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In this paper we offer a unified approach to the problem of nonpara-
metric regression on the unit interval. It is based on a universal, honest and
nonasymptotic confidence region 4, which is defined by a set of linear in-
equalities involving the values of the functions at the design points. Interest
will typically center on certain simplest functions in «+, where simplicity
can be defined in terms of shape (number of local extremes, intervals of con-
vexity/concavity) or smoothness (bounds on derivatives) or a combination of
both. Once some form of regularization has been decided upon the confidence
region can be used to provide honest nonasymptotic confidence bounds which
are less informative but conceptually much simpler.

1. Introduction. Nonparametric regression on the unit interval is concerned
with specifying functions f, which are reasonable representations of a data set
Yo ={(t,y(#)),i =1,...,n}. The design points # are assumed to be ordered.
Here and below we use lower case letters to denote generic data and upper case let-
ters to denote data generated under a specific stochastic model. The first approach
to the problem used kernel estimators with a fixed bandwidth [Watson (1964)] but
since then many other procedures have been proposed. We mention splines [Green
and Silverman (1994), Wahba (1990)], wavelets [Donoho and Johnstone (1994)],
local polynomial regression [Fan and Gijbels (1996)], kernel estimators with local
bandwidths [Wand and Jones (1995)] very often with Bayesian and non-Bayesian
versions.

The models on which the methods are based are of the form

(1) Y(1) = f(1) +o()e), 1 €[0,1],

with various assumptions being made about o (¢), the noise () as well as the
design points {t1, ..., t,}. We shall restrict attention to the simplest case

2 Y)=f@)+0ZQ), t €10, 1],
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where Z is Gaussian white noise and the #; are given by #; =i/n. We mention that
the same ideas can be used for the more general model (1) and that robust versions
are available. The central role in this paper is played by a confidence region A,
which is defined below. It specifies all functions fn for which the model (2) is
consistent (in a well-defined sense) with the data y,. By regularizing within +4,
we can control both the shape and the smoothness of a regression function and
provide honest nonasymptotic confidence bounds.

The paper is organized as follows. In Section 2 we define the confidence region
Ay and show that it is universal, honest and nonasymptotic for data generated un-
der (2). In Section 3 we consider shape regularization, in Section 4 regularization
by smoothness and the combination of shape and smoothness regularization. Fi-
nally, in Section 5 we show how honest and nonasymptotic confidence bounds can
be obtained both for shape and smoothness regularization.

2. The confidence region .

2.1. Nonparametric confidence regions. Much attention has been given to
confidence sets in recent years. These sets are often expressed as a ball centred at
some suitable estimate [Li (1989), Hoffmann and Lepski (2002), Baraud (2004),
Cai and Low (2006), Robins and van der Vaart (2006)] with particular emphasis on
adaptive methods where the radius of the ball automatically decreases if f is suffi-
ciently smooth. The concept of adaptive confidence balls is not without conceptual
difficulties as the discussion of Hoffmann and Lepski (2002) shows. An alterna-
tive to smoothness is the imposition of shape constraints such as monotonicity and
convexity [Diimbgen (1998, 2003), Diimbgen and Spokoiny (2001), Diimbgen and
Johns (2004), Diimbgen (2007)]. Such confidence sets require only that f satisfy
the shape constraint which often has some independent justification.

We consider data Y,, = Y,,(f) generated under (2) and limit attention to func-
tions f in some family %;,,. We call a confidence set C, (Y, (f), @) exact if

3) P(feCy(Yu(f), @)=« forall f € %,
honest [Li (1989)] if

4 P(feC(Yu(f), @) >a forall f € %,
and asymptotically honest if

5) lh“ilo%fflgg P(feCi(Yn(f). @) >a
holds, but it is not possible to specify the ng for which the coverage probability
exceeds o — € for all n > ng. Finally, we call C,(Y,(f), «) universal if £, =

{f:f:10,1] > R}.
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2.2. Definition of A,. The confidence region A, we use was first given in
Davies and Kovac (2001). It is constructed as follows. For any function g: [0, 1] —
R and any interval [ = [t;, #] of [0, 1] with j < k we write

(6) w(yﬂ’g’l) (tl

i 000 -

tiel

where || denotes the number of points #; in /. With this notation,

) n = An (s Ty 0, T) = {g:n;gg w(¥ns 2. D] <07 logn},

where Z,, is a family of intervals of [0, 1] and for given « the value of 7, = 7, ()

is defined by
< 10gn> =a.

If the data y, were generated under (2), then (8) implies that P(f € A,) =«
with no restrictions on f so that #, is a universal, exact and nonasymptotic «-
confidence region. We mention that by using an appropriate norm [Mildenberger
(2008)] A, can also be expressed as a ball centered at the observations y,,.

A function g belongs to #4,, if and only if its vector of evaluations at the design
points (g(t1), ..., g(t;)) belongs to the convex polyhedron in R" which is defined

by the linear inequalities
1
— < 0y./ Ty logn, 1 el,.
m —= Uﬂ n gn n

> () — g(1)

tiel
The remainder of the paper is in one sense nothing more than exploring the con-
sequences of these inequalities for shape and smoothness regularization. They en-
force both local and global adaptivity to the data and they are tight in that they
yield optimal rates of convergence for both shape and smoothness constraints.

