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Importance Re-sampling MCMC for

Cross-Validation in Inverse Problems

S. Bhattacharya∗ and J. Haslett†

Abstract.

This paper presents a methodology for cross-validation in the context of Bayesian
modelling of situations we loosely refer to as ‘inverse problems’. It is motivated by
an example from palaeoclimatology in which scientists reconstruct past climates
from fossils in lake sediment. The inverse problem is to build a model with which
to make statements about climate, given sediment. One natural aspect of this is to
examine model fit via ‘inverse’ cross-validation. We discuss the advantages of in-
verse cross-validation in Bayesian model assessment. In high-dimensional MCMC
studies the inverse cross-validation exercise can be computationally burdensome.
We propose a fast method involving very many low-dimensional MCMC runs, us-
ing Importance Re-sampling to reduce the dimensionality. We demonstrate that,
in addition, the method is particularly suitable for exploring multimodal distri-
butions. We illustrate our proposed methodology with simulation studies and the
complex, high-dimensional, motivating palaeoclimate problem.
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1 Introduction

Leave-one-out cross-validation is an example of situation, common in much statistical

modelling, where it can be necessary to run several similar versions of the same statistical

model. When the number of cases n is large and the model is sufficiently complex to

require Markov chain Monte Carlo (MCMC), this can be burdensome in the extreme if

implemented in ‘brute-force’ fashion, that is via n very similar ‘regular MCMC’ runs;

by regular MCMC we mean sequential exploration of the parameter space, typically by

random walk proposal mechanism. We refer to n repetitions of this as ‘n-fold regular

MCMC’. Here we propose a generic procedure for leave-one-out cross-validations in

situations that we loosely call ‘inverse regression’. The procedure uses Importance

Resampling (IR) (see Rubin (1988)) (alternatively Sampling/Importance Resampling

(SIR)), to reduce, sometimes radically, the high dimensionality. It involves many low-

dimensional MCMC runs; but these are fast. The paper explains the trade-off issues

involved. We refer to this procedure as IRMCMC; for simplicity we suppress the phrase

‘leave-one-out’. We contrast IRMCMC with proposals (Gelfand et al. (1992), Gelfand

(1996)) involving importance sampling together with MCMC in ‘forward’ problems,

showing that these are not typically available for inverse problems.

The motivating examples arise in quantitative palaeo-climate reconstruction; see
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Section 6 for details. We present there an example where, in our implementation, n-fold

regular MCMC takes 16 hours, but can be accomplished in less than 40 minutes using

IRMCMC. In another case, the time is reduced to less than 8 hours from a potential 5

years.

The essential idea of inverse cross-validation can be presented with the following toy

problem. Data (X,Y ) = {(xi, yi)} i = 1, . . . , n are available. We take the yi as counts,

where xi correspond to a continuous variable. We adopt the Poisson model P (θxi)
for the counts yi, independently of the other cases; θ is an unknown parameter. The

objective is to ‘predict’ xn+1 (say) from a future yn+1 (say). We describe this as ‘inverse

regression’, to contrast it with the much simpler ‘forward’ application, the prediction

of yn+1 for a future xn+1. For the purposes of model validation, we need to contrast

each of the n values of xi with its corresponding leave-one-out posterior distribution

π(·|X−i, Y ); here X−i stands for the data, omitting in each case the corresponding xi.
In all that follow we denote by x and y random variables corresponding to the omitted

observed data xi and yi respectively. It is to be noted that a prior on x is necessary to

obtain the above leave-one-out posterior distribution. For more on this, see Section 2.

Figure 1, which displays artificial data with n = 10 cases simulated from the Poisson

model, shows that the observed x8 falls within the support of π(· | X−8, Y ). Given

suitable priors the simple Poisson case introduced above may be solved analytically;

but in general this is not possible, particularly in the case of high dimensionality. In

Vasko et al. (2000), n = 62, dim(y) = 52, dim(x) = 1 and θ involves 3318 parameters.

In Bhattacharya and Haslett (2004) (see also Haslett et al. (2006)), n = 7815, dim(y) =

14, dim(x) = 2 and θ is a 9621-dimensional parameter. Both cases use regular MCMC;

as the models are large and complex, computational speed is a critical issue.

In brief, our procedure involves first choosing one case, i∗, and investigating π(x, θ |
X−i∗ , Y ) by careful implementation of regular MCMC; this generates realisations cor-

responding to xi∗ and of θ. At the second stage, we use IR to resample from these θ
values and, for each fixed value of θ, an MCMC run with which to explore π(· | yi, θ),
for each of the remaining cases. Thus this involves a large number of MCMC runs. But

critically, as x is low-dimensional, these are very fast. The overall procedure is thus

regular MCMC (i∗) once, followed by IR and MCMC for all other cases. It is important

to note that we re-use (the i∗ specific) values of these high-dimensional θ but not those

of x. The rationale is that the distributions of θ depend very weakly on i∗. We discuss,

in Section 4, the choice of i∗; we will see that we have wide choice; in fact, a random

choice of i∗ is almost adequate. Previous literature, for forward problems, also involves

a single initial regular MCMC, followed by an importance sampling stage for all n cases.

There is a more subtle issue with n-fold regular MCMC for large and complex models.

There is always a danger that at least for some cases, the algorithm does not properly

explore the parameter space, in this case (x, θ). In other words, the algorithm may

not mix well. Recommended practice (see, for example, Gilks and Roberts (1996)) is

to experiment with a number of MCMC options, including re-parameterisation and the

use of several restarts, and to monitor convergence. The modeller will be unlikely to do

this in n-fold regular MCMC when n is large. We demonstrate in Section 5 (see also
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Section 6) that our procedure has attractive mixing properties.

