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GENERAL FREQUENTIST PROPERTIES OF THE POSTERIOR
PROFILE DISTRIBUTION1

BY GUANG CHENG AND MICHAEL R. KOSOROK
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In this paper, inference for the parametric component of a semiparametric
model based on sampling from the posterior profile distribution is thoroughly
investigated from the frequentist viewpoint. The higher-order validity of the
profile sampler obtained in Cheng and Kosorok [Ann. Statist. 36 (2008)] is
extended to semiparametric models in which the infinite dimensional nui-
sance parameter may not have a root-n convergence rate. This is a nontrivial
extension because it requires a delicate analysis of the entropy of the semi-
parametric models involved. We find that the accuracy of inferences based
on the profile sampler improves as the convergence rate of the nuisance para-
meter increases. Simulation studies are used to verify this theoretical result.
We also establish that an exact frequentist confidence interval obtained by
inverting the profile log-likelihood ratio can be estimated with higher-order
accuracy by the credible set of the same type obtained from the posterior
profile distribution. Our theory is verified for several specific examples.

1. Introduction. Semiparametric models have the form P = {Pθ,η : (θ, η) ∈
� × H}, where � ⊂ R

d and H is an arbitrary subset that is typically infinite di-
mensional. In this paper, interest will focus on the parametric component θ , while
the nonparametric component η will be considered a “nuisance parameter.” Infer-
ence for θ will be based on semiparametric maximum likelihood estimation via
the profile likelihood pln(θ) = supη∈H likn(θ, η), where likn(θ, η) is the full like-
lihood given n observations. The maximum likelihood estimator for (θ, η) can be
expressed as (θ̂n, η̂n), where η̂n = η̂

θ̂n
and η̂θ = arg maxη∈H likn(θ, η). We will as-

sume throughout this paper that evaluation of pln(θ) is computationally feasible
because of the availability of procedures such as the stationary point algorithm (as
used in [12], e.g.) or the iterative convex minorant algorithm introduced in [7], to
find η̂θ when η is a monotone function.

Many of the advantages of using the profile sampler proposed in [14] for infer-
ence on θ are discussed in [14]. The main argument is that direct maximization
of the full likelihood and direct computation of the efficient Fisher information
function, which often requires tedious evaluation of infinite-dimensional operators
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that may not have a closed form, can both be avoided completely by using the pro-
file sampler. This follows because the profile sampler yields a first-order correct
approximation to the maximum likelihood estimator θ̂n and consistent estimation
of the efficient Fisher information for θ , even when the nuisance parameter is not
estimable at the

√
n rate.

Another approach to obtaining inference on θ is through the fully Bayesian pro-
cedure, which assigns a prior on both the parameter of interest and the functional
nuisance parameter. The first-order valid results in [21] indicate that the marginal
semiparametric posterior is asymptotically normal and centered at the correspond-
ing maximum likelihood estimator or posterior mean, with covariance matrix equal
to the inverse of the efficient Fisher information. Assigning a prior on η can be
quite challenging since for some models there is no direct extension of the concept
of a Lebesgue dominating measure for the infinite-dimensional parameter set in-
volved [13]. Comparing to the profile sampler procedure, this marginal approach
does not circumvent the need to specify a prior on η, with all of the difficulties that
entails. However, we can essentially generate the profile sampler from the marginal
posterior of θ with respect to a certain joint prior on ψ = (θ, η), which is possibly
data dependent. For example, we can use a gamma process prior on η with jumps
at observed event times but not involving θ in the Cox model with right censored
data, see Remark 7 in [3].

The first-order validity of the profile sampler procedure established by [14] is
extended to second-order validity in [4] when the infinite-dimensional nuisance
parameter achieves the parametric rate. Specifically, higher-order estimates of the
maximum profile likelihood estimator and of the efficient Fisher information are
obtained in [4]. Moreover, [4] also proves that an exact frequentist confidence in-
terval for the parametric component at level α can be estimated by the α-level
credible set from the profile sampler with an error of order OP (n−1). Three rather
different semiparametric models, the Cox model with right-censored data, the pro-
portional odds model with right-censored data and case-control studies with a
missing covariate, are studied in [4]. Such higher-order frequentist accuracy had
not previously been established in semiparametric models for any other inferential
approach, including the bootstrap. We note that this idea of higher-order accuracy
is quite distinct from the concept of second-order efficiency in semiparametric
models (see [8, 6]) which we do not consider further in this paper.

A natural question is whether the second-order extension in [4] can be further
extended to settings where the nuisance parameter has arbitrary convergence rates,
in particular, rates that are slower than the parametric rate. This extension is the
key purpose of this paper. Additionally, we generalize the results to allow for multi-
variate parametric components (only univariate components were permitted in [4])
and also show that another type of confidence interval for θ , obtained by inverting
the profile log-likelihood ratio, can also be estimated with higher-order accuracy
by the profile sampler.
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In this paper, the convergence rate for the nuisance parameter η is defined as the
largest r that satisfies ‖η̂θ̃n

−η0‖ = OP (‖θ̃n−θ0‖+n−r ), where η0 is the true value
of η and ‖·‖ is a norm with definition depending on context, that is, for a Euclidean
vector u, ‖u‖ is the Euclidean norm, and for an element of the nuisance parameter
space η ∈ H , ‖η‖ is some chosen norm on H . In regular semiparametric models,
which we can define without loss of generality to be models where the entropy

integral converges, r is always larger than 1/4. Obviously η̂θ̃n

p→ η0 for any θ̃n
p→

θ0. We say the nuisance parameter has parametric rate if r = 1/2. For instance, the
nuisance parameters of the three examples in [4] achieve the parametric rate. More
specifically, the nuisance parameter in the Cox model, which is the cumulative
hazard function, has the parametric rate under right censored data. However, the
convergence rate for the cumulative hazard becomes slower, that is, r = 1/3, under
current status data. The result is not surprising since current status data cannot
provide as much information as right-censored data.

Obviously our results for r = 1/2 coincide with the results in [4]. It is also no
surprise that the accuracy of the profile sampler is dependent on the convergence
rate of the nuisance parameter. The precise error rate for many of the quantities
we study is OP (Mn(r)), where we define Mn(r) = n−1/2 +n−2r+1/2 with support
r > 1/4. Note that Mn(r) increases in r over the interval 1/4 < r < 1/2 and is
constant for r ≥ 1/2. Although we cannot yet prove it, we conjecture that this
error rate is sharp, in the sense that when the error is multiplied by M−1

n (r), it
converges to a nondegenerate random quantity as n → ∞.

Perhaps the most important new result in this paper involves a comparison be-
tween an exact, frequentist confidence interval and a credible set for θ generated
from the profile sampler. Specifically, we show that any rectangular credible set
for θ of level 1 − α based on the profile sampler is within OP (n−1/2Mn(r)) of
an exact, frequentist, rectangular confidence region with coverage 1 − α. Note
that the choice of a one-sided credible set at a given level is not unique when the
parameter dimension is ≥ 2. We also establish higher-order accuracy for the con-
fidence interval obtained by inverting the profile log-likelihood ratio, defined as
PLRf (θ) = 2(logpln(θ̂n) − logpln(θ)).

The next section, Section 2, provides some necessary background material on
semiparametric models, least favorable submodels, and empirical processes. The
main concepts are illustrated with three examples which will be used throughout
the paper. The primary assumptions required for the results of the paper are also
presented, along with a key tool for obtaining rates of convergence. In Section 3,
second-order asymptotic expansions of the log-profile likelihood are presented.
In Section 4, we present the main result of the paper that the confidence interval
for the parametric component of a semiparametric model can be approximated by
the credible set based on the profile sampler with error of order OP (Mn(r)). In
Section 5, we establish that the required assumptions are satisfied for the three
previously introduced examples and present some simulation results. Section 6
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contains a brief discussion of future research directions, and proofs are given in
the Appendix.

2. Background and assumptions. We assume the data X1, . . . ,Xn are i.i.d.
throughout the paper. In what follows, we first briefly review the concept of a
least favorable submodel. We then present three different examples for which we
discuss the forms of the least favorable submodel and related model specifications.
Next, we present the model assumptions needed for the remainder of the paper,
and, finally, we give a key tool for the rate of convergence calculations needed in
later sections.

2.1. The least favorable submodel. The score function for θ , �̇θ,η, is defined
as the partial derivative w.r.t. θ of the log-likelihood given η is fixed for a single
observation. A score function for η0 is of the form

∂

∂t

∣∣∣∣
t=0

logpθ0,ηt (x) ≡ Aθ0,η0h(x),

where h is a “direction” by which ηt ∈ H approaches η0, running through some
index set H . Aθ,η :H 
→ L0

2(Pθ,η) is the score operator for η. The efficient score
function for θ is defined as �̃θ,η = �̇θ,η − 	θ,η�̇θ,η, where 	θ,η�̇θ,η minimizes the
squared distance Pθ,η(�̇θ,η − k)2 over all functions k in the closed linear space of
the score functions for η (the “nuisance scores”). A submodel t 
→ pt,ηt is defined
to be least favorable at (θ, η) if �̃θ,η = ∂/∂t logpt,ηt , given t = θ . The inverse of
the variance of �̃θ,η is the Crámer–Rao bound for estimating θ in the presence
of the infinite-dimensional nuisance parameter η, the efficient information matrix
Ĩθ,η. We also abbreviate �̃θ0,η0 and Ĩθ0,η0 with �̃0 and Ĩ0, respectively. The direc-
tion h along which ηt approaches η in the least favorable submodel is called “the
least favorable direction.” An insightful review of least favorable submodels and
efficient score functions can be found in Chapter 3 of [11].

The least favorable submodel in this paper will be constructed in the following
manner: We first assume the existence of a smooth map from the neighborhood
of θ into the parameter set for η, of the form t 
→ ηt (θ, η), such that the map
t 
→ �(t, θ, η)(x) can be defined as follows:

�(t, θ, η)(x) = log lik(t, ηt (θ, η))(x),(1)

where t and θ are allowed to be multi-dimensional in this paper, although they
both must have the same dimension, and where we require ηθ (θ, η) = η for all
(θ, η) ∈ � × H . We will now illustrate the form of this map for several examples,
and the remaining requirements for the map will be presented when the model
assumptions are listed later on in this section.
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2.2. Examples. Three examples with different convergence rates are presented
in this subsection. The Cox model with right-censored data, which has a paramet-
ric convergence rate, has previously been studied in [4]. Nevertheless, it will be
useful to review this example briefly here, although most of the details are given
in [4]. The second example, the Cox model with current status data, has a cube-
root convergence rate for the nuisance parameter. The last example is the partly
linear regression model with normal residual error, where the convergence rate of
the nuisance parameter is n−2/5 under current status data.

2.2.1. Example 1. The Cox model with right-censored data. In the Cox pro-
portional hazards model, the hazard function of the survival time T of a subject
with covariate Z is expressed as

λ(t |z) ≡ lim
�→0

1

�
Pr(t ≤ T < t + �|T ≥ t,Z = z) = λ(t) exp(θz),(2)

where λ is an unspecified baseline hazard function and θ is a vector including the
regression parameters [5]. For the Cox model applied to right-censored failure time
data, we observe X = (Y, δ,Z), where Y = T ∧C, δ = I {T ≤ C}, and Z ∈ Z ⊂ R

d

is a regression covariate. The cumulative hazard function 
(y) = ∫ y
0 λ(t) dt is

considered the nuisance parameter. The convergence rate of the estimated nui-
sance parameter is established in Theorem 3.1 of [17], that is, ‖
̂θ̃n

− 
0‖∞ =
OP (n−1/2 + ‖θ̃n − θ0‖).

Based on the model assumptions specified in Section 5.1 of [4], we can express
the likelihood for (θ, η) in the following form:

lik(θ,
) = (
eθz
{y}e−eθz
(y))δ(e−eθz
(y))1−δ

,

by replacing λ(y) by the point mass 
{y}. Hence the score functions for θ and 


can be easily derived as �̇θ,
(x) = δz − zeθz
(y) and Aθ,
h(y, δ, z) = δh(y) −
eθz

∫
[0,y] hd
. Again, by the derivations in Section 5.1 of [4], the least favorable

direction at (θ,
), denoted hθ,
, can be shown to be

hθ,
(y) = Eθ,
eθZZ1{Y ≥ y}
Eθ,
eθZ1{Y ≥ y} .

