models built on a pre-fixed, closed genetic space. Recently, we have devel-
oped a nonparametric Bayesian framework for modeling genetic polymorphisms based
on the Dirichlet process (DP) mixtures and extensions, which attempts to allow more

proteins that form a complex to carry out enzymatic activities usually co-evolve.
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Figure 1: An illustration of a hidden Markov Dirichlet process for haplotype recombination and inher-
itance. Note that the total number of ancestors is unknown.

flexible control over the number of genetic founders than has been provided by the
statistical methods proposed thus far (Xing et al. 2004) . In this paper, we leverage
on this approach and present a unified framework to model complex genetic inheri-
tance processes that allows recombinations among possibly infinite founding alleles and
coalescence-with-mutation events in the resulting genealogies.

We assume that individual chromosomes in a modern population are originated from
an unknown number of ancestral haplotypes via biased random recombinations and mu-
tations (Figure 1). The recombinations between the ancestors follow a state-transition
process we refer to as hidden Markov Dirichlet process (originated from the infinite
HMM by Beal et al. (2002)), which travels in an open ancestor space, with nonstation-
ary recombination rates depending on the genetic distances between SNP loci. Our
model draws inspiration from the HMM proposed in Greenspan and Geiger (2004b),
but we employ a two-level Pólya urn scheme akin to the hierarchical DP (Teh et al.
2006) to accommodate an open ancestor space, and allow full posterior inference of the
recombination sites, mutation rates, haplotype origin, ancestor patterns, etc., condition-
ing on phased SNP data, rather than estimating them using information theoretic or
maximum likelihood principles. On both simulated and real genetic data, our model and
algorithm show competitive or superior performance on a number of genetic inference
tasks over the state-of-the-art parametric methods.

The remainder of this paper is presented as follows. In section 2, we formulate the
problem, and present details of the proposed model. In section 3, we describe a block
Gibbs sampling algorithm for posterior inference of the latent variables. In section 4, we
present experimental results on a simulated data haplotype data set, and on two pub-
lished real data sets, one from a single population, and the other from two populations.
We conclude with a brief discussion in section 6. A short version of this manuscript was
presented earlier in Sohn and Xing (2006), but the current version offers more details
on the biological background, the model specifications, and the experimental results.
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2 The Statistical Model

Sequentially choosing recombination targets from a set of ancestral chromosomes can
be modeled as a hidden Markov process (Niu et al. 2002; Greenspan and Geiger 2004b),
in which the hidden states correspond to the index of the candidate chromosomes, the
transition probabilities correspond to the recombination rates between the recombining
chromosome pairs, and the emission model corresponds to a mutation process that
passes the chosen chromosome region in the ancestors to the descents. When the number
of ancestral chromosomes is not known, it is natural to consider an HMM whose state
space is countably infinite (Beal et al. 2002; Teh et al. 2006). In this section, we describe
such an infinite HMM formalism, which we would like to call hidden Markov Dirichlet
process, for modeling recombination in an open ancestral space.

2.1 Dirichlet Process mixtures

For self-containedness, we begin with a quick overview of the fundamentals of the Dirich-
let process and its connection to the coalescent process in population genetics, followed
by a brief recapitulation of the basic Dirichlet process mixture model we proposed
in Xing et al. (2004) for haplytope inheritance without recombination.

As mentioned earlier, a haplotype refers to the joint allele configuration of a contigu-
ous list of SNPs located on a chromosome. Under a well-known genetic model known
as coalescence with infinite-many-alleles (IMA) mutations (but without recombination),
one can treat a haplotype from a modern individual as a descendent of a most recent
common ancestor (MRCA) of unknown haplotype via random mutations that alter the
allelic states of some SNPs (Kingman 1982). Hoppe (1984) observed that a coales-
cent process in an infinite population leads to a partition of the population at every
generation that can be succinctly captured by the following Pólya urn scheme.

Consider an urn that at the outset contains a ball of a single color. At each step
we either draw a ball from the urn and replace it with two balls of the same color, or
we are given a ball of a new color which we place in the urn. One can see that such a
scheme leads to a partition of the balls according to their color. Mapping each ball to a
haploid individual ‡ and each color to a possible haplotype, this partition is equivalent
to the one resulting from the coalescence-with-mutation process (Hoppe 1984), and the
probability distribution of the resulting allele spectrum—the numbers of colors (resp.
haplotypes) with every possible number of representative balls (resp. decedents)—is
captured by the well-known Ewens’ sampling formula (Tavare and Ewens 1998).

Letting parameter α define the probabilities of the two types of draws in the afore-
mentioned Pólya urn scheme, and viewing each (distinct) color as a sample from Q0,
and each ball as a sample from Q §, Blackwell and MacQueen (1973) showed that this

‡A haploid individual refers to an individual with only one haplotype — a simplifying assumption
often used on population genetics when the paternal and maternal haplotypes of a diploid individual
are inherited independently.

§Here we deviate from the conventional notations in the statistics literature (e.g., Neal (2000);
Escobar and West (2002); Ishwaran and James (2001)) and use Q and Q0, instead of G and G0 (or
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Pólya urn model yields samples whose distributions are those of Q0 the marginal prob-
abilities under the Dirichlet process (Ferguson 1973). Formally, a random probability
measure Q is generated by a DP if for any measurable partition B1, . . . , Bk of the sam-
ple space, the vector of random probabilities Q(Bi) follows a Dirichlet distribution:
(Q(B1), . . . , Q(Bk)) ∼ Dir(αQ0(B1), . . . , αQ0(Bk)), where α denotes a scaling param-

eter and Q0 denotes a base measure. The Pólya urn model makes explicit that the
association of data points to colors defines a “clustering” of the data. Specifically, hav-
ing observed n values (φ1, . . . , φn) sampled from a Dirichlet process DP (α,Q0), the
probability of the (n+ 1)th value is given by:

φn+1|φ1, . . . , φn, α,Q ∼
n

∑

i=1

1

n+ α
δφi

(·) +
α

n+ α
Q0(·), (1)

where δφi
(·) denotes a point mass at value φi. Another very useful representation of DP

is the stick-breaking construction by Sethuraman (1994). This construction is based on
independent sequences of independent random samples {π′

k,i}∞i=1 and {φi}∞i=1 generated
in the following way: π′

i|α,Q0 ∼ Beta(1, α) and φi|α,Q0 ∼ Q0, where Beta(a, b) is the

Beta distribution with parameter a and b. Let πi = π′
i

∏k−1
l=1 (1 − π′

l) (analogous to a
process of repetitively breaking a stick at fraction π′

l), Sethuraman showed that the
random measure arising from DP (α,Q0) admits the representation Q =

∑∞
i=1 πiδφi

.
The φi’s can be understood as the locations of samples in their space, and the πi’s are
the weights of these samples.

