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LARGE DEVIATIONS FOR INFINITE DIMENSIONAL
STOCHASTIC DYNAMICAL SYSTEMS

BY AMARJIT BUDHIRAJA ,1 PAUL DUPUIS2 AND VASILEIOS MAROULAS1

University of North Carolina, Brown University and University of North Carolina

The large deviations analysis of solutions to stochastic differential equa-
tions and related processes is often based on approximation. The construc-
tion and justification of the approximations can be onerous, especially in the
case where the process state is infinite dimensional. In this paper we show
how such approximations can be avoided for a variety of infinite dimensional
models driven by some form of Brownian noise. The approach is based on a
variational representation for functionals of Brownian motion. Proofs of large
deviations properties are reduced to demonstrating basic qualitative proper-
ties (existence, uniqueness and tightness) of certain perturbations of the orig-
inal process.

1. Introduction. Small noise large deviations theory for stochastic differen-
tial equations (SDE) has a long history. The finite dimensional setting, that is,
where the SDE is driven by finitely many Brownian motions, was first studied by
Freidlin and Wentzell [13]. In its basic form, one considers a k-dimensional SDE
of the form

dXε(t) = b(Xε(t)) dt + √
εa(Xε(t)) dW(t), Xε(0) = xε, t ∈ [0, T ],(1.1)

with coefficients a, b satisfying suitable regularity properties and W a finite di-

mensional standard Brownian motion. If xε → x0 as ε → 0, then Xε P→ X0 in
C([0, T ] : Rk), where X0 solves the equation ẋ = b(x) with initial data x0. The
Freidlin–Wentzell theory describes the path asymptotics, as ε → 0, of probabil-
ities of large deviations of the solution of the SDE from X0—the law of large
number dynamics. Since the original work of Freidlin–Wentzell, the finite dimen-
sional problem has been extensively studied and many of the original assumptions
made in [13] have been significantly relaxed (cf. [1, 8]).

Our interest in this work is with infinite dimensional models, that is, the setting
where the driving Brownian motion W is “infinite dimensional.” In recent years
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there has been a lot of interest in large deviations analysis for such SDEs, and a
partial list of references is [2, 4–6, 9, 12, 16, 19, 22, 25, 29, 30]. Our approach to
the large deviation analysis, which is based on certain variational representations
for infinite dimensional Brownian motions [3], is very different from that taken in
these papers. The goal of the present work is to show how the variational represen-
tations can be easily applied to prove large deviation properties for diverse families
of infinite dimensional models. Of course, the claim that a certain approach is easy
to use may be viewed as subjective, and such a claim is only truly validated when
other researchers find the approach convenient. In this regard, it is worth noting
that the recent works [23, 24, 26, 27] have proved large deviation properties by
applying the general large deviation principle (LDP) for Polish space valued mea-
surable functionals of a Hilbert space valued Brownian motion established in [3]
(see Section 6 for details).

As noted previously, one contribution of the present paper is to demonstrate
in the context of an interesting example how easy it is to verify the main as-
sumption for the LDP made in [3]. A second contribution is to show how the
setup of [3], which considered SDEs driven by a Hilbert space valued Wiener
processes, can be generalized to closely related settings, such as equations driven
by a Brownian sheet. The chosen application is to a class of reaction-diffusion sto-
chastic partial differential equations (SPDE) [see (5.1)], for which well-posedness
has been studied in [20] and a small noise LDP established in [19]. The class in-
cludes, as a special case, the reaction-diffusion SPDEs considered in [25] (See
Remark 3).

Our proof of the LDP proceeds by verification of the condition analogous to
Assumption 4.3 of [3] (Assumption 3 in the current paper) appropriate to this for-
mulation. The key ingredient in the verification of this assumption are the well-
posedness and compactness for sequences of controlled versions of the original
SPDE; see Theorems 10, 11 and 12. For comparison, the statements analogous
to Theorems 10 and 11 in the finite dimensional setting (1.1) would say that, for
any θ ∈ [0,1) and any L2-bounded control u, [i.e., a predictable process satisfying∫ T

0 ‖u(s)‖2 ds ≤ M , a.s. for some M ∈ (0,∞)], and any initial condition x ∈ R
k ,

the equation

dXθ,u
x (t) = b(Xθ,u

x (t)) dt + θa(Xθ,u
x (t)) dW(t) + a(Xθ,u

x (t))u(t) dt,
(1.2)

Xθ,u
x (0) = x

has a unique solution for t ∈ [0, T ]. Also, the statement analogous to Theorem 12
in the finite dimensional setting would require that if θ(ε) → θ(0) = 0, if a se-
quence of uniformly L2-bounded controls uε satisfies uε → u in distribution (with
the weak topology on the bounded L2 ball), and if xθ(ε) → x (all as ε → 0), then
X

θ(ε),uε

xθ(ε) → X0,u
x in distribution.

As one may expect, the techniques and estimates used to prove such proper-
ties for the original (uncontrolled) stochastic model can be applied here as well,
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and indeed, proofs for the controlled SPDEs proceed in very much the same way
as those of their uncontrolled counterparts. A side benefit of this pleasant situa-
tion is that one can often prove large deviation properties under mild conditions,
and indeed, conditions that differ little from those needed for a basic qualitative
analysis of the original equation. In the present setting, we are able to relax two
of the main technical conditions used in [19], which are the uniform bounded-
ness of the diffusion coefficient [i.e., the function F in (5.1)] and the so-called
“cone condition” imposed on the underlying domain (cf. [18], page 320). In place
of these, we require only that the domain be a bounded open set and that the
diffusion coefficients satisfy the standard linear growth condition. It is stated in
Remark 3.2 of [19] that although unique solvability holds under the weaker lin-
ear growth condition, they are unable to derive the corresponding large deviation
principle. The conditions imposed on F and O in [19] enter in an important way
in their proofs of the large deviation principle which is based on obtaining suit-
able exponential tail probability estimates for certain stochastic convolutions in
Hölder norms. This relies on the application of a generalization of Garsia’s theo-
rem [14], which requires the restrictive conditions alluded to above. An impor-
tant point is that these conditions are not needed for unique solvability of the
SPDE.

In contrast, the weak convergence proof presented here does not require any
exponential probability estimates and, hence, these assumptions are no longer
needed. Indeed, suitable exponential continuity (in probability) and exponential
tightness estimates are perhaps the hardest and most technical parts of the usual
proofs based on discretization and approximation arguments. This becomes partic-
ularly hard in infinite dimensional settings where these estimates are needed with
metrics on exotic function spaces (e.g., Hölder spaces, spaces of diffeomorphisms,
etc.).

Standard approaches to small noise LDP for infinite dimensional SDE build
on the ideas of [1]. The key ingredients to the proof are as follows. One first
considers an approximating Gaussian model which is obtained from the origi-
nal SDE by freezing the coefficients of the right-hand side according to a time
discretization. Each such approximation is then further approximated by a finite
dimensional system uniformly in the value of the frozen (state) variable. Next,
one establishes an LDP for the finite dimensional system and argues that the
LDP continues to hold as one approaches the infinite dimensional model. Fi-
nally, one needs to obtain suitable exponential continuity estimates in order to
obtain the LDP for the original non-Gaussian model from that for the frozen
Gaussian model. Exponential continuity (in probability) and exponential tight-
ness estimates that are used to justify these approximations are often obtained
under additional conditions on the model than those needed for well-posedness
and compactness. In particular, as noted earlier, for the reaction diffusion sys-
tems considered here, these rely on exponential tail probability estimates in Hölder
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norms for certain stochastic convolutions which are only available for bounded in-
tegrands.

An alternative approach, based on nonlinear semigroup theory and infinite di-
mensional Hamilton–Jacobi (HJ) equations, has been developed in [10] (see also
[11]). The method of proof involves showing that the value function of the limit
control problem that is obtained by the law of large number analysis of certain
controlled perturbations of the original stochastic model uniquely solves an appro-
priate infinite dimensional HJ equation in a suitable viscosity sense. In addition,
one needs to establish exponential tightness by verifying a suitable exponential
compact containment estimate. Although both these steps have been verified for a
variety of models (cf. [11]), the proofs are quite technical and rely on a unique-
ness theory for infinite dimensional nonlinear PDEs. The uniqueness requirement
on the limit HJ equation is an extraneous artifact of the approach, and different
stochastic models seem to require different methods for this, in general very hard,
uniqueness problem. In contrast to the weak convergence approach, it requires an
analysis of the model that goes significantly beyond the unique solvability of the
SPDE. In addition, as discussed previously, the exponential tightness estimates are
typically the most technical part of the large deviation analysis for infinite dimen-
sional models, and are often only available under “sub-optimal” conditions when
using standard techniques.

We now give an outline of the paper. Section 2 contains some background ma-
terial on large deviations and infinite dimensional Brownian motions. We recall
some basic definitions and the equivalence between a LDP and Laplace princi-
ple for a family of probability measures on some Polish space. We next recall
some commonly used formulations for an infinite dimensional Brownian motion,
such as an infinite sequence of i.i.d. standard real Brownian motions, a Hilbert
space valued Brownian motion, a cylindrical Brownian motion and a space-time
Brownian sheet. Relationships between these various formulations are noted as
well. In Section 3 we present a variational representation for bounded nonnegative
functionals of an infinite sequence of real Brownian motions. This variational rep-
resentation, originally obtained in [3], is the starting point of our study. We also
provide analogous representations for other formulations of infinite dimensional
Brownian motions. Section 4 gives a general uniform large deviation result for
Polish space valued functionals of an infinite dimensional Brownian motion. We
provide sufficient conditions for the uniform LDP for each of the formulations of
an infinite dimensional Brownian motion mentioned above. In Section 5 we intro-
duce the small noise reaction-diffusion SPDE and use the general uniform LDP of
Section 4 to establish a Freidlin–Wentzell LDP for such SPDEs in an appropriate
Hölder space. Finally, Section 6 gives a brief overview of some other recent works
that have used this variational approach to establish small noise LDP for infinite
dimensional models. An Appendix collects proofs that are postponed for purposes
of presentation.
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Some notation and mathematical conventions used in this work are as follows.
Infima over the empty set are taken to be +∞. All Hilbert spaces in this work will
be separable. The Borel sigma-field on a Polish space S will be denoted by B(S).