If we let h0 denote the least favorable direction at the true parameters, the least
favorable submodel �(t, θ,
) has the form �(t, θ,
) = log lik(t,
t(θ,
)), where
t 
→ 
t(θ,
) = 
+ (θ − t)h0. Note that we have tacitly swapped the notation for
η with 
 since 
 is more widely used in this context.

2.2.2. Example 2. The Cox model with current status data. Current status data
arises when each subject is observed at a single examination time, Y , to determine
if an event has occurred. The event time, T , cannot be known exactly. If a vector
of covariates, Z, is also available, then the observed data are n i.i.d. realizations
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of X = (Y, δ,Z) ∈ R+ × {0,1} × R, where δ = I {T ≤ Y }. The model of the con-
ditional hazard given Z is the same as in the previous example. Throughout the
remainder of the discussion, we make the following assumptions: T and Y are
independent given Z. Z lies in a compact set almost surely and the covariance
of Z − E(Z|Y) is positive definite, which guarantees the efficient information
Ĩ0 to be positive definite. Y possesses a Lebesgue density which is continuous
and positive on its support [σ, τ ], for which the true nuisance parameter 
0 satis-
fies 
0(σ−) > 0 and 
0(τ ) < M < ∞, and this density is continuously differen-
tiable on [σ, τ ] with derivative bounded above and bounded below by zero. Under
these assumptions the maximum likelihood estimator of (θ,
) exists, θ̂n is as-
ymptotically efficient and ‖
̂n − 
0‖L2 = Op(n−1/3), where ‖ · ‖L2 is the norm
on L2([σ, τ ]). Note that the conditions on the density of Y ensure that ‖
−
0‖L2

is equivalent to (
∫ τ
σ (
(y) − 
0(y))2 dFY (y))1/2, where FY (y) is the distribution

of the observation time Y . Moreover, using entropy methods, [17] extends earlier
results of [9], showing that ‖
̂θ̃n

− 
0‖L2 = OP (‖θ̃n − θ0‖ + n−1/3). It is not
difficult to derive the log-likelihood

log likn(θ,
) =
n∑

i=1

δi log[1 − exp(−
(Yi) exp(θZi))]
(3)

− (1 − δi) exp(θZi)
(Yi).

The score function takes the form �̇θ,
(x) = z
(y)Q(x; θ,
), where

Q(x; θ,
) = eθz

[
δ

exp(−eθz
(y))

1 − exp(−eθz
(y))
− (1 − δ)

]
.

Inserting a submodel t 
→ 
t such that h(y) = −∂/∂t |t=0
t(y) exists for every y

into the log likelihood and differentiating at t = 0, we obtain a score function for 


of the form Aθ,
h(x) = h(y)Q(x; θ,
). The linear span of these functions con-
tains Aθ,
h for all bounded functions h of bounded variation. The efficient score
function for θ is defined as �̃θ,
 = �̇θ,
 − Aθ,
hθ,
 for the vector of functions
hθ,
 minimizing the distance Pθ,
‖�̇θ,
 − Aθ,
h‖2, which is also called the least
favorable direction. The solution at the true parameter (θ0,
0) is h0(Y ) defined as
follows:

y 
→ h0(y) = 
0(y)h00(y)
(4)

≡ 
0(y)
Eθ0
0(ZQ2(X; θ0,
0)|Y = y)

Eθ0
0(Q
2(X; θ0,
0)|Y = y)

.

As the formula shows, the vector of functions h0(y) is unique a.s., and h0(y) is a
bounded function since Q(x; θ0,
0) is bounded away from zero and infinity. We
shall assume the function y 
→ h0(y) given by (4) has a version which is differen-
tiable with a bounded derivative on [σ, τ ].
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The least favorable submodel can be defined as �(t, θ,
) = log lik(t,
t(θ,
)),
where 
t(θ,
) = 
 + (θ − t)φ(
)(h00 ◦ 
−1

0 ) ◦ 
, and φ(·) is a specially con-
structed function that smoothly approximates the identity. The function 
t(θ,
)

is essentially 
 plus a perturbation in the least favorable direction, h0, but its de-
finition is somewhat complicated in order to ensure that 
t(θ,
) really defines a
cumulative hazard function within our parameter space, at least for t that is suffi-
ciently close to θ . The details on the construction of the least favorable submodel
can be found on page 23 of [16].

2.2.3. Example 3. Partly linear normal model with current status data. In this
example, a continuous outcome Y , conditional on the covariates (W,Z) ∈ R

d ×R,
is modeled as Y = θT W + k(Z) + ξ , where k is an unknown smooth function,
and ξ ∼ N(0,1). Note that the choice N(0,1) is needed for model identifiability.
We are interested in the regression parameter θ and consider k(·) to be an infinite-
dimensional nuisance parameter. However, the response Y is not observed directly,
but only its current status is observed at a random censoring time C ∈ R. In other
words, we observe X = (C,�,W,Z), where � = 1{Y≤C}. Additionally (Y,C) is
assumed to be independent given (W,Z). Although it is not difficult to generalize
to multivariate θ , we restrict our attention to univariate θ in what follows for ease
of exposition.

Under the partly linear model, the log-likelihood for a single observation at
X = x ≡ (c, δ,w, z) can be shown to have the form

log likθ,k(x) = δ log
{
�

(
c − θw − k(z)

)}
(5)

+ (1 − δ) log
{
1 − �

(
c − θw − k(z)

)}
,

where � is the standard normal distribution. We further assume that the joint dis-
tribution for (C,W,Z) is strictly positive and finite. The covariates (W,Z) are
assumed to belong to some compact set W × Z ⊂ R

2. And the random censoring
time C is assumed to have support [lc, uc], where −∞ < lc < uc < ∞. In addition,
we assume E[Var(W |Z)] is strictly positive and Ek(Z) = 0.

The regression parameter θ is assumed to belong to some compact set in R
1, and

the functional nuisance parameter k is assumed to belong to OM
2 ≡ {f :J2(f ) +

‖f ‖∞ < M} for a known M < ∞. The mth-order Sobolev norm of a function
f , Jm(f ), is defined as Jm(f ) = [∫Z(f (m)(z))2 dz]1/2. Here, m is a fixed integer
and f (j) is the j th derivative of f (·) with respect to z. The mth-order Sobolev
class of functions is the class of functions f supported on some compact set on
the real line with Jm(f ) < ∞. Hence the class OM

2 is trivially the subset of a
second-order Sobolev class of functions, and k ∈ OM

2 has known upper bound for
both its uniform norm and its Sobolev norm. Note that the asymptotic behavior
of penalized log-likelihood estimates in this model have been extensively studied
in [15].
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We now introduce the least favorable submodel. The score function for θ is
�̇θ,k ≡ wQ(x; θ, k), where

Q(X; θ, k) = (1 − �)
φ(qθ,k(X))

1 − �(qθ,k(X))
− �

φ(qθ,k(X))

�(qθ,k(X))

and qθ,k(X) = C − θW − k(Z). Furthermore, by defining kt = k + th for h ∈
OM

2 , we can obtain the score function for k in the direction h: Aθ,kh(x) =
h(z)Q(x; θ, k). The least favorable direction hθ,k minimizes h 
→ Pθ,k‖�̇θ,k −
Aθ,kh‖2. By solving the equation Pθ,k(�̇θ,k − Aθ,kh)Aθ,kh = 0, we can obtain
the solution at the true parameter values:

h0(z) = E0(WQ2(X; θ, k)|Z = z)

E0(Q2(X; θ, k)|Z = z)
,

where E0 is the expectation relative to the true parameters. Thus the least favorable
submodel can be constructed as �(t, θ, k) = log lik(t, kt (θ, k)), where kt (θ, k) =
k + (θ − t)h0.

Note that the above model would be more flexible if we did not require knowl-
edge of M . A sieved estimator could be obtained if we replaced M with a sequence
Mn → ∞. The theory we propose in this paper will be applicable in this setting,
but, in order to maintain clarity of exposition, we have elected not to pursue this
more complicated situation here. Another alternative approach is to use penaliza-
tion. However, this is beyond the scope of the present paper.

2.3. Assumptions. We now present the assumptions that will be used through-
out the paper, along with some necessary notation. The dependence on x ∈ X of
the likelihood and score quantities will be largely suppressed for clarity in this
section and hereafter.

For the vector V , matrix M and tensor T , the notation Vi , Mi,j and Ti,j,k indi-
cate its ith, (i, j)th and (i, j, k)th element, respectively. MT represents the trans-
pose of the matrix M . The derivative of the log-likelihood of the least favorable
submodel is with respect to the first argument, t . The quantities �̇(t, θ, η), �̈(t, θ, η)

and �(3)(t, θ, η) are separately the first, second and third derivative of �(t, θ, η)

with respect to t . For brevity, we denote �̇0 = �̇(θ0, θ0, η0), �̈0 = �̈(θ0, θ0, η0)

and �
(3)
0 = �(3)(θ0, θ0, η0), where θ0, η0 are the true values of θ and η. Of

course, �̃0(X) can also be written as �̇0(X) based on the construction of the
least favorable submodel. The quantity �(3)(t, θ, η) is a tensor. We thus define
V T ⊗ P�(3)(t, θ, η) ⊗ V as a d-dimensional vector whose ith element equals
V T (∂2/∂t2)(P �̇(t, θ, η))iV . Similarly V T ⊗ P�(3)(t, θ, η) is a square matrix
whose (i, j)th element is V T (∂/∂t)(∂2/∂ti∂tj )�(t, θ, η). We use �ti ,tj ,tk (t, θ, η)

to denote (∂3/∂ti∂tj ∂tk)�(t, θ, η). For the derivatives relative to the other two ar-
guments, θ and η, we use the following shortened notation: �θ (t, θ, η) indicates
the first derivative of �(t, θ, η) with respect to θ . Similarly, �t,θ (t, θ, η) denotes the
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derivative of �̇(t, θ, η) with respect to θ . Also, �t,t (θ) and �t,θ (η) indicate the maps
θ 
→ �̈(t, θ, η) and η 
→ �t,θ (t, θ, η), respectively. Let the random vector �n denote
Ĩ

1/2
0 (θ − θ̂n), and let φd(·) (�d(·)) represent the density (cumulative distribution)

of a d-dimensional standard normal random variable (Nd(0, I )). The notations �
and � mean ≥, or ≤, up to a universal constant. Define x ∨y (x ∧y) to be the max-
imum (minimum) value of x and y. The symbols Pn and Gn ≡ √

n(Pn − P) are
used for the empirical distribution and the empirical process of the observations,
respectively.

We now make the following assumptions in order to achieve the desired second-
order asymptotic expansions of the log-profile likelihood (15). The assumption A2
below guarantees that the least favorable submodel passes through (θ, η):

Regular assumptions:

A1. θ0 ∈ � ⊂ R
d , where � is a compact and θ0 is an interior point of �.

A2. ηθ (θ, η) = η for any (θ, η) ∈ � × H .
A3. Ĩ0 is positive definite.

We next describe the smoothness conditions for the least favorable submodel.
Clearly, the assumptions B1 and B2 below are separately the smoothness con-
ditions for the Euclidean parameter (t, θ) and the infinite-dimensional nuisance
parameter η. In principle, these assumptions directly imply the no-bias conditions:

Pn�̇(θ0, θ̃n, η̂θ̃n
) = Pn�̃0 + OP (n−1/2 + n−r + ‖θ̃n − θ̂n‖)2,

Pn�̈(θ0, θ̃n, η̂θ̃n
) = P �̈0 + OP (n−1/2 + n−r + ‖θ̃n − θ̂n‖),

for θ̃n
p→ θ0, thus making the profile likelihood behave like a standard parametric

likelihood asymptotically.
Smoothness assumptions:

B1. The maps

(t, θ, η) 
→ ∂l+m

∂tl∂θm
�(t, θ, η)

have integrable envelope functions in L1(P ) in some neighborhood of (θ0, θ0, η0),
for (l,m) = (0,0), (1,0), (2,0), (3,0), (1,1), (1,2), (2,1).

