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LOCAL GAUSSIAN FLUCTUATIONS IN THE AIRY AND
DISCRETE PNG PROCESSES

BY JONAS HÄGG

Royal Institute of Technology

We prove that the Airy process, A(t), locally fluctuates like a Brownian
motion. In the same spirit we also show that, in a certain scaling limit, the so-
called discrete polynuclear growth process (PNG) behaves like a Brownian
motion.

1. Introduction.

1.1. The Airy process. The central object of study in this paper is the local
behavior of the Airy process, t → A(t), t ∈ R [13]. The Airy process is a one-
dimensional process with continuous paths [6, 13]. The interest in this process is
mainly due to the fact that it is the limit of a number of processes appearing in the
random matrix literature. One example is the top curve in Dyson’s Brownian mo-
tion (see [3]), which, when appropriately rescaled, converges to the Airy process;
see, for instance, [2] and [7]. Another example is the boundary of the north polar
region in the Aztec diamond (see [4, 5] and [8]), a discrete process also converging
to the Airy process [8]. A third example, the discrete polynuclear growth model
(PNG) [7, 9], will be described in some detail in Section 1.3 where we also state a
theorem about its local (in a certain sense) fluctuations.

A precise definition of A(t) goes as follows:
The extended Airy kernel [2, 10, 13] is defined by

As,t (x, y) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

0
e−z(s−t) Ai(x + z)Ai(y + z) dz, if s ≥ t ,

−
∫ 0

−∞
ez(t−s) Ai(x + z)Ai(y + z) dz, if s < t ,

(1.1)

where Ai is the Airy function. As,s(x, y) is easily seen to be the ordinary Airy
kernel [15]. Given ξ1, . . . , ξm ∈ R and t1 < · · · < tm in R, we define f on
{t1, . . . , tm} × R by

f (ti, x) = χ(ξi ,∞)(x).

It is shown in [7] that

f 1/2(s, x)As,t (x, y)f 1/2(t, y)
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is the integral kernel of a trace class operator on L2({t1, . . . , tm} × R) where we
have counting measure on {t1, . . . , tm} and Lebesgue measure on R. The Airy
process, t → A(t), is the stationary stochastic process with finite-dimensional dis-
tributions given by

P[A(t1) ≤ ξ1, . . . ,A(tm) ≤ ξm] = det(I − f 1/2Af 1/2)L2({t1,...,tm}×R).

The determinant in the right-hand side is a Fredholm determinant.
Our main theorem states that if we condition the Airy process to be at some

given point at time t1, it will then behave, on a local scale, like a Brownian motion.

THEOREM 1.1. Let ε > 0 be small, t1 ∈ R and ti = ti−1 + siε, 2 ≤ i ≤ m,
where s2, . . . , sm > 0. Also, let p1 ∈ R and define the sets Ai , i = 2, . . . ,m, by

Ai = {
x ∈ R|p1 + ai

√
ε ≤ x ≤ p1 + bi

√
ε
}

where ai, bi are given real numbers. It holds that

P[A(t2) ∈ A2, . . . ,A(tm) ∈ Am|A(t1) = p1]

=
∫ b2

a2

dx2 · · ·
∫ bm

am

dxm

1√
4πs2

e−x2
2/(4s2)

m∏
i=3

1√
4πsi

e−(xi−xi−1)
2/(4si ) + E,

where

|E| ≤ √
ε log ε−1

m∏
i=2

(bi − ai)Cp1,s2,...,sm.

Figure 1 describes the setup in the theorem.

REMARK 1. A couple of previous results about the Airy process are the fol-
lowing:

FIG. 1. Conditioned that A(t1) = p1, Theorem 1.1 gives the approximate probability for the
process to move through the sets Ai . Note that ti+1 − ti ∼ ε and |Ai | ∼ √

ε.
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In [13] it is shown that

Var
(
A(t) − A(0)

)= 2t + O(t2)

as t → 0.

In [1] (see also [16]), the long-distance covariance asymptotics for the Airy
process is calculated to be

E[A(t)A(0)] − E[A(t)]E[A(0)] = t−2 + at−4 + O(t−6)

as t → ∞, where a is a known constant. This proves that A(t) is not a Markov
process since this would imply exponential decay.

REMARK 2. Given Theorem 1.1, it is natural to ask the corresponding ques-
tion about processes converging to the Airy process. Theorem 1.3 in Section 1.3
below provides such a result for the discrete polynuclear growth process.

