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Nonparametric Estimation of Kullback-Leibler

Information Illustrated by Evaluating Goodness

of Fit

Kert Viele∗

Abstract. We describe a method for quantifying the lack of fit in a proposed
family of distributions. The method involves estimating the posterior distribu-
tion of the Kullback-Leibler information between the true distribution generating
the data and the proposed family. We include an implementation for discrete
data involving Dirichlet Processes, for continuous data involving Dirichlet Process
Mixtures, and for regression data involving a common “perturbation” distribution
also estimated by a Dirichlet Process Mixture. We examine the effectiveness of
the method through simulation. We also show that, for independent, identically
distributed discrete data, the posterior distribution from a Dirichlet Process pro-
vides a consistent estimate of the KL information. Because the entire posterior
distribution is computed, one can readily acquire interval estimates of the distance
without resorting to asymptotics.
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1 Introduction

One important aspect of statistical modeling is evaluating the fit of the chosen model.

Let DΘ be a family of models indexed by a parameter θ. Evaluating the fit of DΘ to

a set of data may take many forms. In some situations one may wish to determine

if there exists a θ such that Dθ is an exact description of the actual process P that

generated the data. Alternatively, one may only wish to evaluate if there exists a θ such

that Dθ is a “reasonable” approximation of P . Gelfand, Dey, and Chang (1992) make

this point, noting that typically one is looking for a “sufficient” model rather than the

“correct” one. In cognitive psychology, for example, linear models attempt to quantify

such variables as cognitive capacity which are probably nonlinear. In criminology an

individual’s criminal career is modeled through several environmental variables, not to

provide an exact model but to provide an approximation useful for guiding public policy.

Our goal in this paper is to provide an estimate for d(DΘ, P ), thus quantifying

the lack of fit. A model may still be useful even if it clearly incorrect, so long as

d(DΘ, P ) is sufficiently small. An alternative framework is conducting a hypothesis

test on the value of d(DΘ, P ). The question of determining whether the model is an

exact fit can be phrased as testing H0 : d(DΘ, P ) = 0 against H1 : d(DΘ, P ) > 0. In

the Bayesian framework, this hypothesis test may be done using Bayes Factors (Kass

and Raftery 1995) or predictive p-values (Gelman, Meng, Stern 1996). One way of
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evaluating whether DΘ is a “sufficient” model is to test H0 : d(DΘ, P ) ≤ a against

H1 : d(DΘ, P ) > a for some a > 0. This approach has been used in Verdinelli and

Wasserman (1998), Goutis and Robert (1998), and Mengerson and Robert (1996). In

frequentist terms, the Kolmogorov Smirnov (KS) test, the VonMises goodness of fit

test, and the χ2 goodness of fit test produce a “reject or do not reject” result based

on a test statistic that is an estimate of a distance measure. For example, the “D-

statistic” used in a Kolmogorov Smirnov test is an estimate of the Kolmogorov-Smirnov

distance between the distributions. One could consider using the test statistic directly

to estimate d(DΘ, P ) directly.

In this paper we explore theoretical and methodological issues involved in estimating

d(DΘ, P ) for discrete DΘ using Dirichlet Process priors, concentrating on d(DΘ, P ) =

infθKL(P,Dθ), where

KL(P,D) =

∫
ln
dP (ω)

dD(ω)
dP (ω)

is the Kullback-Leibler (KL) information. KL information is used similarly to our

formulation (though parametrically) in Goutis and Robert (1998) and in Mengerson and

Robert (1996). An alternative approach for evaluating fit is described in Carota et. al.

(1995), who focus on the KL information between the prior and posterior distributions,

not on estimating distances between DΘ and P . We show that Dirichlet Processes

can produce consistent estimates of infθKL(Dθ, P ). Previous results (Diaconis and

Freedman 1986, Carota and Parmigiani 1994) have illustrated that consistency must be

checked carefully in nonparametric Bayesian methods, and KL information is a stronger

criteria than most others commonly used in exploring consistency such as Hellinger

distance, which was considered in Barron et. al. (1999) and Robert and Rousseau

(2003).

In fact, KL information sits “atop” several distance/divergence measures that are

part of a unified framework formulated by Csiszar (1963) and Ali and Silvey (1966).

For any two distributions Q and P , an “f-divergence” has the form

If (Q,P ) =

∫
q(x)f(p(x)/q(x)) dx

The class of f-divergences includes many commonly used divergence measures, including

among others Kullback-Leibler information (f(u) = −u lnu), Total Variation (f(u) =

|u−1|, note Total Variation and Hellinger produce the same open sets), and χ2 (f(u) =

(u − 1)2). For many common f-divergences, KL information can provide an upper

bound. One famous inequality is the Csiszar-Kullback-Pinsker inequality, which bounds

Hellinger distance above by the square root of KL information (Kullback 1967, note

this equality depends on the constant used in defining Hellinger information). In turn,

Kolmogorov-Smirnov distance is bounded by total variation, etc. Such bounds imply

that any consistency result for KL information implies consistency for those measures

bounded by KL, and thus theoretical results in KL information are particularly useful.
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Although our central goal here is estimation of the KL information, acquiring the

prior and posterior distributions of d(DΘ, P ) provides the Bayes Factor for testing

H0 : d(DΘ, P ) ≤ a against H1 : d(DΘ, P ) > a by comparing the prior and poste-

rior probabilities of each hypothesis. This avoids some of the difficulties involved in

computing a Bayes Factor in nonparametric context, for example those found in Carota

and Parmigiani (1994). Other solutions to the problem of computing Bayes Factors in

nonparametric contexts may be found in Berger and Guglielmi (2001) and Conigliani

et. al (2000).

In Section 2 we describe our choice for d(DΘ, P ) and the method for estimating

d(DΘ, P ). Section 3 provides a detailed implementation for discrete distributions with

examples. The method is most developed for discrete distributions, including a results

demonstrating consistency of the posterior distribution in KL information. In Section

4 we discuss possible extensions of the method to continuous and regression data, in-

cluding simulation results. Section 5 provides a discussion of the results.