B2. Assume:

Gn

(
�̇(θ0, θ0, η̂θ̃n

) − �̇0
) = OP

(
Mn(r) + (n1/2−r ∨ 1)‖θ̃n − θ0‖)

,(6)

P �̈(θ0, θ0, η) − P �̈(θ0, θ0, η0) = O(‖η − η0‖),(7)

P�t,θ (θ0, θ0, η) − P�t,θ (θ0, θ0, η0) = O(‖η − η0‖),(8)

P �̇(θ0, θ0, η) = O(‖η − η0‖2),(9)

for θ̃n
p→ θ0 and all η in some neighborhood of η0.
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There are three approaches to verifying the smoothness assumption (6), which
is essentially a continuity modulus of |Gn�̇(θ0, θ0, η) − Gn�̇0|. If the nuisance pa-
rameter has parametric convergence rate, we only need to show that the class of
functions {

�̇(θ0, θ0, η) − �̇0

‖η − η0‖ : for η in some neighborhood of η0

}

belongs to a P -Donsker class. Alternatively, if the nuisance parameter has the cu-
bic rate, the continuity modulus of the empirical process turns out to be of the
order OP (n−1/6 + n1/6‖θ̃n − θ0‖), or equivalently OP (n−1/6 + ‖η̂θ̃n

− η0‖1/2).
The method used to check this condition depends on the norm of the nui-
sance parameter and the bracketing entropy number of the class of functions
G = {�̇(θ0, θ0, η) for η in some neighborhood of η0}. When ‖ · ‖ is the L2 norm
or one of its dominating norms, we can make use of Lemma 5.13 in [22]. Another
approach is to calculate the order of E∗

P ‖Gn‖F , where F ≡ {(�̇(θ0, θ0, η̂θ̃n
) −

�̇0)/(Mn(r)+ (n1/2−r ∨1)‖θ̃n − θ0‖)}, by the use of Lemma 3.4.2 in [23]. The last
two methods will be respectively employed later on in verifying the assumptions
for the second and third main examples.

Boundedness of the Fréchet derivatives of the maps η 
→ �̈(θ0, θ0, η) and
η 
→ �t,θ (θ0, θ0, η) is sufficient to ensure validity of conditions (7) and (8). Note
that P�t,θ (θ0, θ0, η0) = 0 by the following analysis: Fixing η and differenti-
ating Pθ,η�̇(θ, θ, η) relative to θ yields Pθ,η�̇θ,η�̇(θ, θ, η)T + Pθ,η�̈(θ, θ, η) +
(∂/(∂t))|t=θPθ,η�̇(θ, t, η) = 0, since Pθ,η�̇(θ, θ, η) = 0 for every (θ, η), and since
we can choose (θ, η) = (θ0, η0). One way to verify (9) is to write

P �̇(θ0, θ0, η) = P

[
p0 − pθ0,η

p0

(
�̇(θ0, θ0, η) − �̇(θ0, θ0, η0)

)]

− P

[
�̇(θ0, θ0, η0)

(
pθ0,η − p0

p0
− A0(η − η0)

)]
,

where A0 = Aθ0,η0 and Aθ,η is the score operator for η at (θ, η), for example,
the Fréchet derivative of logpθ,η relative to η. Thus, if the L2-norm or one of its
dominating norms is applied to η, it suffices to show, under the given regularity
conditions, Fréchet differentiability of η 
→ �̇(θ0, θ0, η) plus second-order Fréchet
differentiability of η 
→ lik(θ0, η). Note that (9) is naturally satisfied for the semi-
parametric models with convex linearity, in which P �̇(θ0, θ0, η) is exactly zero.

Finally we assume that the following empirical process conditions hold for
(t, θ, η) in some neighborhood of their true values:

Empirical process assumptions:

C1. There exists some neighborhood V of (θ0, θ0, η0) in � × � × H such that
the classes of functions {(�̈(t, θ, η))i,j (x) : (t, θ, η) ∈ V } and {(�t,θ (t, θ, η))i,j (x) :
(t, θ, η) ∈ V } are P -Donsker and{(

�(3)(t, θ, η)
)
i,j,k(x) : (t, θ, η) ∈ V

}
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is P -Glivenko–Cantelli, for every i, j, k = 1, . . . , d .

One basic method of showing that a class of functions is P -Donsker or P -
Glivenko–Cantelli involves calculating its (bracketing) entropy number. However
this verification can be simplified by building up Glivenko–Cantelli (Donsker)
classes from other Glivenko–Cantelli (Donsker) classes by employing preserva-
tion techniques in Sections 9.3 and 9.4 of [11]. Also, every P -Donsker class F
with integrable envelope function is P -Glivenko–Cantelli.

2.4. Rates of convergence. The estimation accuracy of the profile sampler
method depends mainly on the convergence rate of the estimated nuisance pa-
rameter, that is, the value of r . We now present two useful results, Theorem 1
and Lemma 1 below, that are useful for determining this rate. These results are
Theorem 3.2 and Lemma 3.3 in [17], and the proofs can be found therein. Theo-
rem 1 is an extension from general results on M-estimators to semiparametric M-
estimators with nuisance parameters. In Theorem 1, d2

θ (η, η0) may be thought of
as the square of a distance, but it is also true for arbitrary functions η 
→ d2

θ (η, η0).
Let (�,A,P ) be an arbitrary probability space and T :� 
→ R̄ an arbitrary map.
Then we use notations E∗T and O∗

P (1) to represent the outer integral of T w.r.t.
P and bounded in outer probability, respectively (see page 6 in [23]).

THEOREM 1. Assume for any given θ ∈ �n, that η̂θ satisfies Pnmθ,η̂θ
≥

Pnmθ,η0 for given measurable functions x 
→ mθ,η(x). Assume conditions (10)
and (11) below hold for every θ ∈ �n, every η ∈ Vn and every ε > 0:

P(mθ,η − mθ,η0) � −d2
θ (η, η0) + ‖θ − θ0‖2,(10)

E∗ supθ∈�n,η∈Vn,‖θ−θ0‖<ε,dθ (η,η0)<ε |Gn(mθ,η − mθ,η0)| � φn(ε).(11)

Suppose that (11) is valid for functions φn such that δ 
→ φn(δ)/δ
α is decreas-

ing for some α < 2 and sets �n × Vn such that P(θ̃ ∈ �n, η̂θ̃ ∈ Vn) → 1. Then
dθ̃ (η̂θ̃ , η0) ≤ O∗

P (δn +‖θ̃ − θ0‖) for any sequence of positive numbers δn such that
φn(δn) ≤ √

nδ2
n for every n.

Lemma 1 below is useful for verifying the continuity modulus condition (11) for
the empirical process. Define Sδ = {x 
→ mθ,η(x) − mθ,η0(x) :dθ (η, η0) < δ,‖θ −
θ0‖ < δ} and

K(δ,Sδ,L2(P )) =
∫ δ

0

√
1 + HB(ε,Sδ,L2(P )) dε,(12)

where HB denotes the log of the bracketing entropy number.

LEMMA 1. Suppose that the functions (x, θ, η) 
→ mθ,η(x) are uniformly
bounded for (θ, η) ranging over a neighborhood of (θ0, η0) and that

P(mθ,η − mθ0,η0)
2 � d2

θ (η, η0) + ‖θ − θ0‖2.(13)
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Then condition (11) is satisfied for any functions φn such that

φn(δ) ≥ K(δ,Sδ,L2(P ))

(
1 + K(δ,Sδ,L2(P ))

δ2
√

n

)
.

Consequently, we may replace φn(δ) with K(δ,Sδ,L2(P )) in the conclusion of the
previous theorem.

3. Second-order asymptotic expansion. In this section, second-order as-
ymptotic expansions of the log-profile likelihood and maximum likelihood esti-
mator are derived. Their second-order accuracy is proven to be dependent on the
order of the convergence rate of the nuisance parameter through the rate func-
tion Mn(r) given in the Introduction. Note that the smallest order of OP (Mn(r)),
OP (n−1/2), is achieved when the nuisance parameter has parametric or faster rate
by the truncation property of the function Mn(r). The assumptions in Section 2 are
assumed throughout.

THEOREM 2. If θ̃n satisfies (θ̃n − θ̂n) = oP (1), then

√
n(θ̂n − θ0) = 1√

n

n∑
i=1

Ĩ−1
0 �̃0(Xi) + OP (Mn(r)),(14)

logpln(θ̃n) = logpln(θ̂n) − 1
2n(θ̃n − θ̂n)

T Ĩ0(θ̃n − θ̂n)
(15)

+ OP

(
gr(‖θ̃n − θ̂n‖)),

where gr(w) ≡ (nw3 +n1−rw2 +n1−2rw+n−2r+1/2)1{1/4 < r < 1/2}+ (nw3 +
n−1/2)1{r ≥ 1/2}.

REMARK 1. Under regularity conditions, the counterpart of (14) in fully
parametric models has error of order OP (n−1/2), which agrees with OP (Mn(r))

when r ≥ 1/2. Thus, we achieve the parametric bound in semiparametric models
only when the nuisance parameter obtains the parametric rate. We also observe a
monotonic increase in the error rate as r decreases toward 1/4.

The asymptotic quadratic expansion (15) can be used to construct an estimator
of the standard error of θ̂n. The estimator is the following “discretized” version of
the observed profile information matrix, În, which is the derivative of the profile
likelihood (see [17]):

În(v) ≡ −2
logpln(θ̂n + snv) − logpln(θ̂n)

ns2
n

,(16)

where direction v ∈ R
d and step size sn → 0. The expansion (15) implies

vT Ĩ0v = În(v) + OP (hr(|sn|)),(17)
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where hr(|sn|) = gr(|sn|)/ns2
n . By straightforward analysis, the smallest order of

the error term in (17) is OP (n−r ) by setting the step size sn = Op(n−r ) and s−1
n =

OP (nr) when 1/4 < r < 1/2. However, when r ≥ 1/2, the smallest order of error
in (17) stabilizes at OP (n−1/2) by setting the step size to sn = Op(n−1/2) and
s−1
n = OP (n1/2). In other words, În can only be a

√
n consistent estimator of Ĩ0

when the convergence rate of the nuisance parameter is faster than or equal to the
parametric rate.

The above analysis also leads to good discretized estimators for each element
in Ĩ0. For instance, with ei denoting the ith unit vector in R

d , we can deduce

(În(e))i,j = − logpln(θ̂n + eisn + ej sn) + logpln(θ̂n)

ns2
n

(18)

+ logpln(θ̂n + eisn) + logpln(θ̂n + ej sn)

ns2
n

,

(Ĩ0)i,j = (În(e))i,j + OP (hr(|sn|)).(19)

4. Main results and implications. We now present the main results on the
posterior profile distribution. Let P̃

θ |X̃ be the posterior profile distribution of θ

with respect to the prior ρ(θ) given the data X̃ = (X1, . . . ,Xn). Define �n(θ) =
n−1{logpln(θ) − logpln(θ̂n)}. We now present the first main result:

THEOREM 3. Assume the assumptions of Section 2 and also that

�n(θ̃n) = oP (1) implies that θ̃n = θ0 + oP (1),(20)

for any sequence θ̃n ∈ �. If proper prior ρ(θ0) > 0 and ρ(·) has a continuous and
finite first-order derivative in some neighborhood of θ0, then

sup
ξ∈Rd

∣∣P̃
θ |X̃

(√
nĨ

1/2
0 (θ − θ̂n) ≤ ξ

) − �d(ξ)
∣∣ = OP (Mn(r)).(21)

REMARK 2. Based on the conclusions of Theorem 3, we know that the [1 −
α + OP (Mn(r))]th one-sided and two-sided credible sets for vector θ from the
profile sampler are (−∞, θ̂n +n−1/2Ĩ−1/2z1−α] and [θ̂n −n−1/2Ĩ−1/2z1−α/2, θ̂n +
n−1/2Ĩ−1/2z1−α/2], respectively, where zα is a standard normal αth quantile for d-
dimensions and Ĩ can be either Ĩ0 or În.

The following two corollaries provide several interesting additional second-
order properties of the profile sampler:

COROLLARY 1. Assume the conditions of Theorem 3, and let fn(·) be the
posterior profile density of

√
n�n relative to the prior ρ(θ). Then

fn(ξ) = φd(ξ) + OP (Mn(r)).(22)
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COROLLARY 2. Under the conditions of Theorem 3 and recalling that �n =
Ĩ

1/2
0 (θ − θ̂n), we have that if θ has finite second absolute moment, then

θ̂n = Ẽ
θ |X̃(θ) + OP (n−1/2Mn(r)),(23)

Ĩ0 = n−1(
Ṽar

θ |X̃(θ)
)−1 + OP (Mn(r)),(24)

where Ẽ
θ |X̃(θ) and Ṽar

θ |X̃(θ) are the posterior profile mean and posterior profile
covariance matrix, respectively.