The discrete nature of the DP, as obviated from the stick-breaking construction, is
well suited for the problem of placing priors on mixture components in mixture model-
ing. In the context of mixture models, one can associate mixture component centroids
(e.g., haplotype founders, as explained in the sequel) with colors in the Pólya urn model
and thereby define a “clustering” of the (possibly noisy) data (e.g., modern haplotypes
that are “recognizable” variants of their corresponding founders). This mixture model
is known as a DP mixture (Antoniak 1973; Escobar and West 2002) (also known as
“infinite” mixture model in machine learning community). Note that a DP mixture re-
quires no prior specification of the number of components, which is typically unknown in
genetic demography and general data clustering problems. It is important to emphasize
that here DP is used as a prior distribution of mixture components. Multiplying this
prior by a likelihood that relates the mixture components to the actual data yields a pos-
terior distribution of the mixture components, and the design of the likelihood function is
completely up to the modeler based on specific problems. MCMC algorithms have been
developed to sample from the posterior associated with DP priors (Escobar and West
2002; Neal 2000; Ishwaran and James 2001). This nonparametric Bayesian formalism
forms the technical foundation of the haplotype modeling and inference algorithms to
be developed in this paper.

Back to haplotype modeling, a straightforward statistical genetics argument shows
that the distribution of haplotypes can be formulated as a mixture model, where the set

H), to denote the random probability measure under DP and the base measure of DP, because in
the genetic context, G and H have been used to denote the genotype and haplotype of polymorphic
markers (Pritchard et al. 2000; Stephens et al. 2001; Li and Stephens 2003; Xing et al. 2004).
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of mixture components corresponds to the pool of ancestor haplotypes, or founders, of
the population (Excoffier and Slatkin 1995; Niu et al. 2002; Kimmel and Shamir 2004).
Crucially, however, the size of this pool is unknown; indeed, knowing the size of the
pool would correspond to knowing something significant about the genome and its
history. On the other hand, despite its elegance, with a purely coalescence-based model
for genetic patterns, it is hard to perform statistical inference of ancestral features
and many other interesting genetic variables (for a large population, the number of
hidden variables in a coalescence tree is prohibitively large) (Stephens et al. 2001). In
most practical population genetic problems, usually the detailed genealogical structure
of a population (as provided by the coalescent trees) is of less importance than the
population-level features such as the pattern of major common ancestor alleles (i.e.,
founders) in a population bottleneck ¶, the age of such alleles, etc. In this case, the
DP mixture offers a principled approach to generalize the finite mixture model for
haplotypes to an infinite mixture model that models uncertainty regarding the size of
the ancestor haplotype pool; at the same time, it provides a reasonable approximation to
the coalescence model by utilizing the partition structure resulting therefrom (but allows
further mutations within each partite to introduce further diversity among descents of
the same founder, which correspond to the balls with the same color in the Pólya
urn metaphor). Without further digression, below we summarize the Dirichlet process
mixture model we proposed in Xing et al. (2004) for haplytope inheritance without
recombination.

Write Hi = [Hi,1, . . . , Hi,T ] for a haplotype over T SNPs from chromosome i ‖; let
Ak = [Ak,1, . . . , Ak,T ] denote an ancestor haplotype (indexed by k) and θk denote the
mutation rate of ancestor k; and let Ci denote an inheritance variable that specifies the
ancestor of haplotype Hi. Under a DP mixture, we have the following Pólya urn scheme
for sampling modern haplotypes:

• Draw first haplotype:

a1 | DP(τ, Q0) ∼ Q0(·), sample the 1st founder;

h1 ∼ Ph(·|a1, θ1),
sample the 1st haplotype from an inheritance model
defined on the 1st founder;

• for subsequent haplotypes:

– sample the founder indicator for the ith haplotype:

ci|DP(τ, Q0) ∼







p(ci = cj for some j < i|c1, ..., ci−1) =
ncj

i−1+α0

p(ci 6= cj for all j < i|c1, ..., ci−1) = α0

i−1+α0

where nci is the occupancy number of class ci—the number of previous samples be-
longing to class ci.

¶A stage in coalescence when there are only a very small number of founding haplotype patterns
surviving and giving rise to all the haplotypes in the modern population.

‖We ignore the parental origin index of haplotypes as used in Xing et al. (2004), and assume
that the paternal and maternal haplotypes of each individual are given unambiguously (i.e., phased,
as known in genetics), as is the case in many LD and haplotype-block analyses (Daly et al. 2001;
Anderson and Novembre 2003). But it is noteworthy that our model can generalize straightforwardly
to unphased genotype data by incorporating a simple genotype model as in Xing et al. (2004).
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– sample the founder of haplotype i (indexed by ci):

φci |DP(τ, Q0)















= {acj , θcj}
if ci = {acj , θcj} for some j < i (i.e., ci refers to an
inherited founder)

∼ Q0(a, θ)
if ci 6= cj for all j < i (i.e., ci refers to a new
founder)

– sample the haplotype according to its founder:

hi | ci ∼ Ph(·|aci , θci).

The usefulness of the DP mixture framework for the haplotype problem should
be clear—using a Dirichlet process prior we in essence maintain a pool of haplotype
founders that grows as observed individual haplotypes are processed. But notice that
the above generative process assumes each modern haplotype originates from a single
ancestor, which is only true for haplotypes spanning a short region on a chromosomal.
Now we consider long haplotypes possibly bearing multiple ancestors due to recombi-
nations between an unknown number of founders.

2.2 Hidden Markov Dirichlet Process (HMDP)

In a standard HMM, state-transitions across a discrete time- or space-interval take
place in a fixed-dimensional state space, thus it can be fully parameterized by, say, a
K-dimensional initial-state probability vector π0 and a K × K state-transition prob-
ability matrix ΠK×K . As first proposed in Beal et al. (2002), and later discussed in
Teh et al. (2006), one can “open” the state space of an HMM by treating the now infi-
nite number of discrete states of the HMM as the support of a DP, and the transition
probabilities to these states from some source as the masses associated with these states.
In particular, for each source state (say, state j), the possible transitions to the target
states need to be modeled by a unique DP Qj . Since all possible source states and
target states are taken from the same infinite state space, overall we need an open set
of DPs with different mass distributions on the SAME support (to capture the fact that
different source states can have different transition probabilities to any target state).
In the sequel, we describe such a nonparametric Bayesian HMM using an intuitive hi-
erarchical Pólya urn construction. We call this model a hidden Markov Dirichlet

process.