2 Method

2.1 Null and Alternative Families

As stated in the introduction, we are attempting to assess the fit of a proposed, or null,

family of distributions DΘ. Since we are evaluating the fit of DΘ, we cannot assume

the true distribution that generated the data, P0, is an element of DΘ. A fundamental

component of any Bayesian analysis is defining the space that the parameter of interest

(in this case the entire distribution P ) resides in. If possible, we would prefer this space

to contain every possible value of P , and to have a practical method of estimating P
within this space. In the case of independent, identically distributed data we will make

the minimal assumption that P is supported on the same set as DΘ and estimate P
nonparametrically using either a mixture of Dirichlet Processes (Ferguson 1973, Anto-

niak 1974) or a Dirichlet Process Mixture of Normals (Escobar and West 1995). For

regression models we introduce a “perturbation distribution” in Section 4.2 similar to

a nonparametric extension of overdispersion. The remainder of the analysis consists

of computing the posterior distribution of P and the induced posterior distribution on

d(P,DΘ).

2.2 Distance Measures

The distance d(P,DΘ) is intended to quantify the lack of fit between the P and the null

family DΘ. In a full decision theoretic framework, d should be a loss function between

distributions. If such a loss function is available, it may be readily incorporated into

what follows. However, it is often the case that a loss function is either unavailable and

or is difficult to elicit from investigators because of the nonparametric space involved.

Our goal in this section is to motivate a default d for use when no specific loss function

is specified.
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Our default distance is

d(P,DΘ) = inf
θ∈Θ

KL(P,Dθ) = κ (1)

where KL stands for the Kullback-Leibler information

KL(P,D) =

∫
ln
dP

dD
dP

This particular distance is motivated by asymptotics and has been used similarly in

Mengerson and Robert (1996) and Goutis and Robert (1998). This distance d is a

special case of distance measures of the form d(P,DΘ) = d1(P,DθP
), where d1 is an

unspecified distance function and θP = argminθKL(P,DΘ). Berk (1966) shows that if

we observe data from P /∈ DΘ but incorrectly model the data as being from DΘ, then

as the sample size increases the posterior distribution of Θ will, under fairly general

conditions, converge to a point mass at θP . Thus, distance measures of this form

measure the long term loss involved in using DΘ incorrectly. The function d above

chooses KL information for d. KL information has been used in a large number of

contexts, such as influence measures (Carlin and Polson 1991) and model sensitivity

(McCulloch 1989) in addition to the context here. It is also fundamental to hypothesis

testing using Bayes Factors (Kass and Raftery 1995). This previous research indicates

KL information forms a natural distance measure between distributions.

Our goal in this paper is to estimate

κ0 = d(P0, DΘ)

using the posterior distribution of κ as P ranges over its posterior distribution within

the alternative family. The value κ0 quantifies the distance from the true distribution

P0 to the null family of distributions.

2.3 Computing the Posterior Distribution of κ

Usually it is not practical to find the posterior distribution of κ analytically. However,

since the prior on P is a mixture of Dirichlet Processes, the posterior distribution of

P is a mixture of Dirichlet Processes as well, and thus it is fairly straightforward to

draw a large sample P1, P2, . . . , PM from the posterior distribution of P by Markov

Chain Monte Carlo (MCMC) techniques (Gilks, Richardson, and Spiegelhalter 1996).

We discuss the details in context in subsequent sections. For each distribution Pm from

the posterior distribution of P , we evaluate κ to produce a sequence κ1, . . . , κM .

We may evaluate κm for a particular Pm in a variety of ways. Often direct mini-

mization of the KL information may be done analytically. If necessary, the minimizing

θ may also be found using Theorem 4 in Berk (1966), which states under general con-

ditions the maximum likelihood estimate converges to the value of θ minimizing KL



Kert Viele 243

information. In the examples in this paper, analytical solutions are found. The values

κ1, . . . , κM may be used in the following ways to evaluate fit

1. The posterior density of κ given the data, π(κ|X), may be estimated using a kernel

density estimate π̂(κ|X). Theorem 3.2 in Section 3.2 shows that π(κ|X) converges

in probability to a point mass at κ0, the true KL information. Thus, for large

samples, the estimated posterior mean/median and/or HPD region from π̂(κ|X)

may be used to estimate κ0.

2. For more moderate samples, one may see the effect of the data by comparing the

prior and posterior distributions of κ. The induced prior density of κ, π(κ), may be

estimated by drawing a large sample from π(P ), evaluating κ for each observation

in the sample, and computing a kernel density estimate π̂(κ) analogously to the

computation of π̂(κ|X). The estimated prior and posterior distributions on κ may

then be compared to see the effect of the data.

3. Although our goal here is not to produce Bayes Factors, the notion of ”more

mass” from the previous item may be made formal by computing estimated Bayes

Factors. The Bayes Factor for testing H0 : κ ≤ a against HA : κ > a is

Pr(X |H0)

Pr(X |HA)
=

Pr(H0|X)

Pr(HA|X)

Pr(HA)

Pr(H0)
=

Pr(H0|X)

Pr(H0)

1 − Pr(H0)

1 − Pr(H0|X)
(2)

For any particular a, Pr(H0) may be estimated by the empirical proportion of prior

κ values that are less than a while Pr(H0|X) may be estimated by the empirical

proportion of posterior κ values that are less than a. The resulting estimates may

be placed in Equation (2) to produce the estimated Bayes Factor. We demonstrate

this with examples in Section 3.3.

Inevitably, one is faced with the decision whether a particular KL information is

small or large. This is a complicated problem that has been explored by several authors.

The simplest method, which we will follow in this paper, may be found in McCulloch

(1989), who suggests calibrating the KL information in terms of Bernoulli distributions.

For a particular KL information κ, find q(κ) such that the KL information between a

Bern(0.5) random variable and a Bern(q(κ)) random variable is κ. Soofi, Ebrahimi, and

Habibullah (1995) extend this method to other reference distributions and propose a

calibration method based on a normalized transformation of the KL information given

by the information distinguishability measure. Hoeffding and Wolfowitz (1958) provide

inequalities relating Total Variation distance to KL information which may be useful in

interpreting smaller values of the KL information on a probability scale.

Whether a “line in the sand” such as 0.05 for p-values may be placed on KL informa-

tion is a complicated and controversial problem, which we do not pretend to solve here.