REMARK 3. The posterior moments in Corollary 2 are with respect to the
posterior profile distribution. Thus we can estimate θ̂n with the mean of the pro-
file sampler. Similarly, (each element of) the efficient information matrix can be
estimated by (the corresponding element of) the inverse of the covariance ma-
trix of the profile sampler with an error of order OP (Mn(r)). Clearly, a faster
convergence rate of the nuisance parameter leads to higher estimation accuracy.
We can generalize the arguments used in the proof of Corollary 2 to obtain gen-
eral results on the posterior moments. For simplicity, assume θ is one dimen-
sional. Then, provided

∫ +∞
−∞ |θ |βρ(θ) dθ < ∞, we haveẼ

θ |X̃�
β
n = n−β/2EUβ +

OP (n−(β+1)/2 + n(−2r+1)−(β+1)/2), where Ẽ
θ |X̃�

β
n is the βth posterior moment of

�n and U ∼ N(0,1).

REMARK 4. We now have two approaches to estimating the efficient infor-
mation matrix Ĩ0. One approach is by numerical analysis as given in (19). Another
approach is presented in Corollary 2 as an estimate from the posterior distribution.
We prefer estimating Ĩ0 with (24) using the profile sampler procedure in semipara-
metric models with r ≥ 1/2 since this avoids the issue of choosing the step size in
(17) or (24). However for models with r < 1/2, the numerical differentiation ap-
proach may be worthwhile because of the smaller error rate that may be obtained
using (17).

Combining (14) and (23), we obtain

√
n
(
Ẽ

θ |X̃(θ) − θ0
) = 1√

n

n∑
i=1

Ĩ−1
0 �̃0(Xi) + OP (Mn(r)).

The range of r implies that the mean value of the profile sampler is essentially a
semiparametric efficient estimator of θ even when the nuisance parameter has a
slower convergence rate. A similar conclusion appears to hold for other estimators
of θ̂n based on the profile sampler, including multivariate generalizations of the
median.

The second main result is expressed in the following Theorem 4. An αth quan-
tile of the posterior profile distribution is any quantity τnα ∈ R

d that satisfies
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τnα = inf{ξ : P̃
θ |X̃(θ ≤ ξ) ≥ α}, where ξ is an infimum over the given set only

if there does not exist a ξ1 < ξ in R
d such that P̃

θ |X̃(θ ≤ ξ1) ≥ α. Because of
the assumed smoothness of both the prior and the likelihood in our setting, we
can, without loss of generality, assume P̃

θ |X̃(θ ≤ τnα) = α. We can also define

κnα = √
n(τnα − θ̂n), that is, P̃

θ |X̃(
√

n(θ − θ̂n) ≤ κnα) = α. Note that neither τnα

nor κnα are unique if the dimension for θ is larger than one. Nevertheless, the fol-
lowing theorem ensures that for each choice of κnα there exists a unique κ̂nα based
on the data such that P(

√
n(θ̂n − θ0) ≤ κ̂nα) = α and ‖κ̂nα − κnα‖ = OP (Mn(r)):

THEOREM 4. Under the conditions of Theorem 3 and assuming that �̃0(X)

has finite third moment with a nondegenerate distribution, then there exists a
κ̂nα based on the data such that P(

√
n(θ̂n − θ0) ≤ κ̂nα) = α and κ̂nα − κnα =

OP (Mn(r)) for each chosen κnα .

REMARK 5. Clearly, a faster convergence rate of the nuisance parameter leads
to a more accurate estimate of the confidence interval when 1/4 < r < 1/2. The
profile sampler procedure can provide the best estimate for the boundary of the
confidence interval in semiparametric models when r ≥ 1/2. We conjecture that
the product of

√
nI {r ≥ 1/2}+n2r−1/2I {1/4 < r < 1/2} and the OP (Mn(r)) term

in Theorem 4 converges to the product of two different nontrivial but uniformly
integrable Gaussian processes. Thus we believe the convergence rate in Theorem 4
is optimal.

Theorem 4 states that the Wald-type confidence interval can be approximated
by the credible set of the same type based on the profile sampler with error of order
OP (Mn(r)). In other words, the boundary of a one-sided confidence interval for θ

at level α can be estimated by the αth quantile of the profile sampler with error of
order OP (n−1/2Mn(r)). Similar conclusions also hold for the confidence interval
obtained by inverting the profile likelihood ratio, as will be shown in Theorem 5
below.

The profile likelihood ratio in the frequentist and Bayesian set-up is sep-
arately defined as PLRf (θ0) = 2(logpln(θ̂n) − logpln(θ0)) and PLRb(θ) =
2(logpln(θ̂n)− logpln(θ)). Thus χnα

b is defined by χnα
b = inf{ξ : P̃

θ |X̃(PLRb(θ) ≤
ξ) ≥ α}. As argued previously, we can, without loss of generality, assume that
P̃

θ |X̃(PLRb(θ) ≤ χnα
b ) = α. The following theorem ensures that there exists a

χnα
f based on the data such that P(PLRf (θ0) ≤ χnα

f ) = α and χnα
f − χnα

b =
OP (Mn(r)):

THEOREM 5. Under the conditions of Theorem 4, there exists a χnα
f based on

the data such that P(PLRf (θ0) ≤ χnα
f ) = α and χnα

f − χnα
b = OP (Mn(r)).
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REMARK 6. The corresponding α-level confidence interval and credible set
obtained by inverting the profile likelihood ratio can be expressed as Cnα

f (X) =
{θ ∈ � : PLRf (θ) ≤ χnα

f } and Cnα
b (X) = {θ ∈ � : PLRb(θ) ≤ χnα

b }, respectively.

Moreover, the proof of Theorem 5 implies that χnα
b = χ2

d,α + OP (Mn(r)) and
χnα

b = χ2
d,α + OP (Mn(r)), where χ2

d,α denotes the αth quantile of central chi-
square distribution with degree of freedom d . Theorem 5 also implies that
P̃

θ |X̃(PLRb(θ) ≤ χ2
d,α) = α +OP (Mn(r)). Thus it appears in this instance that not

much is gained by using the posterior profile sampler to calibrate the likelihood
ratio confidence interval instead of simply using χ2

d,α .

5. Examples. This section illustrates the practicality of the stated conditions
by verifying that these assumptions are satisfied for each of the three examples
introduced in Section 2. Some simulation results about the Cox regression model
are also presented.

5.1. The Cox model with right-censored data. Note that this example was con-
sidered fully in [4], but we include some of the main ideas here for complete-
ness. We first verify the smoothness conditions B1 and the empirical processes
assumptions C1. Under regular conditions, B1 can be easily satisfied since the
maps (t, θ, η) 
→ (∂l+m/∂t lθm)�(t, θ, η), whose forms can be found in [4], are
uniformly bounded around (θ0, θ0,
0). Notice that the functions y 
→ h0(y),
y 
→ 
t(y) and z 
→ exp(zt) for (t, θ,
) in the assumed neighborhood of the true
values are P -Donsker. Thus we can verify C1 by repeatedly employing the Lip-
schitz continuity preservation property of Donsker classes. The remaining smooth-
ness conditions B2 and condition (20) are separately verified by Lemmas 2 and 3
of [4].

5.2. The Cox model with current status data. In this section we verify the
regularity conditions for the Cox model with current status data as well as present
a small simulation study to gain insight into the moderate sample size agreement
with the asymptotic theory.

5.2.1. Verification of conditions. We can verify that �(t, θ,
) defined in
Section 2.2.2 above is indeed the least favorable submodel since �̇(t, θ,
) =
(z
t(θ,
)(y) − φ(
(y))h00 ◦ 
−1

0 ◦ 
(y))Q(x; t,
t(θ,
)), evaluated at t =
θ = θ0 and 
 = 
0, is the efficient score function (z
0(y) − h0(y))Q(x; θ0,
0).
Note that we extend the domain of the function u 
→ 
−1

0 (u) to all of [0,∞) by
assigning the value σ to all u ∈ [0,
(σ)) and the value τ to all u > 
(τ). Substi-
tuting θ = t and 
 = 
t(θ,
) in (3) and differentiating with respect to t and θ ,
we obtain,

�̇(t, θ,
)(x) = (z
t + 
̇t )Q(x; t,
t),

�̈(t, θ,
)(x) = ∂2lik(t,
t(θ,
))/∂t2

lik(t,
t(θ,
))
− �̇2(t, θ,
),
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where

∂2lik(t,
t(θ,
))/∂t2

lik(t,
t(θ,
))
= Q(x; t,
t) × [z2
t + 2
̇t − etz(z
t + 
̇t )

2].

Note that �̇(t, θ,
) can be written as follows:

�̇(t, θ,
) =
[
z − φ(
)(y)


t(θ,
)
h00 ◦ 
−1

0 ◦ 
(y)

]

t(θ,
)(y)Q(x; t,
t(θ,
)),

and the map u 
→ ue−u/(1 − e−u) is bounded and Lipschitz on [0,∞). Thus we
can write 
(y)Q(x; t,
) = ψ(etz,
(y)), where the function ψ is bounded and
Lipschitz in each argument. Next, note that

−
̇t


t

= φ(
)h00 ◦ 
−1
0 ◦ 



t(θ,
)
= (φ(
)/
)h00 ◦ 
−1

0 ◦ 


1 + (θ − t)(φ(
)/
)h00 ◦ 
−1
0 ◦ 


.

Combining this with the facts that the function φ(y)/y is bounded and h00 ◦ 
−1
0

is bounded by assumption, we obtain that �̇(t, θ,
) is bounded. Clearly, �̈(t, θ,
)

is also uniformly bounded based on the following equation:

∂2lik(t,
t(θ,
))/∂t2

lik(t,
t(θ,
))
= Q(x; t,
t)
t

×
(
z2 + 2


̇t


t

− etz
t

(
z2 + 2z


̇t


t

+
(


̇t


t

)2))
.

By similar analysis, �t,θ (t, θ,
), �(3)(t, θ,
), �t,t,θ (t, θ,
) and �t,θ,θ (t, θ,
),
whose concrete forms can be found in [3], are also uniformly bounded for all t

sufficiently close to θ and all 
 varying over the parameter space.
We next verify assumption C1. Recall that 
(y)Q(x; t,
) = ψ(etz,
(y)),

where the function ψ is bounded and Lipschitz in each argument. Thus, since
the classes of functions z 
→ etz and y 
→ 
(y) are Donsker, so is the class of
functions x 
→ 
(y)Q(x; t,
). Note that

φ(
)


t(θ,
)
= ς(
)

1 + (θ − t)ς(
)υ(
)
≡ χ(
),

where ς(
) = φ(
)/
 and υ(
) = h00 ◦ 
−1
0 ◦ 
, and both ς(
) and υ(
) are

Lipschitz according to the assumptions. Hence χ(
) is also Lipschitz in 
. Thus
the class of functions �̇(t, θ,
) with (t, θ) varying over a small neighborhood
of (θ0, θ0) and 
 ranging over all nondecreasing cadlag functions with domain
[σ, τ ] and range [0,M] can be seen to be a Donsker class. By repeated applica-
tion of the above techniques to (∂2lik(t,
t(θ,
))/∂t2)/lik(t,
t(θ,
)) we know
the class of functions �̈(t, θ,
) is also Donsker. Similarly, the classes of functions
�t,θ (t, θ,
) and �(3)(t, θ,
) with (t, θ) varying over a small neighborhood of
(θ0, θ0) and 
 ranging over all nondecreasing cadlag functions with domain [σ, τ ]
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and range [0,M] can be shown to be Donsker. Moreover, �(3)(t, θ,
) is automat-
ically P -Glivenko–Cantelli since it is uniformly bounded based on the previous
analysis. The following lemmas verify the remaining assumptions:

LEMMA 2. Under the above set-up for the Cox model with current status data,
assumption B2 is satisfied.

LEMMA 3. Under the above set-up for the Cox model with current status data,
condition (20) is satisfied.

5.2.2. Simulation study. In this subsection, we conducted simulations in two
semiparametric models with different convergence rates, that is, Cox regression
with right-censored data and Cox regression with current status data. The contrast
of the above two simulations agrees with our theoretical results that the accuracy
of inferences based on the profile sampler is higher in semiparametric models with
faster convergence rates.