1.2. The extended Airy point process. We now present another construction
[7] of the Airy process that will help us in analyzing its local behavior.

Let m ∈ Z+ be arbitrary and let t1 < t2 < · · · < tm be points in R which we shall
think of as times. Define

E = Rt1 ∪ Rt2 ∪ · · · ∪ Rtm.

We shall refer to Rtj as time line tj . We define X to be the space of all locally finite
countable configurations of points (or particles) in E. Locally finite means that, if
x = (x1, x2, . . .) ∈ X, then, for any bounded set C ⊂ E, it holds that #(C ∩ x) <

∞. Here #B represents the number of points in the set B . One can construct a
σ -algebra on X from the cylinder sets: Let B ⊂ E be any bounded Borel set and
let n ≥ 0. Define

CB
n = {x ∈ X : #B = n}

to be a cylinder set and � to be the minimal σ -algebra that contains all cylinder
sets. One can now define probability measures on the space (X,�). The extended
Airy point process is an example of such a measure and it will be described below.

For the sake of convenience, we will often denote the extended Airy kernel
by A(x, y) instead of Ati,tj (x, y) when it is clear that x ∈ Rti and y ∈ Rtj . Let
z1, . . . , zk be points in E. The k-point correlation function is defined by

R(z1, . . . , zk) = det[A(zi, zj )]ki,j=1.(1.2)

It is possible to show that these correlation functions determine a probability mea-
sure on (X,�), the extended Airy point process, by demanding that the following
identity holds [14]:

E

[
n∏

i=1

#Bi !
(#Bi − ki)!

]
=
∫
B

k1
1 ×···×B

kn
n

R(z1, . . . , zk) dz.(1.3)
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Here B1, . . . ,Bn are disjoint Borel subsets of E and ki ∈ Z+, 1 ≤ i ≤ n, are such
that k1 + · · · + kn = k.

It is possible to show that, at each time line Rti , there is almost surely a largest
particle, λ(ti), and

(λ(t1), . . . , λ(tm)) = (A(t1), . . . ,A(tm))(1.4)

in distribution [7]. It is through this representation that we are able to show that the
Airy process behaves locally as a Brownian motion.

1.3. Discrete polynuclear growth. The second object of interest in this paper
is the discrete polynuclear growth model (PNG) [7, 9]. It is defined by

h(x, t + 1) = max
(
h(x − 1, t), h(x, t), h(x + 1, t)

)+ ω(x, t + 1),(1.5)

where x ∈ Z, t ∈ N, h(x,0) = 0 ∀x ∈ Z and ω(x, t + 1) = 0 if |x| > t or if t − x

is even; otherwise ω(x, t + 1) are independent geometric random variables with

P[ω(x, t + 1) = m] = (1 − q)qm, 0 < q < 1.(1.6)

It is convenient to extend the process to all x ∈ R by setting h(x, t) = h(x�, t).
A description of this process using words and pictures goes as follows:

At time t = 1 a block of width 1 and height ω(0,1) appears over the interval
[0,1). This block then grows sideways one unit in both directions and at time t = 2
two blocks of width 1 and heights ω(−1,2), ω(1,2) are placed on top of it over
the intervals [−1,0) and [1,2), respectively. These blocks now grow one unit in
each direction disregarding overlaps. At time t = 3 three new blocks are placed
over [−2,−1), [0,1) and [2,3). This procedure goes on producing at each time
the curve h(x, t) that can be thought of as a growing interface. Figure 2 shows a
realization for t = 1,2,3.

The process h is closely connected to a growth model, G(M,N), studied in [6].
Let w(i, j), (i, j) ∈ Z

2+, be independent random variables with distribution given
by (1.6). Define

G(M,N) = max
π

∑
(i,j)∈π

w(i, j)

where the maximum is taken over all up/right paths from (1,1) to (M,N). One
can think of G(M,N) as a point-to-point last-passage time and

Gpl(N) = max|K|<N
G(N + K,N − K)

as a point-to-line last-passage time. In [7] it is shown that

G(i, j) = h(i − j, i + j − 1).

The definition of Gpl therefore inspires the study of K → h(2K,2N − 1), that is,
the height curve at even sites at time 2N − 1.
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FIG. 2. A sample of the discrete PNG process for t = 1,2,3. The shaded blocks represent the
growth due to the random variables ω(x, t).