In the theoretical part of the paper we take Z,, to be the set of all intervals of the
form [#;, ¢;]. For this choice of #,, checking whether g € 4, for a given g involves
about n2/2 linear inequalities. Surprisingly there exist algorithms which allow
this to be done with algorithmic complexity O(nlogn) [Bernholt and Hofmeis-
ter (2006)]. In practice we restrict Z,, to a multiresolution scheme as follows. For
some A > 1, we set

Lo ={[t1j.0) tu(jo ) LG ) = L(J — DAR 1],
9) u(j, k) =min{| ja* ], n},
j=1,...,na ", k=1,...,[logn/logl}.

> Z)

€Ty teI

(8) (max

For any A > 1, we see that Z,, now contains O (n) intervals. For A = 2, we get the
wavelet multiresolution scheme which we use throughout the paper when doing the
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calculations for explicit data sets. If 7, is the set of all possible intervals it follows
from a result of Diimbgen and Spokoiny (2001) that lim,—, o 7, = 2 whatever
the value of «. On the other hand, for any Z,, which contains all the degenerate
intervals [7;, ;] (as will always be the case), then lim,_, o 7, > 2 whatever o.
In the following, we simply take 7, = 3 as our default value. This guarantees a
coverage probability of at least @ = 0.95 for all samples of size n > 500 and it
tends rapidly to one as the sample size increases. The exact asymptotic distribution
of maxj<;<j<n (le:l. Z1)?/(j —i + 1) has recently been derived by Kabluchko
(2008).

As it stands, the confidence region (7) cannot be used as it requires . We use
the following default estimate:

(10) oy = median(|y(t2) — y(t)l. ..., [y(ta) = y(ta—1)])/ (@7 (0.75)V2),

where ®~! is the inverse of the standard normal distribution function ®. It is
seen that oy, is a consistent estimate of o for white noise data. For data generated
under (2), o, is positively biased and consequently the coverage probability will
not decrease. Simulations show that

(11) P(f € Ay(Yn,Zy,04,3)) >0.95
for all n > 500 and
(12) nli)rroloir}fP(feAn(Yn,In,on,3))=1.

In other words, #4,, is a universal, honest and nonasymptotic confidence region for
f. To separate the problem of specifying the size of the noise from the problem of
investigating the behavior of the procedures under the model (2) we shall always
put o, = o for theoretical results. For real data and in all simulations, however, we
use the o, of (10).

The confidence region +4,, can be interpreted as the inversion of the multiscale
tests that the mean of the residuals is zero on all intervals I € Z,,. A similar idea
is to be found in Diimbgen and Spokoiny (2001) who invert tests to obtain con-
fidence regions. Their tests derive from kernel estimators with different locations
and bandwidths where the kernels are chosen to be optimal for certain testing
problems for given shape hypotheses. The confidence region may be expressed
in terms of linear inequalities involving the weighted residuals with the weights
determined by the kernels. The confidence region we use corresponds to the uni-
form kernel on [0, 1]. Because of their multiscale character all these confidence
regions allow any lack of fit to be localized [Davies and Kovac (2001), Diimbgen
and Spokoiny (2001)] and under shape regularization they automatically adapt to
a certain degree of local smoothness. Universal, exact and nonasymptotic confi-
dence regions based on the signs of the residuals sign(y(t;) — g(#;)) rather than
the residuals themselves are to be found implicitly in Davies (1995) and explicitly
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in Diimbgen (2003), Diimbgen (2007) and Diimbgen and Johns (2004). These re-
quire only that under the model the errors e(¢) be independently distributed with
median zero. As a consequence, they do not require an auxiliary estimate of scale
such as (10). Estimates and confidence bounds based on such confidence regions
are less sensitive but much more robust.

3. Shape regularization and local adaptivity.

3.1. Generalities. In this section we consider shape regularization within the
confidence region A,. Two simple possibilities are to require that the function be
monotone or that it be convex. Although much has been written about monotone
or convex regression, we are not concerned with these particular cases. Given any
data set y,, it is always possible to calculate a monotone regression function, for
example, monotone least squares. In the literature the assumption usually made is
that the f in (2) is monotone and then one examines the behavior of a monotone re-
gression function. Although this case is included in the following analysis, we are
mainly concerned with determining the minimum number of local extreme points
or points of inflection required for an adequate approximation. This is STEP 2 of
Mammen (1991). We shall investigate how pronounced a peak or a point of inflec-
tion must be before it can be detected on the basis of a sample of size n. These
estimates are, in general, conservative but they do reflect the real finite sample be-
havior of our procedures. We shall also investigate rates of convergence between
peaks and between points of inflection. We show that these are local in the strong
sense that the rate of convergence at a point ¢ depends only on the behavior of f
in a small neighborhood of ¢. Furthermore, we show that in a certain sense shape
regularization automatically adapts to the smoothness of f. All the calculations
we perform use only the shape restrictions of the regularization and the linear in-
equalities which determine +4,. The mathematics are extremely simple, involving
no more than a Taylor expansion, and are of no intrinsic interest. We give one such
calculation in detail and refer to the Appendix for the remainder.

3.2. Local extreme values. The simplest form of shape regularization is to
minimize the number of local extreme values subject to membership of +A,. We
wish to determine this minimum number and exhibit a function in +4, which has
this number of local extreme values. This is an optimization problem and the taut
string algorithm of Davies (1995) and Davies and Kovac (2001) was explicitly
developed to solve it. A short description of the algorithm used in Kovac (2007)
is given in Appendix A.3. We analyze the properties of any such solution and, in
particular, the ability to detect peaks or points of inflection. To do this we consider
data generated under the model (2) and investigate how pronounced a peak of the
generating function f of (2) must be before it is detected on the basis of a sample
of size n. We commence with the case of one local maximum and assume that it is
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located at f = 1/2. Let I, denote an interval which contains 1/2. For any f, in A,
we have

«/II_ > falt) > «/II_ 3 ft) —o\f3logn + o Z(1,),

tiel, tiel.
and hence
«/3logn —Z(1.)
13 (1) > — —
(13) maxf() |“;f() i
where
Z(Ie) = > Zw) 2N, 1).