In what follows, the simulations are run for various sample sizes under a
Lebesgue prior. For each sample size, 500 datasets were analyzed. The event times
were generated from (2) with one covariate Z ∼ U [0,1]. The regression coeffi-
cient is θ = 1 and 
(t) = exp(t) − 1. The censoring time C ∼ U [0, tn], where tn
was chosen such that the average effective sample size over 500 samples is ap-
proximately 0.9n. For each dataset, Markov chains of length 20,000 with a burn-in
period of 5,000 were generated using the Metropolis algorithm. The jumping den-
sity for the coefficient was normal with current iteration and variance tuned to yield
an acceptance rate of 20%–40%. The approximate variance of the estimator of θ

was computed by numerical differentiation with step size proportional to n−1/2

(n−1/3) for right-censored data (current status data) according to (16).
Table 1 (Table 2) summarizes the results from the simulations of Cox regres-

sion with right-censored data (current status data) giving the average across 500
samples of the maximum likelihood estimate (MLE), mean of the profile sam-
pler (CM), estimated standard errors based on MCMC (SEM), estimated stan-
dard errors based on numerical derivatives (SEN) and boundaries for the two-
sided 95% confidence interval for θ generated by numerical differentiation and

TABLE 1
Cox regression with right-censored data (θ0 = 1 and 500 samples)

n n|MLE − CM| √
n|SEM − SEN| n|LM − LN| n|UM − UN|

50 0.3062 0.2270 0.1809 1.1212
100 0.2587 0.0311 0.5987 0.1301
200 0.3218 0.0279 0.4810 0.5253
500 0.2017 0.2080 0.7524 0.3518
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TABLE 2
Cox regression with current status data (θ0 = 1 and 500 samples)

n n2/3|MLE − CM| n2/6|SEM − SEN| n2/3|LM − LN| n2/3|UM − UN|
50 0.4438 0.6144 3.1799 5.6550

100 0.6506 0.4071 0.6162 1.0082
200 0.7729 0.3284 0.4617 0.8071
500 0.7559 0.1611 0.1071 1.3103

n, sample size; MLE, maximum likelihood estimator; CM, empirical mean; SEM, estimated standard
errors based on MCMC; SEN, estimated standard errors based on numerical derivatives; LM (UM),
lower (upper) bound of the 95% confidence interval based on MCMC; LN (UN), lower (upper) bound
of the 95% confidence interval based on numerical derivatives.

MCMC. LM (LN) and UM (UN) denote the lower and upper bound of the con-
fidence interval from the MCMC chain (numerical derivative). According to
(17), Corollary 2 and Theorem 4, the terms n|MLE − CM| (n2/3|MLE − CM|),√

n|SEM −SEN| (n1/6|SEM −SEN|), n|LM −LN| (n2/3|LM −LN|) and n|UM −UN|
(n2/3|UM − UN|) for Cox regression with right censored data (current status data)
in Table 1 (Table 2) are bounded in probability. And the realizations of these terms
summarized in Tables 1 and 2 clearly illustrate their boundedness. Furthermore,
we can conclude that the profile sampler based on the semiparametric models with
faster convergence rate yields more accurate inferences about θ .

5.3. Partly linear normal model with current status data. By differentiating
the least favorable model with respect to t or θ , we can obtain

�̇(t, θ, k) = Q(x; t, kt )
(
w − h0(z)

)
,

�̈(t, θ, k) = (
w − h0(z)

)2
φt

[
(1 − δ)

(1 − �t)qt − φt

(1 − �t)2 − δ
qt�t + φt

�2
t

]
,

�t,θ (t, θ, k) = (
w − h0(z)

)
h0(z)φt

[
(1 − δ)

(1 − �t)qt − φt

(1 − �t)2 − δ
qt�t + φt

�2
t

]
,

�(3)(t, θ, k) = (
w − h0(z)

)3
φtR(qt (x)),

�t,t,θ (t, θ, k) = (
w − h0(z)

)2
h0(z)φtR(qt (x)),

�t,θ,θ (t, θ, k) = (
w − h0(z)

)
h2

0(z)φtR(qt (x)),

where

R(qt (x)) =
[
(1 − δ)

(
q2
t − 1

1 − �t

+ φtq
2
t − 2φtqt

(1 − �t)2 + 2φ2
t

(1 − �t)3

)

− δ

(
q2
t − 1

�t

+ 3φtqt

�2
t

+ 2φ2
t

�3
t

)]
,
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qt = qt,kt (θ,k)(x), φt = φ(qt ), and �t = �(qt ). The convergence rate for the esti-
mated nuisance parameter is established in Lemma 4 by application of Theorem 1.
The rate r = 2/5 is clearly faster than the cubic rate but slower than the paramet-
ric rate. Note that OM

2 is a P -Donsker class by technical tool T1 in the Appen-
dix. Assumption C1 can be verified easily by recognizing that the three classes
of functions specified in C1 depend on (t, θ, k) in a Lipschitz manner and are
uniformly bounded. The remaining assumptions are verified in Lemmas 5 and 6
below.

LEMMA 4. Under the above set-up for the partly linear normal model with

current status data, we have for θ̃n
p→ θ0.

‖k̂θ̃n
− k0‖L2 = OP (n−2/5 + ‖θ̃n − θ0‖).(25)

LEMMA 5. Under the above set-up for the partly linear normal model with
current status data, assumptions B1 and B2 are satisfied.

LEMMA 6. Under the above set-up for the partly linear normal model with
current status data, condition (20) is satisfied.

6. Future work. It is clear that the estimation accuracy for θ in the profile
sampler method is intrinsically determined by the semiparametric model specifi-
cations, specifically by the convergence rate of the nuisance parameter. Therefore it
is very natural to raise a question about how to control the degree of accuracy. One
potential strategy is to profile the penalized likelihood, whose penalty term is some
norm on the nuisance parameter space such as the Sobolev norm. We expect that
we can adjust the estimation accuracy of the proposed penalized profile sampler
by tuning the corresponding smoothing parameter. We believe that under certain
special model specifications, third or higher order semiparametric frequentist in-
ference can be constructed by extending the Bartlett correction [1] and objective
prior [24] results to semiparametric settings. There is a rich literature on the higher
order properties of posteriors for parametric models and the choice of the prior;
see, for example, [10, 19, 20].

APPENDIX

PROOF OF THEOREM 2. We first prove (14). Note that

0 = Pn�̇(θ̂n, θ̂n, η̂n) = Pn�̇(θ0, θ̂n, η̂n) + Pn�̈(θ0, θ̂n, η̂n)(θ̂n − θ0)

+ 1
2(θ̂n − θ0)

T ⊗ Pn�
(3)(θ∗

n , θ̂n, η̂n) ⊗ (θ̂n − θ0),
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where θ∗
n is in between θ0 and θ̂n. By considering Lemma 2.1 below, we can derive

the following:

0 = n−1
n∑

i=1

�̃0(xi) + P �̈0(θ̂n − θ0) + n−1/2Ĩ0�4n(θ0, θ̂n, η̂n) and

(26)√
n(θ̂n − θ0) = 1√

n

n∑
i=1

Ĩ−1
0 �̃0(Xi) + �4n(θ0, θ̂n, η̂n),

where

�4n(θ0, θ̂n, η̂n) = √
nĨ−1

0 �1n(θ0, θ̂n, η̂n) + √
nĨ−1

0 �2n(θ0, θ̂n, η̂n)(θ̂n − θ0)

+ 1
2

√
nĨ−1

0 (θ̂n − θ0)
T ⊗ Pn�

(3)(θ∗
n , θ̂n, η̂n) ⊗ (θ̂n − θ0)

and �1n and �2n are defined in the proofs of Lemma 2.1, respectively. The or-
ders of magnitude of �1n(θ0, θ̂n, η̂n) and �2n(θ0, θ̂n, η̂n) obtained in the proofs of
Lemma 2.1 imply that the order of magnitude of �4n(θ0, θ̂n, η̂n) is OP (Mn(r)), as
desired.

We next show (15). By (30) in Lemma 2.1 below, we have

logpln(θ̂n) = logpln(θ0) + (θ̂n − θ0)
T

n∑
i=1

�̃0(Xi)

(27)
− n

2
(θ̂n − θ0)

T Ĩ0(θ̂n − θ0) + �3n(θ0, θ̂n, η̂n).

(30) also implies that

logpln(θ̃n) = logpln(θ̂n) + (θ̃n − θ̂n)
T

(
n∑

i=1

�̃0(Xi) − nĨ0(θ̂n − θ0)

)

− n

2
(θ̃n − θ̂n)

T Ĩ0(θ̃n − θ̂n) + �3n(θ0, θ̃n, η̂θ̃n
) − �3n(θ0, θ̂n, η̂n).

Define �5n(θ̃n, θ̂n) = logpln(θ̃n) − logpln(θ̂n) + (n/2)(θ̃n − θ̂n)
T Ĩ0(θ̃n − θ̂n).

By considering (26), we can obtain the respective upper and lower bounds of
�5n(θ̃n, θ̂n) as follows:

�U
5n = −√

n(θ̃n − θ̂n)
T Ĩ0�4n(θ0, θ̂n, η̂n)

+ �U
3n(θ0, θ̃n, η̂θ̃n

) − �L
3n(θ0, θ̂n, η̂n),

�L
5n = −√

n(θ̃n − θ̂n)
T Ĩ0�4n(θ0, θ̂n, η̂n)

+ �L
3n(θ0, θ̃n, η̂θ̃n

) − �U
3n(θ0, θ̂n, η̂n),

where �L
3n and �U

3n are defined in the proof of Lemma 2.1 and also shown to
have magnitude OP (gr(‖θ̃n − θ̂n‖)). Now the assumptions in Section 2 imply that
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�U
5n(θ̃n, θ̂n) and �U

5n(θ̃n, θ̂n) are of order OP (gr(‖θ̃n − θ̂n‖2)), and the proof is
complete. �

LEMMA 2.1. Assuming the conditions of Theorem 2, we have

Pn�̇(θ0, θ̃n, η̂θ̃n
) = Pn�̃0 + OP

(
Mn(r) + ‖θ̃n − θ̂n‖)2

,(28)

Pn�̈(θ0, θ̃n, η̂θ̃n
) = P �̈0 + OP

(
Mn(r) + ‖θ̃n − θ̂n‖)

,(29)

logpln(θ̃n) = logpln(θ0) + (θ̃n − θ0)
T

n∑
i=1

�̃0(Xi)

(30)
− n

2
(θ̃n − θ0)

T Ĩ0(θ̃n − θ0) + OP

(
gr(‖θ̃n − θ̂n‖))

for any random sequence θ̃n − θ̂n
p→ 0.

PROOF. By Taylor expansion of θ 
→ P �̇(θ0, θ, η̂θ̃n
), we obtain:

P �̇(θ0, θ̃n, η̂θ̃n
) = P �̇(θ0, θ0, η̂θ̃n

) + P�t,θ (θ0, θ0, η̂θ̃n
)(θ̃n − θ0)

+ 1
2(θ̃n − θ0)

T ⊗ P�t,θ,θ (θ0, θ
∗
1 , η̂θ̃n

) ⊗ (θ̃n − θ0)

≡ �1(θ0, θ̃n, η̂θ̃n
),

where θ∗
1 is intermediate between θ̃n and θ0. The assumptions in Section 2 imply

�1(θ0, θ̃n, η̂θ̃n
) has order OP (Mn(r)+‖θ̃n − θ̂n‖)2. By writing Gn(�̇(θ0, θ̃n, η̂θ̃n

)−
�̃0) as the summation of Gn(�̇(θ0, θ̃n, η̂θ̃n

)− �̇(θ0, θ0, η̂θ̃n
)) and Gn(�̇(θ0, θ0, η̂θ̃n

)−
�̃0), we obtain that the difference between Pn�̇(θ0, θ̃n, η̂θ̃n

) and Pn�̃0 is

�1n(θ0, θ̃n, η̂θ̃n
) = �1(θ0, θ̃n, η̂θ̃n

) + n−1/2
Gn�t,θ (θ0, θ

∗
2 , η̂θ̃n

)(θ̃n − θ0)

+ n−1/2
Gn

(
�̇(θ0, θ0, η̂θ̃n

) − �̇0
)
,

where θ∗
2 is intermediate between θ̃n and θ0. The order of magnitude of �1n(θ0,

θ̃n, η̂θ̃n
) follows from the assumptions (6) and C1. This completes the proof of (28).