2. Preliminaries. In this section we present some standard definitions and
results from the theory of large deviations and infinite dimensional Brownian mo-
tions.

Large deviation principle and Laplace asymptotics. Let {Xε, ε > 0} ≡ {Xε}
be a family of random variables defined on a probability space (�,F ,P) and
taking values in a Polish space (i.e., a complete separable metric space) E . Denote
the metric on E by d(x, y) and expectation with respect to P by E. The theory
of large deviations is concerned with events A for which probabilities P(Xε ∈ A)

converge to zero exponentially fast as ε → 0. The exponential decay rate of such
probabilities is typically expressed in terms of a “rate function” I mapping E into
[0,∞].

DEFINITION 1 (Rate function). A function I :E → [0,∞] is called a rate
function on E , if for each M < ∞ the level set {x ∈ E : I (x) ≤ M} is a compact
subset of E . For A ∈ B(E), we define I (A)

.= infx∈A I (x).

DEFINITION 2 (Large deviation principle). Let I be a rate function on E . The
sequence {Xε} is said to satisfy the large deviation principle on E with rate function
I if the following two conditions hold:

1. Large deviation upper bound. For each closed subset F of E ,

lim sup
ε→0

ε log P(Xε ∈ F) ≤ −I (F ).

2. Large deviation lower bound. For each open subset G of E ,

lim inf
ε→0

ε log P(Xε ∈ G) ≥ −I (G).

If a sequence of random variables satisfies the large deviation principle with
some rate function, then the rate function is unique [8], Theorem 1.3.1. In many
problems one is interested in obtaining exponential estimates on functions which
are more general than indicator functions of closed or open sets. This leads to the
study of the Laplace principle.

DEFINITION 3 (Laplace principle). Let I be a rate function on E . The se-
quence {Xε} is said to satisfy the Laplace principle upper bound (resp. lower
bound) on E with rate function I if for all bounded continuous functions
h :E → R,

lim sup
ε→0

ε log E

{
exp

[
−1

ε
h(Xε)

]}
≤ − inf

f ∈E
{h(f ) + I (f )}(2.1)
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and, respectively,

lim inf
ε→0

ε log E

{
exp

[
−1

ε
h(Xε)

]}
≥ − inf

f ∈E
{h(f ) + I (f )}.(2.2)

The Laplace principle is said to hold for {Xε} with rate function I if both the
Laplace upper and lower bounds are satisfied for all bounded continuous func-
tions h.

One of the main results of the theory of large deviations is the equivalence
between the Laplace principle and the large deviation principle. For a proof we
refer the reader to [8], Section 1.2.

THEOREM 1. The family {Xε} satisfies the Laplace principle upper (resp.
lower) bound with a rate function I on E if and only if {Xε} satisfies the large
deviation upper (resp. lower) bound for all closed sets (respectively open sets)
with the rate function I .

In view of this equivalence, the rest of this work will be concerned with the
study of the Laplace principle. In fact, we will study a somewhat strengthened no-
tion, namely, a Uniform Laplace Principle, as introduced below. The uniformity is
critical in certain applications, such as the study of exit time and invariant measure
asymptotics for small noise Markov processes [13].

Let E0 and E be Polish spaces. For each ε > 0 and y ∈ E0, let Xε,y be E valued
random variables given on the probability space (�,F ,P).

DEFINITION 4. A family of rate functions Iy on E , parametrized by y ∈ E0,
is said to have compact level sets on compacts if for all compact subsets K of E0

and each M < ∞, �M,K
.= ⋃

y∈K{x ∈ E : Iy(x) ≤ M} is a compact subset of E .

DEFINITION 5 (Uniform Laplace Principle). Let Iy be a family of rate func-
tions on E parameterized by y in E0 and assume that this family has compact level
sets on compacts. The family {Xε,y} is said to satisfy the Laplace principle on E
with rate function Iy , uniformly on compacts, if for all compact subsets K of E0

and all bounded continuous functions h mapping E into R,

lim
ε→0

sup
y∈K

∣∣∣∣ε log Ey

{
exp

[
−1

ε
h(Xε,y)

]}
+ inf

x∈E
{h(x) + Iy(x)}

∣∣∣∣ = 0.

We next summarize some well-known formulations for infinite dimensional
Brownian motions and note some elementary relationships between them.
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Infinite dimensional Brownian motions. An infinite dimensional Brownian
motion arises in a natural fashion in the study of stochastic processes with a spa-
tial parameter. We refer the reader to [7, 18, 28] for numerous examples in the
physical sciences where an infinite dimensional Brownian motion is used to model
the driving noise for some dynamical system. Depending on the application of
interest, the infinite dimensional nature of the driving noise may be expressed in
a variety of forms. Some examples include an infinite sequence of i.i.d. standard
(1-dim) Brownian motions, a Hilbert space valued Brownian motion, a cylindrical
Brownian motion and a space-time Brownian sheet. In what follows, we describe
all of these models and explain how they are related to each other. We will be only
concerned with processes defined over a fixed time horizon and thus fix a T > 0,
and all filtrations and stochastic processes will be defined over the horizon [0, T ].
Reference to T will be omitted unless essential. Let (�,F ,P) be a probability
space with an increasing family of right continuous P-complete sigma fields {Ft }.
We refer to (�,F ,P, {Ft }) as a filtered probability space.

Let {βi}∞i=1 be an infinite sequence of independent, standard, one dimensional,
{Ft }-Brownian motions given on this filtered probability space. We denote the
product space of countably infinite copies of the real line by R

∞. Endowed with the
topology of coordinate-wise convergence, R

∞ is a Polish space. Then β = {βi}∞i=1
is a random variable with values in the Polish space C([0, T ] : R∞) and represents
the simplest model of an infinite dimensional Brownian motion.

Frequently in applications it is convenient to endow the state space of the driving
noise, as in the finite dimensional theory, with an inner product structure. Let
(H, 〈·, ·〉) be a real separable Hilbert space. Let Q be a bounded, strictly positive,
trace class operator on H .

DEFINITION 6. An H valued stochastic process {W(t)} defined on (�,F ,P,

{Ft }) is called a Q-Wiener process with respect to {Ft } if, for every nonzero
h ∈ H ,

{〈Qh,h〉−1/2〈W(t), h〉, {Ft }}
is a one-dimensional standard Wiener process.

It can be shown that if W is an H valued Q-Wiener process, then P[W ∈
C([0, T ] :H)] = 1, where C([0, T ] :H) is the space of continuous functions from
the closed interval [0, T ] to the Hilbert space H . Let {ei}∞i=1 be a complete or-
thonormal system (CONS) for the Hilbert space H such that Qei = λiei , where
λi is the strictly positive ith eigenvalue of Q that corresponds to the eigenvector
ei . Since Q is a trace class operator,

∑∞
i=1 λi < ∞. Define β̃i(t)

.= 〈W(t), ei〉, t ≥
0, i ∈ N. It is easy to check that {β̃i} is a sequence of independent {Ft }-Brownian
motions with quadratic variation 〈〈β̃i , β̃j 〉〉t = λiδij t , where δij = 1 if i = j and
0 otherwise. Setting βi = β̃i/

√
λi , {βi}∞i=1 is a sequence of independent, stan-

dard, one dimensional, {Ft }-Brownian motions. Thus, starting from a Q-Wiener



LDP FOR INFINITE DIMENSIONAL SDE 1397

process, one can produce an infinite collection of independent, standard Brownian
motions in a straight forward manner. Conversely, given a collection of indepen-
dent, standard Brownian motions {βi}∞i=1 and (Q, {ei, λi}) as above, one can obtain
a Q-Wiener process W by setting

W(t)
.=

∞∑
i=1

√
λiβi(t)ei .(2.3)

The right-hand side of (2.3) clearly converges in L2(�) for each fixed t . Further-
more, one can check that the series also converges in C([0, T ] : H) almost surely
(see [7], Theorem 4.3). These observations lead to the following result.

PROPOSITION 1. There exist measurable maps f :C([0, T ] : R∞) �−→ C([0,

T ] :H) and g :C([0, T ] :H) �−→ C([0, T ] : R∞) such that f (β) = W and g(W) =
β a.s.

REMARK 1. Consider the Hilbert space l2
.= {x ≡ (x1, x2, . . .) :xi ∈ R and∑

x2
i < ∞} with the inner product 〈x, y〉 .= ∑

xiyi . Let {λi}∞i=1 be a sequence
of strictly positive numbers such that

∑
λi < ∞. Then the Hilbert space l̄2

.= {x ≡
(x1, x2, . . .) :xi ∈ R and

∑
λix

2
i < ∞} with the inner product 〈x, y〉1

.= ∑
λixiyi

contains l2 and the embedding map is Hilbert–Schmidt. Furthermore, the infinite
sequence of real Brownian motions β takes values in l̄2 almost surely and can be
regarded as a l̄2 valued Q-Wiener process with 〈Qx,y〉1 = ∑∞

i=1 λ2
i xiyi .