V|Cte[

Let [; and I, be intervals to the left and right of I, respectively. A similar argument
gives

3logn + Z (1))
14 n tz = T, 1 +
(14) mmf() W |r§f(t) S
and
«/3logn+Z(Ir)
15 n\t;) = 1 *
(15) mmf(t) ME f @) A
If now
N/?,logn—Z(Ic)
|1|,e, NOA|
3logn + Z (1)
16 > +o )
(16) > max t;,f() T
3logn + Z(1,)
tl + b
I IE s VT

then any function in +4, must have a local maximum in /; U I. U I,. The ran-
dom variables Z(I.), Z(I;) and Z([,) are independently and identically distrib-
uted N (0, 1) random variables. With probability at least 0.99 we have Z(/.) >
—2.72,Z(1l;) <2.72 and Z(1I,) <2.72, and hence we can replace (16) by

Zf( Vo v/3logn+2.72

|1 = N
1 J3Togn +2.72
(17) >max] — 3 f) + o Y0

il = NI
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1 V31 2.72
> f@) Loyoen o el
L5 NI

If we now regularize by considering those functions in «+, with the minimum
number of local extreme values we see that this number must be at least one. As
f itself has one local extreme value and belongs to +, with probability rapidly
approaching one we see that, with high probability, the minimum number is one
and that this local maximum lies in ; U I. U I,..

Condition (17) quantifies a lower bound for the power of the peak so that it
will be detected with probability of at least 0.94 on the basis of a sample of size
n > 500. The precision of the location is given by the interval [; U I. U I,. We
apply this to the specific function

(18) Fot) = b((r — 1/2)/0.01)
where

_|L 7] <1,
(19 bty = {0, otherwise.

We denote by f;; afunction in +A, which has the smallest number of local extreme
values. As the function f;, of (18) lies in +4,, with probability rapidly tending to one
and has exactly one local extreme, it follows than any such f,° must have exactly
one local extreme. Suppose we wish to detect the local maximum of f;, with a
precision of § = 0.01. As all points in the interval [0.49, 0.51] are in a sense the
same local maximum, we require the local maximum of f;; to lie in the interval
[0.48, 0.52]. A short calculation with o = 1 shows that the smallest value of »n for
which (17) is satisfied is approximately 19500. A small simulation study using the
taut string resulted in the peak being found with the prescribed accuracy in 99.6%
of the 10000 simulations.

We now consider a function f which has exactly one local maximum situated
in t = 1/2 and for which

(20) —e2<fPU)<—c1 <0, tel,

for some open interval Iy which contains the point t = 1/2. We denote by f,*
a function in +, which minimizes the number of local extremes. For large n,
any such function f,* will have exactly one local extreme value which is a local
maximum situated at ;¥ with

Q1) I —1/2] = 0f<<1°f”>1/5>.

An explicit upper bound for the constant in O in terms of ¢; and ¢ of (20) is
available. We also have

1 2/5
22) £ = £(1/2) - of<( °f”> )
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with again an explicit constant available. In the other direction,

(23) £ < f(1/2) +o(,/3logn +2.4).

The proofs are given in the Appendix.

More generally, suppose that f has a continuous second derivative and « local
extreme values situated at 0 < ¢{ <--- <t < 1 with f(z)(t,f) #0,k=1,...,k.1If
i € A, now denotes a function which has the smallest number of local extreme
values of all functions in +4, it follows that, with probability tending to one, f,*
will have « local extreme values located at the points 0 <7 < --- < 1% < 1 with

1 1/5
(24) |r:£—rf|=0f(< Og") ) k=1,....k.
n
Furthermore, if #{ is the position of a local maximum of f then
logn\ %/
25) ran = rap - oy ((24) )
whereas, if #; is the position of a local minimum of f then
logn 2/5
(26) s = fap+or((24) )
In the other direction, we have
@7 £ < £ +o(/3logn +/3log8 + 1)),
(28) FE@) = ) — o (/3logn +/3log8 + ).

More precise bounds cannot be attained on the basis of monotonicity arguments
alone.

3.3. Between the local extremes. We investigate the behavior of £ between
the local extremes where f,° is monotone. For any function g : [0, 1] — R we
define

(29) Igll7.00 =sup{lg(®)|:1 € I}.

Consider a point ¢ = i /n between two local extreme values of f and write I;, =
i/n, (i +k)/n] with k > 0. Then,

3logn}

(30)  fi/n)— f(i/n) < min {Sl}f(”ll,,;k,oﬁ% P

1<k<k}"
where k" denotes the largest value of k for which f, is nondecreasing on I, .
It follows from (30) and the corresponding inequality on the left that as long as
f,F has the correct global monotonicity behavior its behavior at a point ¢ with
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FW () # 0 depends only on the behavior of f in a small neighborhood of ¢. In
particular, we have asymptotically

1/3

Furthermore, if f m(t) = 0 on a nondegenerate interval I = (1, t,] between two
local extremes, then for #; <t < ¢, we have I} = [#,t] and I} = [t,t,] which
results in

(32) lf@) = £/ (@®)] < S (log”)l/z

" T min{/f — 6,/ — 1)\ n '
The same argument shows that if

1f() = )] < Lit—s|°
with 0 < 8 < 1, then
(33 1f@®) = fF®)] <LV (o)) PICFED (logn /) 1P HD
where
1 \l/@B+D
c < (2B + 1)3P/@F+D (—) <4.327.
g+1

Apart from the value of ¢, this corresponds to Theorem 2.2 of Diimbgen and
Spokoiny (2001).