By similar analysis, we obtain

P �̈(θ0, θ̃n, η̂θ̃n
) = P �̈0 + �2(θ0, θ̃n, η̂θ̃n

)

and

Pn�̈(θ0, θ̃n, η̂θ̃n
) = P �̈0 + �2n(θ0, θ̃n, η̂θ̃n

),

where �2(θ0, θ̃n, η̂θ̃n
) = (θ̃n −θ0)

T ⊗P�t,t,θ (θ0, θ
∗
3 , η̂θ̃n

)+[P �̈(θ0, θ0, η̂θ̃n
)−P �̈0]

and �2n(θ0, θ̃n, η̂θ̃n
) = �2(θ0, θ̃n, η̂θ̃n

)+n−1/2
Gn�̈(θ0, θ̃n, η̂θ̃n

), and where θ∗
3 is in
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between θ0 and θ̃n. The assumptions in Section 2 now yield the desired order of
magnitude in (29).

Next, we will show (30). Note that

n−1(
logpln(θ̃n) − logpln(θ0)

) = Pn�(θ̃n, θ̃n, η̂θ̃n
) − Pn�(θ0, θ0, η̂θ0).

The right-hand side of the above equation is bounded below and above by
Pn(�(θ̃n, ψ̃n) − �(θ0, ψ̃n)), where the lower and upper bounds separately corre-
spond to ψ̃n = (θ0, η̂θ0) and (θ̃n, η̂θ̃n

). By applying a three-term Taylor expan-
sion to both upper and lower bounds, we obtain the corresponding upper bound,
�U

3n(θ0, θ̃n, η̂θ̃n
), and lower bound, �L

3n(θ0, θ̃n, η̂θ̃n
), for �3n(θ0, θ̃n, η̂θ̃n

) defined as
follows:

�3n(θ0, θ̃n, η̂θ̃n
) ≡ logpln(θ̃n) − logpln(θ0) − (θ̃n − θ0)

T
n∑

i=1

�̃0(Xi)

+ 1
2n(θ̃n − θ0)

T Ĩ0(θ̃n − θ0),

where

�U
3n(θ0, θ̃n, η̂θ̃n

)

= n(θ̃n − θ0)
T �1n(θ0, θ̃n, η̂θ̃n

)

+ n

2
(θ̃n − θ0)

T �2n(θ0, θ̃n, η̂θ̃n
)(θ̃n − θ0)

+ n

6

d∑
i=1

d∑
j=1

d∑
k=1

Pn�ti ,tj ,tk (θ
∗
4 , θ̃n, η̂θ̃n

)(θ̃n − θ0)i(θ̃n − θ0)j (θ̃n − θ0)k,

�L
3n(θ0, θ̃n, η̂θ̃n

)

= n(θ̃n − θ0)
T �1n(θ0, θ0, η̂θ0)

+ n

2
(θ̃n − θ0)

T �2n(θ0, θ0, η̂θ0)(θ̃n − θ0)

+ n

6

d∑
i=1

d∑
j=1

d∑
k=1

Pn�ti ,tj ,tk (θ
∗
5 , θ0, η̂θ0)(θ̃n − θ0)i(θ̃n − θ0)j (θ̃n − θ0)k,

where θ∗
4 and θ∗

5 are in between θ0 and θ̃n. (28) and (29) yield the order of
�U

3n(θ0, θ̃n, η̂θ̃n
) and �L

3n(θ0, θ̃n, η̂θ̃n
), which is OP (gr(‖θ̃n − θ̂n‖)). �

PROOF OF THEOREM 3. Suppose that Fn(·) is the posterior profile distrib-
ution of

√
n�n with respect to the prior ρ(θ), where the vector �n is defined as
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Ĩ
1/2
0 (θ − θ̂n). Let the parameter set for �n be �n. The whole proof of Theorem 3

can be briefly summarized in the following expression:

Fn(ξ) =
∫
�n∈(−∞,n−1/2ξ ]∩�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

∫
�n∈�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

.

Note that d�n above is the short notation for d�n1 × · · · × d�nd . We first partition
the parameter set �n as {�n ∩{‖�n‖ > rn}}∪ {�n ∩{‖�n‖ ≤ rn}}. By choosing the
proper order of rn, we find the posterior mass in the first partition is of arbitrarily
small order and the mass inside the second partition region can be approximated
by a stochastic polynomial in powers of n−1/2 with an error of order dependent
on the convergence rate of the nuisance parameter. This general approach applies
to both the denominator and numerator, yielding a quotient series that leads to the
desired result.

Before giving the formal proof, we need two intermediate lemmas:

LEMMA 3.1. Choose rn = o(n−1/3) such that
√

nrn → ∞. Under the condi-
tions of Theorem 3, we have

∫
‖�n‖>rn

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n = OP (n−M),(31)

for any positive number M .

PROOF. Fix r > 0. We have∫
‖�n‖>r

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

≤ I {�r
n < −n−1/2} exp

(−√
n
) ∫

�
ρ(θ) dθ + I {�r

n ≥ −n−1/2},

where �r
n ≡ sup‖�n‖>r �n(θ̂n + Ĩ−1/2�n). By Lemma 3.2 in [4], I {�r

n ≥
−n−1/2} = OP (n−M) for any fixed r > 0. This implies that there exists a pos-
itive decreasing sequence rn = o(n−1/3) with

√
nrn → ∞ such that (31) holds.

�

LEMMA 3.2. Choose rn = o(n−1/3) such that
√

nrn → ∞. Under the condi-
tions of Theorem 3, we have

∫
‖�n‖≤rn

∣∣∣∣pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂)
ρ(θ̂n + Ĩ

−1/2
0 �n) − exp

(
−n

2
�T

n �n

)
ρ(θ̂n)

∣∣∣∣d�n

(32)
= OP (n−1/2Mn(r)).
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PROOF. The posterior mass over the region ‖�n‖ ≤ rn is bounded by

∫
‖�n‖≤rn

∣∣∣∣pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)
ρ(θ̂n) − exp

(
−n

2
�T

n �n

)
ρ(θ̂n)

∣∣∣∣d�n(∗)

+
∫
‖�n‖≤rn

∣∣∣∣pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)
ρ(θ̂n + Ĩ

−1/2
0 �n)

(∗∗)

− pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)
ρ(θ̂n)

∣∣∣∣d�n.

Using (15) when r ≥ 1/2, we obtain

(∗) =
∫
‖�n‖≤rn

[
ρ(θ̂n) exp

(
−n�T

n �n

2

)∣∣ exp
(
OP (n‖�n‖3 + n−1/2)

) − 1
∣∣]d�n

= n−1/2
∫
‖un‖≤√

nrn

[
ρ(θ̂n) exp

(
−uT

n un

2

)

× ∣∣ exp
(
n−1/2(‖un‖3 + 1)OP (1)

) − 1
∣∣]dun

= n−1 × OP (1) ×
∫
‖un‖≤√

nrn

[
ρ(θ̂n) exp

(
−uT

n un

2

)
(‖un‖3 + 1)

]
dun

= OP (n−1),

where the second equality follows by replacing
√

n�n with un, and the third equal-
ity follows from the fact that | exp(n−1/2(‖un‖3 +1)OP (1))−1| = OP (1)n−1/2 ×
(‖un‖3 + 1), since n−1/2‖un‖3 = o(1).

However, when 1/4 < r < 1/2, we obtain

(∗) =
∫
‖�n‖≤rn

[
ρ(θ̂n) exp

(
−n�T

n �n

2

)
| exp(OP (gr(‖�n‖))) − 1|

]
d�n

=
∫
‖�n‖≤rn

[
ρ(θ̂n) exp

(
−n�T

n �n

2

)
|ḡr (‖�n‖) × OP (1)|

]
d�n.

When 1/4 < r < 1/3, OP (gr(‖�n‖)) = OP (n1−2r‖�n‖ + n−2r+1/2). Note that
there exists a δ > 0 such that rn = n2r−1−δ satisfying rn = o(n−1/3) with

√
nrn →

∞ for any 1/4 < r < 1/3. Therefore n1−2r‖�n‖ + n−2r+1/2 = o(1) when rn is
taken equal to n2r−1−δ for some δ > 0. In this case, it implies that ḡr (‖�n‖) =
n1−2r‖�n‖ + n−2r+1/2 for 1/4 < r < 1/3. However ḡr (‖�n‖) = gr(‖�n‖) for
1/3 ≤ r < 1/2 since gr(‖�n‖) = o(1) when r is in this range. Combining with
previous analyses, we have (∗) = OP (n−2r ) for 1/4 < r < 1/2. Summarizing the
above analysis, we have (∗) = OP (n−1/2Mn(r)).
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By the following analysis of (∗∗), we will be able to show that (∗∗) = OP (n−1)

for r ≥ 1/2 since exp(OP (n‖�n‖3 + n−1/2)) = OP (1) with ‖�n‖ ≤ rn:

(∗∗) =
∫
‖�n‖≤rn

[
|ρ̇(θ∗

n )T Ĩ
−1/2
0 �n| exp

(
−n

2
�T

n �n + OP (n‖�n‖3 + n−1/2)

)]
d�n

≤ M

∫
‖�n‖≤rn

[
‖�n‖ exp

(
−n

2
�T

n �n

)]
d�n

× sup
‖�n‖≤rn

exp
(
OP (n‖�n‖3 + n−1/2)

)
,

where θ∗
n is intermediate between θ̂n and θ̂n + Ĩ

−1/2
0 �n.

In the case that 1/4 < r < 1/2, we have the same conclusion:

(∗∗) =
∫
‖�n‖≤rn

[
|ρ̇(θ∗

n )T Ĩ
−1/2
0 �n| exp

(
−n

2
�T

n �n + OP (gr(‖�n‖))
)]

d�n

�
∫
‖�n‖≤rn

[
‖�n‖ exp

(
−n

2
�T

n �n

)]
d�n

+
∫
‖�n‖≤rn

‖�n‖ exp
(
−n

2
�T

n �n

)
| exp(OP (gr(‖�n‖))) − 1|d�n

≤ OP (n−1) + OP (n−2r−1/2) = OP (n−1),

where θ∗
n is an intermediate value between θ̂n and θ̂n + Ĩ

−1/2
0 �n. The last inequality

follows from the analysis of (∗) when 1/4 < r < 1/2. Hence we have proved that
(∗∗) = OP (n−1) for r > 1/4. This completes the proof. �

Next we start the formal proof of Theorem 3. Note first that∫
�n∈�n

[
ρ(θ̂n + Ĩ

−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)

]
d�n

=
∫
{‖�n‖>rn}∩�n

[
ρ(θ̂n + Ĩ

−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)

]
d�n

+
∫
{‖�n‖≤rn}∩�n

[
ρ(θ̂n + Ĩ

−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)

]
d�n.

By Lemma 3.1, the first integral on the right is of order OP (n−1/2Mn(r)). The
second integral on the right can be decomposed into the following summands:∫

{‖�n‖≤rn}∩�n

[
ρ(θ̂n + Ĩ

−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂)
− exp

(
−n

2
�T

n �n

)
ρ(θ̂n)

]
d�n

+
∫
{‖�n‖≤rn}∩�n

[
exp

(
−n

2
�T

n �n

)
ρ(θ̂n)

]
d�n.
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The first part in the above is bounded by OP (n−1/2Mn(r)) via Lemma 3.2. The
second part equals

n−1/2ρ(θ̂n)

∫
{‖un‖≤√

nrn}∩√
n�n

e−uT
n un/2 dun

= n−1/2ρ(θ̂n)

∫
Rd

e−uT
n un/2 dun + O(n−1/2Mn(r)),

where un = √
n�n. The above equality follows from the inequality

∫ ∞
x e−y2/2 dy ≤

x−1e−x2/2 for any x > 0.
Consolidating the above analysis, we obtain∫

�n∈�n

[
ρ(θ̂n + Ĩ

−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)

]
d�n

(33)
= n−1/2ρ(θ̂n)(2π)d/2 + OP (n−1/2Mn(r)),

and, by similar analysis, we also have∫
�n∈(−∞,n−1/2ξ ]∩�n

[
ρ(θ̂n + Ĩ

−1/2
0 �n)

pln(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n)

]
d�n

(34)
= n−1/2ρ(θ̂n) ×

∫
(−∞,ξ1]×···×(−∞,ξd ]

e−yT y/2 dy + OP (n−1/2Mn(r)).