In an HMDP, both the columns and rows of the transition matrix Π are infinite
dimensional. To construct such an stochastic matrix, we will exploit the fact that in
practice only a finite number of states (although we don’t know what they are) will
be visited by each source state, and we only need to keep track of these states. The
following sampling scheme based on a hierarchical Pólya urn scheme captures this spirit
and yields a constructive definition of HMDP.

We set up a single “stock” urn at the top level, which contains balls of colors that
are represented by at least one ball in one or multiple urns at the bottom level. At
the bottom level, we have a set of distinct urns which are used to define the initial and
transition probabilities of the HMDP model (and are therefore referred as HMM-urns).
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Specifically, one of the HMM urns, Q0, is set aside to hold colored balls to be drawn at
the onset of the HMM state-transition sequence ∗∗. Each of the remaining HMM urns
is painted with a color represented by at least one ball in the stock urn, and is used
to hold balls to be drawn during the execution of a Markov chain of state-transitions.
Now let’s suppose that at time t the stock urn contains n balls of K distinct colors
indexed by an integer set C = {1, 2, . . . ,K}; the number of balls of color k in this urn is
denoted by nk, k ∈ C. For urn Q0 and urns Q1, . . . , QK , let mj,k denote the number of
balls of color k in urn Qj , and mj =

∑

k∈C mj,k denote the total number of balls in urn
Qj . Suppose that at time t− 1, we had drawn a ball with color k′. Then at time t, we
either draw a ball randomly from urn Qk′ , and place back two balls both of that color;
or with probability τ

mj+τ we turn to the top level. From the stock urn, we can either

draw a ball randomly and put back two balls of that color to the stock urn and one to
Qk′ , or obtain a ball of a new color K + 1 with probability γ

n+γ and put back a ball of
this color to both the stock urn and urn Qk′ of the lower level. Essentially, we have a
master DP Q0 (the stock urn) that serves as a source of atoms for infinite number of
child DPs {Qj} (the HMM-urns). As pointed out in Teh et al. (2006), this model can
be viewed as an instance of the hierarchical Dirichlet process mixture model, with an
infinite number of DP mixtures as components. Specifically, we have:

Q0|α, F ∼ DP(α, F ), The master DP over target states common for all sources;

Qj |τ,Q0 ∼ DP(τ,Q0), The HMM DP over target states of source j.

From the above equation we see that the base measure of the DP mixture associated
each of the source states in the HMM is itself drawn from a Dirichlet process DP(α, F ).
Since a draw from a DP is a discrete measure with probability 1, atoms drawn from
this measure—atoms which are used as targets for each of the (unbounded number of)
source states—are not generally distinct. Indeed, the transition probabilities from each
of the source states have the same support—the atoms in Q0.

The Pólya urn scheme described above is similar in spirit to the “Chinese restaurant
franchise” scheme discussed in Teh et al. (2006), but it differs in that it avoids having
separate occupancy counters in each lower-level DP for repeated draws of the same atom
from a top-level DP, and it also motivates a simpler sampling scheme for inference as
discussed in Section 3.

Associating each color k with an ancestor configuration φk = {ak, θk} whose values
are drawn from the base measure F , and recalling our discussion in the previous section,
we know that draws from the stock urn can be viewed as marginals from a random
measure distributed as a Dirichlet Process Q0 with parameter (α, F ). Specifically, for
n random draws φ = {φ1, . . . , φn} from Q0, the conditional prior for (φn|φ−n), where
the subscript “−n” denotes the index set of all but the n-th ball, is

φn|φ−n ∼
K

∑

k=1

nk

n− 1 + α
δφ∗

k
(φn) +

α

n− 1 + α
F (φn), (2)

∗∗Purposely, we overload the symbol Qj to let it denote both the urns in the hierarchical Pólya urn
scheme, and the Dirichlet processes distributions represented by each of these urns.
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where φ∗k, k = 1, . . . ,K denote the K distinct values (i.e., colors) of φ (i.e., all the balls
in the stock urn), nk denote the number of balls of color k in the top urn, and δa(φi)
denotes a unit point mass at φi = a.

Conditioning on the Dirichlet process underlying the stock urn, the samples in the
jth bottom-level urn are also distributed as marginals under a Dirichlet measure:

φmj
|φ−mj

∼
K

∑

k=1

mj,k + τ nk

n−1+α

mj − 1 + τ
δφ∗

k
(φmj

) +
τ

mj − 1 + τ

α

n− 1 + α
F (φmj

)

=

K
∑

k=1

πj,kδφ∗

k
(φmj

) + πj,K+1Q0(φmj
), (3)

where πj,k ≡ mj,k+τ
nk

n−1+α

mj−1+τ , πj,K+1 ≡ τ
mj−1+τ

α
n−1+α . Let πj ≡ [πj,1, πj,2, . . .]. Now we

have an infinite-dimensional Bayesian HMM that, given F, α, τ , and all initial states
and transitions sampled so far, follows an initial states distribution parameterized by
π0, and transition matrix Π whose rows are defined by {πj : j > 0}.

Finally, as in, e.g., Escobar and West (2002) and Rasmussen (2000), we can also
introduce vague priors such as a Gamma or an inverse Gamma for the scaling parameters
α and τ .

2.3 HMDP Model for Recombination and Inheritance

Now we describe a stochastic model, based on an HMDP, for generating individual
haplotypes in a modern population from a hypothetical pool of ancestral haplotypes via
recombination and mutations (i.e., random mating with neutral selection). See Figure
1 for an illustration.

First recall that a base measure F at the top of our hierarchical Pólya urn scheme
is defined as a distribution from which ancestor haplotype templates φk are drawn. We
define the base measure F as a joint measure on both ancestor A and mutation rate θ,
and let F (A, θ) = p(A)p(θ), where p(A) is uniform over all possible haplotypes and p(θ)
is a beta distribution, Beta(αh, βh), with a small value for βh/(αh + βh) corresponding
to a prior expectation of a low mutation rate. For simplicity, we assume each Ak,t (and
also each Hi,t) takes its value from an allele set B.