In [7] the rescaled process, t → HN(t), t ∈ R, is, for appropriate t , defined by

dN1/3HN(t) = h

(
2

1 + √
q

1 − √
q

d−1N2/3t,2N − 1
)

− 2
√

q

1 − √
q

N

and for the rest of R by the use of linear interpolation. The constant d is given by

d = (
√

q)1/3(1 + √
q)1/3

1 − √
q

.

The main result about HN(t) in [7] is the following theorem:

THEOREM 1.2 [7]. Let A(t) be the Airy process defined by its finite-
dimensional distributions and let T be an arbitrary positive number. There is a
continuous version of A(t) and

HN(t) → A(t) − t2

as N → ∞ in the weak∗-topology of probability measures on C(−T ,T ).

In particular this theorem shows that the fluctuations of h are of order N1/3 and
that nontrivial correlations in the transversal direction show up when looking at
times ti where ti+1 − ti ∼ N2/3.

Motivated by Theorems 1.1 and 1.2, one could guess that h, on a time scale
of order Nγ , 0 < γ < 2/3, behaves like a Brownian motion. The theorem below
shows that this is indeed the case.
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Given some m ∈ Z+, set

K1 = 1 + √
q

1 − √
q

d−1N2/3τ1,

Ki+1 = Ki + 1 + √
q

1 − √
q

d−1si+1N
γ , i = 1, . . . ,m − 1,

where 0 < γ < 2
3 and τ1, si > 0 are real numbers such that Ki ∈ Z. Define

J1 = 2
√

q

1 − √
q

N + ψ dN1/3 ∈ Z+

where ψ is any real number such that J1 ∈ Z.

THEOREM 1.3. Define the sets Ai , i = 2, . . . ,m, by

Ai = {j ∈ Z+|j = J1 + xi dNγ/2, ai ≤ xi ≤ bi}
where ai, bi are given real numbers. There exists c > 0 such that

P[h(2K2,2N − 1) ∈ A2, . . . , h(2Km,2N − 1) ∈ Am

|h(2K1,2N − 1) = J1]

=
∫ b2

a2

dx2 · · ·
∫ bm

am

dxm

1√
4πs2

e−x2/(4s2)
m∏

i=3

1√
4πsi

e−(xi−xi−1)
2/(4si ) + E,

where

|E| ≤ N−c
m∏

i=2

(bi − ai)Cψ1,s2,...,sm.

2. Proof of Theorem 1.1. The connection (1.4) shows that we can prove the
theorem by studying the largest particle in the extended Airy point process at times
t1, . . . , tm.

The appearance of C in formulae below should be interpreted as follows: There
exists a positive constant which may depend on pi , si , i = 2, . . . ,m, validating the
inequality to the left when inserted instead of C. Other error terms will typically
also depend on pi , si .

Set J1 = [p1 − δ1,p1] ⊂ Rt1 and Ji = [pi − √
εδi,pi] ⊂ Rti , 2 ≤ i ≤ m, where

δi > 0 and pi = pi−1 + yi

√
ε, yi ∈ R. We also set Ii = (pi,∞), i = 1, . . . ,m.

We will show that

lim
δ1,...,δm→0+

1

δ2 · · · δm

P[#J1 ≥ 1, . . . ,#Jm ≥ 1,#I1 = · · · = #Im = 0]
P[#J1 ≥ 1,#I1 = 0]

(2.1)

= 1√
(4π)m−1s2 · · · sm

e−y2
2/(4s2)−···−y2

m/(4sm) + O
(√

ε log ε
)
,
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implying Theorem 1.1.
The first step is to show that the probabilities in the numerator and denominator

above can be approximated by appropriate expected values.
For k,n ∈ Z+ we shall use the common notation

n[k] = n(n − 1) · · · (n − k + 1).

Let J be an interval on some time line and let χA be the indicator function for the
event A. Since

#J − χ{#J≥1} =
{

k − 1, #J = k ≥ 2,
0, #J = 0,1,

#J [2] = #J (#J − 1) =
{

k(k − 1), #J = k ≥ 2,
0, #J = 0,1,

it holds that

0 ≤ #J − χ{#J≥1} ≤ #J [2].(2.2)

This together with the following facts will be useful:

P[#J1 ≥ 1, . . . ,#Jm ≥ 1,#I1 = 0]
− P[#J1 ≥ 1, . . . ,#Jm ≥ 1,#I1 = · · · = #Im = 0]

= P[#J1 ≥ 1, . . . ,#Jm ≥ 1,#I1 = 0, (#I2 = · · · = #Im = 0)c](2.3)

= P

[
#J1 ≥ 1, . . . ,#Jm ≥ 1,#I1 = 0,

m⋃
i=2

{#Ii �= 0}
]

≤
m∑

i=2

P[#J1 ≥ 1, . . . ,#Jm ≥ 1,#Ii �= #I1].