The posterior distribution of the KL information (1) may be placed in McCulloch’s

proposed calibration scheme or any other.
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3 Discrete Distributions

3.1 Method

In this section we assume DΘ is a family of discrete distributions. The support of DΘ is

therefore countable and can be placed in one to one correspondence with the nonnegative

integers. Since KL information is invariant to such transformations (Kullback 1968) we

can without loss of generality assume that DΘ is supported on the nonnegative integers.

Our default Mixture of Dirichlet Processes prior begins with a prior distribution on

the θ within the null family and proceeds according to

θ ∼ F
γ−1 ∼ N+(0, (0.25)2)

P ∼ Dir(Dθ × γ)
Y1, . . . , Yn ∼ P.

(3)

where the notation Dir(Dθ×γ) indicates a Dirichlet Process with base probability mea-

sure DΘ and confidence parameter γ, and a N+(µ, σ2) distribution is the distribution

proportional to a N(µ, σ2) but supported only on positive real numbers. The prior

mixes across γ to place more mass near the null family (Viele 2000). Using results from

Escobar (1994), one can show

Pr(y|Θ, γ) =
Γ(γ)Γ(n+ 1)

∏m
i=1 Γ(di,θγ + ni)

Γ(γ + n)
∏m
i=1 Γ(ni + 1)

∏m
i=1 Γ(di,θγ)

where x = (x1, . . . , xm) are the distinct values observed in y, ni is the number of times

xi appears in y, and di,θ = Dθ({xi}).
To determine the posterior distribution of the KL information measure (1), one may

simulate a sequence of (Θ, γ) using Gibbs Sampling with the Metropolis Algorithm. For

each observation in the sequence, also generate

Pi ∼ Dir(γDθ + nP̂ )

where P̂ is the empirical distribution of the observations. For each Pi, compute κi =

infθKL(Pi, Dθ). The resulting κi are observations approximately distributed as the

posterior distribution of (1).

3.2 Theoretical Results

In this section we demonstrate conditions under which the posterior distribution of

κ converges to a point mass at κ0. Lemma 3.1 is used to reduce the problem from
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demonstrating an infimum is consistent to demonstrating consistency at a single point.

We then demonstrate, in Theorem 3.2, that a Dirichlet Process prior produces consistent

estimates of κ0.

Lemma 3.1 Let Y1, Y2, . . . ∼ P0 and θ0 = argminθKL(P0, Dθ). Also, for each P
in the alternative family define θP = argminθKL(P,Dθ). Let π be a prior over the
alternative class and let πn be the posterior distribution based on Y1, . . . , Yn. Also
define three sets of neighborhoods

N1,δ = {P : |KL(P,Dθ0) −KL(P0, Dθ0)| < δ}

N2,δ = {P : |KL(P,DθP
) −KL(P,Dθ0)| < δ}

Ninf,δ =

{
P : | inf

θ
KL(P,Dθ) − inf

θ
KL(P0, Dθ)| < δ

}

Suppose that, for all ε and δ (all probabilities are over the distribution of the data),

(a) limn Pr(πn(N1,δ) > 1 − ε) = 1

(b) limn Pr(πn(N2,δ) > 1 − ε) = 1

Then, for all ε and δ,

Pr(πn(Ninf,δ) > 1 − ε) = 1

Proof

By definition, KL(P,DθP
) = infθKL(P,Dθ) and KL(P0, Dθ0) = infθKL(P0, Dθ).

Therefore, (N1,δ/2

⋂
N2,δ/2) ⊂ Ninf,δ by the triangle inequality and the result follows.

The neighborhood N2,δ is those P satisfying

|KL(P,DθP
) −KL(P,Dθ0)| =

∣∣∣∣
∫

ln
dθ0(y)

dθP
(y)

dP (y)

∣∣∣∣ < δ

Thus, condition (b) of Lemma 3.1 is a smoothness condition on the proposed model.

Often condition (b) is easy to verify. If, for example, Dθ is the family of Poisson

distributions, then it is easy to show θP = µP and thus
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∫
ln
dθ0(y)

dθP
(y)

dP (y) = θP − θ0 + θP ln(θ0/θP )

Under most reasonable nonparametric priors (for example Dirichlet Processes), θP con-

verges to θ0, resulting in condition (b) being satisfied.

Condition (a) of Lemma 3.1 concerns the consistency of KL(P,Dθ0). Thus, we are

only interested in consistency at θ0 instead of worrying about the entire family DΘ.

If we had a parametric prior on P and the KL information was a continuous function

of the parameters, then standard asymptotic results would often allow condition (a)

to be verified simply by showing the consistency of the parameters. In nonparametric

settings, however, the standard asymptotic results do not necessarily apply since the

parameter is infinite dimensional. Theorem 3.2 below proves condition (a) of Lemma

3.1 for a Dirichlet Process prior. Theorem 3.3, which may be proven analogously, shows

KL(P̂n, Dθ0) converges to KL(P0, Dθ0), where P̂n is the empirical distribution based

on the first n observations.

In the remainder of this section we use the following notation and assumptions. Let

F be the set of all probability measures on the nonnegative integers, and let D, P0,

and Q be elements of F . Let di, pi, and qi refer to the respective probabilities for each

nonnegative integer i. Assume we observe data X1, X2, . . . ∼ P0 and let Pn0 be the n-fold

product measure of P0. We place a Dirichlet Process on P with base measure γQ for

γ ≥ 0 (the results in this section apply to the “noninformative” prior with γ = 0). The

posterior distribution of P given X1, . . . , Xn, πn(P |X), is therefore (Ferguson 1973) a

Dirichlet Process with base measure (nP̂n+γQ), where P̂n is the empirical distribution

of the first n observations. We will also define p̂in to be the empirical proportion of

X1, . . . , Xn that are equal to i. Let P̃n be a randomly drawn distribution from πn(P |X),

and let p̃in be the probability that P̃n assigns to i. In addition

assume there exists an η such that, for bi = max(pηi , q
η
i ), the sums

∑
p1−2η
i ,

∑
q1−2η
i ,∑

bi,
∑
bi ln(pi/di), and

∑
bi ln(1 + (bi/pi)) are all finite.

Let cn be a sequence such that cn > 1 for all n, limn cn = ∞, and limn(cn/n
1/2) = 0.

Let Bin be the event that p̃in ≤ pi + (bi/cn), and let An =
⋂∞
i=0 Bin.