The quotient of (33) and (34) generates the desired error rate for fixed ξ . Note,
however, that the above conclusions are unchanged if ξ is replaced by an arbitrary
sequence {ξn} ∈ R

d . Thus (21) follows, proving Theorem 3 in its entirety. �

PROOF OF COROLLARY 1. From the proof of Theorem 3, we have

P̃
θ |X̃

(√
nĨ

1/2
0 (θ − θ̂n) ≤ ξ

)

=
∫
�n∈(−∞,n−1/2ξ ]∩�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

∫
�n∈�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

.

By differentiating both sides relative to ξ and combining with (33), we obtain

fn(ξ) =
ρ(θ̂n + Ĩ

−1/2
0 ξ√

n
)
pln(θ̂n+n−1/2Ĩ

−1/2
0 ξ)

pln(θ̂n)

(2π)d/2ρ(θ̂n) + OP (Mn(r))
.

By analysis similar to the proof of Corollary 2 in [4], the numerator equals
ρ(θ̂n) exp(−ξT ξ/2) + OP (Mn(r)). This completes the proof. �

PROOF OF COROLLARY 2. We only show (23) in what follows. Expres-
sion (24) can be shown similarly. The expansion in (23) is the quotient of two
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expansions of the form (33) and (34). We can show this as follows: First,

Ẽθ |x(�n) =
∫
�n∈�n

�nρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

∫
�n∈�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

.

The denominator is n−1/2(2π)d/2ρ(θ̂n) + OP (n−1/2Mn(r)) by (33). Similarly, by
the proof of Theorem 3 we know the numerator is a random vector of the order
OP (n−2r−1/2 + n−3/2). This yields the desired conclusion. �

PROOF OF THEOREM 4. By Lemma 4.1 in [4], we can easily show that
κnα = Ĩ

−1/2
0 zα +OP (Mn(r)) for any ξ < α < 1 − ξ and some choice of zα , where

ξ ∈ (0,1/2). Note that κnα is not unique since the αth quantile of a d-dimensional
standard normal distribution, zα , is not unique when d > 1. The classical Edge-
worth expansion implies that P(n−1/2 ∑n

i=1 Ĩ
−1/2
0 �̃0(Xi) ≤ zα + an(α)) = α,

where an(α) = O(n−1/2), for ξ < α < 1 − ξ . This an(α) is thus uniquely deter-
mined for each fixed zα since �̃0(Xi) has at least one absolutely continuous compo-
nent. Let κ̂nα = Ĩ

−1/2
0 zα + (

√
n(θ̂n − θ0) − n−1/2 ∑n

i=1 Ĩ−1
0 �̃0(Xi)) + Ĩ

−1/2
0 an(α).

Then P(
√

n(θ̂n − θ0) ≤ κ̂nα) = α. Combining with (14), we obtain κ̂nα = κnα +
OP (Mn(r)). The uniqueness of κ̂nα follows from that of an(α) for each fixed zα ,
up to a term of order OP (Mn(r)). �

PROOF OF THEOREM 5. Under the assumptions of Theorem 5, we next show
that χnα

b = χ2
d,α + OP (Mn(r)) for ξ < α < 1 − ξ , where ξ ∈ (0,1/2). It is suf-

ficient to show that P̃
θ |X̃(PLRb(θ) ≤ χ2

d,α) = α + OP (Mn(r)) by considering the
form of PLRb(θ) and (22). Based on the analysis in the proof of Theorem 2, the
term OP (gr(‖θ̃n − θ̂n‖)) in (15) is actually bounded above by �U

5n(θ̃n, θ̂n) and
bounded below by �L

5n(θ̃n, θ̂n). Thus it yields the inequality that n(θ − θ̂n)
T Ĩ0(θ −

θ̂n) − �U
5n(θ, θ̂n) ≤ PLRb(θ) ≤ n(θ − θ̂n)

T Ĩ0(θ − θ̂n) − �L
5n(θ, θ̂n) such that we

have constructed the upper bound and lower bound for P̃
θ |X̃(PLRb(θ) ≤ χ2

d,α).
We next show that the upper and lower bound matches asymptotically with

α + OP (Mn(r)). Without loss of generality, we only consider its upper bound in
what follows:

P̃
θ |X̃

(
n(θ − θ̂n)

T Ĩ0(θ − θ̂n) ≤ χ2
d,α + �U

5n(θ, θ̂n)
)

≤ P̃
θ |X̃(Wn) + P̃

θ |X̃(‖�n‖ > rn)

≤ P̃
θ |X̃(Wn) +

∫
{‖�n‖>rn}∩�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

∫
�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

≤ P̃
θ |X̃(Wn) + OP (n−M),
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where rn = o(n1/3) with
√

nrn → ∞, Wn = {n�T
n �n ≤ χ2

d,α + �U
5n(θ, θ̂n)} ∩

{‖�n‖ ≤ rn}, and M is an arbitrary positive number. The third inequality above
follows from Lemma 3.1 and (33).

We next study P̃
θ |X̃(Wn). Accordingly,

P̃
θ |X̃(Wn) =

∫
Wn

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

∫
�n

ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
d�n

=
∫
Wn

[ρ(θ̂n + Ĩ
−1/2
0 �n)

pln(θ̂n+Ĩ
−1/2
0 �n)

pln(θ̂n)
− ρ(θ̂n) exp(−n

2�T
n �n)]d�n

n−1/2ρ(θ̂n)(2π)d/2 + OP (n−1/2Mn(r))

+
∫
Wn

ρ(θ̂n) exp(−n
2�T

n �n) d�n

n−1/2ρ(θ̂n)(2π)d/2 + OP (n−1/2Mn(r))

= OP (Mn(r)) +
∫
Wn

ρ(θ̂n) exp(−n
2�T

n �n) d�n

n−1/2ρ(θ̂n)(2π)d/2 + OP (n−1/2Mn(r))

=
∫
Vn

ρ(θ̂n) exp(−n
2�T

n �n) d�n + ∫
Wn−Vn

ρ(θ̂n) exp(−n
2�T

n �n) d�n

n−1/2ρ(θ̂n)(2π)d/2 + OP (n−1/2Mn(r))

+ OP (Mn(r))

= α +
∫
Wn−Vn

ρ(θ̂n) exp(−n
2�T

n �n) d�n

n−1/2ρ(θ̂n)(2π)d/2 + OP (n−1/2Mn(r))
+ OP (Mn(r)),

where Vn = {n�T
n �n ≤ χ2

d,α}. The third equality in the above follows from (33)
and Lemma 3.2 in the proof of Theorem 3. We next study the fraction in the last
equality above. It is easy to show that {Wn − Vn} ⊆ {Wn − Vn ∩ {‖�n‖ ≤ rn}} ⊆
{χ2

d,α ≤ n�T
n �n ≤ χ2

d,α +�U
5n(θ, θ̂n)}∩{‖�n‖ ≤ rn} ≡ Tn. By replacing

√
n�n with

un, Tn can be reexpressed as {χ2
d,α ≤ uT

n un ≤ χ2
d,α +�U

5n(θ, θ̂n)}∩{‖un‖ ≤ √
nrn}.

We next consider the order of
∫
Wn−Vn

ρ(θ̂n) exp(−n�T
n �n/2) d�n for r in differ-

ent ranges. For r ≥ 1/2, �U
5n(θ, θ̂n) = OP (n−1/2 + n−1/2‖un‖3). Under the con-

dition that ‖un‖ ≤ √
nrn, �U

5n(θ, θ̂n) = oP (1). Hence any subsequence of un con-
tained in Tn is not diverging. In this case, �U

5n(θ, θ̂n) = OP (n−1/2). In summary
we have the following inequalities:∫

Wn−Vn

ρ(θ̂n) exp
(
−n

2
�T

n �n

)
d�n ≤

∫
Tn

ρ(θ̂n) exp
(
−n

2
�T

n �n

)
d�n

≤ n−1/2
∫
Qn

ρ(θ̂n) exp
(
−uT

n un

2

)
dun

≤ OP (n−1),
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where Qn ≡ {χ2
d,α ≤ uT

n un ≤ χ2
d,α + OP (n−1/2)} ∩ {‖un‖ ≤ √

nrn}. Hence

P̃
θ |X̃(Wn) = α + OP (n−1/2) when r ≥ 1/2.
Similar arguments will now be applied to the case 1/4 < r < 1/2. It is

sufficient to show that
∫
Wn−Vn

ρ(θ̂n) exp(−n
2�T

n �n) d�n = OP (n−2r ) for r in

the above range. When 1/3 ≤ r < 1/2 and ‖un‖ ≤ √
nrn, �U

5n(θ, θ̂n) con-
verges to zero in probability since �U

5n(θ, θ̂n) = OP (n−1/2‖un‖3 + n−r‖un‖2 +
n1/2−2r‖un‖ + n−2r+1/2). Consequently, �U

5n(θ, θ̂n) is OP (n1/2−2r ) by the analy-
sis we used for the case when r ≥ 1/2. However, for 1/4 < r < 1/3, �U

5n(θ, θ̂n) =
OP (n−2r+1/2‖un‖+n−2r+1/2). By making the same choice of rn used in the proof
of Lemma 3.2, we have �U

5n(θ, θ̂n) = oP (1). Hence there does not exist a diverging
subsequence of un contained in Tn when we choose this specific rn. This implies
that �U

5n(θ, θ̂n) = OP (n1/2−2r ). In other words, �U
5n(θ, θ̂n) = OP (n1/2−2r ) for

1/4 < r < 1/2. This implies that
∫
Wn−Vn

ρ(θ̂n) exp(−n
2�T

n �n) d�n = OP (n−2r ).

The same arguments also apply to the lower bound of P̃
θ |X̃(PLRb(θ) ≤ χ2

d,α).

Thus we have shown that χnα
b = χ2

d,α + OP (Mn(r)) for ξ < α < 1 − ξ , where
ξ ∈ (0,1/2).

If we can show that χnα
f = χ2

d,α + OP (Mn(r)), then the whole proof is com-
plete. Combining (14) and (15) in Theorem 2, we can rewrite PLRf (θ0) as
n−1 ∑n

i=1 �̃0(Xi)
T Ĩ−1

0
∑n

i=1 �̃0(Xi)
T + OP (Mn(r)). By classical Edgeworth ex-

pansion, we have P(n−1/2 ∑n
i=1 Ĩ

−1/2
0 �̃0(Xi) ≤ zα) = α + O(n−1/2), which di-

rectly yields P(n−1 ∑n
i=1 �̃0(Xi)

T Ĩ−1
0

∑n
i=1 �̃0(Xi)

T ≤ χ2
d,α + O(n−1/2)) = α.

Thus χnα
f = χ2

d,α + OP (Mn(r)). This completes the proof. �

PROOF OF LEMMA 2. We first review some known results from [18] about
the Cox model with current status data. For some constant C and every x (under
the assumed regularity conditions), we have

|lik(θ0,
0)(x) − lik(θ0,
)(x)| ≤ C|
(y) − 
0(y)|,
|�̇(θ0, θ0,
)(x) − �̇(θ0, θ0,
0)(x)| ≤ C|
(y) − 
0(y)|,(35)

|lik(θ0,
)(x) − lik(θ0,
0)(x) − A0(
 − 
0)(x)lik(θ0,
0)(x)|
≤ |
(y) − 
0(y)|2,

where A0 = Aθ0,
0 and Aθ,
 is the score operator for 
 at (θ,
), for example,
the Fréchet derivative of logpθ,
 relative to 
. Thus by the decomposition of
P �̇(θ0, θ0,
) in what follows, we can show (9) holds with the L2 norm on 
:

P �̇(θ0, θ0,
) = P

[
p0 − pθ0,


p0

(
�̇(θ0, θ0,
) − �̇0

)]

− P �̇(θ0, θ0,
0)

[
pθ0,
 − p0

p0
− A0(
 − 
0)

]
.
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Next we can show (7) by the following inequality:

P
(
�̈(θ0, θ0,
) − �̈(θ0, θ0,
0)

)
≤ P |N(θ0, θ0,
) − N(θ0, θ0,
0)| + P |�̇2(θ0, θ0,
) − �̇2(θ0, θ0,
0)|
≤ P |N(θ0, θ0,
) − N(θ0, θ0,
0)| + C‖
 − 
0‖L2,

where N(t, θ,
) = (∂2lik(t,
t(θ,
))/∂t2)/lik(t,
t(θ,
)). The second in-
equality follows from the boundedness of �̇(t, θ,
) and (35). We next proceed
to derive an upper bound for P |N(θ0, θ0,
) − N(θ0, θ0,
0)|:

P |N(θ0, θ0,
) − N(θ0, θ0,
0)|
� P |
Q(x; θ0,
) − 
Q(x; θ0,
0)| + P |
 − 
0| + P |w(
) − w(
0)|

+ P |w(
)
 − w(
0)
0|
� P |
Q(x; θ0,
) − 
Q(x; θ0,
0)| + ‖
 − 
0‖L2

� ‖
 − 
0‖L2,

where w(
) = φ(
)h00 ◦ 
−1
0 ◦ 
. Clearly, w(
0) = h0. Note that w(
)

can be expressed as 
ς(
)υ(
), where ς(
) = φ(
)/
 and υ(
) = h00 ◦

−1

0 ◦ 
. Note that ς(
) and υ(
) are both assumed bounded and Lipschitz.
Hence P |w(
) − w(
0)| � ‖
 − 
0‖L2 and P |
w(
) − 
0w(
0)| � ‖
 −

0‖L2 . This explains the second inequality in the above. The inequality that
P |
Q(x; θ0,
)−
Q(x; θ0,
0)| � ‖
−
0‖L2 follows from the inequality that
|(u(eu − ev))/((eu − 1)(ev − 1))| � |u − v| given that u ≥ 0 in some compact set
and v > 0 in some compact set. Combining this with the previous analysis, we
can conclude that (7) holds under the given assumptions for the Cox model with
current status data. Similar techniques can be applied to the verification of (8). We
omit the details.