3.4. Convexity and concavity. We now turn to shape regularization by con-
cavity and convexity. We take an f which is differentiable with derivative f(
which is strictly increasing on [0, 1/2] and strictly decreasing on [1/2, 1]. We put
I, =[1/2—k/n,1/2+k/n], I,ik =y —k/n,ty+k/n]withty+k/n < 1/2—k/n
and I,llk =[t, —k/n,t, +k/n] with t, —k/n > 1/2 + k/n. Corresponding to (17),
if f satisfies

min £V (t)/n — (20 (,/3logn +2.72/+/2))/ k>

c
rel;

(34) > maX{maf FD@) /n+ (20 (/3logn +2.72/v/2)) /K32,

tel,

M) 3/2
gif (t)/n + (20 (;/3logn +2.72/+/2)) / k }

then it follows that with probability tending to at least 0.99 the first derivative of
every differentiable function fn € A, has at least one local maximum. Let £ be
a differentiable function in 4, whose first derivative has the smallest number of
local extreme values. Then, as f belongs to #4, with probability tending to one,
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it follows that f,; D has exactly one local maximum with probability tending to at
least 0.99. Suppose now that f has a continuous third derivative and x points of
inflection located at 0 < tl - < tl with

[P =0 and O 0, j=1,....k

If £ has the smallest number of points of inflection in #4, then, as f € A, with
probability tending to one, it follows that with probability tending to one f," will
have « points of inflection located at 0 < t:i < .-+ < t* < 1. Furthermore, corre-
sponding to (24) we have

i i logn 7
(35) |tnk—tk|=0f<< > > k=1,... k.
n

Similarly, if t,i is a local maximum of V) then corresponding to (25) we have

2/7
36) FrO@Eey > FD ey — of((l"f”) )

and if t,i is a local minimum of () then corresponding to (26) we have

2/7
37) £EO@ < FO@) + 0 f((lof”) )

3.5. Between points of inflection. Finally, we consider the behavior of f," be-
tween the points of inflection where it is then either concave or convex. We con-
sider a point ¢ = i/n and suppose that f,* is convex on I, = [i/n, (i + 2k)/n]
Corresponding to (30) we have

(38 frVa/m) — fO/m) < min {_|| POy ot dom [ }

1<k<k}"

where k" is the largest value of k such that f, is convex on [i/n, (i + 2k)/n].
Similarly, corresponding to (77) we have

39 fDa/m) - f*(l)(l/n)<1m1n {—||f<2)|}1’ +4on

3logn
k*l

k3
where Ilk =[i/n —2k/n,i/n] and k*l is the largest value of k for which f,* is
convex on /! e I f @ (1) # 0 we have corresponding to (31)

1/5
@ OO - 0] <4360 A0 (2EE)
n

as n tends to infinity. If f @ () = 0 on the nondegenerate interval I = [#, ], then
for #; <t < t, we have corresponding to (32)
430 (log n ) 172

min{(t — 1;)3/2, (1, — 1)3/?}

@O0 - Do) <

n
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The results for f,; itself are as follows. For a point ¢ with f @ (t) # 0 and an
interval I}, = [t,t + 2k/n] where f, is convex we have

. k\ (logn /5 2 ) 3logn
fn(t)Sf(t)—I-Cl(f,t)(;)( n) + o317y 00 40y =

where ¢ (f, 1) =4.3602/3| f@(1)|3/3. If we minimize over k and repeat the argu-
ment for a left interval we have corresponding to (31)

2/5
(42) i @) — f()] < 11.5804/5]f(2)(t)|1/5(10ﬂ) ‘
n

Finally, if f @ (t) = 0 for ¢ in the nondegenerate interval [#;, ¢,] we have corre-
sponding to (32) for f; <t < ¢,

43 (t Nl < o oy
(43) |fn()—f()|_min{m,m}( n ) '

If the derivative f(1 of f satisfies | f(V(r) — FD(s)| < L|r —s|P with0 < B <1,
then corresponding to (33) we have

B/(2B+3)
£ 0@ — FD (1)) < cL @B+ (g 281+ <1"ﬂ>
n
with

2B \3/CH+3)
) <8.78.

6+/3\ (B+2)/2B+3)
c<2f (—) + 443 (—
28 A 6+/3

There is, of course, a corresponding result for f," itself.
4. Regularization by smoothness.

4.1. Minimizing total variation. We define the total variation of the kth deriv-
ative of a function g evaluated at the design point t; =i /n by

n

(44) V(g = > |A®Dei/n))|. k=0,
i=k+2

where

45) A®D (g(i/n)) = AV (AW (g(i/n)))

with

AW (g(i/n)) =n(g(i/n) —g((i — 1)/n)).
Similarly, the supremum norm ||g®|| . is defined by

(46) lg® oo = mgx|A<’<>(g(z'/n>)|.
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Minimizing either TV(gk ) or || g(k) lco Subject to g € A, leads to a linear program-
ming problem. Minimizing the more traditional measure of smoothness

1
f g® 1) dr
0

subject to g € A, leads to a quadratic programming problem which is numeri-
cally much less stable [cf. Davies and Meise (2008)] so we restrict attention to
minimizing TV (g") or |g%® | so.