The examples of inverse problems raise another issue, unrelated to computational

speed. Cross-validation is a natural stage in model-fitting. Statistics summarising the

observed discrepancies between the yi and the π(y | X,Y−i) are a natural basis for

‘goodness of fit’ measures (see, for example, Gelfand et al. (1992), Gelfand and Dey

(1994), O’Hagan and Forster (2004)). But when y is high-dimensional such discrep-

ancy measures are difficult to construct. However, if x is low-dimensional, one can

easily construct and compute measures from the discrepancies between the xi and

π(x | X−i, Y ). Hence, in such cases, inverse cross-validation may be an easier alterna-

tive to forward cross-validation even if the substantive underlying problem is forward.

Moreover, Bhattacharya (2006) describes a novel approach based on the construction of

reference distributions using data obtained from inverse cross-validation to adequately

address the question of this aspect of Bayesian model fit.

The theory of IRMCMC is provided in Section 3. In Section 4, we discuss the

important issue of selecting an appropriate i∗, illustrating with the Poisson regression

problem. An experiment discussing appropriate run lengths for IRMCMC and illustrat-

ing its superior mixing properties compared to regular MCMC is provided in Section

5. In Section 6 we demonstrate the value of IRMCMC in a real example from palaeo-

climatology. We discuss further research in Section 7. But before providing the theory,

we first discuss forward and inverse problems in more detail.

2 Forward and inverse problems

Note that, assuming conditional independence, the likelihood of Y given X , θ is given

by

L(Y,X, θ) = p(yi | xi, θ)
n∏

j 6=i;j=1

p(yj | xj , θ) (1)

Hence, if the prediction of yi is of interest, then treating yi as unknown, in (1) yi must

be replaced with y. One should then compute a posterior predictive distribution of y.
This corresponds to the forward problem. Note that the distribution of the unknown y
is simply p(· | xi, θ).

On the other hand, if it is of interest to predict xi, then it must be treated as

unknown, and replaced with x in (1). A posterior predictive distribution of x requires

a prior for x. A question that arises now is that how the prior for x should be chosen.

Since θ is the model parameter, the prior for θ, denoted by π(θ), should be chosen

independently of x. The prior for x may depend upon θ; we denote the joint prior for

(x, θ) by π(x, θ) = π(θ)π(x | θ). However, in most cases, it will be convenient to use

a prior for x, given by π(x), independent of θ. An important point to note is that it

is important for π(x) to include xi in its support. It is possible to change π(x) for

each case i, but it is more convenient to use a single prior for x that includes all xi in

its support. But whatever the prior, irrespective of its dependence on θ, our proposed

methodology accommodates all. We now provide comparative details of the posterior
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predictive distributions in the case of forward and inverse problems.

The prediction of yi involves computing the posterior

π(y | X−i, Y−i, xi) =

∫
p(y | xi, θ)π(θ | X−i, Y−i)dθ

∝
∫
π(θ)p(y | xi, θ)

n∏

j 6=i;j=1

p(yj | xj , θ)dθ (2)

which is equivalent to the expectation of p(y | xi, θ) with respect to the posterior

π(θ | X−i, Y−i). For the Poisson regression problem, using a flat prior for θ it follows

from (2) that,

π(y | X−i, Y−i, xi) ∝
xyi
y!

Γ(y +
∑

j 6=i yj + 1)

(
∑n

j=1 xj)
(y+

∑
j 6=i yj+1)

But our interest is in the ‘inverse’ of the above problem. In other words, we are

interested in learning about π(x | X−i, Y−i, yi) in each case. This is given by

π(x | X−i, Y−i, yi) =

∫
π(x | yi, θ)π(θ | X−i, Y )dθ

∝
∫
π(θ)π(x | θ)p(yi | x, θ)

n∏

j 6=i,j=1

p(yj | xj , θ)dθ (3)

Observe that π(x | X−i, Y−i, yi) is the expectation of π(x | yi, θ) with respect to the

posterior π(θ | X−i, Y ). For the Poisson regression problem, using flat priors on both x
and θ it follows that

π(x | X−i, Y−i, yi) ∝
xyi

(x+
∑

j 6=i xj)
(
∑

n
j=1 yj+1)

Note that, except in simple cases, as the Poisson regression example, simple analytic

solutions to equations (2) and (3) are not available.

In such cases n-fold regular MCMC is a naturally available methodology for cross-

validation. But clearly, as in Vasko et al. (2000) and Bhattacharya and Haslett (2004),

where the parameters have very high dimension and the number of cases is large, re-

peating the regular MCMC procedure n times can be burdensome in the extreme.

There are particular problems with n-fold regular MCMC. In the real problem ad-

dressed by Vasko et al. (2000), regular MCMC with a fixed proposal mechanism is not

only slow but completely fails to explore the bimodal solution in one case. Since n-

fold regular MCMC is the cause of both problems described above, one way to avoid

the problems is to replace regular MCMC by importance sampling (see, for example,

Geweke (1989), Robert and Casella (1999), Geyer (1991)). The idea can be explained

as follows.

Suppose that interest lies in estimation of the expectation of a function h(θ) with

respect to a distribution f(θ). Suppose further that a sample θ(1), · · · , θ(N) is available
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from another distribution g(θ). Then the expected value of h(θ) may be estimated as

ÊN (h(θ)) =

∑N
`=1 h(θ

(`))w(θ(`))
∑N

`=1 w(θ(`))
(4)

where w(θ) ∝ f(θ)/g(θ) is the importance weight of θ. The estimate thus obtained

is called the importance sampling estimate and the density g(θ) is known as the im-

portance sampling density. The key observation is that, for implementation, the ratio

f(θ)/g(θ) need only be known up to a proportionality constant. For the conditions of

the convergence of the importance sampling estimate see Geweke (1989). The quality

of the estimate depends heavily on the variability of the importance weights, which

depends on how similar f(θ) and g(θ) are (Robert and Casella (1999)). An important

condition is that the support of the importance sampling density g(θ) should not be

included in that of the density of interest, f(θ).