Let Nε = {F ∈ F : |KL(F,D) −KL(P,D)| < ε}

Note that the assumption concerning the five sums is satisfied if D, Q, and P0 are all

of the form exp{−ψ(i)}, where ψ(i) is a finite degree polynomial in i.

Theorem 3.2 Under the assumptions listed above, for all ε > 0,
limn P

n
0 (πn(Nε) > 1 − ε) = 1.

Proof: This follows from Propositions 5.2 and 5.3, proven in the Appendix.
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Theorem 3.3 Under the assumptions listed above, for all ε > 0,

limn P
n
0

(
|KL(P̂n, D) −KL(P0, D)| < ε

)
= 1.

Proof: See Appendix.

In practice, of course, one only truly estimates a parametric model. For example, if

all the observations are less than 20, one practical method is to estimate probabilities

for the integers between 0 and 50, making the implicit assumption that very little mass

is contained past 50. Even though the actual implementation is parametric, Theorem

3.2 is useful in justifying this procedure. By demonstrating consistency in the nonpara-

metric setting, we establish that the tails have little effect on the KL information. This

establishes that the choice of upper bound (so long as there truly is little mass above

the upper bound) is unimportant to the analysis.

3.3 Examples

In the following examples we assess the fit of the Poisson family to two real datasets. In

each, DΘ is the Poisson family and we use the prior from Equation (3), with the prior

π(θ) = Exp(0.2) (mean 5).

3.3.1 Prussian Horsekicking Data

The Prussian Horsekicking data (shown in Table 1) is a well analyzed dataset which

all tests confirm is Poisson. The data show the number of horsekicking deaths for 280

corps-years in the Prussian army. We show it here to demonstrate the method proposed

in Section 2 agrees with the previous analyses. The upper left plot in Figure 1 shows a

probability plot of the data (dark bars) together with the closest Poisson distribution

(light bars). As can be seen, the Poisson distribution closely approximates the data.

Number of Deaths 0 1 2 3 4

Number of Corps-Years 144 91 32 11 2

Table 1: Number of Prussian Army Horsekicking Deaths

We ran 100,000 iterations of an MCMC sampler and provide the estimated posterior

density of κ in the upper right plot of Figure 1. As with the simulated Poisson datasets,

the posterior mass of κ is near 0. The posterior mean of κ is 0.0065, the difference

between Bernoulli distributions with probabilities 0.500 and 0.557, indicating a small

difference if any from Poisson. Bayes Factors also confirm the horsekicking data is

Poisson. The estimated Bayes Factor for testing H0 : κ ≤ 0.005 against HA : κ > 0.005

is 22.04, strong evidence in favor of H0.
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3.3.2 Epilepsy Data

Table 2 shows data on the number of epileptic seizures by an individual per day over

351 days. If the seizures followed a Poisson process, we would expect the number of

seizures per day to follow a Poisson distribution. A probability plot of the data and the

closest Poisson distribution are shown in the lower left plot in Figure 1. The probability

plot indicates the tail of the data is longer than would be expected from a Poisson

distribution.

Number of Seizures 0 1 2 3 4 5 6 7 8

Number of Days 126 80 59 42 24 8 5 4 3

Table 2: Number of Seizures for 351 Days

Again, we computed 100,000 values from the posterior distribution of κ. The esti-

mated posterior density of κ is shown in the lower right plot in Figure 1. The results con-

firm the impression from the probability plot that the seizure data is not Poisson. The

posterior mass is distinct from 0, while a 95% credible interval for κ is (0.0747, 0.2038).

The posterior mean is 0.1319, the difference between Bernoulli distributions with prob-

abilities 0.5 and 0.74, a fairly large difference. Bayes Factors also confirm the data is not

Poisson. Only 87 of the 100,000 κ values simulated from the prior were less than 0.05

compared to 16071 from the prior distribution, indicating the Bayes Factor is decisively

against H0 in testing H0 : κ ≤ 0.05 against HA : κ > 0.05. Note that while most

tests (frequentist Kolmogorov Smirnov tests, etc.) would indicate these data are not

Poisson, providing the estimate and the credible region provides more information that

a “not Poisson” answer, as one can then decide whether the lack of fit justifies a more

complicated model.

4 Possible extensions to continuous and regression data

4.1 Continuous Independent, Identically Distributed Data

The methods in Section 3 cannot be used for continuous data directly because the

Dirichlet Process is discrete with probability 1. The KL information between any dis-

crete distribution and any continous distribution is infinity, and thus we must find a

nonparametric method that produces continuous distributions. We employ a Dirichlet

Process Mixture (DPM).

To evaluate the fit of a continuous family Dθ, we employ a device similar to that

in Verdinelli and Wasserman (1998). To generate Y ∼ Dθ, we may first generate

U ∼ Uni(0, 1) and then let Y = D−1
θ (U). We may then construct an alternative

distribution by replacing U ∼ Uni(0, 1) with U ∼ G. Verdinelli and Wasserman (1998)

specify an infinite dimensional exponential family for G. More recently, Robert and

Rousseau (2002) use a mixture of Beta distributions and evaluate Hellinger distance

rather than KL information. Finally, Kottas (2006) uses a Dirichlet Process Mixture of
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Beta distributions in this way for estimation purposes rather than for evaluating fit.

While using a Uni(0, 1) distribution has intuitive appeal, we use a slightly different

formulation. In general, one can generate Y ∼ Dθ by first generating V ∼ G0 and then

setting Y = D−1
θ (G0(V )). This can be expanded into a nonparametric alternative by

allowing V ∼ G where G is arbitrary and still setting Y = D−1
θ (G0(V )). In this general

setting, the density of Y is

fY |G,θ(y) =
g(G−1

0 (Dθ(y)))

g0(G
−1
0 (Dθ(y)))

dθ(y) (4)

Thus, when G = G0, the density of Y reduces the null family Dθ.

We will use G0 = Φ, the standard normal distribution function. While this creates

complexity in writing the formula for Y , it provides a distinct computational advan-

tage. Specifically, instead of estimating a distribution on (0, 1) using a Dirichlet Process

Mixture of Betas as in Kottas (2006), we can use the more computationally efficient

Dirichlet Process Mixture of Normals (Escobar and West 1995). The efficiency arises

from the fact that conjugate priors exist for the normal parameters. For the differences

between sampling for conjugate priors versus nonconjugate priors, see the review by

Neal (2000).