Equation (2.3) above can be interpreted as saying that the sequence {λi} (or,
equivalently, the trace class operator Q) injects a “coloring” to a white noise such
that the resulting process has better regularity. In some models of interest, such
coloring is obtained indirectly in terms of (state dependent) diffusion coefficients.
It is natural in such situations to consider the driving noise as a “cylindrical Brown-
ian motion” rather than a Hilbert space valued Brownian motion. Let (H, 〈·, ·〉) be
a real separable Hilbert space and fix a filtered probability space as above.

DEFINITION 7. A family {Bt(h) ≡ B(t, h) : t ∈ [0, T ], h ∈ H } of real random
variables is said to be an {Ft }-cylindrical Brownian motion if:

1. For every h ∈ H with ‖h‖ = 1, {B(t, h),Ft } is a standard Wiener process.
2. For every t ≥ 0, a1, a2 ∈ R and f1, f2 ∈ H ,

B(t, a1f1 + a2f2) = a1B(t, f1) + a2B(t, f2) a.s.

Note that if {Bt(h) : t ≥ 0, h ∈ H } is a cylindrical Brownian motion and {ei} is
a CONS in H , then setting βi(t)

.= B(t, ei), we see that {βi} is a sequence of in-
dependent, standard, real valued Brownian motions. Conversely, given a sequence
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{βi}∞i=1 of independent, standard Brownian motions on a filtered probability space,

Bt(h)
.=

∞∑
i=1

βi(t)〈ei, h〉(2.4)

defines a cylindrical Brownian motion on H . For each h ∈ H , the series in (2.4)
converges in L2(�) and a.s. in C([0, T ] : R).

PROPOSITION 2. Let B be a cylindrical Brownian motion as in Defini-
tion 7 and let β be as constructed above. Then σ {Bs(h) : 0 ≤ s ≤ t, h ∈ H } =
σ {β(s) : 0 ≤ s ≤ t}. In particular, if X is a σ {B(s,h) : 0 ≤ s ≤ T ,h ∈ H } measur-
able random variable, then there exists a measurable map g :C([0, T ] : R∞) �−→
R such that g(β) = X a.s.

In many physical dynamical systems with randomness, the driving noise is
given as a space-time white noise process, also referred to as a Brownian sheet.
In what follows we introduce this stochastic process and describe its relationship
with the formulations considered above. Let (�,F ,P, {Ft}) be a filtered proba-
bility space as before and fix a bounded open subset O ⊆ R

d .

DEFINITION 8. A Gaussian family of real valued random variables {B(t, x),

(t, x) ∈ [0, T ]×O} on a filtered probability space is called a Brownian sheet if the
following hold:

1. If (t, x) ∈ [0, T ] × O, then EB(t, x) = 0.
2. If 0 ≤ s ≤ t ≤ T and x ∈ O, then B(t, x) − B(s, x) is independent of {Fs}.
3. Cov(B(t, x),B(s, y)) = λ(At,x ∩ As,y), where λ is the Lebesgue measure on

[0, T ] × O and At,x
.= {(s, y) ∈ R+ × O : 0 ≤ s ≤ t and yj ≤ xj , j = 1, . . . , d}.

4. The map (t, u) �→ B(t, u) from [0, T ] × O to R is continuous a.s.

To introduce stochastic integrals with respect to a Brownian sheet, we need the
following definitions.

DEFINITION 9 (Elementary and simple functions). A function f :O×[0, T ]×
� → R is elementary if there exist a, b ∈ [0, T ], a ≤ b, a bounded {Fa}-
measurable random variable X and A ∈ B(O) such that

f (x, s,ω) = X(ω)1(a,b](s)1A(x).

A finite sum of elementary functions is referred to as a simple function. We denote
by S the class of all simple functions.

DEFINITION 10 (Predictable σ -field). The predictable σ -field P on � ×
[0, T ] × O is the σ -field generated by S. A function f :� × [0, T ] × O → R

is called a predictable process if it is P -measurable.
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Let P2 be the class of all predictable processes f such that
∫
[0,T ]×O f 2(s,

x) ds dx is finite a.s. Also, let L2 be the subset of those processes that satisfy∫
[0,T ]×O Ef 2(s, x) ds dx < ∞. For all f ∈ P2, the stochastic integral Mt(f )

.=∫
[0,t]×O f (s, u)B(ds du), t ∈ [0, T ] is well defined as in Chapter 2 of [28]. Further-

more, for all f ∈ P2, {Mt(f )}0≤t≤T is a continuous {Ft }-local martingale which is
in fact a square integrable martingale if f ∈ L2. The quadratic variation of this lo-
cal martingale is given as 〈〈M(f ),M(f )〉〉t .= ∫

[0,t]×O f 2(s, x) ds dx. More prop-
erties of the stochastic integral can be found in [28].

Let {φi}∞i=1 be a CONS in L2(O). Then it is easy to verify that β ≡ {βi}∞i=1
defined as βi(t)

.= ∫
[0,t]×O φi(x)B(ds dx), i ≥ 1, t ∈ [0, T ] is a sequence of inde-

pendent, standard, real Brownian motions. Also for (t, x) ∈ [0, T ] × O,

B(t, x) =
∞∑
i=1

βi(t)

∫
O

φi(y)1(−∞,x](y) dy,(2.5)

where (−∞, x] = {y : yi ≤ xi for all i = 1, . . . , d} and the series in (2.5) converges
in L2(�) for each (t, x). From these considerations it follows that

σ {B(t, x), t ∈ [0, T ], x ∈ O} = σ {βi(t), i ≥ 1, t ∈ [0, T ]}.(2.6)

As a consequence of (2.6), we have the following result.

PROPOSITION 3. There exists a measurable map g :C([0, T ] : R∞) → C([0,

T ] × O : R) such that B = g(β) a.s., where β is as defined above (2.5).

3. Variational representations. The large deviation results established in
this work critically use certain variational representations for infinite dimensional
Brownian motions. Let (�,F ,P, {Ft }) be as before and let β = {βi} be a sequence
of independent real standard Brownian motions. Recall that β is a C([0, T ] : R∞)

valued random variable. We call a function f : [0, T ]×� → R elementary if there
exist a, b ∈ [0, T ], a ≤ b, and a bounded {Fa}-measurable random variable X such
that f (s,ω) = X(ω)1(a,b](s). A finite sum of elementary functions is referred
to as a simple function. We denote by S the class of all simple functions. The
predictable σ -field P on � × [0, T ] is the σ -field generated by S. For a Hilbert
space (H, 〈·, ·〉), a function f :� × [0, T ] → H is called an H valued predictable
process if it is P -measurable. Let P2(H) be the family of all H valued predictable
processes for which

∫ T
0 ‖φ(s)‖2 ds < ∞ a.s., where ‖ · ‖ is the norm in the Hilbert

space H . Note that in the case H = l2, u ∈ P2(H) = P2(l2) can be written as
u = {ui}∞i=1, where ui ∈ P2(R) and

∑∞
i=1

∫ T
0 |ui(s)|2 ds < ∞ a.s.

THEOREM 2. Let ‖ · ‖ denote the norm in the Hilbert space l2 and let f be a
bounded, Borel measurable function mapping C([0, T ] : R∞) into R. Then,

− log E(exp{−f (β)}) = inf
u∈P2(l2)

E

(
1
2

∫ T

0
‖u(s)‖2 ds + f

(
β +

∫ ·

0
u(s)ds

))
.
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The representation established in [3] is stated in a different form but is equiv-
alent to Theorem 2. Let (H, 〈·, ·〉) be a Hilbert space and let W be an H valued
Q-Wiener process, where Q is a bounded, strictly positive, trace class operator
on the Hilbert space H . Let H0 = Q1/2H , then H0 is a Hilbert space with the
inner product 〈h, k〉0

.= 〈Q−1/2h,Q−1/2h〉, h, k ∈ H0. Also the embedding map
i :H0 �→ H is a Hilbert–Schmidt operator and ii∗ = Q. Let ‖ · ‖0 denote the norm
in the Hilbert space H0. The following theorem is proved in [3]. Theorem 2 fol-
lows from Theorem 3 and Remark 1.

THEOREM 3. Let f be a bounded, Borel measurable function mapping
C([0, T ] :H) into R. Then

− log E(exp{−f (W)}) = inf
u∈P2(H0)

E

(
1
2

∫ T

0
‖u(s)‖2

0 ds + f

(
W +

∫ ·

0
u(s) ds

))
.

We finally note the following representation theorem for a Brownian sheet
which follows from Theorem 2, Proposition 3 and an application of Girsanov’s
theorem.

THEOREM 4. Let f :C([0, T ] × O : R) → R be a bounded measurable map.
Let B be a Brownian sheet as in Definition 8. Then

− log E(exp{−f (B)}) = inf
u∈P2

E

(
1
2

∫ T

0

∫
O

u2(s, r) dr ds + f (Bu)

)
,

where Bu(t, x) = B(t, x) + ∫ t
0

∫
(−∞,x]∩O u(s, y) dy ds.

4. Large deviations for functionals of infinite dimensional Brownian mo-
tions. In this section we give sufficient conditions for the uniform Laplace prin-
ciple for functionals of an infinite dimensional Brownian motion. The uniformity
is with respect to a parameter x (typically an initial condition), which takes values
in some compact subset of a Polish space E0. The analogous nonuniform result was
established in [3]. The proof for the uniform case uses only minor modifications,
but for the sake of completeness we include the details in the Appendix.

