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Rejoinder

Sonia Jain∗ and Radford M. Neal†

We thank discussants Drs. MacEachern, Robert, and Dahl for their thoughtful
comments. Since many of their comments are related, we will address them by topic
below.

1 Creation, Deletion, Identifiability, and Tempering

Our conditionally conjugate split-merge technique belongs to the family of
trans-dimensional MCMC algorithms, which includes, for example, reversible-jump
MCMC (Green 1995), birth-death MCMC (Stephens 2000a), and split-merge MCMC
(Jain and Neal 2004), (Dahl 2003). Trans-dimensional MCMC algorithms construct
Markov chain transitions between states that vary in dimension. For Dirichlet process
mixture models, this involves the creation or deletion of mixture components.

Of course, even plain Gibbs Sampling updates for this model must be able to create
and delete mixture components, but they do so only in an incremental fashion, in which
a new component must start off explaining only a single observation — which may be
a rather unlikely state. A key strength of trans-dimensional MCMC procedures is the
ability to traverse the parameter space efficiently without having to pass through such
low-probability states. For simple problems, these techniques can save computation
time by reducing the required burn-in, and improving sampling thereafter. For more
complex and difficult problems, such as are encountered in areas such as genetics and
image analysis, these techniques may be essential if the problem is to be solved in any
reasonable amount of time.

The mixture components created are given arbitrary labels, which could be permuted
without affecting fit to the data, or prior probability. This “non-identifiability” has
been seen by some as raising issues with regard to proper interpretation of the results,
as discussed, for example by Stephens (2000b). These issues are of no relevance to our
paper, which is concerned only with efficiently sampling from the posterior distribution.
We agree with MacEachern that forcing the Dirichlet process mixture model to be
identifiable is a hindrance to efficient MCMC sampling.

In this regard, one should note that sampling of all equivalent labellings can easily
be obtained by simply introducing an additional MCMC update (applied at any desired
interval) that permutes the labels — though this would be pointless for most purposes,
since the labelling doesn’t matter. Robert demonstrates that Gibbs sampling alone may
fail to move easily between modes with different labellings. In itself, this failure is of
no practical significance. Lack of movement between these equivalent modes should be
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worrying only to the extent that one thinks it is a sign that the MCMC method would
also fail to move between non-equivalent modes (if any) that correspond to substantively
different interpretations of the data. It is unclear to us that failure to move amongst
equivalent modes is actually indicative of a real problem of this sort. Conversely, there
is no guarantee that a method that moves amongst equivalent modes can also move
easily between non-equivalent modes.

Robert suggests that perhaps global tempering would perform better than a split-
merge procedure, with regard to movement between isolated modes. (We are not sure
which tempering method Robert used for his example, as it is not specified.) However,
his example considers the benefits of tempering only when transitions are done using
Gibbs sampling, without any split-merge updates. Moreover, his example concerns a
fully conjugate model of the type treated in our earlier work (Jain and Neal 2004),
rather than the nonconjugate models discussed in this article.

Also, the comparison looks only at mixing amongst equivalent modes, which as
mentioned above is of no importance in itself. For these reasons, this demonstration
does not convince us that tempering would work better than split-merge methods.
However, we do expect that for some complex problems, such as very high-dimensional
clustering, split-merge may not be sufficient. We hypothesize that tempering methods
may also have difficulty with such problems, but that applying tempering in conjunction
with split-merge updates might allow for their solution.

2 The Role of Conditional Conjugacy in Our Algorithm

As the discussants highlight, our split-merge method applies only to models in which the
prior for parameters of component distributions exhibits conditional conjugacy. Though
this limits the the usefulness of our algorithm, its domain is perhaps wider than one
might expect. For instance, consider MacEachern (1998), in which he describes how
a nonconjugate model can be treated as a conditionally conjugate problem by using
piecewise log-concavity.

Robert wonders whether it might be possible to extend the algorithm beyond condi-
tionally conjugate models. Conditional conjugacy is needed so that we can do a Gibbs
sampling scan from the launch state, and also compute the probability density for choos-
ing the value chosen at each stage of this scan. The underlying requirement is that we
have a way of proposing a new parameter vector based on the launch state such that
(a) the distribution of the proposed state is similar to the posterior distribution of pa-
rameter values, and (b) we can for this proposed state compute the probability density
of its having been proposed. This allows us to implement efficient Metropolis-Hastings
updates, with a particular update being chosen randomly by the procedure for selecting
a launch state. As an aside, note that from its very origins (Metropolis et al. 1953)
the Metropolis algorithm has commonly been used with proposals that change only a
subset of the variables. It is not necessary to justify such partial Metropolis-Hastings
updates in a special way (as Robert suggests), or to refer to such updates as anything
other than Metropolis-Hastings updates.
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An MCMC transition that leaves the posterior distribution invariant is a natural
way of trying to get a proposal for parameters of split/merged components that comes
from close to the posterior distribution. More than one such transition would be better,
but would make computing the density for a proposal impossible, as that would require
integrating over intermediate states. (Such an integral is avoided in our algorithm by
treating the intermediate Gibbs sampling updates not as part of the proposal distribu-
tion but rather as a procedure for choosing a launch state.) One could certainly imagine
using MCMC transitions other than Gibbs sampling for this purpose. One could, for
example, use a series of Metropolis-Hastings updates applied to each parameter in turn.
The probability density for proposing a state that differs in all components from the
launch state would then be easily computed, as the product of all the proposal densi-
ties and all the acceptance probabilities. Unfortunately, the probability density for a
state in which any of these Metropolis-Hastings updates was rejected (so that at least
component is the same in the launch state and in the proposal) will be infinite, which
will result in a zero acceptance probability for the split-merge update.