Minimizing the total variation of g itself, kK = 0, leads to piecewise constant so-
lutions which are very similar to the taut string solution. In most cases the solution
also minimizes the number of local extreme values but this is not always the case.
The upper panel of Figure 1 shows the result of minimizing 7V(g) for the Doppler
data of Donoho and Johnstone (1994). It has the same number of peaks as the taut
string reconstruction. The lower panel of Figure 1 shows the result of minimizing
TV(gD). The solution is a linear spline. Figure 1 and the following figures were
obtained using the software of Kovac (2007). Just as minimizing 7V (g) can be
used for determining the intervals of monotonicity so can we use the solution of
minimizing 7V (g") to determine the intervals of concavity and convexity. Mini-
mizing TV(g®) or ||g® || o for larger values of k leads to very smooth functions,
but the numerical problems increase.

4.2. Smoothness and shape regularization. Regularization by smoothness
alone may lead to solutions which do not fulfill obvious shape constraints. Fig-
ure 2 shows the effect of minimizing the total variation of the second derivative
without further constraints and the minimization with the imposition of the taut
string shape constraints.

4.3. Rates of convergence. Let f, be such that

F(2 2
(47) 17710 = 18Pl V& € An.

For data generated under (2) with f satisfying || f®|ls < 00 it follows that, with
probability rapidly tending to one,

@ 17200 = 15
A Taylor expansion and a repetition of arguments already used leads to

£ (i ; logn\?/3
(49) | fali/n) — f(i/n)] <3.742] @] 3504/5( 5 )

on an interval

[0.58623(ogm)' 2 /(| f P20 %), 1 = 0.58052 3 (logm) /2 /(| £ P20 %)]
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1.0
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0.0

F1G. 1. Minimization of TV(g) (upper panel) and TV(g(l)) (lower panel) subject to g € A, for a

noisy Doppler function.
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T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FI1G. 2. The minimization of the total variation of the second derivative with (solid line) and without
(dashed line) the shape constraints derived from the taut string. The solution subject to the shape
constraints was also forced to assume the same value at the local maximum as the unconstrained
solution.

with a probability rapidly tending to one. A rate of convergence for the first deriv-
ative may be derived in a similar manner and results in

(50) ai/m) — FOG/m)| < 4.251] F© ||1562/5(1°$)” i

on an interval
(21507 Qogm) /3 /(| £ 2| 2n"/%), 1 21565 0g 3/ (| £ O |20 9)].
5. Confidence bands.

5.1. The problem. Confidence bounds can be constructed from the confidence
region A, as follows. For each point #; we require a lower bound [b,(y,, t;) =
b, (t;) and an upper bound ub, (y,, t;) = ub,(t;), such that

(51) B (yn) =1{g:1by(yn, t;) < gt;) <uby(yn,t;),i=1,...,n}
is an honest nonasymptotic confidence region
(52) P(f € By(Yn(f)=a  forall feF,

for data Y, (f) generated under (2). In a sense, the problem has a simple solution.
If we put

(53) Iby (1) = y(t;) _Un\/310gnv ubn(ti):y(ti)+an\/3logn’
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then A, C B, and (52) for all holds with %, = { f|f :[0, 1] — oo}. Such universal
bounds are too wide to be of any practical use and are consequently not acceptable.
They can only be made tighter by restricting ¥, by imposing shape or quantitative
smoothness constraints. A qualitative smoothness assumption such as

(54) Fn={f:|f® s < oo}

does not lead to any improvement of the bounds (53). They can only be improved
by replacing (54) by a quantitative assumption such as

(55) Fa={f:1£P ] <60},
5.2. Shape regularization.

5.2.1. Monotonicity. As an example of a shape restriction we consider bounds
for nondecreasing approximations. If we denote the set of nonincreasing functions
on [0, 1] by

Mt ={g:g:[0,1] = R, g nondecreasing}
then there exists a nondecreasing approximation if and only if
(56) M N A, #0.

This is the case when the set of linear inequalities which define +4,, together with
g(ty) <--- < g(t,) are consistent. This is once again a linear programming prob-
lem. If (56) holds then the lower and upper bounds are given, respectively, by

(57 Ib,(1;) = min{g(5;): g € MT N A},
(58) uby (t;) =max{g(t;):g € MT N A,}.

The calculation of Ib,(¢;) and ub,, (t;) requires solving a linear programming prob-
lem and, although this can be done, it is practically impossible for larger sample
sizes using standard software because of exorbitantly long calculation times. If
the family of intervals Z, is restricted to a wavelet multiresolution scheme then
samples of size n = 1000 can be handled. Fast, honest bounds can be obtained as
follows. If g € M™ N s, then for any i and k with i + k < n it follows that

1 k
Y, (ti_;) —o,/3logn.
JirT g e eyl

From this we may deduce the lower bound

Vk+1g(5) =

1 & 3logn
(59) Iby (1) 205“223‘_1<k—“§0m"‘” —o )
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with the corresponding upper bound

: 1 & 3logn
(60) uby (t;) = O<Ilfl<llr}_i<m ;)Yn(ti'i-j) +o 1 )

Both these bounds are of algorithmic complexity O (n?). Faster bounds can be
obtained by putting