In forward cross-validation problems, π(θ | X,Y ) may be used as the importance

sampling density; we refer to this as the saturated posterior since it involves the complete

available dataset. The idea was proposed by Gelfand et al. (1992) and Gelfand (1996).

For each cross-validation, the sample available from the saturated posterior can be used

to estimate π(y | X,Y−i) as in (4). The weights, which are simply available, are given

by

wi(θ) =
π(θ | X,Y−i)
π(θ | X,Y )

∝ 1

p(yi | xi, θ)
. (5)

In the Poisson case, the weights are proportional to exp(θxi)(θxi)
−yi .

Typically, however, importance weights with respect to the saturated posterior den-

sity are not in general available in inverse problems. This is because the weight function

in this case, given by

wi(θ) =
π(θ | X−i, Y )

π(θ | X,Y )
=

∫
π(x, θ | X−i, Y )dx

π(θ | X,Y )
, (6)

may not be available if the integration on the right hand side of the above expression

is not tractable analytically. Another difficulty with the importance sampling approach

described above is that the normalizing constant of π(x | yi, θ) in (3) may be unknown.

This means that h(θ) of (4) is not known completely. Thus the importance sampling

estimate given by (4) can not be evaluated. Hence the leave-one-out posterior distribu-

tion in inverse cross-validation problems may not be accessed by importance sampling.

To overcome such difficulties we propose to combine very fast and easily implementable

MCMC runs with IR, outlined below. One key contribution in this paper is the proposal

of a novel importance sampling density that completely avoids the problem of analytic

integration.

3 Importance Resampling MCMC

Our proposed procedure can be stated in the following manner.
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1. Choose an initial case i∗. Use π(x, θ | X−i∗ , Y ) as the importance sampling density.

2. From this density, sample values (x(`), θ(`)); ` = 1, · · · , N , for large N . Typically,

regular MCMC will be used for sampling.

3. For i ∈ {1, · · · , i∗ − 1, i∗ + 1, · · · , n} do

a. For each sample value (x(`), θ(`)), compute importance weightsw
(`)
i∗,i = wi∗,i(x

(`), θ(`)),
where the importance weight function is given by

wi∗,i(x, θ) =
π(x, θ | X−i, Y )

π(x, θ | X−i∗ , Y )
∝ L(Y,X−i, x, θ)

L(Y,X−i∗ , x, θ)
=
p(yi∗ | xi∗ , θ)p(yi | x, θ)
p(yi∗ | x, θ)p(yi | xi, θ)

.

(7)

Thus, for the Poisson regression problem, the weights are given by

wi∗,i(x, θ) ∝ xyi−yi∗ exp{θ(xi − xi∗)}. (8)

b. For k ∈ {1, · · · ,K}

(i) Sample θ̃(k) from θ(1), · · · , θ(N) where the probability of sampling θ(`) is

proportional to w
(`)
i∗,i.

(ii) For fixed θ = θ̃(k), draw M times from π(x | yi, θ̃(k)). Thus, for the Poisson

regression case, with flat prior on x,

π(x | yi, θ) ∝ exp(−θx)xyi , (9)

which we recognise as the Gamma distribution. Note that in general it is

not easy to sample from π(x | yi, θ), even when x is univariate, and we

recommend MCMC for generality. For example, for the Poisson regression

case, if the prior on x is given by a Cauchy distribution, truncated on (0,∞),

then

π(x | yi, θ) ∝
1

1 + x2
exp(−θx)xyi . (10)

To generate samples from (10), MCMC seems to be the simplest methodology.

c. Store the K ×M draws of x as the posterior for xi as x̂
(1)
i , · · · , x̂(KM)

i .

The key idea in the above proposal is the use of π(x, θ | X−i∗ , Y ) as the importance

sampling density, for some particular i∗. Recall that in forward problems importance

weights given by (5) are easily computable but those in inverse problems, given by (6),

require analytic integration and so may not be available. Note that, unlike (6), impor-

tance weights (7) do not require integration for tractability; hence they are generally

easily computable. Thus steps 1, 2 and 3a eliminate the problem of analytic integration

in (6). Observe that the importance weights are independent of the prior on (x, θ).

An important technical question is whether IR whould be used with or without

replacement. Indeed, most of the references to IR in the literature use sampling
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with replacement. See, for example, Gelfand et al. (1992), Newton and Raftery (1994),

O’Hagan and Forster (2004). However, Gelman et al. (1995), Stern and Cressie (2000)

recommend IR without replacement. They argue that sampling without replacement

can provide protection against highly variable importance weights. Recently, Skare et al.

(2003) formally prove a theorem that IR without replacement is better than IR with

replacement, with respect to the total variation norm. Thus, in our proposal we recom-

mend the former. Bhattacharya (2004) provides further details in this context including

a comparison of IR with/without replacement.

4 Selection of appropriate importance sampling density

It follows from Section 2 that for IR to be most effective, it is desirable that the impor-

tance sampling density resembles the target density as closely as possible. It is shown

in Bhattacharya (2004) that the total variation distance between π(x, θ | X−i∗ , Y ) and

π(x, θ | X−i, Y ) tends to zero as the data size n increases indefinitely. However, it is

of interest to examine the situation for relatively small data size. We recognize that

the task is to choose that π(x, θ | X−i∗ , Y ) which is ‘closest overall’ to the remaining

π(x, θ | X−i, Y ). We thus consider methods of choosing a ‘central density’. We do this

by consideration of pairwise ‘distance measures’ d(i, j) between the posterior densities

corresponding to cases i and j; given such distance measures, we select case i∗ where

i∗ = arg minj
∑

i d(i, j). We propose two definitions of distance.