So, although one can imagine such variations, they may not be useful in practice.
One possibility that would be worth investigating is using some approximation to the
posterior distribution (for the model restricted to two components), such as a Gaus-
sian. The conditional distributions from this approximation could be used as proposals
(resulting in Gibbs sampling in the limit as the approximation becomes perfect). If the
rejection rate is small enough, this might work well. Alternatively, the approximation
could be used directly — the validity of our algorithm does not depend on the transi-
tion from the launch state (or the intermediate transitions) leaving the actual posterior
distribution invariant, though use of a bad approximation will of course lead to a low
acceptance rate for the split-merge updates.

3 The Usefulness of Incremental Markov Chain Updates

Together with Split-Merge

Our split-merge algorithm has four tuning parameters, controlling the number of in-
termediate restricted Gibbs sampling scans for splits proposals and merge proposals,
and the number of split-merge updates and incremental Markov chain updates (e.g.
Gibbs sampling scans) done as part of a full iteration. Both MacEachern and Dahl
remark on the importance of a final incremental Gibbs sampling scan. We agree with
MacEachern that the inclusion of such a step is important to facilitate mixing, as we
have demonstrated in the article. However, though MacEachern emphasizes the role of
such updates in mixing for small clusters, we believe that they are at least as important
for moving observations back and forth between large clusters, as this cannot be done
efficiently with split-merge updates.

Indeed, as we have described in our article and as Dahl observes, the “jitter” that
is observed in the trace plots of the beetle example can be attributed to the final
auxiliary Gibbs sampling scan. However, we disagree with Dahl’s conclusion from this
that the CPU time spent on split-merge updates is “wasted” when these moves are not
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accepted. How can we know a priori that these moves will not be accepted unless they
are proposed? Since split-merge updates are required to obtain a correct solution (in a
reasonable amount of time) for some problems, it is necessary to perform them for all
problems in order to determine if they are actually needed, and hence ensure that the
answer obtained is correct.

Further, Dahl’s demonstration with only auxiliary Gibbs sampling (no split-merge
updates) is not entirely convincing. On close inspection, the lower plots of his Figure
1 show that auxiliary Gibbs sampling is not actually performing that well! For several
thousand iterations, a number of observations seem to have been incorrectly allocated
to small clusters, with the Gibbs sampler making only slow progress in correcting this.
It is possible that just a few split-merge iterations could take care of these orphan
clusters. By performing both incremental and non-incremental split-merge updates,
one can take advantage of both large-scale changes to the cluster configuration via
split-merge moves and small-scale adjustments that move a few observations between
clusters, as is necessary depending on the problem.

4 MCMC Initialization

Robert suggests that sampling from the prior to initialize the intermediate restricted
Gibbs sampling could lead to wasted computational effort. In higher-dimensional prob-
lems, we agree that overcoming bad initial values could be a problem — i.e. many
restricted Gibbs sampling scan might be required. In the Discussion section of the
paper, we had suggested alternatives to sampling from the prior to initialize the re-
stricted Gibbs sampling, such as adapting a method used by Dahl (2003), or some other
posterior estimation method.

A feature of the split-merge technique that Dahl discusses is its insensitivity to
the initial value that the Markov chain is started with, whereas the Gibbs sampler
is susceptible to poor choices (as illustrated in the Beetle example). We agree with
this, but are puzzled by the discrepancies in the simulations. We also initialized the
chain by sampling the model parameters from the prior and not by setting the initial
values to the sample mean and precision. One possible explanation is differing orders
of updates — we sampled the indicators first and then the model parameters (means
before precisions).

5 Random versus Fixed Scan Sampling

MacEachern investigates in detail how MCMC performance differs for fixed versus ran-
dom scans, in the context of Gibbs sampling. He proposes a systematic scan as an
alternative to the random scan that we utilize to initiate the split-merge process (i.e.
select two observations, denoted as i and j, uniformly at random). MacEachern suggests
permuting the indices from 1 to n and then using successive pairs as i and j, thereby
reducing randomness. This gives a feasible scan length (unlike systematically using all
possible pairs of observations). We agree that this is likely to improve performance, but
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perhaps not by much. Partly, this is because there will still be considerable random-
ness in which clusters are chosen for split/merge operations — in particular, the same
clusters might well be chosen several times in a row.

More generally, however, MacEachern may be overestimating the difference between
fixed and random scans. The interpretation of his Table 2 is perhaps not obvious. The
number of iterations required to reach some small total variation distance is proportional
to −1/log(v), where v is the second-largest eigenvalue. So, for example, using scheme
3, with α = 1 (which is M = 1 in MacEachern’s notation), the fixed scan method is
not better by a factor of 0.171/0.037 = 4.6, as one might naively think, but rather
by a factor of log(0.037)/log(0.171) = 1.9. As α approaches infinity (approximated by
α = 100, i.e. corresponding to M = 100 in the table), the second largest eigenvalue
for the fixed scan approaches zero — all the variables are independent, so a single fixed
Gibbs sampling scan immediately reaches equilibrium. The random scan has a non-
zero second eigenvalue in the α → ∞ limit, reflecting the fact that after any number of
iterations there is a non-zero probability that some variable could still be left unchanged.
Technically, the asymptotic convergence rate of the fixed scan is infinitely better than
that of the random scan, but in practice a modest number of iterations is sufficient to
give the correct result with very high probability.

In this small example, Markov chain sampling is based on the prior distribution
of clusterings for three data points, but the likelihood factors deriving from the data
are omitted. However, in practical problems, where many split-merge proposals are
likely to be made for each that is accepted, the randomness in choice of clusters to
split/merge may be negligible compared to the randomness in proposing how to split
or merge them, and in whether or not to accept the result. Finding ways of further
improving the split/merge proposals may be a better focus for future research.
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