We begin by considering the case of a Hilbert space valued Wiener process
and then use this case to deduce analogous Laplace principle results for function-
als of a cylindrical Brownian motion and a Brownian sheet. Let (�,F ,P, {Ft }),
(H, 〈·, ·〉), Q be as in Section 2 and let W be an H valued Wiener process with
trace class covariance Q given on this filtered probability space (see Definition 6).
Let E be a Polish space and for each ε > 0, let Gε :E0 × C([0, T ] :H) → E be a
measurable map. We next present a set of sufficient conditions for a uniform large
deviation principle to hold for the family {Xε,x .= Gε(x,

√
εW)} as ε → 0. Let H0
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be as introduced above Theorem 3 and define for N ∈ N

SN(H0)
.=

{
u ∈ L2([0, T ] :H0) :

∫ T

0
‖u(s)‖2

0 ds ≤ N

}
,(4.1)

P N
2 (H0)

.= {u ∈ P2(H0) :u(ω) ∈ SN(H0),P-a.s.}.(4.2)

It is easy to check that SN(H0) is a compact metric space under the metric

d1(x, y) =
∞∑
i=1

1

2i

∣∣∣∣
∫ T

0
〈x(s) − y(s), ei(s)〉0 ds

∣∣∣∣.
Henceforth, wherever we refer to SN(H0), we will consider it endowed with the
topology obtained from the metric d1 and refer to this as the weak topology on
SN(H0).

ASSUMPTION 1. There exists a measurable map G0 :E0 × C([0, T ] :H) → E
such that the following hold:

1. For every M < ∞ and compact set K ⊆ E0, the set


M,K
.=

{
G0

(
x,

∫ ·

0
u(s) ds

)
:u ∈ SM(H0), x ∈ K

}

is a compact subset of E .
2. Consider M < ∞ and families {uε} ⊂ P M

2 (H0) and {xε} ⊂ E0 such that uε

converges in distribution [as SM(H0) valued random elements] to u and xε → x

as ε → 0. Then

Gε

(
xε,

√
εW(·) +

∫ ·

0
uε(s) ds

)
→ G0

(
x,

∫ ·

0
u(s) ds

)

in distribution as ε → 0.

THEOREM 5. Let Xε,x = Gε(x,
√

εW) and suppose that Assumption 1 holds.
For x ∈ E0 and f ∈ E , let

Ix(f )
.= inf

{u∈L2([0,T ]:H0):f =G0(x,
∫ ·

0 u(s)ds)}

{
1
2

∫ T

0
‖u(s)‖2

0 ds

}
.(4.3)

Suppose that for all f ∈ E , x �→ Ix(f ) is a lower semi-continuous (l.s.c.) map
from E0 to [0,∞]. Then, for all x ∈ E0, f �→ Ix(f ) is a rate function on E and the
family {Ix(·), x ∈ E0} of rate functions has compact level sets on compacts. Fur-
thermore, the family {Xε,x} satisfies the Laplace principle on E , with rate function
Ix , uniformly on compact subsets of E0.

As noted earlier, an analogous non-uniform result was established in [3]. We
remark that there is a slight change in notation from [3]. Denoting the map Gε
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introduced in [3] by G
ε
, the correspondence with the Gε introduced in this section

is given as G
ε
(x, f ) = Gε(x, f

√
ε) for x ∈ E0 and f ∈ C([0, T ] :H).

Next, let β ≡ {βi} be a sequence of independent standard real Brownian mo-
tions on (�,F ,P, {Ft }). Recall that β is a (C([0, T ] : R∞),B(C([0, T ] : R∞))) ≡
(S,S) valued random variable. For each ε > 0, let Gε :E0 ×S → E be a measurable
map and define

Xε,x .= Gε(x,
√

εβ
)
.(4.4)

We now consider the Laplace principle for the family {Xε,x} and introduce the
analog of Assumption 1 for this setting. In the assumption, SM(l2) and P M

2 (l2)

are defined as in (4.1) and (4.2), with H0 there replaced by the Hilbert space l2.

ASSUMPTION 2. There exists a measurable map G0 :E0 × S → E such that
the following hold:

1. For every M < ∞ and compact set K ⊆ E0, the set


M,K
.=

{
G0

(
x,

∫ ·

0
u(s) ds

)
u ∈ SM(l2), x ∈ K

}

is a compact subset of E .
2. Consider M < ∞ and families {uε} ⊂ P M

2 (l2) and {xε} ⊂ E0 such that uε con-
verges in distribution [as SM(l2) valued random elements] to u and xε → x as
ε → 0. Then

Gε

(
xε,

√
εβ +

∫ ·

0
uε(s) ds

)
→ G0

(
x,

∫ ·

0
u(s) ds

)
,

as ε → 0 in distribution.

The proof of the following, which uses a straightforward reduction to Theo-
rem 5, is given in the Appendix.

THEOREM 6. Let Xε,x be as in (4.4) and suppose that Assumption 2 holds.
For x ∈ E0 and f ∈ E , let

Ix(f )
.= inf

{u∈L2([0,T ]:l2):f =G0(x,
∫ ·

0 u(s)ds)}

{
1
2

∫ T

0
‖u(s)‖2

l2
ds

}
.(4.5)

Suppose that for all f ∈ E , x �→ Ix(f ) is a l.s.c. map from E0 to [0,∞]. Then,
for all x ∈ E0, f �→ Ix(f ) is a rate function on E and the family {Ix(·), x ∈ E0} of
rate functions has compact level sets on compacts. Furthermore, the family {Xε,x}
satisfies the Laplace principle on E , with rate function Ix , uniformly on compact
subsets of E0.
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Finally, to close this section, we consider the Laplace principle for functionals
of a Brownian sheet. Let B be a Brownian sheet as in Definition 8. Let Gε :E0 ×
C([0, T ] × O : R) → E , ε > 0 be a family of measurable maps. Define Xε,x .=
Gε(x,

√
εB). We now provide sufficient conditions for the Laplace principle to

hold for the family {Xε,x}.
Analogous to classes defined in (4.1) and (4.2), we introduce

SN .=
{
φ ∈ L2([0, T ] × O) :

∫
[0,T ]×O

φ2(s, r) ds dr ≤ N

}
,

(4.6)
P N

2
.= {u ∈ P2 :u(ω) ∈ SN,P-a.s.}.

Once more, SN is endowed with the weak topology on L2([0, T ] × O), under
which it is a compact metric space. For u ∈ L2([0, T ] × O), define Int(u) ∈
C([0, T ] × O : R) by

Int(u)(t, x)
.=

∫
[0,t]×(O∩(−∞,x])

u(s, y) ds dy,(4.7)

where, as before, (−∞, x] = {y :yi ≤ xi for all i = 1, . . . , d}.
ASSUMPTION 3. There exists a measurable map G0 :E0×C([0, T ]×O : R) →

E such that the following hold:

1. For every M < ∞ and compact set K ⊆ E0, the set


M,K
.= {G0(x, Int(u)) :u ∈ SM,x ∈ K}

is a compact subset of E , where Int(u) is as defined in (4.7).
2. Consider M < ∞ and families {uε} ⊂ P M

2 and {xε} ⊂ E0 such that uε con-
verges in distribution (as SM valued random elements) to u and xε → x as
ε → 0. Then

Gε(xε,
√

εB + Int(uε)
) → G0(x, Int(u)),

in distribution as ε → 0.

For f ∈ E and x ∈ E0, define

Ix(f ) = inf
{u∈L2([0,T ]×O):f =G0(x,Int(u))}

{
1
2

∫
[0,T ]×O

u2(s, r) dr ds

}
.(4.8)

THEOREM 7. Let G0 :E0 × C([0, T ] × O : R) → E be a measurable map sat-
isfying Assumption 3. Suppose that for all f ∈ E , x �→ Ix(f ) is a l.s.c. map from
E0 to [0,∞]. Then for every x ∈ E0, Ix :E → [0,∞], defined by (4.8), is a rate
function on E and the family {Ix, x ∈ E0} of rate functions has compact level sets
on compacts. Furthermore, the family {Xε,x} satisfies the Laplace principle on E
with rate function Ix , uniformly for x in compact subsets of E0.

The proof of this theorem can be found in the Appendix.
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5. Stochastic reaction-diffusion systems.

5.1. The large deviation theorem. In this section we will use results from Sec-
tion 4, and in particular, Theorem 7, to study the small noise large deviations prin-
ciple for a class of stochastic partial differential equations (SPDE) that has been
considered in [20]. The class includes, as a special case, the reaction-diffusion
SPDEs considered in [25] (see Remark 3). The main result of the section is Theo-
rem 9, which establishes the uniform Freidlin–Wentzell LDP for such SPDEs.

As discussed previously, the weak convergence method bypasses the vari-
ous discretizations, approximations and exponential probability estimates that are
commonly used in standard approaches to the problem. Instead, one needs to
only prove various qualitative properties (compactness, convergence, etc.) for se-
quences of controlled versions of the SPDE model. As one might expect, the tech-
niques and estimates used to prove these properties for the original SPDE can be
applied here as well, and indeed, proofs for the controlled SPDEs proceed in very
much the same way as those of their uncontrolled counterparts.

Let (�,F ,P) be a probability space with an increasing family of right-
continuous, P-complete σ -fields {Ft }0≤t≤T . Let O ⊆ R

d be a bounded open set
and {B(t, x) : (t, x) ∈ R+ × O} be a Brownian sheet given on this filtered proba-
bility space. Consider the SPDE

dX(t, r) = (
L(t)X(t, r) + R(t, r,X(t, r))

)
dr dt

(5.1)
+ √

εF (t, r,X(t, r))B(dr dt)

with initial condition

X(0, r) = ξ(r).