Now for each modern chromosome i, let Ci = [Ci,1, . . . , Ci,T ] denote the sequence
of inheritance variables specifying the index of the ancestral chromosome at each SNP
locus. When no recombination takes place during the inheritance process that produces
haplotype Hi (say, from ancestor k), then Ci,t = k, ∀t. When a recombination occurs,
say, between loci t and t+ 1, we have Ci,t 6= Ci,t+1. We can introduce a Poisson point
process to control the duration of non-recombinant inheritance. That is, given that
Ci,t = k, then with probability e−dr + (1 − e−dr)πkk , where d is the physical distance
between two loci, r reflects the rate of recombination per unit distance, and πkk is
the self-transition probability of ancestor k defined by HMDP, we have Ci,t+1 = Ci,t;
otherwise, the source state (i.e., ancestor chromosome k) pairs with a target state (e.g.,
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ancestor chromosome k′) between loci t and t + 1, with probability (1 − e−dr)πkk′ .
Hence, each haplotype Hi is a mosaic of segments of multiple ancestral chromosomes
from the ancestral pool {Ak}∞k=1. Essentially, the model we described so far is a time-
inhomogeneous infinite HMM. When the physical distance information between loci is
not available, we can simply set r to be infinity (hence e−dr ≈ 0) so that we are back
to a standard stationary HMDP model with infinite dimensional transition probability
matrix Π∞×∞ described earlier.

The emission process of the HMDP corresponds to an inheritance model from an
ancestor to the matching descendent. For simplicity, we adopt the single-locus mutation

model in Xing et al. (2004):

p(ht|at, θ) = θI(ht=at)
( 1 − θ

|B| − 1

)I(ht 6=at)

, (4)

where ht and at denote the alleles at locus t of an individual haplotype and its cor-
responding ancestor, respectively; θ indicates the ancestor-specific mutation rate; and
|B| denotes the number of possible alleles. As discussed in Liu et al. (2001), this model
corresponds to a star genealogy resulting from infrequent mutations over a shared an-
cestor, and is widely used in statistical genetics as an approximation to a full coalescent
genealogy starting from the shared ancestor.

Assume that the mutation rate θ admits a Beta prior with hyperparameter (αh, βh) ††,
the marginal conditional likelihood of all the haplotype instances h = {hi,t : i ∈
{1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} given the set of ancestors a = {a1, . . . , aK} and the
ancestor indicators c = {ci,t : i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} can be obtained by
integrating out θ from the joint conditional probability starting from Equation (4) as
follows:

p(h|c,a) =
∏

k

(

∫

∏

i,t|ci,t=k

p(hi,t, θk|ak,t)R(αh, βh)θαh−1
k (1 − θk)βh−1dθk

)

=
∏

k

R(αh, βh)
Γ(αh + lk)Γ(βh + l′k)

Γ(αh + βh + lk + l′k)

( 1

|B| − 1

)l′k
(5)

where Γ(·) is the gamma function, R(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh) is the normalization constant

associated with Beta(αh, βh) (which is a prior distribution for θ), lk =
∑

t

∑

i I(hi,t =
ak,t)I(ci,t = k) is the number of alleles that were not mutated with respect to the
ancestral allele, and l′k =

∑

t

∑

i I(hi,j 6= ak,j)I(ci,t = k) is the number of mutated
alleles. The counting record lk = {lk, l′k} is a sufficient statistic for the parameter θk.

The generative process and likelihood functions described above point naturally to
an algorithm for population genetic inference. Unlike the classical coalescence mod-
els for recombination (Hudson 1983), which have been primarily used for theoretical
analysis and simulation, but are hardly feasible for reverse ancestral inference based on

††For simplicity, we assume that the mutation rates pertaining to different ancestors follow the same
prior Beta(αh, βh).
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observed genetic data, the HMDP model described above for recombination and inheri-
tance provides a semi-parametric Bayesian formalism that is well suited for data-driven
posterior inference on the latent variables that can yield rich information on the pop-
ulation ancestry and genetic structure of the study population. For example, under a
HMDP, given the haplotype data, one can infer the ancestral pattern, LD structure and
recombination hotspot of a population using the posterior distribution of inheritance
variable c and ancestral state a, as we will elaborate in the sequel. It is also possi-
ble to infer the age of the haplotype alleles and/or the time of recombination events
by exploring the posterior estimates of the mutation and recombination rates under
HMDP.

3 Posterior Inference

In this section, we describe a Gibbs sampling algorithm for posterior inference under
HMDP. Recall that a Gibbs sampler draws samples of each random variable (or subset of
random variables) in the model from the conditional distribution of the variable(s) given
(previously sampled) values of all the remaining variables. The variables of interest in
our model include {Ci,t}, the inheritance variables specifying the origins of SNP alleles
of all loci on each haplotype, and {Ak,t}, the founding alleles at all loci of each ancestral
haplotype. All other variables in the model, e.g., the mutation rate θ, are integrated
out.

We assume that the individual haplotypes {Hie,t} are given unambiguously for the
study population, as is the case in many LD and haplotype-block analyses (Daly et al.
2001; Anderson and Novembre 2003); but it is noteworthy that our model can generalize
straightforwardly to unphased genotype data by incorporating a simple genotype model
as in Xing et al. (2004). Given that haplotypes are unambiguous, we can now treat the
paternal and maternal haplotypes of N individual as 2N iid samples from the HMDP
process and omit the parental index e.

The Gibbs sampler alternates between two sampling stages. First it samples the
inheritance variables {Ci,t}, conditioning on all given individual haplotypes
h = {h1, . . . , h2N}, and the most recently sampled configuration of the ancestor pool
a = {a1, . . . , aK}; then given h and current values of the Ci,t’s, it samples every ancestor
ak.