©61)  Iba(ty) a -—J——§§Y(t ) g | oen
;)= max i—j)—0 ,

T 0<0(k)<i—1 (k) +1 = ey 0(k) + 1

AL 3logn

62 bo(t) = mi S Yty oo

(62)  uby(1;) Og@%ﬁ%ni(@(k)—%l ;;% w(igj) +0 o1

where 0 (k) = [0 — 1] for some 6 > 1. These latter bounds are of algorithmic
complexity O (nlogn). The fast bounds are not necessarily nondecreasing, but can
be made so by putting

uby, (t;) = min(ub, (t;), ub, (ti+1)), i=n—1,...,1,
1D, (t;) = max(Ib, (1), Ib, (ti—1)), i=2,...,n.
The upper panel of Figure 3 shows data generated by
(63) Y(t) =exp(5t) +5Z(t)

evaluated on the grid t; =i/1000,i = 1,..., 100, together with the three lower
and three upper bounds with o replaced by o, of (10). The lower bounds are those
given by (57) with Z,, a dyadic multiresolution scheme, (59) and (61) with 6 = 2.
The times required for were about 12 hours, 19 seconds and less than one second,
respectively, with corresponding times for the upper bounds (58), (60) and (62).
The differences between the bounds are not very large: it is not the case that one
set of bounds dominates the others. The methods of Section 3 can be applied to
show that all the uniform bounds are optimal in terms of rates of convergence.

5.2.2. Convexity. Convexity and concavity can be treated similarly. If we de-
note the set of convex functions on [0, 1] by CT, then there exists a convex ap-
proximation if and only if

CtNA,#0.

Assuming that the design points are of the form #; = i/n this will be the case if
and only if the set of linear constraints

gltiv1) —g(ti) > g(t;) — g(ti—1), i=2,...,n—1,
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FI1G. 3. The function f(t) = exp(5t) degraded with N (0, 25) noise together with monotone confi-
dence bounds (upper panel) and convex confidence bounds (lower panel). The three lower bounds in
the upper panel are derived from (57), (59) and (61) and the corresponding upper bounds are (58),
(60) and (62). The lower bounds for the lower panel are (64), (68) and (70) and the corresponding
upper bounds (65), (66) and (69).
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are consistent with the linear constraints which define 4,. Again, this is a linear
programming problem. If this is the case then lower and upper bounds are given,
respectively, by

(64) Iby (t;) = min{g(;): g € CT N Ay},
(65) uby (i) = max{g(r;) :g € CT N Ay}
which again is a linear programming problem which can only be solved for rel-

atively small values of n. An honest but faster upper bound can be obtained by
noting that

k

g(i/n) < ﬁj;kg((i + j)/n), k<min(G —1,n—1i)

which gives rise to

k
66)  uby(t) = LS Y to 3l°g”>.

min P —
0<k<min(i—l,n—i)<2k +1 = 2k +1

A fast lower bound is somewhat more complicated. Consider a function f, € €+ N
A, and two points (i/n, f,(i/n)) and (i + k)/n, ub,y((i +k)/n)). As fu((i +
k)/n) < uby((i + k)/n) and fn is convex it follows that f,, lies below the line
joining (i /n, fn(z/n)) and (i + k)/n,ub,((i + k)/n)). From this and f,, € A,
we may derive a lower bound by noting

lbn(ti) =< lbn(ti: k)

1 J
= max (—. S V(i) — ubn (i) (G + 1)/ (2K) — o\/s’logn/j)

1<j=<k\ J 1=1

(67)

for all k, —i + 1 <k <n —i. An honest lower bound is therefore given by

(68) Ib,(t;) = max  [b,(t,k).
—i+1<k<n—i

The algorithmic complexity of ub, as given by (66) is O(n?) while that of the
lower bound (68) is O (1n?). Corresponding to (62) we have

0(k)
1
by (1) 0<9@0<g§%—hn—0<29(k)+-1jgggw) n(tis )
(69)
3logn
2B} Bl B
20(k) +1
and to (61)
(70) Ib,(t;) = max lb (t;,0(k)),

—i+1<6(k)<n
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where

lbn(ti) =< lbn (ti7 Q(k))
0(j)

(71) 159(j)59(k)(9(j); n(litj)

— ubp(tivo)(0() +1)/20(k)) —o/3 logn/9(j)>

with 6 (k) = |6¥ | for some 6 > 1. The algorithmic complexity of (69) is O (nlogn)
and that of (70) is O (n(logn)?).

The lower panel of Figure 3 shows the same data as in the upper panel but with
the lower bounds given by (64) with Z,, a dyadic multiresolution scheme, (68) and
(70) and the corresponding upper bounds (65), (66) and (69). The calculation of
each of the bounds (64) and (65) took about 12 hours. The lower bound (68) took
about 210 minutes, while (70) was calculated in less than 5 seconds. The lower
bound (64) is somewhat better than (68) and (70), but the latter two are almost
indistinguishable.

5.2.3. Piecewise monotonicity. We now turn to the case of functions which
are piecewise monotone. The possible positions of the local extremes can in the-
ory be determined by solving the appropriate linear programming problems. The
taut string methodology is, however, extremely good and very fast so we can use
this solution to identify possible positions of the local extremes. The confidence
bounds depend on the exact location of the local extreme. If we take the inter-
val of constancy of the taut string solution which includes the local maximum,
we may calculate confidence bounds for any function which has its local maxi-
mum in this interval. The result is shown in the top panel of Figure 4 where we
used the fast bounds (61) and (62), (61) and (62) with 6 = 1.5. If we use the
midpoint of the taut string interval as a default choice for the position of a local
extreme we obtain confidence bounds as shown in the lower panel of Figure 4.
The user can of course specify these positions and the program will indicate if
they are consistent with the linear constraints which define the approximation re-
gion sA,,.