Here F and R are measurable maps from [0, T ]×O×R to R and ε ∈ (0,∞). Also,
{L(t) : t ≥ 0} is a family of linear, closed, densely defined operators on C(O) that
generates a two parameter strongly continuous semigroup {U(t, s) : 0 ≤ s ≤ t} on
C(O), with kernel function G(t, s, r, q),0 ≤ s < t , r, q ∈ O. Thus, for f ∈ C(O),
U(t, t)f = f , t ∈ [0, T ] and

(U(t, s)f )(r) =
∫
O

G(t, s, r, q)f (q) dq, r ∈ O,0 ≤ s < t ≤ T .

For notational convenience, we write f (r) = ∫
O G(0,0, r, q)f (q) dq for f ∈

C(O).
By a solution of the SPDE (5.1), we mean the following:

DEFINITION 11. A random field X ≡ {X(t, r) : t ∈ [0, T ], r ∈ O} is called a
mild solution of the stochastic partial differential equation (5.1) with initial con-
dition ξ if (t, r) �→ X(t, r) is continuous a.s., X(t, r) is {Ft }-measurable for any
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t ∈ [0, T ], r ∈ O, and if

X(t, r) =
∫
O

G(t,0, r, q)ξ(q) dq

+
∫ t

0

∫
O

G(t, s, r, q)R(s, q,X(s, q)) dq ds(5.2)

+ √
ε

∫ t

0

∫
O

G(t, s, r, q)F (s, q,X(s, q))B(dq ds) a.s.

Implicit in Definition 11 is the requirement that the integrals in (5.2) are well
defined. We will shortly introduce conditions on G,F and R that ensure that for a
continuous adapted random field X, all the integrals in (5.2) are meaningful. As a
convention, we take G(t, s, r, q) to be zero when 0 ≤ t ≤ s ≤ T , r, q ∈ O.

For u ∈ P N
2 [which was defined in (4.6)], the controlled analogue of (5.2) is

Y(t, r) =
∫
O

G(t,0, r, q)ξ(q) dq

+
∫ t

0

∫
O

G(t, s, r, q)R(s, q,Y (s, q)) dq ds

(5.3)

+ √
ε

∫ t

0

∫
O

G(t, s, r, q)F (s, q,Y (s, q))B(dq ds)

+
∫ t

0

∫
O

G(t, s, r, q)F (s, q,Y (s, q))u(s, q) dq ds.

As discussed previously, the main work in proving an LDP for (5.2) will be to
prove qualitative properties (existence and uniqueness, tightness properties, and
stability under perturbations) for solutions to (5.3). We begin by discussing known
qualitative theory for (5.2).

For α > 0, let Bα = {ψ ∈ C(O) :‖ψ‖α < ∞} be the Banach space with norm

‖ψ‖α = ‖ψ‖0 + sup
r,q∈O

|ψ(r) − ψ(q)|
|r − q|α ,

where ‖ψ‖0 = supr∈O |ψ(r)|. The Banach space Bα([0, T ] × O) is defined simi-
larly and for notational convenience, we denote this space by B

T
α . For α = 0, the

space B
T
0 is the space of all continuous maps from [0, T ] × O to R endowed with

the sup-norm. The following will be a standing assumption for this section. In the
assumption, ᾱ is a fixed constant, and the large deviation principle will be proved
in the topology of C([0, T ] : Bα), for any fixed α ∈ (0, ᾱ).

ASSUMPTION 4. The following two conditions hold:

1. There exist constants K(T ) < ∞ and γ ∈ (d,∞) such that:
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(a) for all t, s ∈ [0, T ], r ∈ O,∫
O

|G(t, s, r, q)|dq ≤ K(T ),(5.4)

(b) for all 0 ≤ s < t ≤ T and r, q ∈ O,

|G(t, s, r, q)| ≤ K(T )(t − s)−d/γ ,(5.5)

(c) if ᾱ = γ−d
2γ

, then for any α ∈ (0, ᾱ) and for all 0 ≤ s < t1 ≤ t2 ≤
T , r1, r2, q ∈ O,

|G(t1, s, r1, q) − G(t2, s, r2, q)|
(5.6)

≤ K(T )
[
(t2 − t1)

1−d/γ (t1 − s)−1 + |r1 − r2|2α(t1 − s)−(d+2α)/γ ]
,

(d) for all x, y ∈ R, r ∈ O and 0 ≤ t ≤ T ,

|R(t, r, x) − R(t, r, y)| + |F(t, r, x) − F(t, r, y)| ≤ K(T )|x − y|(5.7)

and

|R(t, r, x)| + |F(t, r, x)| ≤ K(T )(1 + |x|).(5.8)

2. For any α ∈ (0, ᾱ) and ξ ∈ Bα , the trajectory t �→ ∫
O G(t,0, ·, q)ξ(q) dq be-

longs to C([0, T ] : Bα) and the map

Bα � ξ �−→
{
t �→

∫
O

G(t,0, ·, q)ξ(q) dq

}
∈ C([0, T ] : Bα)

is a continuous map.

For future reference we recall that ᾱ = γ−d
2γ

and note that ᾱ ∈ (0,1/2).

REMARK 2. 1. We refer the reader to [19] for examples of families {L(t)}t≥0
that satisfy this assumption.

2. Using (5.4) and (5.5), it follows that, for any 0 ≤ s < t ≤ T and r ∈ O,∫
O

|G(t, s, r, q)|2 dq ≤ K2(T )(t − s)−d/γ .(5.9)

This, in particular, ensures that the stochastic integral in (5.2) is well defined.
3. Lemma 4.1(ii) of [19] shows that, under Assumption 4, for any α < ᾱ there

exists a constant K̃(α) such that, for all 0 ≤ t1 ≤ t2 ≤ T and all r1, r2 ∈ O,∫ T

0

∫
O

|G(t1, s, r1, q) − G(t2, s, r2, q)|2 dq ds

(5.10)
≤ K̃(α)ρ((t1, r1), (t2, r2))

2α,

where ρ is the Euclidean distance in [0, T ] × O ⊂ R
d+1. This estimate will be

used in the proof of Lemma 2.
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The following theorem is due to Kotelenez (see Theorem 2.1 and Theorem 3.4
in [20]; see also Theorem 3.1 in [19]).

THEOREM 8. Fix α ∈ (0, ᾱ). There exists a measurable function

Gε : Bα × B
T
0 → C([0, T ] : Bα)

such that, for any filtered probability space (�,F ,P, {Ft}) with a Brownian sheet
B as above and x ∈ Bα , Xε,x .= Gε(x,

√
εB) is the unique mild solution of (5.1)

(with initial condition x), and satisfies sup0≤t≤T E‖Xε,x(t)‖p
0 < ∞ for all p ≥ 0.

For the rest of the section we will only consider α ∈ (0, ᾱ). For f ∈
C([0, T ] : Bα), define

Ix(f )
.= inf

u

∫
[0,T ]×O

u2(s, q) dq ds,(5.11)

where the infimum is taken over all u ∈ L2([0, T ] × O) such that

f (t, r) =
∫
O

G(t,0, r, q)x(q) dq

+
∫
[0,t]×O

G(t, s, r, q)R(s, q, f (s, q)) dq ds(5.12)

+
∫
[0,t]×O

G(t, s, r, q)F (s, q, f (s, q))u(s, q) dq ds.

The following is the main result of this section.

THEOREM 9. Let Xε,x be as in Theorem 8. Then Ix defined by (5.11) is a rate
function on C([0, T ] : Bα) and the family {Ix, x ∈ Bα} of rate functions has com-
pact level sets on compacts. Furthermore, {Xε,x} satisfies the Laplace principle on
C([0, T ] : Bα) with the rate function Ix , uniformly for x in compact subsets of Bα .

REMARK 3. 1. If Assumption 4 (2) is weakened to merely the requirement
that, for every ξ ∈ Bα , t �→ ∫

O G(t,0, ·, q)ξ(q) dq is in C([0, T ] : Bα), then the
proof of Theorem 9 shows that, for all x ∈ Bα , the large deviation principle for
{Xε,x} on C([0, T ] : Bα) holds (but not necessarily uniformly).

2. The small noise LDP for a class of reaction-diffusion SPDEs, with O = [0,1]
and a bounded diffusion coefficient, has been studied in [25]. A difference in the
conditions on the kernel G in [25] is that instead of (5.6), G satisfies the L2 esti-
mate in Remark 2 (3) with α = 1/4. One finds that the proof of Lemma 2, which
is at the heart of the proof of Theorem 9, only uses the L2 estimate rather than
the condition (5.6). Using this observation, one can, in a straightforward manner,
extend results of [25] to the case where the diffusion coefficient, instead of being
bounded, satisfies the linear growth condition (5.8).



1408 A. BUDHIRAJA, P. DUPUIS AND V. MAROULAS

Since the proof of Theorem 9 relies on properties of the controlled process (5.3),
the first step is to prove existence and uniqueness of solutions. This follows from
a standard application of Girsanov’s theorem.

THEOREM 10. Let Gε be as in Theorem 8 and let u ∈ P N
2 for some N ∈ N0

where P N
2 is as defined in (4.6). For ε > 0 and x ∈ Bα , define

Xε,u
x

.= Gε(x,
√

εB + Int(u)
)
,

where Int is defined in (4.7). Then Xε,u
x is the unique solution of (5.3).