4.1 A KL motivation for the selection of i
∗

Denoting the expectation with respect to π(x, θ | X−j , Y ) by Ej , we note that,

Ej [wj,i(x, θ)] =

∫
π(x, θ | X−i, Y )

π(x, θ | X−j , Y )
π(x, θ | X−j , Y )dxdθ = 1

Observe that Ej [log{wj,i(x, θ)}] = log{Ej [wj,i(x, θ)]} = 0 if and only if the weights

are equal. We describe dKL(i, j) = |Ej [log{wj,i(x, θ)}]| as a measure of difficulty in

using π(x, θ | X−j , Y ) as a basis for estimating π(x, θ | X−i, Y ). Note that if wj,i(x, θ)
includes normalizing constants of the posteriors π(x, θ | X−i, Y ) and π(x, θ | X−j , Y ),

then −Ej [log{wj,i(x, θ)}] is in fact the KL distance between these posteriors. We note

here that Bradlow and Zaslavsky (1997) have used KL distance to measure synergy

between pairs of cases in the forward context of Bayesian hierarchical models.

We point out in our context that if the normalising constants of the posteriors are

not included, then −Ej [log{wj,i(x, θ)}] may not be non-negative (an example being that

wji(x, θ) = c, a constant greater than one, independent of (x, θ)). Hence, for the sake of

generality, we use |Ej [log{wj,i(x, θ)}]|. Also, since dKL(i, j) is not symmetric we modify

it to d̂KL(i, j) = dKL(i, j) + dKL(j, i).

For the Poisson regression case, it follows from (8) that

dKL(i, j) =| (yi − yj)Ej(log(x)) +Ej(θ)(xi − xj) | . (11)
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Using the above equation, d̂KL(i, j) can easily be calculated.

It is clear from (11) that the above theory can be used formally only when the

posteriors π(x, θ | X−i, Y ) are known or samples already available from them. However,

this is not the case in reality. One approximation is to use the absolute value of

Ej [log{wj,i(x, θ)}] ≈ log{wj,i (Ej(x), Ej(θ))} (12)

A natural alternative for θ is to use expected values from the saturated posterior. This

we denote by Esat(θ). For x, we propose to approximate Ej(x) by xj . Thus it follows

from (7) that,

Ej [log{wj,i(x, θ)}] ≈ log
p(yi|xj , θ)
p(yi|xi, θ)

, (13)

which equals zero when xi = xj . Note that this is close in spirit to the KL-distance

between p(yi | xi, θ) and p(yi | xj , θ). Thus, for the Poisson regression, (11) may be

modified to

dKL(i, j) = |(yi − yj) log(xj) +Esat(θ)(xi − xj)|, (14)

Thus it is simple to compute d̂KL(i, j) for all j, given Esat(θ). Note however, that

Esat(θ) is not simply available. A separate regular MCMC, in addition to the regular

MCMC run for π(x, θ | X−i∗ , Y ), is necessary for its computation. This extra computing

effort is not negligible when θ is of very high dimensionality (for example, in Vasko et al.

(2000), Bhattacharya and Haslett (2004)). It is not worth the effort if there exist simpler

methods that perform as well or better. Moreover, it will be demonstrated in Section

4.3 that the effects of approximations used to compute d̂KL may not be negligible and

may adversely affect performance.

4.2 Other measures of centrality to determine i
∗

An adequate approximation to equality of weights is to choose i∗ such that L(Y,X−i∗ , x, θ)
is roughly ‘central’ in the set of L(Y,X−i, x, θ). We elaborate with the Poisson example

for which the importance weights are given by (8). We propose two distance measures

whose minimisation offers different versions of centrality :

(a) d1(i) =

n∑

j=1

( | xj − xi |
SX

+
| yj − yi |

SY

)
(15)

(b) d2(i) =

√√√√
n∑

j=1

(
(xj − xi)2

S2
X

+
(yj − yi)2

S2
Y

)
(16)

where SX and SY denote sample standard deviations of the X column and the Y column

respectively. Note that the above measures can be easily extended to situations where

xi and yi are multivariate. In the case where xi = (xi1, · · · , xip) and yi = (yi1, · · · , yiq),
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the distance measures are defined by

(c) d1(i) =

n∑

j=1

(
p∑

k=1

| xjk − xik |
SXk

+

q∑

k=1

| yjk − yik |
SYk

)
(17)

(d) d2(i) =

√√√√
n∑

j=1

(
p∑

k=1

(xjk − xik)2

S2
Xk

+

q∑

k=1

(yjk − yik)2

S2
Yk

)
(18)

In the above SXk
and SYk

denote sample standard deviations of the kth column of X
and Y respectively.

With the above proposition, we then have i∗ = argmin{dk(i); 1 ≤ i ≤ n}, for

k = 1, 2. Note that unlike measures based on dKL, no knowledge is required of any

quantity to be estimated and thus seems far more reasonable and simpler to compute.

We next demonstrate with the Poisson regression example that the measures d1 and d2

may outperform the procedure motivated by KL distance. In fact, we show that even a

random choice of i∗ from {1, · · · , n} may perform more adequately than the latter.

4.3 Comparison between methods of choosing an appropriate i
∗

In this section we use the Kolmogorov-Smirnov (KS) measure to evaluate the perfor-

mance of IRMCMC with respect to different choice of i∗ in the case of the Poisson

problem. The KS measure is defined by

sup
z∈R

| Gn(z) −G(z) | (19)

In (19), G is the true distribution function of the marginal posterior of x corresponding

to case i has been omitted and Gn denotes the empirical distribution function of the

marginal posterior of x defined as

Gn(x) =
1

N

N∑

`=1

δ(−∞,x](x̂
(`)
i )

where δ denotes the indicator function. For details and related issues see Lehmann

(1986), Billingsley (1995), Rao (1965). Recall that the true distribution is easily avail-

able in this toy problem.