We now express the probabilities in terms of expected values. If we set

T (Ji) = #Ji − χ{#Ji≥1},(2.4)

then

P[#J1 ≥ 1, . . . ,#Jm ≥ 1,#I1 = 0]
= E

[(
#J1 − T (J1)

) · · · (#Jm − T (Jm)
) · χ{#I1=0}

]
= E

[(
#J1 · · ·#Jm + U(J1, . . . , Jm)

) · χ{#I1=0}
]
,

where U is defined by the last equality. In view of (2.2) and (1.3) we get, for
example,

E[T (J1) · #J2 · · ·#Jm] ≤ E
[
#J

[2]
1 · #J2 · · ·#Jm

]
=
∫
J 2

1 ×J2×···×Jm

R(x1, x2, . . . , xm+1) dx = O(δ2
1 · δ2 · · · δm).
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Since U(J1, . . . , Jm) is a sum of terms like this one [at least one T (Ji)], we see
that

lim
δ1,...,δm→0+

1

δ1 · · · δm

E
[
U(J1, . . . , Jm) · χ{#I1=0}

]= 0.

Repetition of this argument shows together with (2.3) that

lim
δ1,...,δm→0+

1

δ1 · · · δm

P[#J1 ≥ 1, . . . ,#Jm ≥ 1,#I1 = · · · = #Im = 0]

= lim
δ1,...,δm→0+

1

δ1 · · · δm

E
[
#J1 · · ·#Jm · χ{#I1=0}

]
+ O

(
m∑

i=2

lim
δ1,...,δm→0+

1

δ1 · · · δm

E
[
#J1 · · ·#Jm · χ{#Ii �=#I1}

])
and also that

lim
δ1→0+

1

δ1
P[#J1 ≥ 1,#I1 = 0] = lim

δ1→0+
1

δ1
E
[
#J1 · χ{#I1=0}

]
.

Later it will be shown that

lim
δ1,...,δm→0+

1

δ1 · · · δm

E
[
#J1 · · ·#Jm · χ{#Ii �=#I1}

]= O
(√

ε log ε
)
,(2.5)

but let us first be constructive.
We want to show that

lim
δ1,...,δm→0+

1

δ1 · · · δm

E
[
#J1 · · ·#Jm · χ{#I1=0}

]
= lim

δ1→0+
1

δ1
E
[
#J1 · χ{#I1=0}

]
(2.6)

× 1√
(4π)m−1s2 · · · sm

e−y2
2/(4s2)−···−y2

m/(4sm) + O
(√

ε
)
.

To start with, we need to find a representation of the left-hand side of (2.6) that is
suitable for analysis:

E
[
#J1 · · ·#Jm · χ{#I1=0}

]= E

[
#J1 · · ·#Jm · lim

λ→∞ e−λ#I1

]

= E

[
#J1 · · ·#Jm · lim

λ→∞

∞∑
k=0

(e−λ − 1)k

k! #I
[k]
1

]

= E

[
#J1 · · ·#Jm ·

∞∑
k=0

(−1)k

k! #I
[k]
1

]

=
∞∑

k=0

(−1)k

k! E
[
#J1 · · ·#Jm · #I

[k]
1

]
.
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In the second equality we have used the formula

eλn =
∞∑

k=0

(eλ − 1)k

k! n[k].(2.7)

In the fourth equality we take the sum out of the expectation. By Fubini’s theorem
we are allowed to do this since

E

[
#J1 · · ·#Jm ·

∞∑
k=0

#I
[k]
1

k!
]

≤ E

[
#J1 · · ·#Jm ·

∞∑
k=0

#I k
1

k!
]

= E[#J1 · · ·#Jm · e#I1]
≤ E[#J 2

1 · · ·#J 2
m]1/2

E[e2#I1]1/2 < ∞.