PROOF. Fix u ∈ P N
2 . Since

E

(
exp

{
− 1√

ε

∫
[0,T ]×O

u(s, q)B(dq ds) − 1

2ε

∫
[0,T ]×O

u2(s, q) dq ds

})
= 1,

the measure γ u,ε defined by

dγ u,ε = exp
{
− 1√

ε

∫
[0,T ]×O

u(s, q)B(dq ds) − 1

2ε

∫
[0,T ]×O

u2(s, q) dq ds

}
dP

is a probability measure on (�,F ,P). Furthermore, γ u,ε is mutually absolutely
continuous with respect to P and by Girsanov’s theorem (see [7], Theorem 10.14),
the process B̃ = B +ε−1/2 Int(u) on (�,F , γ u,ε, {Ft }) is a Brownian sheet. Thus,
by Theorem 8, Xε,u

x = Gε(x,
√

εB + Int(u)) is the unique solution of (5.2), with
B there replaced by B̃ , on (�,F , γ u,ε, {Ft }). However, equation (5.2) with B̃ is
precisely the same as equation (5.3), and since γ u,ε and P are mutually absolutely
continuous, we get that Xε,u

x is the unique solution of (5.3) on (�,F ,P, {Ft }).
This completes the proof. �

In the next subsection we will study, under the standing assumption of this sec-
tion, the following two basic qualitative results regarding the processes Xε,u

x . The
first is simply the controlled, zero-noise version of the theorem just stated and
its proof, being very similar to the proof of Theorem 8, is omitted. The next is a
standard convergence result whose proof is given in Section 5.2.

THEOREM 11. Fix x ∈ Bα and u ∈ L2([0, T ] × O). Then there is a unique
function f in C([0, T ] : Bα) which satisfies equation (5.12).

In analogy with the notation Xε,u
x for the solution of (5.3), we will denote the

unique solution f given by Theorem 11 as X0,u
x . Let θ : [0,1) → [0,1) be a mea-

surable map such that θ(r) → θ(0) = 0 as r → 0.

THEOREM 12. Let M < ∞, and suppose that xε → x and uε → u in distrib-
ution as ε → 0 with {uε} ⊂ P M

2 . Then X
θ(ε),uε

xε → X0,u
x in distribution.
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PROOF OF THEOREM 9. Define the map G0 : Bα × B
T
0 → C([0, T ] : Bα) as

follows. For x ∈ Bα and φ ∈ B
T
0 of the form φ(t, x)

.= Int(u)(t, x) for some
u ∈ L2([0, T ] × O), we define G0(x,φ) = X0,u

x . Set G0(x,φ) = 0 for all other
φ ∈ B

T
0 . In view of Theorem 7, it suffices to show that (Gε,G0) satisfy Assump-

tion 3 with E0 and E there replaced by Bα and C([0, T ];Bα) respectively; and for
all f ∈ E , the map x �→ Ix(f ) is l.s.c. The latter property and the first part of As-
sumption 3 is immediate on applying Theorems 11 and 12 with θ = 0. The second
part of Assumption 3 follows on applying Theorem 12 with θ(r) = r , r ∈ [0,1).

�

5.2. Qualitative properties of controlled stochastic reaction-diffusion equa-
tions. This section is devoted to the proof of Theorem 12. Our first result shows
that Lp bounds hold for controlled SDEs, uniformly when the initial condition and
controls lie in compact sets and ε ∈ [0,1). Note, in particular, that ε = 0 is allowed.

LEMMA 1. If K is any compact subset of Bα and M < ∞, then for all p ∈
[1,∞),

sup
u∈P M

2

sup
x∈K

sup
ε∈[0,1)

sup
(t,r)∈[0,T ]×O

E|Xε,u
x (t, r)|p < ∞.

PROOF. By Doob’s inequality, there exists a suitable constant c1 such that

E|Xε,u
x (t, r)|p

≤ c1

∣∣∣∣
∫
O

G(t,0, r, q)x(q) dq

∣∣∣∣p

+ c1E

∣∣∣∣
∫ t

0

∫
O

G(t, s, r, q)R(s, q,Xε,u
x (s, q)) dq ds

∣∣∣∣p

+ c1E

[∫ t

0

∫
O

|G(t, s, r, q)|2|F(s, q,Xε,u
x (s, q))|2 dq ds

]p/2

+ c1E

[∫ t

0

∫
O

|G(t, s, r, q)||F(s, q,Xε,u
x (s, q))||u(s, q)|dq ds

]p

.

Using (5.8) and the Cauchy–Schwarz inequality, the right-hand side above can be
bounded by

c2

[
1 + E

(∫ t

0

∫
O

|G(t, s, r, q)|2|Xε,u
x (s, q)|2 dq ds

)p/2]
.

Hölder’s inequality yields for p > 2 that

�p(t) ≤ c2

[
1 +

(∫ T

0

∫
O

|G(t, s, r, q)|2p̃ dq ds

)(p−2)/2 ∫ t

0
�p(s) ds

]
,
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where �p(t) = supu∈P M
2

supx∈K supε∈[0,1) supr∈O E|Xε,u
x (t, r)|p and p̃ = p

p−2 .

Choose p0 large enough that (
2p0

p0−2 − 1)(1 − 2ᾱ) < 1. Using (5.4) and (5.5), we
have for all p ≥ p0 that[∫ T

0

∫
O

|G(t, s, r, q)|2p̃ dq ds

](p−2)/2

≤ c3T
(1−(2p̃−1)(1−2ᾱ))(p−2)/2.

Thus, for every p ≥ p0, there exists a constant c4 such that �p(t) ≤ c4[1 +∫ t
0 �p(s) ds]. The result now follows from Gronwall’s lemma. �

The following lemma will be instrumental in proving tightness and weak con-
vergence in Banach spaces such as Bα and B

T
α .

LEMMA 2. Let A ⊆ P2 be a family such that, for all p ≥ 2,

sup
f ∈A

sup
(t,r)∈[0,T ]×O

E|f (t, r)|p < ∞.(5.13)

Also, let B ⊆ P M
2 for some M < ∞. For f ∈ A and u ∈ B, define

�1(t, r)
.=

∫ t

0

∫
O

G(t, s, r, q)f (s, q)B(dq ds),

�2(t, r)
.=

∫ t

0

∫
O

G(t, s, r, q)f (s, q)u(s, q) dq ds,

where the dependence on f and u is not made explicit in the notation. Then for
any α < ᾱ and i = 1,2,

sup
f ∈A,u∈B

E

{
sup

ρ((t,r),(s,q))<1

|�i(t, r) − �i(s, q)|
ρ((t, r), (s, q))α

}
< ∞.

PROOF. We will prove the result for i = 1; the proof for i = 2 is identical
(except an additional application of the Cauchy–Schwarz inequality) and, thus, it
is omitted. Henceforth, we write, for simplicity, �1 as � . We will apply Theorem
6 of [15], according to which it suffices to show that, for all 0 ≤ t1 < t2 ≤ T ,
r1, r2 ∈ O,

sup
f ∈A,u∈B

E|�(t2, r2) − �(t1, r1)|p ≤ cp(ω̂(ρ((t1, r1), (t2, r2))))
p,(5.14)

for a suitable constant cp; a p > 2; and a function ω̂ : [0,∞) → [0,∞) satisfying∫ 1

0

ω̂(u)

u1+α+(d+1)/p
du < ∞.

We will show that (5.14) holds with ω̂(u) = uα0 for some α0 ∈ (α, ᾱ) and all p

sufficiently large. This will establish the result.
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Fix α0, α̃ such that α < α0 < α̃ < ᾱ and let t1 < t2, r1, r2 ∈ O and p > 2. We
will need p to be sufficiently large and the choice of p will be fixed in the course
of the proof. By Doob’s inequality, there exists a constant c1 such that

E|�(t2, r2) − �(t1, r1)|p
(5.15)

≤ c1E

[∫ T

0

∫
O

|G(t2, s, r2, q) − G(t1, s, r1, q)|2|f (s, q)|2 dq ds

]p/2

.

Let p̃ = p/(p−2) and δ = 4/p. Note that (2− δ)p̃ = δp/2 = 2. Hölder’s inequal-
ity, (5.9) and (5.13) give that the right-hand side of (5.15) is bounded by

c1

[∫ T

0

∫
O

|G(t2, s, r2, q) − G(t1, s, r1, q)|(2−δ)p̃ dq ds

](p−2)/2

×
[∫ T

0

∫
O

|G(t2, s, r2, q) − G(t1, s, r1, q)|δp/2
E|f (s, q)|p dq ds

]
(5.16)

≤ c2

[∫ T

0

∫
O

|G(t2, s, r2, q) − G(t1, s, r1, q)|2 dq ds

](p−2)/2

for a suitable constant c2 that is independent of f . From Remark 2(3), the expres-
sion in (5.16) can be bounded (for p large enough) by

c3ρ((t1, r1), (t2, r2))
α̃(p−2) ≤ c4ρ((t1, r1), (t2, r2))

α0p.

The result follows. �

The next result will be used to prove the stochastic integral in (5.3) converges
to 0 in C([0, T ] × O), which will be strengthened shortly.

LEMMA 3. Let A and �1 be as in Lemma 2 and let Zε
f

.= √
ε�1. Then for

every sequence {f ε} ⊂ A, Zε
f ε

P→ 0 in C([0, T ] × O), as ε → 0.

PROOF. Arguments similar to those lead to (5.16) along with (5.4), (5.5) and
(5.13) yielding that supf ∈A E|�1(t, r)|2 < ∞. This shows that for each (t, r) ∈
[0, T ] × O, Zε

f ε(t, r)
P→ 0 (in fact in L2). Defining

ω(x, δ)
.= sup{|x(t, r) − x(t ′, r ′)| :ρ((t, r), (t ′, r ′)) ≤ δ}

for x ∈ C([0, T ] × O) and δ ∈ (0,1), we see that ω(Zε
f ε , δ) = √

εδαMε
f ε , where

Mε
f

.= supρ((t,r),(s,q))<1
|�1(t,r)−�1(s,q)|

ρ((t,r),(s,q))α
. Therefore, from Lemma 2,

lim
δ→0

lim
ε→0

Eω(Zε
f ε , δ) = 0.