For a fixed value of θ, we simulate 500 replicates of (X,Y ) such that, for i =

1, · · · , 10, yi ∼ P (θxi). For each of the 500 replications, the P -values associated with

the observed KS-measure are computed for the 10 cases. This has been repeated for

different ways of selecting i∗. For the procedure motivated by the KL distance we can

envisage four versions, each version shedding different light on the basic issue of selecting

an appropriate i∗.

(1) KL-1: Approximate version of dKL given by (14) is used. Implementation of this

version seems to be feasible and sensible in practice.
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(2) KL-2: Exact version of dKL is used with normalising constants, making dKL a

KL-distance, is used. This is given by

dKL(i, j) = |(yi − yj)Ej(log(x)) + (xi − xj)Ej(θ)| + log(ci) − log(cj),

where ci is the normalising constant of π(x, θ | X−i, Y ), given by

ci =
(
∑

k 6=i xk)
(
∑

k 6=i yk)

Γ(
∑

k 6=i yk)Γ(yi + 1)
.

Ej(θ) is given by
∑
k 6=j yk/

∑
k 6=j xk and Ej(log(x)) has been evaluated numeri-

cally. Note that in this simple Poisson regression case, where analytical solution is

available, such form of dKL might be used. But in reality such analytical solutions

may not be available. However, this simple problem where analytical solutions are

available will help us expose the fact that the approximation (14), although seems

realistic and easy to compute, may not be sufficiently accurate and hence the

performance of IRMCMC may be affected in that case.

(3) KL-3: In this case, the distance dKL has been made independent of x by integrat-

ing it out. Here

dKL(i, j) = |(yj − yi)Ej(log(θ)) − (yj − yi)Ej(θ)|.

In the above, it has been assumed that Ej(log(θ)) ≈ Esat(log(θ)) and Ej(θ) ≈
Esat(θ). Also note that the normalizing constants corresponding to cases i and j
are not considered.

This version involves the assumption that x can be integrated out analytically,

which is unrealistic, but is helpful in demonstrating that the random variable x
involved in the measure dKL can adversely affect selection of an appropriate i∗.

(4) KL-4: This is similar to KL-3 in essence but uses exact values of Ej(log(θ)) and

Ej(θ) instead of approximations and normalizing constants (here ci =

(
∑
k 6=i xk)

(
∑

k 6=i yk)/Γ(
∑

k 6=i yk)) taken into account making dKL a KL-distance. It

will be demonstrated that this is the best version; however, this will be unavailable

in practice since analytical solutions are needed.

Apart from the performances of the above four versions of the procedure motivated by

the KL distance, the performances of d1, d2 and the method of simple random selection

are also considered and compared. It will be demonstrated that even with very small

samples there is very little difference to choose between all the candidates for i∗, but

that very simple measures seem to offer a choice that is easy to compute. We remark

that both d1 and d2 seemed to exhibit similar performances; indeed in the realistic

applications described in Chapters 6, 7 and 9 of Bhattacharya (2004) both yielded same

results.

We say that IRMCMC corresponding to a given value of i∗ satisfactorily approxi-

mates the target distribution of x at case i if the P -value for that case is greater than
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0.05. In each replication, the number of P -values (note that there are ten P -values in

each replication) exceeding 0.05 is noted. Let us denote this number corresponding to

the rth replication by Nr.

The proportion of times Nr = 10 with respect to the proposed measures, may be

used to compare the performances of the measures. This is given by

P̂ (Nr = 10) =

500∑

r=1

δ{Nr=10}(Nr)/500,

where δ denotes the indicator function. A high value of P (Nr = 10) indicates satisfac-

tory performance of IRMCMC, given a particular distance measure.

Using the above criterion, Table 1 compares the performances of different ways of

selecting i∗ for different values of θ.

Observe that all seven proposals perform quite adequately, the proportons P̂ (Nr =

10) being high. That this holds despite the fact that the variabilities of the simulated

data sets change as θ changes demonstrates the considerable robustness of IRMCMC.

It is particularly satisfying to note that even a randomly selected i∗ performs very

adequately. .

However, compared to other procedures, the performance of KL-1 is the poorest.

The exact version of KL-1, denoted by KL-2, performs better than KL-1, indicating that

crude approximations involved in KL-1 might have adversely affected its performance.

The version KL-3, which corresponds to approximation after integrating out the

random variable x, perform better than both KL-1 and KL-2. This is not unexpected,

since in both KL-1 and KL-2 the random variable x, which can be regarded as a nuisance

parameter while resampling θ only, is retained. This causes loss of efficiency of the

procedure. Since only posteriors of θ, not x, are of interest, while resampling θ, and

since an appropriate choice of i∗ is needed only to ensure efficiency of the resampling

procedure, the choice of i∗ should not explicitly depend on x. Since KL-3 avoids this

problem, it performs much better than both KL-1 and KL-2.

The version KL-4 is the exact version of KL-3, and hence outperforms KL-3. The

fact that x has been integrated out and that exact solutions have been used help KL-4

perform excellently. Clearly, this is the best performer among all seven proposals.

Note that the distance measures d1 and d2 perform better than all procedures other

than KL-4. This is because the measures use information from the data only for their

determination of i∗ and involve no unknown parameters and consequently no approxi-

mations. This makes them safe from unreliable approximations that could have made

them inefficient. Neither do they involve the undesirable random variable x in the dis-

tance calculation. Thus they perform better than KL-1, KL-2, KL-3. Since d1 and d2

use information from the data and the proposal of the random choice of i∗ use absolutely

no information, they also perform better than the random choice proposal. On the other

hand, since they do not use information on the posterior of θ, which is of interest, they

perform less efficently than KL-4, which rightly use information on θ. Thus d1 and d2
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seem to be compromise between the most desirable and less desirable characteristics.

However, since KL-4 is unrealistic in practice, we recommend d1 and d2 as reliable and

realistic measures of determining i∗ appropriately. Since both perform adequately, we

arbitrarily recommend d1.