In fact E[z#I1] is an entire function in z [14].
Another technical issue we need to deal with is to prove that

lim
δ1,...,δm→0+

1

δ1 · · · δm

∞∑
k=0

(−1)k

k! E
[
#J1 · · ·#Jm · #I

[k]
1

]

=
∞∑

k=0

(−1)k

k! lim
δ1,...,δm→0+

1

δ1 · · · δm

E
[
#J1 · · ·#Jm · #I

[k]
1

]

=
∞∑

k=0

(−1)k

k!
∫
I k

1

(√
ε
)m−1

R(p1, . . . , pm, x1, . . . , xk) dx.

Please recall definition (1.2) and note that the second equality is immediate
from (1.3). Define Gk(z1, . . . , zm), zi ∈ Rti , by

Gk(z1, . . . , zm) = (−1)k

k!
∫
I k

1

R(z1, . . . , zm, x1, . . . , xk) dx.(2.8)

The identity sought for is

lim
δ1,...,δm→0+

1

δ1 · · · δm

∞∑
k=0

∫
J1×···×Jm

Gk(z1, . . . , zm) dz

(2.9)

=
∞∑

k=0

(√
ε
)m−1

Gk(p1, . . . , pm).

This will hold if for some neighborhood � of (p1, . . . , pm) there exist constants
Ck > 0 such that

|Gk(z1, . . . , zm)| ≤ Ck

if (z1, . . . , zm) ∈ � and
∞∑

k=0

Ck < ∞.
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That this is indeed the case follows from calculations similar to the ones appearing
in the proof of Lemma 2.2 which is given at the end of this section.

The following lemma can be found in [11]:

LEMMA 2.1. Let α > 0, then∫ ∞
−∞

eαz Ai(x + z)Ai(y + z) dz = 1√
4πα

e−(x−y)2/(4α)−(α/2)(x+y)+α3/12.

In this section we call this function φα(x, y) or simply φ(x, y) when it is clear
what α is. From Lemma 2.1 and the definition of the Airy kernel, it follows that,
for s < t

As,t (x, y) =
∫ ∞

0
ez(t−s) Ai(x + z)Ai(y + z) dz − φt−s(x, y)

=: Ãs,t (x, y) − φt−s(x, y).

For s ≥ t it is convenient to set Ãs,t (x, y) = As,t (x, y).

LEMMA 2.2. Suppose that 1 ≤ v ≤ m, v ∈ Z. Then, for some C depending on
p1, . . . , pm, (√

ε
)m−1

∫
I k
v

R(p1, . . . , pm, x1, . . . , xk) dx

= (√
ε
)m−1

φ(p1,p2)φ(p2,p3) · · ·φ(pm−1,pm)(2.10)

×
∫
I k

1

R(p1, x1, . . . , xk) dx + √
εO
(
(Ck)(k+m)/2).

Furthermore, if v ≥ 2, then(√
ε
)m−1

∫
I1

dx

∫
Iv

dy R(p1, . . . , pm, x, y)

= (√
ε
)m−1

φ(p1,p2)φ(p2,p3) · · ·φ(pm−1,pm)(2.11)

×
(∫

I 2
1

R(p1, x1, x2) dx +
∫
I1

R(p1, x) dx

)
+ O

(√
ε log ε

)
.

From (2.10) we now get (2.6).
We turn now to (2.5). Clearly

E
[
#J1 · · ·#Jm · χ{#Ii �=#I1}

]
≤ E[#J1 · · ·#Jm · (#Ii − #I1)

2]
= E

[
#J1 · · ·#Jm · (#I

[2]
i + #I

[2]
1 + #Ii + #I1 − 2#I1#Ii

)]
.
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We now obtain (2.5) since(√
ε
)m−1

(∫
I 2
i

R(p1, . . . , pm, x, y) dx dy +
∫
I 2

1

R(p1, . . . , pm, x, y) dx dy

+
∫
Ii

R(p1, . . . , pm, x) dx +
∫
I1

R(p1, . . . , pm, x) dx

(2.12)

− 2
∫
I1×Ii

R(p1, . . . , pm, x, y) dx dy

)
= O

(√
ε log ε

)
by Lemma 2.2.