The result now follows from Theorem 14.5 of [17]. �
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We now establish the main convergence result.

PROOF OF THEOREM 12. Given x ∈ K,u ∈ P M
2 , ε ∈ [0,1), define

Z
ε,u
1,x(t, r) =

∫
O

G(t,0, r, q)x(q) dq,

Z
ε,u
2,x(t, r) =

∫ t

0

∫
O

G(t, s, r, q)R
(
s, q,Xθ(ε),u

x (s, q)
)
dq ds,

Z
ε,u
3,x(t, r) = √

θ(ε)

∫ t

0

∫
O

G(t, s, r, q)F
(
s, q,Xθ(ε),u

x (s, q)
)
B(dq ds),

Z
ε,u
4,x(t, r) =

∫ t

0

∫
O

G(t, s, r, q)F
(
s, q,Xθ(ε),u

x (s, q)
)
u(s, q) dq ds.

We first show that each Z
ε,uε

i,xε is tight in C([0, T ] : Bα), for i = 1,2,3,4. For i = 1,
this follows from part 2 of Assumption 4. Recalling that B

T
α∗ is compactly embed-

ded in B
T
α for ᾱ > α∗ > α, it suffices to show that, for some α∗ ∈ (α, ᾱ),

sup
ε∈(0,1)

P[‖Zε,uε

i,xε ‖
B

T
α∗ > K] → 0 as K → ∞ for i = 2,3,4.(5.17)

For i = 2,4, (5.17) is an immediate consequence of

sup
ε∈(0,1)

E‖Zε,uε

i,xε ‖
B

T
α∗ < ∞,

as follows from Lemma 2, the linear growth condition (5.8) and Lemma 1. For
i = 3, in view of Lemma 3, it suffices to establish

sup
ε∈(0,1)

E[Zε,uε

3,xε ]BT
α∗ < ∞,

where for z ∈ B
T
α , [z]BT

α
= ‖z‖BT

α
−‖z‖0. Once more, this follows as an immediate

consequence of Lemma 2, the linear growth condition (5.8) and Lemma 1.
Having shown tightness of Z

ε,uε

i,xε for i = 1,2,3,4, we can extract a subse-

quence along which each of these processes and X
ε,uε

xε converges in distribution
in C([0, T ] : Bα). Let Z

0,u
i,x and X0,u

x denote the respective limits. We will show
that

Z
0,u
1,x (t, r) =

∫
O

G(t,0, r, q)x(q) dq,

Z
0,u
2,x (t, r) =

∫ t

0

∫
O

G(t, s, r, q)R(s, q,X0,u
x (s, q)) dq ds,

(5.18)
Z

0,u
3,x (t, r) = 0,

Z
0,u
4,x (t, r) =

∫ t

0

∫
O

G(t, s, r, q)F (s, q,X0,u
x (s, q))u(s, q) dq ds.



LDP FOR INFINITE DIMENSIONAL SDE 1413

The uniqueness result Theorem 11 will then complete the proof.
Convergence for i = 1 follows from part 2 of Assumption 4. The case i = 3

follows from Lemma 3, Lemma 1 and the linear growth condition. To deal with
the cases i = 2,4, we invoke the Skorokhod Representation Theorem [21], which
allows us to assume with probability one convergence for the purposes of identi-
fying the limits. We give the proof of convergence only for the harder case i = 4.
Denote the right-hand side of (5.18) by Ẑ

0,u
4,x (t, r). Then

|Zε,uε

4,xε (t, r) − Ẑ
0,u
4,x (t, r)|

≤
∫ t

0

∫
O

|G(t, s, r, q)||F(s, q,X
ε,uε

xε (s, q))

(5.19)
− F(s, q,X0,u

x (s, q))||uε(s, q)|dq ds

+
∣∣∣∣
∫ t

0

∫
O

G(t, s, r, q)F (s, q,X0,u
x (s, q))

(
uε(s, q) − u(s, q)

)
dq ds

∣∣∣∣.
By the Cauchy–Schwarz inequality, equation (5.9) and the uniform Lipschitz prop-
erty of F we see that, for a suitable constant c ∈ (0,∞), the first term on the
right-hand side of (5.19) can be bounded above by

√
M

[∫ t

0

∫
O

|G(t, s, r, q)|2|F(s, q,X
ε,uε

xε (s, q)) − F(s, q,X0,u
x (s, q))|2 dq ds

]1/2

≤ c

(
sup

(s,q)∈[0,T ]×O
|Xε,uε

xε (s, q) − X0,u
x (s, q)|

)
,

and thus converges to 0 as ε → 0. The second term in (5.19) converges to 0 as
well, since uε → u and∫ t

0

∫
O
(G(t, s, r, q)F (s, q,X0,u

x (s, q)))2 dq ds < ∞.

By uniqueness of limits and noting that Ẑ
0,u
4,x is a continuous random field, we see

that Z
0,u
4,x = Ẑ

0,u
4,x and the proof is complete. �

6. Other infinite dimensional models. The key ingredients in the proof of
the LDP for the solution of the infinite dimensional SDE studied in Section 5 are
the qualitative properties in Theorems 11 and 12 of the controlled SDE (5.3). Once
these properties are verified, the LDP follows as an immediate consequence of
Theorem 7. Furthermore, one finds that the estimates needed for the proof of The-
orems 11 and 12 are essentially the same as those needed for establishing unique
solvability of (5.1). This is a common theme that appears in all proofs of LDPs, for
small noise stochastic dynamical systems, that are based on variational representa-
tions such as in Section 3. Indeed, one can argue that the variational representation
approach makes the small noise large deviation analysis a transparent and a largely
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straightforward exercise, once one has the estimates for the unique solvability of
the stochastic equation. This statement has been affirmed by several recent works
on Freidlin–Wentzell large deviations for infinite dimensional SDEs that are based
on the variational representation approach (specifically Theorem 2), and carry out
the verification of statements analogous to Theorems 11 and 12. Some of these
works are summarized below.

6.1. SDEs driven by infinitely many Brownian motions. Ren and Zhang [23]
consider a SDE driven by infinitely many Brownian motions with non-Lipschitz
diffusion coefficients. Prior results on strong existence and uniqueness of the so-
lutions to the SDE yield continuous (in time and initial condition) random field
solutions. The authors prove a small noise LDP in the space C([0, T ] × R

d). The
proof relies on the representation formula for an infinite sequence of real Brown-
ian motions {βi} given in Theorem 2 and the general Laplace principle of the
form in Theorem 6. Non-Lipschitz coefficients make the standard discretization
and approximation approach intractable for this example. The authors verify the
analogues of Theorems 11 and 12 in Theorem 3.1, Lemmas 3.4 and 3.11 of the
cited paper. In the final section of the paper, Schilder’s theorem for Brownian mo-
tion on the group of homeomorphisms of the circle is obtained. The proof here is
also by verifying of steps analogous to Theorems 11 and 12 regarding solvability
and convergence in the space of homeomorphisms. Once more, exponential prob-
ability estimates with the natural metric on the space of homeomorphisms, needed
in the standard proofs of the LDP, do not appear to be straightforward. Using sim-
ilar ideas based on representations for infinite dimensional Brownian motions, a
LDP for flows of homeomorphisms, extending results of the final section of [23] to
multi-dimensional SDES with nonLipschitz coefficients, has been studied in [24].

6.2. Stochastic PDE with varying boundary conditions. Wang and Duan [27]
study stochastic parabolic PDEs with rapidly varying random dynamical bound-
ary conditions. The formulation of the SPDE as an abstract stochastic evolution
equation in an appropriate Hilbert space leads to a non-Lipschitz nonlinearity with
polynomial growth. Deviations of the solution from the limiting effective system
(as the parameter governing the rapid component approaches its limit) are studied
by establishing a large deviation principle. The proof of the LDP uses the vari-
ational representation for functionals of a Hilbert space valued Wiener process
as in Theorem 3 and the general Laplace principle given in Theorem 5. Once
more, the hardest part in the analysis is establishing the well-posedness (i.e., ex-
istence, uniqueness) of the stochastic evolution equation. Once estimates for ex-
istence/uniqueness are available, the proof of the LDP becomes a straightforward
verification of Assumption 1.
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6.3. Stochastic Navier–Stokes equation. Sritharan and Sundar [26] study
small noise large deviations for a two-dimensional Navier–Stokes equation in an
(possibly) unbounded domain and with multiplicative noise. The equation can
be written as an abstract stochastic evolution equation in an appropriate function
space. The solution lies in the Polish space C([0, T ] :H)∩L2([0, T ] :V ) for some
Hilbert spaces H and V and can be expressed as Gε(

√
εW) for a H valued Wiener

process W . Authors prove existence and uniqueness of solutions and then apply
Theorem 5 by verifying Assumption 1 for their model.