4.4 Extreme observation

Figure 2 presents a data set with an influential observation at case 2. Using measure d∗,
i∗ = 5 is obtained as the minimiser. However, π(θ | X−5, Y ) approximates π(θ | X−2, Y )

very poorly; see Figure 3. This is because (see Section 2) the support of the posterior of

θ at the extreme observation case includes that of case 5 and all other cases; see Figure

4. The smaller support of case 5 does not allow adequate represention of the parameter

space of θ at case 2 which in turn causes poor approximation of the posterior of x at

case 2. Thus we see that IRMCMC can fail, if there are unsuspected extreme cases or

cases that are influential in some unsuspected way.

We remark, however, that in the case of such potential problems, the distance d∗

takes extreme values, thus pointing to such influential cases. In this particular Poisson

example, the value of d∗(i, 2) for each i 6= 2 (and hence
∑10

i=1 d
∗(i, 2)) was extremely

large; see Bhattacharya (2004). Once the problem is diagnosed, carefully designed

regular MCMC may be employed for that case. For more discussion on extreme cases,

see Section 7.

5 Mixing

In our experience, sensible choice of K and M is not difficult for adequate performance

of IRMCMC. In fact, any sensible choice that makes K ×M sufficiently large so that

the Monte Carlo error (see, for example, Jones and Hobert (2001)) of x falls below a

certain pre-specified level, seems to be acceptable. Bhattacharya (2004) proposed a

‘quick and generic’ method of determining K and M . However, we demonstrate below

that moderate values of K and M lead to superior mixing properties of IRMCMC,

compared to regular MCMC.

Clearly, since sampling θ by IR is computationally very much cheaper than using

regular MCMC, IRMCMC requires much less time than regular MCMC to generate

samples of a given size, that is, to perform a fixed number of iterations. We demonstrate

with the Poisson problem that even in a fixed number of iterations, IRMCMC explores

the target posterior as well as, or even better, than regular MCMC for moderate choices

of K and M . Thus IRMCMC mixes better than regular MCMC both with respect to

computational time and per iteration. To compare the performances of IRMCMC (here

i∗ = 8) and regular MCMC we use the KS measure.

Table 2 displays RK,M , the ratio of the KS measure corresponding to IRMCMC

and regular MCMC respectively, each having a run of length K ×M . A small (< 1)

value of RK,M indicates that IRMCMC is more accurate than regular MCMC given
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respective values of K and M . On the other hand, a ratio greater than one indicates

that regular MCMC is better. We observe that for K = 1, IRMCMC is generally more

accurate than regular MCMC when M is relatively small but, for large M , regular

MCMC seems better. This is because the posterior correlation between x and θ makes

the autocorrelation in the regular MCMC samples of x higher than in the IRMCMC

case for each fixed θ and makes small sample sizes less adequate in the former case.

This has been supported by our experiments (not shown). The last column, giving the

ratios when K = 50 and M = 100 shows that IRMCMC and regular MCMC produce

quite similar results in some cases, but that the former is significantly better than the

latter in other cases. This is in accord with the previous columns and suggests that

it is worth taking K and M of moderate value. For the computationally challenging

problem of Section 6 we have used K = 50 and M = 100.

This provides insight into the real advantage of IRMCMC over regular MCMC. For

even where x and θ are low dimensional, given moderate K and M , IRMCMC mixes as

fast as, and sometimes faster than, regular MCMC. But unlike in regular MCMC, the

computational cost of IRMCMC does not increase with the dimensionality of θ. Thus

in situations where θ is very high-dimensional, simulating just a few values of θ by IR

and running an MCMC chain for the low-dimensional variable x is clearly very much

less expensive than simulating a large number of them by regular MCMC methods.

We have thus argued that a two-stage procedure such as IRMCMC has particular

advantages over n-fold regular MCMC in terms of both computation and mixing. We

have argued - both by general consideration of cases with large n and by detailed

examination of a simple case with very small n - that the choice of i∗ is not difficult.

6 Application of IRMCMC to the motivating palaeocli-

mate problem

Vasko et al. (2000) reported a n-fold regular MCMC cross-validation exercise for a data

set comprising multivariate counts yi on m = 52 species of chironomid at n = 62 lakes

(sites) in Finland. The unidimensional xi denote mean July air temperature. As species

respond differently to summer temperature, the variation in the composition provides

the analyst with information on summer temperatures. This information is exploited to

reconstruct past temperatures from count data derived from fossils in the lake sediment;

see Korhola et al. (2002). Thus, counts yi are simply related to xi in a forward sense;

but interest lies in temperature xi, the ‘inverse’ of the relationship.

The inverse cross-validation exercise was computationally challenging and IRMCMC

led to very considerable computational savings. In particular, our implementation of reg-

ular MCMC on a modern personal computer took 16 hours. In contrast, the IRMCMC

implementation took 16 minutes for the initial run and 20 minutes for the remaining

61. Additionally, IRMCMC drew attention to the bimodality of one of the posteriors,

a point completely missed by the regular MCMC implementation. We provide details

of this below. First we explain the high dimensionality of θ and our implementation of
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cross-validation by IRMCMC.

In Vasko et al. (2000), the vector yi of counts at site i followed the multinomial

distribution,

(yi | yi+, pi) ∼Multinomial(yi+, pi). (20)

Here yi = (yi1, · · · , yim), yi+ =
∑m

k=1 yik and pi is an (unobserved) vector of rela-

tive abundances (pi1, · · · , pim), of length m = 52. The unobserved {pi; i = 1, · · · , n}
thus provide 62 × 51 parameters, even before temperature xi is related to the relative

abundances. The Dirichlet distribution, because of its conjugacy with the multinomial

model, is a convenient way to relate these. In particular, Vasko et al. (2000) suppose,

(pi | xi) ∼ Dirichlet(Λi). (21)

In (21), the kth component λik of Λi was modelled as λik = λ(xi,Ψk), for a simple

function λ of xi and of Ψk = (αk , βk, γk), a 3-component parameter vector associated

with the kth species. Vasko et al. (2000) chose a simple unimodal function of these

species specific parameters, given by λ(xi,Ψk) = αk exp{(βk − xi)/γk}2. The mode, βk
represents the value of temperature at which species k is most abundant. Tolerance of

the species is denoted by γk and αk is a scaling factor. There are thus an additional

3 × 52 parameters, yielding 3318 in total. For further detail, and choice of priors, see

Vasko et al. (2000).