Thus, our complete formulation is

θ ∼ π(θ)
G ∼ DPM(G∗, ω)

V1, . . . , Vn ∼ G
Yi = D−1

θ (Φ(V ))

where DPM(G∗, ω) is a Dirichlet Process Mixture of normals with base measure G∗

and confidence parameter ω. This prior states that G is generated by first drawing

a distribution G′ over the normal parameter space by a Dirichlet Process (Ferguson

1973) with base measure G∗ and confidence parameter ω. This G′ results in sequences

of means µ1, µ2, . . ., variances σ2
1 , σ

2
2 , . . ., and probabilities p1, p2, . . . (see Sethuraman

1994 for details) which are then used to form the continuous distribution G through the

equality

g(·) =

∞∑

k=1

pkN(µk, σ
2
k)(·)

where N(µk, σ
2
k)(·) is the normal density function. The base measure G∗ is a joint dis-

tribution for the means and variances, while ω controls the probabilities pk. A common

choice of G∗ is the conjugate normal-inverse gamma prior where σ2 ∼ IGamma(a, b)
and µ|σ2 ∼ N(η, τ2σ2)
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This prior structure is not identifiable, in that there are multiple G and θ which

produce the same distribution for the observable data Y . However, our goal is not

to estimate G and θ, but to estimate the KL information between the distribution

FY |G,θ(y) and the null family Dθ

κ = inf
θ∗∈Θ

KL(FY |G,θ, Dθ∗) (5)

as G and θ range over their posterior distributions. Note we still require the infimum

since, after including the perturbation distribution G, the closest Dθ in KL information

may not be the same as the Dθ used to generate the Y values.

It is straightforward to implement Markov Chain Monte Carlo (MCMC) in this con-

text. We alternatively sample from the distributions of G|θ and θ|G. The distribution

of G|θ may be found by first transforming each Yi back to Vi = Φ−1(Dθ(Y )) and then

updating G according to a standard Dirichlet Process Mixture updating scheme. We use

algorithm 2 from Neal (2000). The samples from θ|G are drawn using the Metropolis

algorithm. Since G is general, there are no conjugate priors for θ.

We make straightforward choices for ω and G∗. We simply choose ω = 1 and found

little dependence (with respect to the distribution of κ) on this parameter. For G∗ our

default choices were a = 1, b = 1, η = 0 and τ 2 = 1e + 08. Note that since the null

value of G is a standard normal, we can focus our prior in the range (−5, 5).

To examine the effectiveness of this strategy we ran simulations with Dθ being the

normal family. To avoid confusion between θ in this case, which includes the mean and

variance of the normal family to be evaluated, and G∗, which generates µ and σ2 values

as part of the generation of G, we refer to the mean and standard deviation within the

null family as θµ and θσ . We used the prior π(θ) = 1/θσ.

When Dθ is the normal family, κ may be simplified dramatically. First note the

quantity Φ−1(Dθ(y)) appearing in the density fY |G,θ is Φ−1(Φ((y − θµ)/θσ)) = (y −
θµ)/θσ and thus

fY |G,θ =
1

θσ
φ

(
y − θµ
θσ

) g
(
y−θµ

θσ

)

φ
(
y−θµ

θσ

) =
1

θσ
g

(
y − θµ
θσ

)

Thus, for fixed G, θ, and θ∗

KL(FY |G,θ, Dθ∗) = KL

(
1

θσ
g

(
y − θµ
θσ

)
,

1

θ∗σ
φ

(
y − θ∗µ
θ∗σ

))

= KL

(
G,N

(
θ∗µ − θµ

θσ
,
θ∗σ
θσ

))



Kert Viele 251

Distribution g(v) κ EG
√
VG

A - Normal φ(v) 0 0 1

B - Mixture 0.7N(0, 1)(v) + 0.3N(3, 0.5)(v) 0.0959 0.9 1.6544

C - Skew 0.5Exp(1.66)(−v)Iv<0 + 0.5Exp(1)(v)Iv>=0 0.1188 0.1985 1.1492

D - Uniform Uni(−3, 3)(v) 0.1763 0 1.7321

E - t3 t3(v) 0.1035 0 1.7321

Table 3: The five G distributions used for simulation. This table provides a short title

used for description, the density, the value of κ, and the mean and variance of G used

to find the normal distribution the minimizes KL information to G

Since for any θ, allowing θ∗ to vary over the parameter space allows (θ∗µ− θµ)/(θσ) and

θ∗σ/θσ to vary over the parameter space, we find

κ = inf
θ∗∈Θ

KL(FY |G,θ, Dθ∗) = inf
θ∗∈Θ

KL(G,N(θ∗µ, θ
∗
σ)) (6)

which achieves its infimum at θ∗µ = EG and θ∗σ = V
1/2
G . Thus, when evaluating the fit of

a normal distribution, we can work with G directly rather than the induced distribution

on Y . Note κ is not found by projecting G to a N(0, 1), but to the entire normal family.

The five G distributions are described in Table 3, with their corresponding value

of κ and the normal parameters used to achieve the infimum of the KL information.

Distribution A is a standard normal, the null value. Thus, the KL information is 0 and

the family Dθ is an exact fit. Distribution B is a standard mixture of two normals.

Distribution C is a skewed distribution, a “double exponential” but with differing pa-

rameters for the exponential halves. Distribution D is a uniform and distribution E is a

t distribution. Figure 2 shows the five densities in black, with the closest normal density

in KL information shown in red.

We do not expect the method to work well for distribution D. As noted in Kottas

(2006), mixtures of normals do not estimate distributions with bounded support well.

We are unaware of any distribution that simultaneously handles all possible alternatives

well. It might be interesting to see if one could create a sampler that includes both

mixtures of normals and mixture of betas. For each of the 5 distributions, we generated

data using sample sizes of 30, 100, and 500, and ran the sampler for 1000 iterations of

“burn-in” and 10000 iterations used for results.

Table 4 summarizes the results for each of the 15 simulations. We include the

estimated posterior mean of the κ values, an estimated 95% highest posterior density

(HPD) region, and for reference the true value of κ.