To improve the mixing rate, we sample the inheritance variables one block at a time.
That is, every time we sample δ consecutive states ct+1, . . . , ct+δ starting at a randomly
chosen locus t+1 along a haplotype. (For simplicity we omit the haplotype index i here
and in the forthcoming expositions when it is clear from context that the statements
or formulas apply to all individual haplotypes). Let c− denote the set of previously
sampled inheritance variables. Let n denote the totality of occupancy records of the
top-level DP (i.e. the “stock urn”) — {n} ∪ {nk : ∀k}, and m denote the totality
of the occupancy records of each lower-level DP (i.e., the urns corresponding to the
recombination choices by each ancestor) — {mk : ∀k} ∪ {mk,k′ : ∀k, k′}. Let lk
denote the sufficient statistics associated with all haplotype instances originating from
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ancestor k. The predictive distribution of a δ-block of inheritance variables can be
written as:

p(ct+1:t+δ |c−,h,a) ∝ p(ct+1:t+δ |ct, ct+δ+1,m,n)p(ht+1:t+δ|act+1,t+1, . . . , act+δ,t+δ)

∝
t+δ
∏

j=t

p(cj+1|cj ,m,n)
t+δ
∏

j=t+1

p(hj |acj ,j , lcj
). (6)

This expression is simply Bayes’ theorem with p(ht+1:t+δ|act+1,t+1, . . . , act+δ,t+δ) playing
the role of the likelihood and p(ct+1:t+δ |c−,h,a) playing the role of the posterior. One
should be careful that the sufficient statistics n, m and l employed here should exclude
the contributions by samples associated with the δ-block to be sampled. Note that
naively, the sampling space of an inheritance block of length δ is |A|δ where |A| represents
the cardinality of the ancestor pool. However, if we assume that the recombination rate
is low and block length is not too big, then the probability of having two or more
recombination events within a δ-block is very small and thus can be ignored. This
approximation reduces the sampling space of the δ-block to O(|A|δ), i.e., |A| possible
recombination targets times δ possible recombination locations. Accordingly, Eq. (6)
reduces to:

p(ct+1:t+δ |c−
, h, a) ∝ p(ct′ |ct′−1 = ct, m, n)p(ct+δ+1 |ct+δ = ct′ , m,n)

t+δ
∏

j=t′

p(hj |ac
t′

,j , lct′
), (7)

for some t′ ∈ [t+1, t+δ]. Recall that in an HMDP model for recombination, given that
the total recombination probability between two loci d-units apart is λ ≡ 1− e−dr ≈ dr
(assuming d and r are both very small), the transition probability from state k to state
k′ is:

p(ct′ = k
′ |ct′−1 = k, m,n, r, d)

=

{

λπk,k′ + (1 − λ)δ(k, k′) for k′ ∈ {1, ..., K}, i.e., transition to an existing ancestor,
λπk,K+1 for k′ = K + 1, i.e., transition to a new ancestor,

(8)

where πk represents the transition probability vector for ancestor k under HMDP, as
defined in Eq. (3). Note that when a new ancestor aK+1 is instantiated, we need to
immediately instantiate a new DP under F to model the transition probabilities from
this ancestor to all instantiated ancestors (including itself). Since the occupancy record
of this DP, mK+1 := {mK+1}∪ {mK+1,k : k = 1, . . . ,K+ 1}, is not yet defined at the
onset, with probability 1 we turn to the top-level DP when departing from stateK+1 for
the first time. Specifically, we define p(·|ct′ = K+1) according to the occupancy record
of ancestors in the stock urn. For example, at the distal border of the δ-block, since
ct+δ+1 always indexes a previously inherited ancestor (and therefore must be present in
the stock-urn), we have:

p(ct+δ+1 |ct+δ = K + 1,m,n) = λ× nct+δ+1

n− 1 + α
. (9)

Now we can substitute the relevant terms in Eq. (6) with Eqs. (8) and (9). The
marginal likelihood term in Eq. (6) can be readily computed based on Eq. (4), by
integrating out the mutation rate θ under a Beta prior (and also the ancestor a under
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a uniform prior if ct′ refers to an ancestor to be newly instantiated) (Xing et al. 2004).
Putting everything together, we have the proposal distribution for a block of inheritance
variables. Upon sampling every ct, we update the sufficient statistics n, m and {lk}
as follows. First, before drawing the sample, we erase the contribution of ct to these
sufficient statistics. In particular, if an ancestor gets no occupancy in either the stock or
the HMM urns afterwards, we remove it from our repository. Then, after drawing a new
ct, we increment the relevant counts accordingly. In particular, if ct = K+1 (i.e., a new
ancestor is to be drawn), we update n = n+1, set nK+1 = 1,mct

= mct
+1,mct,K+1 = 1,

and set up a new (empty) HMM urn with color K + 1 (i.e. instantiating mK+1 with
all elements equal to zero).

Now we move on to sample the founders {ak,t}. From the mutation model in Equa-
tion (4), we can derive the following posterior distribution to sample the founder ak

‡‡:

p(ak,t|c,h) ∝
∫

(

∏

i|ci,t=k

p(hi,t|ak,t, θ)
)

Beta(θ|αh, βh)dθ

=
Γ(αh + lk,t)Γ(βh + l

′

k,t)

Γ(αh + βh + lk,t + l
′

k,t)(|B| − 1)l
′

k,t

R(αh, βh), (10)

where lk,t is the number of allelic instances originating from ancestor k at locus t that are

identical to the ancestor, when the ancestor has the pattern ak,t; and l
′

k,t =
∑

i I(ci,t =
k|ak,t) − lk,t represents the complement. The normalization constant of this proposal
distribution can be computed by summing the R.H.S. of Eq. (10) over all possible allele
states of an ancestor at the locus being sampled. If k is not represented previously,
we can just set lk,t and l

′

k,t both to zero. Note that when sampling a new ancestor,
we can only condition on a small segment of an individual haplotype. To instantiate
a complete ancestor, after sampling the alleles in the ancestor corresponding to the
segment according to Eq. (10), we first fill in the rest of the loci with random alleles.
When another segment of an individual haplotype needs a new ancestor, we do not
naively create a new full-length ancestor; rather, we use the empty slots (those with
random alleles) of one of the previously instantiated ancestors, if any, so that the number
of ancestors does not grow unnecessarily.

4 Experiments

We applied the HMDP model to both simulated and real haplotype data. Our analy-
ses focus on the following three popular problems in statistical genetics: 1. Ancestral
Inference: estimating the number of founders in a population and reconstructing the
ancestor haplotypes; 2) LD-block Analysis: inferring the recombination sites in each
individual haplotype and uncover population-level recombination hotspots on the chro-
mosome region; 3) Population Structural Analysis: mapping the genetic origins of all

‡‡In deriving Equation (10), instead of assuming a common mutation rate θk for all loci of ancestor
ak , we endow each locus with its own mutation parameter θk,t, with all parameters admitting the same
prior Beta(αh, βh). This is arguably a more accurate reflection of reality.



Eric P. Xing and Kyung-Ah Sohn 515

loci of each individual haplotype in a population.