5.2.4. Piecewise concave—convex. We can repeat the idea for functions which
are piecewise concave—convex. There are fast methods for determining the inter-
vals of convexity and concavity based on the algorithm devised by Groeneboom
(1996), but in this section we use the intervals obtained by minimizing the to-
tal variation of the first derivative [Kovac (2007)]. The upper panel of Figure 5
shows the result for convexity/concavity which corresponds to Figure 4. Finally,
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FIG. 4. Confidence bounds without (upper panel) and with (lower panel) the specification of the
precise positions of the local extreme values. The positions in the lower panel are the default choices
obtained from the taut string reconstruction [Kovac (2007)]. The bounds are the fast bounds (61) and
(62) with 6 = 1.5.
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FI1G. 5. Confidence bounds with default choices for the intervals of convexity/concavity (upper
panel based on (69) and (70) with 0 = 1.5) and combined confidence bounds for default choices of
intervals of monotonicity and convexity/concavity.
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the lower panel of Figure 5 shows the result of imposing both monotonicity and
convexity/concavity constraints. In both cases the bounds used are the fast bounds
(69) and (70) with 6 = 1.5.

5.2.5. Sign-based confidence bounds. As mentioned in Section 2.2, work has
been done on confidence regions based on the signs of the residuals. These can
also be used to calculate confidence bands for shape-restricted functions. We refer
to Davies (1995), Diimbgen (2003), Diimbgen (2007) and Diimbgen and Johns
(2004).

5.3. Smoothness regularization. We turn to the problem of constructing lower
and upper confidence bounds under some restriction on smoothness. For simplic-
ity, we take the supremum norm ||g® |/ to be the measure of smoothness for
a function g. The discussion in Section 5.1 shows that honest bounds are attain-
able only if we restrict f to a set %, = {g: |g® |00 < K} with a specified K. We
illustrate the idea using data generated by (2) with f(¢) = sin(4x¢) and o = 1.
The minimum value of ||g‘® | s is 117.7 which compares with 1672 = 157.9 for
f itself. The upper panel of Figure 6 shows the data together with the resulting
function f,". The bounds under the restriction || ];n(z) loo < 117.2 coincide with
the function f, itself. The middle panel of Figure 6 show the bounds based on
I§@ oo < K for

K =137.8(=(117.74157.9)/2), 157.9 and 315.8(=2 x 157.9).

Just as before, fast bounds are also available. We have for the lower bound for
given K

: : 1 d o k2 3logn
(72) lb(z/n)Sn}{m<2k+ljX_:kY((z+J)/n)+<;> K+o /2k+1)

and for the upper bound

| L& 2% |3logn
(73) ub(z/n)zm]?x<2k+ljZ_kY((zﬂ)/n)—(;) K—-o 2k+1>'

As it stands, the calculation of these bounds is of algorithmic complexity O (n?),
but this can be reduced to O(nlogn) by restricting k to be of the form 6. The
method also gives a lower bound for ||g‘®||s for g to be consistent with the data.
This is the smallest value of K for which the lower bound /b lies beneath the upper
bound ub. If we do this for the data of Figure 6 with & = 1.5 then the smallest value
is 104.5 as against the correct bound of 115.0. The lower panel of Figure 6 shows
the fast bounds for the same data and values of K.
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FI1G. 6. Smoothness confidence bounds for f € F, ={f: ||f,,(2) loo < K} for data generated ac-
cording to (2) with f(t) =sin(4nt),oc =0.2 and n = 500. The top panel shows the function which
minimizes ||g(2) lloo- The minimum is 117.7 compared with l6m2 = 157.9 for f(t). For this value of
K the bounds are degenerate. The center panel shows the confidence bounds for K = 137.8,157.9
and 315.8. The bottom panel shows the corresponding fast bounds (72) and (73) with 6 = 1.5 for the

same values of K .
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APPENDIX
A.1. Proofs of Section 3.2.

A.1.1. Proof of (21). Let k be such that I. =[1/2 —k/n,1/2 + k/n] C Ip.
A Taylor expansion together with (20) implies, after some manipulation,

./310gn—|—2.72
2k+1 2 -  V2k+1

tiel,
k> V3logn +2.72
= (/D) =5 50— A

and, on minimizing the right-hand side of the inequality with respect to k, we
obtain

./310gn+2.72
|1|,§ T =0

> £(1/2) — 1.1y %3 (/310gn +2.72) " 1n?/3.
This inequality holds as long as I, =[1/2 — k,,/n, 1/2 + k,,/n] C Iy with

(74)

7) kn = 066, 0> ¥ ( [310gn +2.72)°).
If we put [; =[1/2 — (n + D)k, /n, 1/2 — nk, /n], similar calculations give

Z F) +o /3logn +2.72
2k+1 2k +1

tiel
k2 J3logn +2.72
< f1/2) - chog—,

V2K
and hence

J3Togn +2.72

—Zf( R A M

il = T
1/5 4/5 31 2.72 4/5

> - 27 ;’/gS”JF' ) 10217807 Jer — 1.23]
n

with the same estimate for I, = [1/2 + nk,/n,1/2 + (n + Dk, /n]. If we put

n=3.4/cz2/cy and
(76) I, :=[1/2—(+ Dk,/n,1/24+ (n+ Dk, /n] C Iy

then all estimates hold. Because of (75) this will be the case for n sufficiently
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large. This implies that (17) holds for sufficiently large n and in consequence any
function f,, € A, has a local maximum in /,,.