To get (2.1) we need one more result, namely that

lim
δ1→0+

1

δ1
E
[
#J1χ{#I1=0}

]
> 0.(2.13)

Let F2(s) be the Tracy–Widom distribution function corresponding to the largest
eigenvalue in the Gaussian Unitary Ensemble (GUE) [15]. Then

lim
δ1→0+

1

δ1
E
[
#J1χ{#I1=0}

]
= lim

δ1→0+
1

δ1

∞∑
k=0

(−1)k

k!
∫
J1

dx0

∫
I k

1

dkx det(A(xi, xj ))0≤i,j≤k(2.14)

=
∞∑

k=0

(−1)k

k!
∫
I k

1

det(A(xi, xj ))0≤i,j≤k dkx = F ′
2(p1),

where in the last row x0 = p1. The last equality can be obtained by differentiating
the corresponding equality for the distribution function F2(t) [15]; we omit the
details here. The first equality has been shown above and the second is a special
case of (2.9). Since F ′

2(s) > 0 for all s ∈ R (see [15]), we obtain (2.13).
What is still left is to prove Lemma 2.2.

PROOF OF LEMMA 2.2. We start with (2.10). For 0 ≤ r ≤ m − 1 and k ≥ 1,
define Dr(k) by

Dr(k) = (√
ε
)r

φ(p1,p2)φ(p2,p3) · · ·φ(pr,pr+1)

∫
I k
v

dx

×

∣∣∣∣∣∣∣∣
A(pr+1,p1)

√
εA(pr+1,pr+2) . . .

√
εA(pr+1,pm) A(pr+1, xj )

...
...

...
...

A(pm,p1)
√

εA(pm,pr+2) . . .
√

εA(pm,pm) A(pm,xj )

A(xi,p1)
√

εA(xi,pr+2) . . .
√

εA(xi,pm) A(xi, xj )

∣∣∣∣∣∣∣∣.
In the determinant 1 ≤ i, j ≤ k and for r = 0 we set the empty product in front
of the integral to 1. Please note that D0(k) is equal to the left-hand side in (2.10).
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We let D̃r(k) be almost the same as Dr(k). The only difference is that we put in
Ã(pr+1,pr+2) in position (1,2) in the matrix instead of A(pr+1,pr+2). By using
induction we shall now prove that

D0(k) = Dr(k) + √
εO
(
(Ck)(k+m)/2)(2.15)

for 0 ≤ r ≤ m− 1. Clearly (2.15) holds if r = 0. Suppose now that (2.15) holds for
some r such that 0 ≤ r ≤ m− 2. By expanding the determinant in Dr(k) along the
first row we see that

Dr(k) = Dr+1(k) + D̃r(k).(2.16)

What has to be proved is hence that

D̃r(k) = √
εO
(
(Ck)(k+m)/2).

To do this, Hadamard’s inequality will come in handy, but before we recall this
inequality we present a lemma which will be frequently used from now on. The
proof is readily obtained from Lemma 2.1 and the standard estimates (see [12]):

|Ai(x)| ≤ CMe−2|x|3/2/3,

|Ai′(x)| ≤ CM

√|x|e−2|x|3/2/3

that hold for x ≥ −M . �

LEMMA 2.3. Suppose that s < t and M > 0. For x, y ≥ −M and any λ > 0
it holds that

|At,s(x, y)| ≤ CM,λe
−λ(x+y),

At,s(x, y) = At,t (x, y) + O(t − s)e−λ(x+y),

As,t (x, y) = At,t (x, y) − (
1 + O(t − s)

) 1√
4π(t − s)

e−(x−y)2/(4(t−s))

+ O(t − s)e−λ(x+y).

The errors depend only on M and λ. Moreover,

|As,s(x + α,y) − As,s(x, y)| ≤ αCM,λe
−λ(x+y)

for all α > 0.

Let B = (bi,j )1≤i,j≤n, bi,j ∈ R, be a matrix. Hadamard’s inequality states that

|detB| ≤
(

n∏
i=1

n∑
j=1

b2
ji

)1/2

.(2.17)
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Below we find upper bounds for the equivalent to
∑n

j=1 b2
ji in the matrix appearing

in D̃r(k).
Column 1:

m∑
j=r+1

A2(pr+1,p1) +
k∑

j=1

A2(xj ,p1) ≤ C(k + m).

Column 2:

ε

(
Ã2(pr+1,pr+2) +

m∑
j=r+2

A2(pj ,pr+2) +
k∑

j=1

A2(xj ,pr+2)

)

≤ ε

⎧⎪⎨⎪⎩
C(k + m), if v ≥ r + 2,

Cm + C

k∑
j=1

(
Ã(xj ,pr+2) − φ(xj ,pr+2)

)2
, if v < r + 2.