4.1 Analyzing simulated haplotype population

To simulate a population of individual haplotypes, we started with a fixed number, Ks

(unknown to the HMDP model), of randomly generated ancestor haplotypes, on each
of which a set of recombination hotspots were pre-specified. Then we applied a hand-
specified recombination process, which is defined by a Ks-dimensional HMM, to the
ancestor haplotypes to generate Ns individual haplotypes, via sequentially recombining
segments of different ancestors according to the simulated HMM states at each locus,
and mutating certain ancestor SNP alleles according to the emission model. All the
ancestor haplotypes were set to be 100 SNPs long. At the hotspots (pre-specified at
every 10-th loci in the ancestor haplotypes), we defined the recombination rate to be
0.05, otherwise it is 0.00001. We simulated the recombination process for each progeny
haplotype; but to force every progeny haplotype to have at least one recombination, in
the rare cases where no recombination event was simulated for an progeny haplotype,
we sampled one of the hotspots randomly and forced it to recombine with another
ancestor chosen at random at that loci. (Thus our simulated samples were not exactly
distributed according to the generative model we used, but such samples were arguably
more close to the real data.) Overall, 30 datasets each containing 100 individuals (i.e.,
200 haplotypes) with 100 SNPs were generated from Ks = 5 ancestor haplotypes.

As baseline models, we also implemented 3 standard fixed-dimensional HMM, with
K ′ equal to 3, 5 (the true number of ancestors for the simulated) and 10 hidden states,
respectively, which correspond to the number of ancestors available for recombination.
For these baseline HMMs, we follow the same mutation model for emission as that
of the HMDP (i.e., Eq. (4)), and we also subject the mutation rate to a Beta prior.
In these HMMs, the SNP-types of the ancestors at every locus, e.g., at,k, are treated
as the mean parameters of the observed SNPs samples at the corresponding locus; the
inheritance variables {Ci,t} correspond to the latent states following a 1-st order Markov
process; and the transition models governing recombinations amongst the ancestors as
indicated by the values ci,t’s are parameterized by a K ′-dimensional stochastic matrix.
We estimate these parameters via a maximal likelihood principle using the Balm-Welch
algorithm. Note that since K ′ is chosen a priori, we cannot estimate the number of
ancestors using these HMMs.

Following a collapsed Gibbs sampling scheme (Liu 1994), we integrated out the
mutation rate θ, and sample variables {Ak,t} and {Ci,t} iteratively. We monitor con-
vergence based on the occupancy counts of the top factors in the master DP. Typically,
convergence was achieved after around 3000 samples (Figure 2), and the samples ob-
tained after convergence (with proper de-autocorrelation, i.e., by using samples from
every 10 iterations over 5000 ∼ 10000 samples) are used for computing relevant sufficient
statistics. To increase the chance of proper mixing, 10 independent runs of sampling,
with different random seeds, are simultaneously performed. Convergence is monitored
at runtime using an on-line minimal pairwise Gelman-Rubin (GR) statistic (Gelman
1998) of scalar summaries of the model parameters (e.g., average occupancy of top fac-
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Figure 2: Sampling trace of the top three most occupied factors (ancestor chromosomes). The x-axis
represents the sampling iteration, and the y-axis represent the fraction of the occupancy (i.e., be chosen
as recombination target) of each factor over total occupancy.

tors) obtained in each Markov chain. The total running time for posterior inference on a
simulated data set described below was around 3.5 hours using a matlab implementation
on a Dell PowerEdge 1850 workstation with an Intel Xeon 3.6 GHz processor. (This
computation includes a huge disk-writing overhead for recording the running trace. The
actual CPU time for computing is less than 10% of that. We intend to soon release a
C++ implementation which is expected to further reduce computation cost.)

Ancestral Inference Using HMDP, we successfully recovered the correct number (i.e.,
K = 5) of ancestors in 21 out of 30 simulated populations; for the remaining 9 popula-
tions, we inferred 6 ancestors. From samples of ancestor states {ak,t}, we reconstructed
the ancestral haplotypes under the HMDP model. For comparison, we also inferred the
ancestors under the 3 standard HMM using an EM algorithm. We define the ancestor
reconstruction error εa for each ancestor to be the ratio of incorrectly recovered loci
over all the chromosomal sites. The average εa over 30 simulated populations under
4 different models are shown in Figure 3a. In particular, the average reconstruction
errors of HMDP for each of the five ancestors are 0.026, 0.078, 0.116, 0.168, and 0.335,
respectively. There is a good correlation between the reconstruction quality and the
population frequency of each ancestor. Specifically, the average (over all simulated
populations) fraction of SNP loci originated from each ancestor among all loci in the
population is 0.472, 0.258, 0.167, 0.068 and 0.034, respectively. As one would expect,
the higher the population frequency of an ancestor is, the better its reconstruction ac-
curacy. Interestingly, under the fixed-dimensional HMM, even when we use the correct
number of ancestor states, i.e., K = 5, the reconstruction error is still very high (Fig-
ure 3), typically 2.5 times or higher than the error of HMDP. We conjecture that this
is because the non-parametric Bayesian treatment of the transition rates and ancestor
configurations under the HMDP model leads to a desirable adaptive smoothing effect
and also less constraints on the model parameters, which allow them to be more accu-
rately estimated. Whereas under a parametric setting, parameter estimation can easily
be sub-optimal due to lack of appropriate smoothing or prior constraints, or deficiency
of the learning algorithm (e.g., local-optimality of EM).
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Figure 3: Analysis of simulated haplotype populations. (a) A comparison of ancestor reconstruction
errors for the five ancestors (indexed along x-axis). The vertical lines show ±1 standard deviation over
30 populations. (b) Plots of the empirical recombination rates along 100 SNP loci in one of the 30
populations for HMDP and 3 HMMs. The dotted lines show the pre-specified recombination hotspots.
(c) The true (panel 1) and estimated (panel 2 for HMDP, and panel 3-5 for 3 HMMs) population maps
of ancestral compositions in a simulated population. Figures were generated using the software distruct

from Rosenberg et al [2002].
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threshold 0.01 0.03
tolerance window 0 ± 1 ± 2 0 ± 1 ± 2

False positive rate 0.16 0.12 0.067 0.08 0.04 0.03
False negative rate 0 0 0 0.77 0.55 0.55

Table 1: False positive and false negative rates for recombination hotspot detection using medians of
the empirical recombination rates over 30 population samples as shown in Figure 4.