6.1 Cross validation of the model using IRMCMC

The importance weight function leaving out site i∗ is given by

wi∗,i(x, θ) =
Γ(
∑52

k=1 λ(xi∗ ,Ψk))

Γ(
∑52

k=1 λ(xi,Ψk))

52∏

k=1

Γ(λ(xi,Ψk))

Γ(λ(xi∗ ,Ψk))
· p

λ(x,Ψk)−λ(xi,Ψk)
ik

p
λ(x,Ψk)−λ(xi∗ ,Ψk)
i∗k

(22)

Observe that weights (22) are independent of the count data yi. Hence, it follows from

the definition of d∗ that i∗ = {i : xi = median(X)}. Among the two medians in this

case (since n = 62 is even), we arbitrarily choose i∗ = 38.

In this case the density of pi depends on x; hence simulation from π(x | yi, θ) is done

by generating samples of both x and pi (and finally ignoring realisations of pi) from the

joint density of (x, pi), given yi, θ. The latter is given by

π(x, pi | yi, θ) ∝ π(x)
Γ(
∑52

k=1 λ(x,Ψk))∏52
k=1 Γ(λ(x,Ψk))

52∏

k=1

p
λ(x,Ψk)+yik−1
ik (23)

In (23), π(x) is a normal density with specified mean and variance. The above density

(available up to the normalising constant) is non-standard, highly complicated and

MCMC seems to be the only feasible methodology for generating samples from it. We

recall from (10) that simple methods of simulation from π(x | yi, θ) may not be available

even for very simple problems and in general MCMC is necessary.
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For the implementation of IRMCMC, we choose N = 5000,K = 50,M = 100.

Results of cross-validation obtained by IRMCMC have been compared with 62-fold

regular MCMC. Certainly due to lack of space, we omit details here. However, all 62

posteriors obtained by both IRMCMC and regular MCMC are available in Bhattacharya

(2004). Both the methods agreed with each other at all sites except site 6.

6.2 IRMCMC and exploration of bimodal posterior

The densities at site 6 corresponding to regular MCMC and IRMCMC are shown in

Figure 5. We observe that regular MCMC explores a unimodal posterior but IRMCMC

explores a distribution with two modes, one being a minor mode, which in fact explains

the observed datum as indicated by the vertical line.

Indeed, a bimodal posterior is not unexpected at that site since the species composi-

tion there is dominated by the presence of a very large count of a particular species. The

situation may be interpreted as the abundant species and the remaining species having

preference for disjoint regions of the climate space. Thus they send conflicting signals for

these two regions, resulting in bimodality. Simulation studies confirm bimodality under

these circumstances; see Bhattacharya (2004). For more on bimodality in the context of

palaeoclimate problems, see Bhattacharya and Haslett (2004) and Haslett et al. (2006).

We remark that with a priori knowledge of bimodality, a carefully designed regular

MCMC algorithm could have been adopted to explore the leave-one-out posterior dis-

tribution at site 6. But the problem was unsuspected and only a later examination of

the data revealed it.

7 Conclusions and future work

This paper introduces IRMCMC as an effective methodology for cross-validation in in-

verse problems. The usefulness of our proposal has been illustrated with two examples;

a toy Poisson regression problem and a real palaeoclimatological problem. We have

also demonstrated its superiority over the default methodology n-fold regular MCMC.

Guidelines on selecting an importance sampling density appropriately have been pro-

vided in Section 4 and their validity demonstrated.

The MCMC runs needed in Step 3b(ii) are easy to implement since the dimension-

ality of x is low. It is also useful to mention that in cases where it is easy to sample

directly from π(x | yi, θ̃(k)) (if the density is a standard one) one can realise an almost

iid sample from the true posterior of x at the cost of no burn-in. In the Poisson example

(but not in the case of Vasko et al. (2000)) such direct simulation is possible. However,

we have demonstrated that even for very low dimensional cases, no generic method of

simulation from π(x | yi, θ̃(k)) is available. Thus we continue to recommend MCMC for

its generality.

We have demonstrated that it does not matter much which i∗ is chosen, even when

the data size, n, is very small, providing that sensible steps are taken to avoid using
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extrema. At a very extreme case k, π(θ | X−k, Y ) will have much wider support

compared to π(θ | X−j , Y ); j 6= k, thus making the importance sampling density a poor

approximation to the target density. In fact, all approximate methods for computing

‘deletion diagnostics’ (see, for example Haslett and Dillane (2004)) will fail in extreme

cases and common sense needs to be used; this is same in the forward use of IR as well.

We have argued that the distance measure d∗ can help diagnose such problems. We

remark that the example of the extreme case provided in this paper is very extreme

indeed. We have conducted simulation studies with much less extreme observations

(not reported) and in such cases any i∗ seems quite satisfactory. When n is large, such

problem of extreme case has very little effect. Since for small n there is no pressing

need for IRMCMC, it can be argued that extreme cases are not, in practice, a problem

for IRMCMC. However, in the presence of extreme observations it will be of interest to

study the properties of an importance sampling density which is a mixture of extreme

as well as central densities. This we reserve for future work.

In principle, IRMCMC can also be applied to general problems not related to cross-

validation. Observe that the joint distribution of a set of at least two random variables

can be factorized in the form P (x, θ) = P (x | θ)P (θ). IR may be used to sample from

P (θ) and given θ, x may be sampled from P (x | θ) using MCMC.