Columns 3, . . . ,m − r (r + 3 ≤ i ≤ m):

ε

(
m∑

j=r+1

A2(pj ,pi) +
k∑

j=1

A2(xj ,pi)

)
≤ C(k + m).

Last k columns (1 ≤ i ≤ k):

m∑
j=r+1

A2(pj , xi) +
k∑

j=1

A2(xj , xi)

≤

⎧⎪⎪⎨⎪⎪⎩
v−1∑

j=r+1

(
Ã(pj , xi) − φ(pj , xi)

)2 + Cke−2xi , if v ≥ r + 2,

C(k + m)e−2xi , if v < r + 2.

Next we multiply everything together, take the square root and then integrate. As-
sume that v < r + 2:∫

I k
v

[
C(k + m)ε

(
C + C

k∑
j=1

(
Ã(xj ,pr+2) − φ(xj ,pr+2)

)2)

× (
C(m + k)

)m−r−2(
C(k + m)

)k
e−2(x1+···+xk)

]1/2

dx

≤ √
ε(Ck)(k+m)/2

∫
I k
v

e−(x1+···+xk)

(
1 +

k∑
j=1

(
1 + φ(xj ,pr+2)

))
dx

≤ √
ε(Ck)(k+m)/2.

The case v ≥ r + 2 can be treated similarly.
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To obtain (2.10) it remains to show that∫
I k
v

det
[
A(pm,p1) A(pm,xj )

A(xi,p1) A(xi, xj )

]
1≤i,j≤k

dx

=
∫
I k

1

det
[
A(p1,p1) A(p1, xj )

A(xi,p1) A(xi, xj )

]
1≤i,j≤k

dx + √
εO
(
(Ck)(k+m)/2).

This is quite easily achieved using Hadamard’s inequality and Lemma 2.3. We do
not present the details here but instead go on to prove (2.11).

The first part of the proof will be similar to the proof of (2.10) and the second
part is an application of Lemma 2.4 below.

Let Dr(2) and D̃r(2) be as defined above with the exception that the variables x1
and x2 are now integrated over I1 and Iv , respectively. By construction D0(2)

equals the left-hand side in (2.11). If we can show that

D̃r(2) = O
(√

ε
)
,(2.18)

then by the same argument as above

D0(2) = Dm−1(2) + O
(√

ε
)
.

To see this we shall only need the trivial fact that

|detB| ≤
n∏

i=1

n∑
j=1

|bji |,

where as before B is a real n×n matrix. Define B as the (m+2− r)× (m+2− r)

matrix appearing in D̃r(2). We now estimate the column sums

Bi :=
n∑

j=1

|bji |.

Column 1:

B1 = |A(pr+1,p1)| + · · · + |A(pm,p1)| + |A(x1,p1)| + |A(x2,p1)| ≤ Cm.

Column 2:

B2 = √
ε
(|Ã(pr+1,pr+2)| + |A(pr+2,pr+2)| + · · · + |A(pm,pr+2)|

+ |A(x1,pr+2)| + |A(x2,pr+2)|)
≤ √

ε
(
Cm + |A(x1,pr+2)| + |A(x2,pr+2)|).

Middle columns (if any) (r + 3 ≤ i ≤ m):

Bi = √
ε
(|A(pr+1,pi)| + · · · + |A(pm,pi)| + |A(x1,pi)| + |A(x2,pi)|)≤ Cm.
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Last two columns:

Bm−r+1 = |A(pr+1, x1)| + · · · + |A(pm,x1)|
+ |A(x1, x1)| + |A(x2, x1)| ≤ Cme−x1,

Bm−r+2 = |A(pr+1, x2)| + · · · + |A(pm,x2)|
+ |A(x1, x2)| + |A(x2, x2)|

≤ Ce−x2 + φ(x1, x2) +
v−1∑

k=r+1

φ(pk, x2).

Consider the estimates above for B2 and Bm−r+2. The function A(x2,pr+2) will
contain a φ-function if and only if v < r + 2, but in this case the sum

v−1∑
k=r+1

φ(pk, x2)

is empty. This means that we do not get terms like

φ(x2,pr+2)φ(pk, x2)

in the product B2Bm−r+2. Given this observation, it is easy to see that∫
I1×Iv

B2Bm−r+1Bm−r+2 dx = O
(√

ε
)

and this proves (2.18).
The second part of the proof consists of showing that∫

I1×Iv

det

⎡⎣A(pm,p1) A(pm,x1) A(pm,x2)

A(x1,p1) A(x1, x1) A(x1, x2)

A(x2,p1) A(x2, x1) A(x2, x2)

⎤⎦ dx

(2.19)
=
∫
I 2

1

R(p1, x1, x2) dx +
∫
I1

R(p1, x) dx + O
(√

ε log ε
)
.