LD-block Analysis From samples of the inheritance variables {ci,t} under HMDP, we
can infer the recombination status of each locus of each haplotype. We define the em-
pirical recombination rates λe at each locus to be the ratio of individuals who had
recombinations at that locus over the total number of haploids in the population. Fig-
ure 3b shows plots of the λe from HMDP and the 3 HMMs in one of the 30 simulated
populations. We can identify the recombination hotspots directly from such a plot based
on an empirical threshold λt (i.e., λt = 0.05). For comparison, we also give the true
recombination hotspots (depicted as dotted vertical lines) chosen in the ancestors for
simulating the recombinant population. The inferred hotspots (i.e., the λe peaks) show
reasonable agreement with the reference in both HMDP and HMMs, but it appears that
in the HMMs the hotspots around position 20 and 60 are less obvious. Figure 4 shows a
boxplot of the empirical recombination rates at the 100 SNP loci estimated from the the
30 different population samples simulated from these ancestors. The gray vertical lines
along the x-axis correspond to the locations of pre-specified recombination hotspots.
A simple thresholding at 0.01 would identify 24 hotspots which include all the 9 true
hotspots and 15 false positive sites. This leads to the false negative rate to be 0 and the
false positive rate to be 0.16. To give credit to the false positive sites which are close to
the true hotspots, we may allow small discrepancy between the true hotspots and the
detected ones. By allowing ±2 sites discrepancy and eliminating possibly redundant
ones in the detection, (e.g., the two detected sites 70 and 71 would be just counted as
1 site of 70), the number of false positive sites decreased to 6, which resulted in the
false positive rate of 0.067 and the false negative rate unchanged. Using a threshold of
0.03, 10 hotspots would be detected, among which two sites agree with the true ones.
After allowing ±2 sites discrepancy 4 true hotspots could be identified with 3 remaining
false positive sites. The false positive and negative rates using these two thresholds are
summarized in Table 1.

Population Structural Analysis Finally, from samples of the inheritance variables {ci,t},
we can also uncover the genetic origins of all loci of each individual haplotype in a
population. For each individual, we define an empirical ancestor composition vector
ηe, which records the fractions of every ancestor in all the ci,t’s of that individuals.
Figure 3c displays a population map constructed from the ηe’s of all individual. In
the population map, each individual is represented by a thin vertical line which is
partitioned into colored segments in proportion to the ancestral fraction recorded by ηe.
Five population maps, corresponding to (1) true ancestor compositions, (2) ancestor
compositions inferred by HMDP, and (3-5) ancestor compositions inferred by HMMs
with 3, 5, 10 states, respectively, are shown in Figure 3c. To assess the accuracy of
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Figure 4: Boxplot of the empirical recombination rates at the 100 SNP loci over 30 different simulated
population samples. The gray vertical lines show the pre-specified recombination hotspots used for
simulating the data.

our estimation, we calculated the distance between the true ancestor compositions and
the estimated ones as the mean squared distance between true and the estimated ηe

over all individuals in a population, and then over all 30 simulated populations. We
found that the distance between the HMDP-derived population map and the true map is
0.190±0.0748, whereas the distance between HMM-map and true map is 0.319±0.0676,
significantly worse than that of HMDP even though the HMM is set to have the true
number of ancestral states (i.e., K = 5). Because of dimensionality incompatibility and
apparent dissimilarity to the true map for other HMMs (i.e., K = 3 and 10), we forgo
the above quantitative comparison for these two cases.

To summarize our analyses on the simulated data, although the fixed dimensional
HMMs are fast and easy to implement, they appear to offer much less accurate results
than that of the HMDP model on ancestor reconstruction, and population-map esti-
mation, even when the number of HMM states is set to the true number of haplotype
ancestors (which is in practice unknown). When the number of HMM states is chosen
incorrectly, the inference results degrade significantly. For hotspot prediction, quali-
tatively we have not seen significant differences in the accuracy, although the HMDP
model appeared to be slightly better. We will look into this issue via a more quantitative
analysis in our later study.
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Figure 5: Analysis of the Daly data. (a) A plot of λe estimated via HMDP; and the haplotype block
boundaries according to HMDP (black solid line), HMM (Daly et al. 2001) (red dotted line), and
MDL (Anderson and Novembre 2003) (blue dashed line). (b) IT scores for haplotype blocks from each
method. The left panel shows cross-block MI and the right shows the average within-block entropy.
The total number of blocks inferred by each method are given on top of the bars.

Figure 6: The estimated population map of the Daly dataset.

4.2 Analyzing two real haplotype datasets

We applied HMDP to two real haplotype datasets, the single-population Daly data
(Daly et al. 2001), and the two-population (CEPH: Utah residents with northern/western
European ancestry; and YRI: Yoruba in Ibadan and Nigeria) HapMap data (Consortium”
2005; Thorisson et al. 2005). These data consist of trios of genotypes, so most of the
true haplotypes can be directly inferred from the genotype data. Note that for these
real biological data, there is no ground truth regarding the ancestral history, hotspot
location, and population composition, based on which we can validate our results, or
compare to other methods. We present our analysis as a demonstration of the utilities
of our model, which, to our knowledge, are not offered jointly under a unified model
by extant methods in statistical genetics. (As we discuss in the sequel, some extant
methods can perform some of the inference tasks that HMDP does, and in these cases
we show a comparison.)

The single-population Daly dataset We first analyzed the 256 individuals from Daly
data. This data set consists of the haplotypes 103 SNPs across a 616.7-kb region on
chromosome 5q31 of 129 trios from a European-derived population. Earlier studies
indicate that this region contains a genetic risk factor for Crohn disease. Earlier analysis
of this data set using a hidden Markov model revealed the existence of discrete haplotype



Eric P. Xing and Kyung-Ah Sohn 521

blocks, each with low diversity, in this region (Daly et al. 2001).

We compared the recovered recombination hotspots with those reported in
Daly et al. (2001) (which is based on an HMM employing different number of states at
different chromosome segments) and in Anderson and Novembre (2003) (which is based
on a minimal description length (MDL) principle applied to Daly’s HMM). Note that the
HMM used by Daly et al. (2001) and Anderson and Novembre (2003) is different from
the ones we used in our simulation study in section 4.1. Their HMM models a stochastic
process that selects haplotype-segments from pools of “ancestors” without mutation for
a concatenating list of haplotype-block regions constituting the study SNP sequences.
Each region has their own ancestor pool of possibly unequal sizes; thus between each pair
of adjacent blocks, the HMM needs a unique (possibly rectangular) stochastic matrix
for ancestor transitions. The block boundaries are fixed under this HMM (and the only
stochasticity lies in the choice of local “ancestors” for each block), and determining
the block boundaries is treated as a model-selection problem based on a maximal-
likehood (Daly et al. 2001) or MDL (Anderson and Novembre 2003) principle. Strictly
speaking, Daly’s HMM model itself offers little means to infer recombination events and
the ancestor association map, because the “ancestors” thereof are defined independently
for each block rather than as whole founding chromosomes; different blocks have different
number of ancestors; and the determination of these “local ancestors” employs an initial
heuristic scan for regions of low haplotype diversity, whose formal connection to the
HMM model is not clear.