Bhattacharya (2004) indicated that the output obtained by IRMCMC in a cross-

validation exercise can be used to construct useful reference distributions of omnibus

measures of model fit. He further showed that IRMCMC may also be very usefully

employed for sensitivity analysis. These ideas will be communicated elsewhere.

Appendix

IRMCMC is MCMC with a special proposal mechanism

We demonstrate in this section that IRMCMC is really a version of MCMC with a

special proposal mechanism.

For notational convenience in this section we use the shorthand notation πi(·) for

π(· | X−i, Y ). For the IRMCMC methodology, the proposal kernels of θ and x are given

by

Q1N (θ(t+1) | x(t), θ(t)) = P (t : x(t) ∈ S)πiN (θ(t+1) | x(t))

+ P (t : x(t) /∈ S)δ{θ(t)}(θ
(t+1)) (24)

Q2(x
(t+1) | θ(t+1), x(t)) = P (t : x(t) ∈ S)πi(x

(t+1) | θ(t+1))

+ P (t : x(t) /∈ S)q(x(t+1) | x(t)) (25)

In the above, δ is the indicator function. P (t : x(t) ∈ S) denotes the probability that

t is a stopping time. In other words, t is a stopping time if x(t) takes value in the set

S. πiN (θ) is the empirical distribution of πi(θ). Observe that the empirical distribution
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function in this case is given by

Fi,N (θ) =

∑N
`=1 δ(−∞,θ](θ

(`))wi(θ
(`))

∑N
`=1wi(θ

(`))

Clearly, by the ergodic theorem the above empirical distribution function converges

almost surely to the true distribution function as N is made infinitely large. q is a

distribution that may or may not depend on values x(t) and θ(t+1). Note that we

suppress θ(t+1) in the notation. This is because we generally choose the distribution to

be independent of θ(t+1) (normally, this is a random walk).

We now have a closer look at the proposal kernels Q1 and Q2. Q1 says that if t is a

stopping time propose a new value, θ(t+1) from the empirical distribution πiN (θ(t+1));

if not then set θ(t+1) = θ(t). A new value θ(t+1) will be proposed by IR without

replacement. The interpretation of Q2 is similar to Q1N . It says that if t is a stopping

time propose a new value x(t+1) from the distribution πi(x | θ(t+1)) (which will be

typically done by MCMC) and if not then propose x(t+1) from any distribution q that

may (or may not) depend on the current value x(t). Observe that in our case τ is a

stopping time if τ ∈ {M, 2M, . . . ,KM}; that is P (τ ∈ {M, 2M, . . . ,KM}) = 1 and

P (τ /∈ {M, 2M, . . . ,KM}) = 0. Note that our proposal implies keeping θ fixed for M
consecutive realisations of x. This is a deterministic definition; however, randomness

may be introduced by agreeing to stop the chain when the Monte Carlo error falls below

a certain level.

Denoting the acceptance probability of θ(t+1) given θ(t) and x(t) by αN (θ(t+1) |
x(t), θ(t)), and using (24), we observe that αN (θ(t+1) | x(t), θ(t)) → 1 as N → ∞, for

πi(·)-almost all
(
θ(t), x(t)

)
.

On the other hand, the acceptance probability of x(t+1) given θ(t+1) and x(t) depends

on whether on not t is a stopping time. If t is a stopping time, then the acceptance

probability, α(x(t+1) | θ(t), x(t)) = 1, and β(x(t+1) | θ(t), x(t)) otherwise, where

β(x(t+1) | θ(t), x(t))

=

{
min

{
πi(x

(t+1) |θ(t+1))
πi(x(t)|θ(t+1))

q(x(t) |x(t+1))
q(x(t+1)|x(t))

, 1
}

: πi(x
(t) | θ(t+1))q(x(t+1) | x(t)) > 0

1 : πi(x
(t) | θ(t+1))q(x(t+1) | x(t)) = 0

(26)

The above facts show that IRMCMC is indeed a version of MCMC with special proposal

kernels. The Markov chain can be written as

{(x(1), θ(i1)), (x(2), θ(i1)), · · · , (x(M), θ(i1)),

(x(1+M), θ(i2)), (x(2+M), θ(i2)), · · · , (x(2M), θ(i2)),

· · ·
(x(K+M), θ(iK )), (x(K+M), θ(iK)), · · · , (x(KM), θ(iK)), · · · }.

Note that an initial burn-in is essential if MCMC is used to draw x(t) from πi(· |
θ(1) = θ̃(1)). Corresponding to θ(k), for k > 1 the last realization of x corresponding
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Table 1: Assessment of the performances of methods of selecting an appropriate i∗.

P̂ (Nr = 10)

θ KL-1 KL-2 KL-3 KL-4 d1 d2 Random

0.5 0.974 0.980 0.934 0.980 0.882 0.894 0.908

1.0 0.978 0.972 0.932 0.986 0.970 0.932 0.938

3.0 0.948 0.964 0.976 0.992 0.984 0.968 0.944

5.0 0.912 0.924 0.968 0.998 0.966 0.974 0.946

7.0 0.934 0.948 0.966 0.988 0.976 0.960 0.934

9.0 0.934 0.938 0.964 0.992 0.986 0.980 0.936

11.0 0.900 0.938 0.970 0.994 0.984 0.984 0.964

13.0 0.892 0.904 0.938 0.994 0.994 0.982 0.970

15.0 0.910 0.926 0.968 1.000 0.986 0.962 0.948

to θ(k−1) could be used as the initial value and hence no burn-in is needed. Note also

that typically MCMC (and burn-in) is needed to construct the empirical distribution

function FiN but observe that we do not need to evaluate the distribution function at

any point but we only draw samples from FiN without replacement.
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