APPENDIX

PROOF OF THEOREM 5. For the first part of the theorem, we need to show
that, for all compact subsets K of E0 and each M < ∞,

�M,K
.= ⋃

x∈K

{f ∈ E : Ix(f ) ≤ M}

is a compact subset of E . To establish this, we will show that �M,K =⋂
n≥1 
2M+1/n,K . In view of Assumption 1, the compactness of �M,K will

then follow. Let f ∈ �M,K . There exists x ∈ K such that Ix(f ) ≤ M . We can
now find, for each n ≥ 1, un ∈ L2([0, T ] :H0) such that f = G0(x,

∫ ·
0 un(s) ds)

and 1
2

∫ T
0 ‖un(s)‖2

0 ds ≤ M + 1
2n

. In particular, un ∈ S2M+1/n(H0), and so f ∈

2M+1/n,K . Since n ≥ 1 is arbitrary, we have �M,K ⊆ ⋂

n≥1 
2M+1/n,K . Con-
versely, suppose f ∈ 
2M+1/n,K , for all n ≥ 1. Then, for every n ≥ 1, there exists
xn ∈ K,un ∈ S2M+1/n such that f = G0(xn,

∫ ·
0 un(s) ds). In particular, we have

Ixn(f ) ≤ M + 1
2n

. Recalling that the map x �→ Ix(f ) is l.s.c. and K is compact,
we now see on sending n → ∞ that, for some x ∈ K , Ix(f ) ≤ M . Thus, f ∈ �M,K

and the inclusion
⋂

n≥1 
2M+1/n,K ⊆ �M,K follows. This proves the first part of
the theorem.

For the second part of the theorem, consider an x ∈ E0 and let {xε, ε > 0} ⊆ E0
be such that xε → x as ε → 0. Fix a bounded and continuous function h :E → R.
It suffices to show (2.1) (upper bound) and (2.2) (lower bound), with Xε there
replaced by Xε,xε

and I replaced by Ix . For notational convenience, we will write
P2(H0),P

N
2 (H0), S

N(H0) simply as P2,P
N
2 , SN respectively.

Proof of the upper bound. From Theorem 3,

−ε log E

[
exp

(
−1

ε
h(Xε,xε

)

)]
(7.1)

= inf
u∈P2

E

[
1

2

∫ T

0
‖u(s)‖2

0 ds + h ◦ Gε

(
xε,

√
εW +

∫ ·

0
u(s) ds

)]
.

Fix δ ∈ (0,1). Then for every ε > 0 there exists uε ∈ P2 such that the right-hand
side of (7.1) is bounded below by

E

[
1
2

∫ T

0
‖uε(s)‖2

0 ds + h ◦ Gε

(
xε,

√
εW +

∫ ·

0
uε(s) ds

)]
− δ.
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Using the fact that h is bounded, we can assume without loss of generality (we
refer the reader to the proof of Theorem 4.4 of [3] where a similar argument is
used) that, for some N ∈ (0,∞),

sup
ε>0

∫ T

0
‖uε(s)‖2

0 ds ≤ N a.s.

In order to prove the upper bound, it suffices to show that

lim inf
ε→0

E

[
1
2

∫ T

0
‖uε(s)‖2

0 ds + h ◦ Gε

(
xε,

√
εW +

∫ ·

0
uε(s) ds

)]
≥ inf

f ∈E
{Ix(f ) + h(f )}.

Pick a subsequence (relabeled by ε) along which uε converges in distribution to
some u ∈ P N

2 (as SN valued random variables). We now infer from the Assump-
tion 1 that

lim inf
ε→0

E

[
1
2

∫ T

0
‖uε(s)‖2

0 ds + h ◦ Gε

(
xε,

√
εW +

∫ ·

0
uε(s) ds

)]

≥ E

[
1
2

∫ T

0
‖u(s)‖2

0 ds + h ◦ G0
(
x,

∫ ·

0
u(s) ds

)]

≥ inf
{(f,u)∈E×L2([0,T ]:H0):f =G0(x,

∫ ·
0 u(s)ds)}

{
1
2

∫ T

0
‖u(s)‖2

0 ds + h(f )

}

≥ inf
f ∈E

{Ix(f ) + h(f )}.
Proof of the lower bound. We need to show that

lim sup
ε→0

−ε log E

[
exp

(
−1

ε
h(Xε,xε

)

)]
≤ inf

f ∈E
{Ix(f ) + h(f )}.

Without loss of generality, we can assume that inff ∈E {Ix(f ) + h(f )} < ∞. Let
δ > 0 be arbitrary, and let f0 ∈ E be such that

Ix(f0) + h(f0) ≤ inf
f ∈E

{Ix(f ) + h(f )} + δ

2
.(7.2)

Choose ũ ∈ L2([0, T ] :H0) such that,

1

2

∫ T

0
‖ũ(s)‖2

0 ds ≤ Ix(f0) + δ

2
and f0 = G0

(
x,

∫ ·

0
ũ(s) ds

)
.(7.3)

Then, from Theorem 3,

lim sup
ε→0

−ε log E

[
exp

(
−1

ε
h(Xε,xε

)

)]

= lim sup
ε→0

inf
u∈A

E

[
1

2

∫ T

0
‖u(s)‖2

0 ds + h ◦ Gε

(
xε,

√
εW +

∫ ·

0
u(s) ds

)]
(7.4)
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≤ lim sup
ε→0

E

[
1

2

∫ T

0
‖ũ(s)‖2

0 ds + h ◦ Gε

(
xε,

√
εW +

∫ ·

0
ũ(s) ds

)]

= 1

2

∫ T

0
‖ũ(s)‖2

0 ds + lim sup
ε→0

E

[
h ◦ Gε

(
xε,

√
εW +

∫ ·
0

ũ(s) ds

)]
.

By Assumption 1, limε→0 E[h ◦ Gε(xε,
√

εW + ∫ ·
0 ũ(s) ds)] = h(G0(x,∫ ·

0 ũ(s) ds)) = h(f0). Thus, in view of (7.2) and (7.3), the expression (7.4) can
be at most inff ∈E {I (f ) + h(f )} + δ. Since δ is arbitrary, the proof is complete.

�

PROOF OF THEOREM 6. From Remark 1, we can regard β as an H val-
ued Q-Wiener process, where H = l̄2 and Q is a trace class operator, as de-
fined in Remark 1. Also, one can check that H0

.= Q1/2H = l2. Since the em-
bedding map i :C([0, T ] : l̄2) → C([0, T ] : R∞) is measurable (in fact, continu-
ous), Ĝε :E0 ×C([0, T ] : l̄2) → E defined as Ĝε(x,

√
εv)

.= Gε(x,
√

εi(v)), (x, v) ∈
E0 × C([0, T ] : l̄2) is a measurable map for every ε ≥ 0. Note also that, for ε > 0,
Xε,x = Ĝε(x,

√
εβ) a.s. Since Assumption 2 holds, we have that 1 and 2 of As-

sumption 1 are satisfied with Gε there replaced by Ĝε for ε ≥ 0 and W replaced
with β . Define Îx(f ) by the right-hand side of (4.3) with G0 replaced by Ĝ0.
Clearly, Ix(f ) = Îx(f ) for all (x, f ) ∈ E0 × E . The result is now an immediate
consequence of Theorem 5. �

PROOF OF THEOREM 7. Let {φi}∞i=1 be a CONS in L2(O) and let

βi(t)
.=

∫
[0,t]×O

φi(x)B(ds dx), t ∈ [0, T ], i = 1,2, . . . .

Then β ≡ {βi} is a sequence of independent standard real Brownian motions and
can be regarded as a (S,S) valued random variable. Furthermore, (2.5) is sat-
isfied and from Proposition 3, there is a measurable map g :C([0, T ] : R∞) →
C([0, T ] × O : R) such that g(β) = B a.s. Define, for ε > 0, Ĝε :E0 × C([0, T ] :
R

∞) → E as Ĝε(x,
√

εv)
.= Gε(x,

√
εg(v)), (x, v) ∈ E0 ×C([0, T ] : R∞). Clearly,

Ĝε is a measurable map and Ĝε(x,
√

εβ) = Xε,x a.s. Next, note that

Sac
.=

{
v ∈ C([0, T ] : R∞) :v(t) =

∫ t

0
û(s) ds,

t ∈ [0, T ], for some û ∈ L2([0, T ] : l2)

}

is a measurable subset of S. For û ∈ L2([0, T ] : l2), define uû ∈ L2([0, T ] × O) as

uû(t, x) =
∞∑
i=1

ûi(t)φi(x), (t, x) ∈ [0, T ] × O.
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Define Ĝ0 :E0 × C([0, T ] : R∞) → E as

Ĝ0(x, v)
.= G0(x, Int(uû)) if v =

∫ ·

0
û(s) ds and û ∈ L2([0, T ] : l2).

We set Ĝ0(x, v) = 0 for all other (x, v). Note that{
Ĝ0

(
x,

∫ ·

0
û(s) ds

)
: û ∈ SM(l2), x ∈ K

}

= {G0(x, Int(u)) :u ∈ SM,x ∈ K}.
Since Assumption 3 holds, we have that 1 of Assumption 2 holds with G0 there
replaced by Ĝ0. Next, an application of Girsanov’s theorem gives that, for every
ûε ∈ P M

2 (l2),

g

(
β + 1√

ε

∫ ·

0
ûε(s) ds

)
= B + 1√

ε
Int(uûε ) a.s.

In particular, for every M < ∞ and families {ûε} ⊂ P M
2 (l2) and {xε} ⊂ E0, such

that ûε converges in distribution [as SM(l2) valued random elements] to û and
xε → x, we have, as ε → 0,

Ĝε

(
xε,

√
εβ +

∫ ·

0
ûε(s) ds

)
= Gε(xε,

√
εB + Int(uûε )

)
→ G0(x, Int(uû))

= Ĝ0
(
x,

∫ ·

0
û(s) ds

)
.

Thus, part 2 of Assumption 2 is satisfied with Gε replaced by Ĝε , ε ≥ 0. The result
now follows on noting that if Îx(f ) is defined by the right-hand side of (4.5) on
replacing G0 there by Ĝ0, then Îx(f ) = Ix(f ) for all (x, f ) ∈ E0 × E . �
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