Histograms of the simulated values of κ are shown in Figures 3-7. For the normal

distributions, the posterior distribution of κ quickly converges to 0, the true value. For

all other distributions, the posterior distributions retain a mode at κ = 0 for the n = 30



252 Nonparametric K-L Information Estimation

Distribution n Mean κ 95%HPD True value

A - Normal 30 0.0259 (0.0000,0.1149) 0.0000

A - Normal 100 0.0142 (0.0000,0.0546) 0.0000

A - Normal 500 0.0040 (0.0000,0.0153) 0.0000

B - Mixture 30 0.0822 (0.0000,0.1977) 0.0959

B - Mixture 100 0.0986 (0.0296,0.1805) 0.0959

B - Mixture 500 0.0653 (0.0379,0.0992) 0.0959

C - Skew 30 0.0454 (0.0000,0.1887) 0.1188

C - Skew 100 0.1574 (0.0296,0.4697) 0.1188

C - Skew 500 0.1317 (0.0834,0.1975) 0.1188

D - Uniform 30 0.0244 (0.0000,0.0828) 0.1763

D - Uniform 100 0.0584 (0.0109,0.1225) 0.1763

D - Uniform 500 0.0786 (0.0532,0.1063) 0.1763

E - t3 30 0.0515 (0.0000,0.1781) 0.1035

E - t3 100 0.0931 (0.0144,0.2526) 0.1035

E - t3 500 0.1195 (0.0540,0.2551) 0.1035

Table 4: Results for the Continuous iid data. With the exception of the uniform distri-

bution, known to be a problem, all the HPD regions contain the true value of κ.

simulations, with the posterior distributions becoming more concentrated as the sample

size increases. As expected, the method performs poorly at estimating κ when G is a

uniform distribution. While the posterior distribution is separated from 0 for n = 100

and n = 500 for the uniform, the HPD regions remain consistently (and dramatically)

below the true value of κ = 0.1763. All other HPD regions contain the true values of κ.

4.2 Regression Models

In this section we describe evaluating fit for a regression model where we observe known

x1, . . . , xn and independent random variables Y1, . . . , Yn where each Yi ∼ Dθi
for θi =

η(xi).

We first define our goals for evaluating fit. One could use the term “lack of fit” to

describe either a misspecification of the function η (for example, using a simple linear

regression where a quadratic regression may be more appropriate) or in the family

Dθ (e.g. Y may be linearly related to x, but with nonnormal errors). We focus on the

latter. The first problem, a misspecification of η, has been considered nonparametrically

by Gelfand, et. al. (2005), where the function η is estimated by dependent Dirichlet

Processes which build η out of a sum of stochastic processes. Alternatively, one can

consider nonparametrically estimating the joint distribution of X and Y as in Mueller

et. al. (1996). The difficulty with estimating the joint distribution is that all estimates

of the distribution of Y given X are based primarily on local information, rather than

combining the lack of fit information across all values of x.
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The proposed method is a nonparametric analogue of overdispersion in generalized

linear models (McCullagh and Nelder 1989). In overdispersion, one includes an extra

parameter that is common across all values of x which increases the variance of the

distribution of Y given x. The central point is that the overdispersion parameter is

common across x.

Our nonparametric analogue is defined as follows. We assume we know the para-

metric form for η that depends on parameters β = (β0, . . . , βp), for example a linear

regression or other generalized linear model. We also assume the xi values are fixed and

known. In the null family, the random variables Y1, . . . , Yn are formed by

β ∼ π(β)

θi = η(xi)
Yi|θi ∼ Dθi

(7)

This can be placed in the same formulation as in Section 4.1 by

β ∼ π(β)

θi = η(xi)
G ∼ DPM(G∗, ω)

V1, . . . , Vn ∼ G
Yi = D−1

θi
(Φ(Vi))

(8)

where the null model (7) can be acquired by setting G = Φ, the standard normal

distribution function. As in Section 4.1, we estimate G nonparametrically using a

Dirichlet Mixture of Normals.

Sampling in this context is similar to the method for continuous data described

in Section 4.1. At each iteration of a Markov Chain, we update G using fixed β by

transforming the Yi to Vi and then using the update step in algorithm 2 of Neal (2000),

and then we update β using fixed G using the Metropolis algorithm. These steps become

more complicated when DΘ is a discrete distribution because Vi is known only up to

the interval where D−1
θi

(Φ(Vi)) = Yi. This can be handled using the interval censoring

approach taken in Hanson and Johnson (2004), which we do not discuss here.

Since we have a covariate x, we are interested in estimating the KL information

function

κ(x) = inf
θ∗∈Θ

KL(FY |θ=η(x),G, Dθ∗)

where FY |θ=η(x),G is as in Equation (4). Note that we require a separate value of KL for

each x because given perturbation functions may have more of an affect for some values

of x than others. For example, Let consider a Poisson regression where Dθ = Poi(θ),
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η(x) = exp{x− 2}, and G = Uni(−3, 3). In this case κ(2) = 0.234 while κ(4) = 0.575.

Thus, the KL information depends on x and the quality of the fit, in terms of KL

information, depends on the location of the observed x values.

Note an exception to this phenomenon (the dependence of κ on x) occurs when

Dθ is the normal family. Equation (6) in Section 4.1 still holds, resulting in κ(x) =

infθ∗ KL(G,Dθ∗) for all x.

To examine the fit of regression data, we ran simulations using simple linear re-

gression. For each simulation we used evenly spaced Xi values over the range 0 to 5.

We have parameters β0 = 2, β1 = 3, and σ2
reg = 1 (the regression variance, with the

subscript intended to differentiate σ2
reg from the variances used in generating G) and

the model is

(β0, β1, σ
2
reg) ∼ π(β0, β1, σ

2
reg)

θi = (θµ, θσ) = (β0 + β1xi, σreg)
G ∼ DPM(G∗, ω)

V1, . . . , Vn ∼ G
Yi = D−1

θi
(Φ(Vi))

(9)

In generating our simulations, we used the same five G distributions from Table 3

in Section 4.1 and the same samples sizes (30, 100, and 500). We also used the same

simulated V1, . . . , Vn as in Section 4.1. While this does reduce the number of independent

samples used in this paper, it also allows us to see the direct effect of estimating the

regression parameters. As with the continuous data, we ran 1000 iterations of burn-in

and 10000 iterations were used to estimate the posterior distribution. Figure 8 shows

the data used in the regression simulations with n = 500 (for smaller samples, of course,

the pattern is similar).