Finally, we only need to check (6). Note that Gn(�̇(θ0, θ0, 
̂θ̃n
) − �̇0) can be

written as follows:

Gn

(
(
̂θ̃n

− 
0)zQ(x; θ0,
0)
) − Gn

((
w(
̂θ̃n

) − w(
0)
)
Q(x; θ0,
0)

)
+ Gn

(
Q(x; θ0, 
̂θ̃n

)
(
z
̂θ̃n

− w(
̂θ̃n
)
) − Q(x; θ0,
0)

(
z
0 − w(
0)

))
(36)

− Gn

(((
z
̂θ̃n

− w(
̂θ̃n
)
) − (

z
0 − w(
0)
))

Q(x; θ0,
0)
)
.

To verify (6), we need to make use of the following technical tools:
Clearly, by Lemma 5.13 in [22] we have Gn((
̂θ̃n

− 
0)zQ(x; θ0,
0)) =
OP (n−1/6 + ‖
̂θ̃n

− 
0‖1/2
L2

), since α = 1 for monotone functions 
. Then by

the relation OP (‖
̂θ̃n
− 
0‖1/2

L2
) = OP ((|θ̃n − θ0| + n−1/3)1/2) = OP (n−1/6 +

n1/6|θ̃n − θ0|), we know that the first line of (36) satisfies (6). Note that the class
of Lipschitz functions of 
 also has the same upper bound (i.e., α = 1) for the
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entropy with bracketing number by Theorem 2.7.11 in [23] and the inequality
that N(ε,G,‖ · ‖L2) ≤ N[·](2ε,G,‖ · ‖L2). This now implies that Gn((w(
̂θ̃n

) −
w(
0))Q(x; θ0,
0)) = OP (n−1/6 + n1/6|θ̃n − θ0|) since w(
) is Lipschitz in 
.
Similar arguments apply to the other lines in (36). �

PROOF OF LEMMA 3. The proof is analogous to that of Lemma 2 in [14]. �

PROOF OF LEMMA 4. We apply Theorem 1 with mθ,k = λ(θ, k), where
λ(θ, k) ≡ log lik(θ, k), since lik(θ, k) is bounded away from zero and infinity for
(θ, k) ∈ �×OM

2 . It suffices to show (10) provided both P(λ(θ, k0)−λ(θ0, k0)) �
−‖θ − θ0‖2 and P(λ(θ, k)−λ(θ0, k0)) � −d2

θ (k, k0) hold. Note that the maximal-
ity of the point (θ0, k0) around the criterion function (θ, k) 
→ Pλ(θ, k) implies
that P(λ(θ, k0) − λ(θ0, k0)) � −‖θ − θ0‖2. By using the inequality P log(q/p) ≤
−h2(p, q) and the relationship between Kullback–Leibler divergence and squared
Hellinger distance h, we can show that P(λ(θ, k) − λ(θ0, k0)) ≤ − ∫

(
√

pθ,k −√
p0)

2 dμ ≤ −‖pθ,k − p0‖2
L2

. Hence dθ (k, k0) = ‖pθ,k − p0‖L2 . Thus we only
need to verify condition (11) by Lemma 1 to complete the whole proof.

Condition (13) in Lemma 1 trivially holds by considering the forms of mθ,k and
dθ (k, k0). By Theorem 1, we can show that dθ̃n

(k̂θ̃n
, k0) = OP (δn + ‖θ̃n − θ0‖)

for any δn satisfying K(δn,Sδn,L2(P )) ≤ √
nδ2

n, where the function K is defined
in (12). In other words, we need to calculate the ε-bracketing entropy number
for the class of functions Sδn . To achieve the desired rate (25), we only need
to show HB(ε,Sδn,L2(P )) ≤ ε−1/2 based on the above discussions. Recall that
Sδn ≡ {x 
→ λ(θ, k)(x) − λ(θ, k0)(x) :dθ (k, k0) < δn,‖θ − θ0‖ < δn}. By consid-
ering Lemma 9.24 in [11], we only need to show that HB(ε,C,L2(P )) ≤ ε−1/2,
where C ≡ {x 
→ λ(θ, k)(x) :J2(k) + ‖k − k0‖∞ ≤ C1,‖θ − θ0‖ ≤ C1}.

Now we consider C1 ≡ {qθ,k(x)/(1 + J (k)) : ‖k − k0‖∞ ≤ C1,‖θ − θ0‖ ≤ C1}.
By technical tool T1 below, we obtain HB(ε,C1,L2(P )) ≤ ε−1/2 as desired.

T1. (See [2].) For each 0 < C < ∞ and δ > 0 we have

HB

(
δ, {η :‖η‖∞ ≤ C,Jk(η) ≤ C},‖ · ‖∞

)
�

(
C

δ

)1/k

.(37)

Continuing, note that λ(θ, k)(X) can be rewritten as:

� log�( ¯qθ,kA) + (1 − �) log
(
1 − �( ¯qθ,kA)

)
,(38)

where A = 1 + J (k) and q̄θ,k ∈ C1. We next calculate the ε-bracketing en-
tropy number with the L2 norm for the class of functions R1 ≡ {ka(t) : t 
→
log�(at) for a ≥ 1 and t ∈ T }, where T is some bounded subset in R

1. Note
that ka(t) is increasing (decreasing) in a for t > 0 (t < 0). After some deriva-
tion, we obtain that supt∈T |ka(t) − kb(t)| � |a − b| for any fixed a, b > 1 and
supa,b≥A0,t∈T |ka(t) − kb(t)| � A−1

0 . The above two inequalities imply that the



GENERAL POSTERIOR PROFILE PROPERTIES 1851

ε-bracketing number with uniform norm is of order O(ε−2) for a ∈ [1, ε−1] and
is 1 for a > ε−1. Thus we know HB(ε,R1,L2) = O(log ε−2). By applying a
similar analysis to R2 ≡ {ka(t) : t 
→ log(1 − �(at)) for a ≥ 1 and t ∈ T }, we ob-
tain that HB(ε,R2,L2) = O(log ε−2). This combined with Lemma 15.2 in [11],
yields that HB(ε,C,L2) � ε−1/2. Thus far we have shown that dθ̃n

(k̂θ̃n
, k0) =

OP (n−2/5 + ‖θ̃n − θ0‖). Now by the usual Taylor expansion and the assumption
that EV ar(W |Z) is positive definite, we have verified (25). �

PROOF OF LEMMA 5. Note that k ∈ OM
2 . Hence we can easily verify as-

sumption B1 since every map (t, θ, k) 
→ (∂l+m/∂t l∂θm)�(t, θ, k) is uniformly
bounded. Note that (C,W) lies in some bounded set and h0(·) is bounded. Hence
we can show that the Fréchet derivatives of k 
→ �̈(θ0, θ0, k) and k 
→ �t,θ (θ0, θ0, k)

for any k ∈ OM
2 are bounded operators, that is, |�̈(θ0, θ0, k)(X)− �̈0(X)| is bounded

by the product of some integrable function and |k − k0|(Z). Thus (7) and (8) are
satisfied, and the bounded Fréchet derivative of k 
→ �̇(θ0, θ0, k) plus second-order
Fréchet differentiability of k 
→ lik(θ0, k) implies (9).

Since the convergence rate r = 2/5, it suffices to show the asymptotic equicon-
tinuity condition (6), provided (39) holds. Accordingly,

Gn

(
�̇(θ0, θ0, k̂θ̃n

) − �̇0
) = OP

(
n−3/10 + n1/10‖θ̃n − θ0‖)

.(39)

To show (39), we need the following technical tool T2:
T2. (Lemma 3.4.2 in [23].) Let F be a class of measurable functions such that

Pf 2 < δ2 and ‖f ‖∞ ≤ M for every f in F . Then

E∗
P ‖Gn‖F � K(δ,F ,L2(P ))

(
1 + K(δ,F ,L2(P ))

δ2
√

n
M

)
,

where K(δ,F ,‖ · ‖) = ∫ δ
0

√
1 + HB(ε,F ,‖ · ‖) dε.

To utilize this tool, note first that (25) implies:

P

( �̇(θ0, θ0, k̂θ̃n
) − �̇0

n−3/10 + n1/10‖θ̃n − θ0‖
)2

� OP (n−1/5).

We next define the set Qn as

{g ∈ L2(P ) :Pg2 ≤ Cnn
−1/5}

∩
{

�̇(θ0, θ0, k) − �̇0

n−3/10 + n1/10‖θ − θ0‖ :k ∈ OM
2 ,‖θ − θ0‖ ≤ δ

}
,

for some δ > 0. Obviously the function (�̇(θ0, θ0, k̂θ̃n
)− �̇0)/(n

−3/10 +n1/10‖θ̃n −
θ0‖) ∈ Qn on a set of probability arbitrarily close to one, as Cn → ∞. If we can
show limn→∞ E∗‖Gn‖Qn < ∞ by T2, then Lemma 5 is proved.
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Note that �̇(θ0, θ0, k) depends on k in a Lipschitz manner. Consequently we can
bound HB(ε,Qn,L2(P )) by the product of some constant and H(ε,Rn,L2(P )),
where Rn is defined as {Gn(k) :J (Gn(k)) � n3/10,‖Gn(k)‖∞ � n3/10}, and
where Gn(k) = k/(n−3/10 + n1/10‖θ − θ0‖). By the main results in [2], we know
H(ε,Rn,L2(P )) � (n3/10/ε)1/k . Note that δn = n−1/10 and Mn = n3/10 in T2.
Thus by calculation using T2, we establish limn→∞ E∗‖Gn‖Qn < ∞. �

PROOF OF LEMMA 6. By the assumption that �n(θ̃n) = oP (1), we have
�n(θ̃n) − �n(θ0) ≥ oP (1). Thus the following inequality holds:

n−1
n∑

i=1

log
[H(θ̃n, k̂θ̃n

;Xi)

H(θ0, k̂θ0;Xi)

]
≥ oP (1),

where H(θ, k;X) = ��(C −θW −k(Z))+ (1−�)(1−�(C −θW −k(Z))). By
the assumptions on k, we know that H(θ̃n, k̂θ̃n

;Xi) belongs to some P -Donsker
class. Combining the above conclusion and the inequality α logx ≤ log(1 +α{x −
1}) for some α ∈ (0,1) and any x > 0, we can show that

P log
[
1 + α

(H(θ̃n, k̂θ̃n
;Xi)

H(θ0, k̂θ0;Xi)
− 1

)]
≥ oP (1).(40)

The strict concavity of x 
→ log(1 + α(x − 1)) ensures that

P log
[
1 + α

(H(θ̃n, k̂θ̃n
;Xi)

H(θ0, k̂θ0;Xi)
− 1

)]
≤ 0.

This combined with (40) implies that

P log
[
1 + α

(H(θ̃n, k̂θ̃n
;Xi)

H(θ0, k̂θ0;Xi)
− 1

)]
= oP (1).

The strict concavity of x 
→ log(1 + α(x − 1)) forces the result that P |�(C −
θ̃nW − k̂θ̃n

(Z)) − �(C − θ0W − k̂θ0)(Z)| = oP (1). The desired conclusion now
follows from model identifiability. �
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