A.1.2. Proofs of (22) and (23). From (13) and (74) we have

£2a5 = £(172) — 1.1e)a*3(,[3logn +2.72) " n?/°

which is the required estimate (22). To prove (23) we simply note

@) < fa)+oZt))+oy/3logn < f(1/2)+o(,/3logn +2.4).

A.1.3. Proof of (30) and (31). As f,; € A, by definition and f € A, with
probability tending to one, we have for the interval I}, =[i/n, (i +k —1)/n]

fon (i + j)/n) < Z f(G+j)/n)+20,/3logn

j =0
from which it follows that

3logn
k

k
Fifmy < fa/m+ = f V) o0 +20

which proves (30). Similarly, for the intervals / ! ak =L@ —k+1)/n,i/n] we have

07 G/ = f7/m < min {—||f“>||z, +20,/20

3logn}
<k< k*[ ’

We note that (30) and (77) imply that £, adapts automatically to f to give optimal
rates of convergence. If f (1) (t) # 0 then it may be checked that the lengths of the
optimal intervals /) and | k 7 tend to zero and consequently

sl sV T Wl o

The optimal choice of k is then

" 302nlogn\'/3 ~ K
" FD®2 "

which gives

31/352/3 /] 1/3
M~ S () A
SNVIIOTEAN"

from which (31) follows.
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A.2. Proofs of Section 3.4.

A.2.1. Proof of (34). Then adapting the arguments used above we have, for
any differentiable function f;, € A,

1 & . »
T D (fu/2+i/n) — fu(1/2—k/n+i/n))
i=1
1 k
>—=Y (f(/2+i/n)— f(1/2—k/n+i/n))
F&

—20(y/3logn + Z(I5)/V2)

which implies

78 *D(1y/n > min fFO(r /31 Z(I5)/IN2)) /K,
(78) I‘;?’;fn (/n 2 min ) /n = (20 (y3logn + Z(1)/~2))/
Similarly, if Irllk =t —k/n,ty+k/n]witht; +k/n <1/2 — k/n we have

(79) mm D@y /n < maxf“)(z)/n + (20 (y/3logn + Z(I') /N/2))/ k32

Ik zelk

and for I,llk =[t, —k/n,t, + k/n] with t, —k/n > 1/2+ k/n we have
80 in £*D@y/n < O 20 (,/31 Z(I7)/V2))/ K2,
80)  min £V 0)/n < max f (t)/n+ (20(/3logn + Z(1;)/v2))/

Again, following the arguments given above we may deduce from (78), (79) and
(80), that for sufficiently large n, it is possible to choose / k, It and I}, so that
(34) holds.

A.2.2. Proofof (38). We have

k
%;(fn*(k/n +i/n) = fy(i/n))

k
< % S (fk/n+i/n) — f(i/m) +20,[3logn
=1

1. .
and f,,*( ) s nondecreasing on I, , we deduce

k
— O < 7 Y (ftk/n+i/n) — f(i/n))+20,/3logn.

Jj=1
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A Taylor expansion for f yields

3logn
k3

k
1 1 2
OO PO+ [ f Py oo +20m
from which (38) follows.

A.3. The taut string algorithm of Kovac (2007). We suppose that data
Yi,..., Yy at time points t; < fp < --- < t,, are given and first describe how to cal-
culate the taut string approximation given some tube widths Ag, A1, ..., A,. Sub-
sequently, we describe how to determine these tube widths using a multiresolution
criterion. Lower and upper bounds of a tube on [0, n] are constructed by linear in-
terpolation of the points (i, Y; — X;),i =0,...,nand (i,Y; +1;),i =0, ...,n,re-
spectively, where Yo =0and Yy = Yy_1+yr fork =1, ..., n. We consider a string
ﬁn forced to lie in this tube which passes through the points (0, 0) and (#, Y;,) and
is pulled tight. An explicit algorithm for doing this with computational complexity
O (n) is described in the Appendix of Davies and Kovac (2001). The taut string Fn
is linear on each interval [i — 1, i] and its derivative f, = Fn(i ) — Fn(i — 1) is used
as an approximation for the data at ¢;.

Our initial tube widths are Ag = A, =0and Ay =Xy =--- = A, = max(Yp, ...,
Y,) —min(Yo, ..., Y;). The default family Z, is the dyadic index set family

= |J {@k+1....27k+D}N{l,....n}}\ @

Jj.keNg
which consists of at most 2n subsets of {1, ..., n}. Given some taut string approx-
imation f1, ..., f, using tube widths Ag, ..., A, we check whether
1
(81) ——|Y i — £)| < ouy/Ta log(n)
1] iel

is satisfied for each I € Z,. If this is not the case we generate new tube widths
Ao, AL, ..., Ay by setting A\g=A, =0andfori=1,...,n—1

[ Ais if (81) is satisfied forall e Z withi e lori +1€1,
T /2, otherwise.

Then we calculate the taut string approximation corresponding to these new tube
widths, check (81), possibly determine yet another set of tube widths and repeat
this process until eventually (81) is satisfied for all I € Z,,.
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