The results are described in Table 5 and Figures 9-13. Note that as stated above,

κ(x) is constant across all x for normal regression data and thus we report the common

κ.

The results for the regression data are similar to that for continuous iid data. There

is a tendency for slightly wider intervals, but not a dramatic one. For normal G the

value of κ appears to tend toward 0, and for the remaining G we notice a mode at 0

for n = 30 but the distribution has separated from κ = 0 for all other situations except

Uniform n = 100 (recall we know the uniform distribution is difficult to estimate using

a Dirichlet Mixture of Normals). As with the continuous iid data, all the 95% HPD

regions contain the exact answer except for the uniform G intervals.

5 Discussion

The Dirichlet process method for evaluating fit described in this paper provides a method

for quantifying the inaccuracy of a discrete distribution. Theorem 3.2 demonstrates
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Distribution n Mean κ 95%HPD True value

A - Normal 30 0.0331 (0.0000,0.1382) 0.0000

A - Normal 100 0.0189 (0.0000,0.0753) 0.0000

A - Normal 500 0.0058 (0.0000,0.0224) 0.0000

B - Mixture 30 0.0383 (0.0000,0.1500) 0.0959

B - Mixture 100 0.0592 (0.0003,0.1540) 0.0959

B - Mixture 500 0.0618 (0.0315,0.1016) 0.0959

C - Skew 30 0.0447 (0.0000,0.1801) 0.1188

C - Skew 100 0.1599 (0.0276,0.4781) 0.1188

C - Skew 500 0.1293 (0.0793,0.1986) 0.1188

D - Uniform 30 0.0308 (0.0000,0.1277) 0.1763

D - Uniform 100 0.0217 (0.0000,0.0694) 0.1763

D - Uniform 500 0.0509 (0.0260,0.0807) 0.1763

E - t3 30 0.0514 (0.0000,0.2044) 0.1035

E - t3 100 0.0981 (0.0106,0.2982) 0.1035

E - t3 500 0.1213 (0.0535,0.2604) 0.1035

Table 5: Results for the Simple Normal Linear Regression data. With the exception of

the uniform, known to be a problem, all HPD regions contain the true answer.

that the method can provide a consistent estimate of infθKL(P,Dθ). Note that the

theoretical results are in need of at least one key improvement. The results are for single

Dirichlet Processes, not mixtures of Dirichlet Processes. This would at first seem an

“easy” problem, since the mixture consists of a bivariate parameter (θ,γ). Simulations

indicate that the posterior distribution P (θ, γ|y) converges setwise to a nondegenerate

distribution, which would seem sufficient to invoke general convergence theorems such as

those in Chapter 11, Section 4 of Royden (1988) (these involve convergence of
∫
fndµn

as opposed to the more common
∫
fndµ or

∫
fdµn).

By providing the entire posterior distribution of d(P,Dθ), information on lack of

fit may be communicated without drawing lines in the sand concerning what makes

a “large” model error, a property that is useful in situations where defining a “large”

model error is either difficult or controversial. In addition, the posterior distribution

allows easy calculation of Bayes Factors for testing whether the distance is less than

any particular value.

Appendix - Proofs of Theoretical Results

The notation in this section is the same as that introduced in Section 3.2.
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Proof of Theorem 3.2

Lemma 5.1

E[p̃in] =
npi + γqi
n+ γ

V [p̃in] =
n(n− 1)pi(1 − pi) + nγpi(1 − qi) + nγqi(1 − pi) + γ2qi(1 − qi)

(n+ γ)2(n+ γ + 1)
+
npi(1 − pi)

(n+ γ)2

V [p̃in] ≤ (2 + γ)pi + (γ + γ2)qi
n

Proof:

np̂in ∼ Bin(n, pi)

and

p̃in|p̂in ∼ Beta(np̂in + γqi, n(1 − p̂in) + γ(1 − qi))

Therefore

E[p̃in] = E[E[p̃in|p̂in]] = E

[
np̂in + γqi
n+ γ

]
=
npi + γqi
n+ γ

and

V [p̃in] = E[V [p̃in|p̂in]] + V [E[p̃in|p̂in]]

= E

[
(np̂in + γqi)(n(1 − p̂in) + γ(1 − qi))

(n+ γ)2(n+ γ + 1)

]
+ V

[
np̂in + γqi
n+ γ

]

= E

[
n2p̂in(1 − p̂in) + nγp̂in(1 − qi) + nγqi(1 − p̂in) + γ2qi(1 − qi)

(n+ γ)2(n+ γ + 1)

]
+
npi(1 − pi)

(n+ γ)2

=
n(n− 1)pi(1 − pi) + nγpi(1 − qi) + nγqi(1 − pi) + γ2qi(1 − qi)

(n+ γ)2(n+ γ + 1)
+
npi(1 − pi)

(n+ γ)2
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Note one can place an upper bound on the variance by

V [p̃in] ≤ n(n− 1)pi + nγ(pi + qi) + γ2qi
(n+ γ)2(n+ γ + 1)

+
npi

(n+ γ)2

≤ n2pi + nγ(pi + qi) + γ2qi
n3

+
npi
n2

=
2pi
n

+
γ(pi + qi)

n2
+
γ2qi
n3

≤ (2 + γ)pi + (γ + γ2)qi
n

Proposition 5.2 For any ε > 0, limn Pn(KL(P̃ ,D) > KL(P,D) + ε) = 0.