Figure 5a shows the plot of empirical recombination rates estimated under HMDP,
side-by-side with the reported recombination hotspots. There is no ground truth to
judge which one is correct; hence we computed information-theoretic (IT) scores based
on the estimated within-block haplotype frequencies and the between-block transition
probabilities under each model for a comparison. Figure 5b shows a comparison of these
scores for haplotype blocks obtained from HMDP and the other two sources. The left
panel of Figure 5b shows the total pairwise mutual information between adjacent haplo-
type blocks segmented by the recombination hotspots uncovered by the three methods.
The right panel shows the average entropies of haplotypes within each block. The num-
ber above each bar denotes the total number of blocks. The pairwise mutual information
score of the HMDP block structure is similar to that of the Daly structure, but smaller
than that of MDL. Similar tendencies are observed for average entropies. Note that
the Daly and the MDL methods allow the number of haplotype founders to vary across
blocks to get the most compact local ancestor constructions. Thus their reported scores
are an underestimate of the true global score because certain segments of an ancestor
haplotype that are not or rarely inherited are not counted in the score. Thus the low IT
scores achieved by HMDP suggest that HMDP can effectively avoid inferring spurious
global and local ancestor patterns. This is confirmed by the population map shown
in Figure 6, which shows that HMDP recovered 6 ancestors and among them the 3
dominant ancestors account for 98% of all the modern haplotypes in the population.

We did not compare our results with that of Daly et al. (2001) and
Anderson and Novembre (2003) exhaustively, e.g., on ancestor reconstruction and popu-
lation map estimation, because their methods cannot perform these inferential tasks. In-
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deed, to our knowledge there is no single model that does all the inferential tasks HMDP
is capable of. Thus we can only compare HMDP with specialized models on certain
tasks, as described above. Since implementations of the methods in Daly et al. (2001)
and Anderson and Novembre (2003) are not available, we can only compare with their
results reported on the original papers, which are obtained on the Daly data. But we
cannot apply their methods to our simulated data or the HapMap data for more in-
formative comparisons. The total running time of our algorithm on the Daly data set
(with the 3000 burn-in steps, 3000 samples, and 1 per 5 sample deceleration sampling
interval) is about 14hr, which includes the disk-writing overhead for trace-recording.

The two-population HapMap dataset The HapMap data was generated by the Interna-
tional HapMap Project that attempts to identify and catalog genetic similarities and dif-
ferences in human beings of different ethnic origins (Consortium” 2005; Thorisson et al.
2005). The current release of the whole HapMap data contains over 1 million SNPs,
from 269 individuals belonging to four populations. In this study, we only focus on
a small subset of SNPs common to all populations; we use data from two of the four
populations, YRI and CEPH. Specifically, we have 30 trios of YRI and 30 trios of
CEPH (i.e., 180 individuals in total), of which the 120 unrelated phase-known individu-
als corresponding to the parents in the trios were used in the experiment (the children’s
haplotypes are inherited from the parents and are redundant in the population). We
concern ourselves with 254 SNPs, which are located in the region of ENm010.7p15.2
spanning 497.5 kilo-basepair (kb). The computation time for analyzing this data set is
comparable to that of the Daly data set.

We applied HMDP to the union of the populations, with a random individual order.
Delightfully, the two-population structure is clearly retrieved from the population map
constructed from the population composition vectors ηe for every individual. As seen
in Figure 7a, the left half of the map clearly represents the CEPH population and the
right half the YRI population. We found that the two dominant haplotypes covered
over 85% of the CEPH population (and the overall breakup among all four ancestors
is 0.5618, 0.3036, 0.0827, 0.0518). On the other hand, the frequencies of each ancestor
in YRI population are 0.2141, 0.1784, 0.3209, 0.1622, 0.1215 and 0.0029, showing that
the YRI population is much more diverse than CEPH. This might explain an earlier
observation that genetic inference on the YRI population appeared to be more difficult
than for CEPH (Marchini et al. 2006). The recombination maps of the two different
populations also show noticeably different spatial patterns of recombination hotspots
(Figure 7b), which may reflect different recombination histories of the founders of the
two populations.

Note that the population partition result reported in Figure 7b is trivial because it
is inferred purely based on SNPs haplotypes without knowledge of ethnic labels of the
samples. In most genetic samples, ethnic labels are either not available or ambiguous
(e.g., the Daly data has no subpopulation details). By discovering the right popula-
tion separation, one can perform hotspot estimation for each population and capture
population-specific LD (as in Figure 7a); whereas in a mixed population, one may not
be able to correctly estimate such patterns.
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CEPH YRI

Figure 7: Result on the two-population (CEPH and YRI) HapMap data. (a) The estimated population
map of the whole dateset with two populations. (b) The estimated recombination rates along the
chromosomal position in the two populations.

5 Conclusion

We have proposed a new Bayesian approach for joint modeling of genetic recombinations
among possibly infinite founding alleles and coalescence-with-mutation events in the
resulting genealogies. By incorporating a hierarchical DP prior to the stochastic matrix
underlying an HMM, which facilitates a well-defined transition process between infinitely
many ancestors, our proposed method can efficiently infer a number of important genetic
variables, such as recombination hotspot, mutation rates, haplotype origin, and ancestor
patterns, jointly underly a unified statistical framework.

Empirically, on both simulated and real data, our approach compares favorably to
its parametric counterpart—a fixed-dimensional HMM (even when the number of its
hidden states, i.e., the ancestors, is correctly specified) and a few other specialized
methods, on ancestral inference, haplotype-block uncovering and population structural
analysis. We are interested in further investigating the behavior of an alternative scheme
based on reverse-jump MCMC over Bayesian HMMs with different latent states in
comparison with HMDP; we also intend to apply our methods to genome-scale LD and
demographic analysis using the full HapMap data. While our current model employs
only phased haplotype data, it is straightforward to generalize it to unphased genotype
data as provided by the HapMap project. HMDP can also be easily adapted to many
engineering and information retrieval contexts such as object and theme tracking in
open space.
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