Proof: Using Chebychev’s inequality and lemma 5.1, for all i and n,

Pn(B
c
in) = Pn

(
p̃in > pi +

bi
cn

)
= Pn

(
p̃in − npi + γqi

n+ γ
> pi +

bi
cn

− npi + γqi
n+ γ

)

≤ Pn

(∣∣∣∣p̃in − npi + γqi
n+ γ

∣∣∣∣ >
bi
cn

+
γ(pi − qi)

n+ γ

)
≤ V [p̃in][

bi

cn
+

γ(pi−qi)
n+γ

]2 ≤ (2 + γ)pi + (γ + γ2)qi

n
[
bi

cn
+

γ(pi−qi)
n+γ

]2

Let N be an integer such that (γcn)/(n + γ) < 1 for all n > N and qηi − qi > (qηi /2)

for all i > N (such an N exists by the construction of cn and the fact that Q is a

distribution with limi qi = 0). Then

Pn(Acn) ≤
N∑

i=0

Pn(Bcin) +

∞∑

i=N+1

Pn(B
c
in)

≤
N∑

i=0

Pn(B
c
in) +

c2n
n

∞∑

i=N+1

(2 + γ)pi + (γ + γ2)qi[
bi +

γcn(pi−qi)
n+γ

]2

≤
N∑

i=0

Pn(Bcin)+
c2n
n




∑

i>N :pi≥qi

(2 + γ)pi + (γ + γ2)qi[
bi +

γcn(pi−qi)
n+γ

]2 +
∑

i>N :qi>pi

(2 + γ)pi + (γ + γ2)qi[
bi +

γcn(pi−qi)
n+γ

]2



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≤
N∑

i=0

Pn(B
c
in) +

c2n
n




∑

i>N :pi≥qi

(2 + 2γ + γ2)pi[
pηi +

γcn(pi−qi)
n+γ

]2 +
∑

i>N :qi>pi

(2 + 2γ + γ2)qi[
qηi +

γcn(pi−qi)
n+γ

]2




Using the assumptions defining N , we find this quantity is

≤
N∑

i=0

Pn(B
c
in) +

(2 + 2γ + γ2)c2n
n


 ∑

i>N :pi≥qi

p1−2η
i + 4

∑

i>N :qi>pi

q1−2η
i




The bound on the last term in the brackets follows from

qηi +
γcn
n+ γ

(pi − qi) = qηi +
γcn
n+ γ

pi −
γcn
n+ γ

qi >
qηi
2
> 0

The first sum converges to 0 as n increases because it involves a finite number of pa-

rameters p0, . . . , pN . Returning the definition of Bin, each p̃in converges to pi at rate

n−1/2, which is faster than 1/cn by assumption. In addition, the two sums inside the

bracket are finite by assumption. Therefore, the entire quantity tends to 0 as n increases,

resulting in Pn(An) tending to 1 as n increases. When An occurs

KL(P̃ ,D) =

∞∑

i=0

p̃in ln
p̃in
di

≤
∞∑

i=0

[
pi +

bi
cn

]
ln

[
pi + bi

cn

di

]
=

∞∑

i=0

[
pi +

bi
cn

]
ln

[
pi
di

(
1 +

bi
cnpi

)]

=
∑

pi ln
pi
di

+
∑

pi ln

(
1 +

bi
cnpi

)
+

1

cn

∑
bi ln

pi
di

+
1

cn

∑
bi ln

(
1 +

bi
cnpi

)

≤ KL(P,D) +
1

cn

[∑
bi +

∑
bi ln

pi
di

+
∑

bi ln

(
1 +

bi
pi

)]

The three sums in the brackets are finite by assumption, hence for all ε,

lim
n
Pn(KL(P̃ ,D) > KL(P,D) + ε) = 0

Proposition 5.3 For any ε, limn Pn(KL(P̃n, D) ≥ KL(P,D) − ε) = 1.
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Proof: Since KL(P,D) is finite by assumption, for any ε we may find a k such that∑k
i=0 pi ln(pi/di) > KL(P,D)− ε/2 and

∑∞
i=k+1 di < eε/2. Let kn = 1−∑k

i=0 p̃in and

define

CKLn =

k∑

i=0

p̃in ln(p̃in/di) +

∞∑

i=k+1

kndi ln(kndi/di)

By Kullback (1968, page 13),

KL(P̃ ,D) ≥ CKLn =
∑k

i=0 p̃in ln(p̃in/di) + kn ln kn
∑∞

i=k+1 di
≥ ∑k

i=0 p̃in ln(p̃in/di) − (1/e)
∑∞
i=k+1 di

≥ ∑k
i=0 p̃in ln(p̃in/di) − (ε/2)

(10)

Since p0, . . . , pk are a finite set of parameters and each p̃in converges almost surely to

pi,

lim
n
Pn

(
k∑

i=0

p̃in ln(p̃in/di) ≥
k∑

i=0

pi ln(pi/di) − ε/2

)
= 1

Combining this with the Equation (10)

lim
n
Pn(KL(P̃ ,D) ≥ KL(P,D) − ε) = 1

Proof of Theorem 3.3

The proof proceeds analogously to the proof of Theorem 3.2. The bounds in Lemma

5.1 on the mean and variance of p̃in may be used for p̂in since 1) p̂in is unbiased for pi
and 2) V [p̂in] ≤ 2pi/n, which is less than the variance bound for p̃in. Thus, the bounds

used in Proposition 5.2 may be used for the empirical distribution P̂ . The proof of

Proposition 5.3 is identical with p̃in replaced with p̂in.

LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.
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Figure 1: Probability Plots and Posterior distributions of κ for the Prussian Horsekicking

and Epilepsy datasets.
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Figure 2: The five G distributions used in the simulations. The G densities are shown

in black, while the closest (in KL) normal densities are shown in red.
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Figure 4: Simulated posterior distributions of κ for iid data using “B=Mixture” for G.
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Figure 5: Simulated posterior distributions of κ for iid data using “C=Skew” for G.
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Figure 6: Simulated posterior distributions of κ for iid data using “D=Uniform” for G.
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Figure 7: Simulated posterior distributions of κ for iid data using “E=t3” for G.
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Figure 8: The data used for the regression simulations with n = 500.
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Figure 9: Simulated posterior distributions of κ for the regression data using

“A=Normal” for G.

Regression Mixture n=30

KL Information

De
ns

ity

0.00 0.10 0.20 0.30

0
10

20
30

40
50

60

Regression Mixture n=100

KL Information

De
ns

ity

0.00 0.10 0.20 0.30

0
5

10
15

Regression Mixture n=500

KL Information

De
ns

ity

0.00 0.10 0.20 0.30

0
5

10
15

20
25

Figure 10: Simulated posterior distributions of κ for the regression data using

“B=Mixture” for G.
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Figure 11: Simulated posterior distributions of κ for the regression data using “C=Skew”

for G.
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Figure 12: Simulated posterior distributions of κ for the regression data using

“D=Uniform” for G.
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Figure 13: Simulated posterior distributions of κ for the regression data using “E=t3”
for G.