The left-hand side is equal to∫
I1×Iv

det

⎡⎣A(pm,p1) A(pm,x1) A(pm,x2)

A(x1,p1) A(x1, x1) Ã(x1, x2)

A(x2,p1) A(x2, x1) A(x2, x2)

⎤⎦ dx

+
∫
I1×Iv

φ(x1, x2)det
[
A(pm,p1) A(pm,x1)

A(x2,p1) A(x2, x1)

]
dx.

In view of Lemma 2.3 and (2.21) in Lemma 2.4 below, we obtain (2.19).

LEMMA 2.4. Suppose that f : R → R has a continuous derivative and that
g : R2 → R has continuous first partial derivatives. Assume that

|f (x)|, |f ′(x)| ≤ Ce−x,

|g(x, y)|, |g′(x, y)| ≤ Ce−x−y.
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Then, for 1 ≤ i, j ≤ m, it holds that∫
Ii

1√
4πε

e−(x−pj )2/(4ε)f (x) dx

(2.20)

= f (pj )

∫ ∞
(pi−pj )/

√
ε

1√
4π

e−x2/4 dx + O
(√

ε
)
,

∫
Ii

∫
Ij

1√
4πε

e−(x−y)2/(4ε)g(x, y) dx dy

(2.21)
=
∫
Ii

g(x, x) dx + O
(√

ε log ε
)
.

PROOF.∫ ∞
pi

1√
4πε

e−(x−pj )2/(4ε)f (x) dx =
[
z = x − pj√

ε

]

=
∫ ∞
(pi−pj )/

√
ε

1√
4π

e−z2/4f
(
pj + √

εz
)
dz.

By Taylor’s theorem

f
(
pj + √

εz
)= f (pj ) + √

εzf ′(pj + θε(z)
)
,

where θε(z) is a number between 0 and
√

εz. Since by assumption∣∣f ′(pj + θε(z)
)∣∣≤ Ce−pj+√

ε|z|,

we obtain (2.20):∫ ∞
pi

∫ ∞
pj

1√
4πε

e−(x−y)2/(4ε)g(x, y) dx dy

=
[
z = y − x√

ε

]

=
∫ ∞
pi

∫ ∞
(pj−x)/

√
ε

1√
4π

e−z2/4g
(
x, x + √

εz
)
dx dz.

By Taylor’s theorem

g
(
x, x + √

εz
)= g(x, x) + √

εzg′(x, x + θε(x, z)
)
,

where θε(x, z) lies between 0 and
√

εz. The error can be discarded since∫ ∞
pi

∫ ∞
(pj−x)/

√
ε

1√
4π

e−z2/4∣∣zg′(x, x + θε(x, z)
)∣∣dx dz

≤ C

∫ ∞
pi

dx

∫ ∞
−∞

1√
4π

|z|e−z2/4−2x+√
ε|z| dz ≤ C.
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We now split the main term into two terms:∫ ∞
pi

dx

∫ ∞
(pj−x)/

√
ε
dz

1√
4π

e−z2/4g(x, x)

=
∫ pi−√

ε log ε

pi

dx

∫ ∞
(pj−x)/

√
ε
dz

1√
4π

e−z2/4g(x, x)

+
∫ ∞
pi−√

ε log ε
dx

∫ ∞
(pj−x)/

√
ε
dz

1√
4π

e−z2/4g(x, x) =:
∫

1
+
∫

2
.

We can estimate the first integral by∣∣∣∣∫
1

∣∣∣∣≤ C

∫ pi−√
ε log ε

pi

dx

∫ ∞
−∞

dz e−(z2/4)−2x ≤ −C
√

ε log ε.

If x ≥ pj − √
ε log ε, then pj−x√

ε
≤ C log ε and hence

∫ ∞
(pj−x)/

√
ε

1√
4π

e−z2/4 dz =
∫ ∞
−∞

1√
4π

e−z2/4 dz +
∫ (pj−x)/

√
ε

−∞
1√
4π

e−z2/4

= 1 + O
(
e−(log ε)2/4).

We finally get ∫
2
=
∫ ∞
pi−√

ε log ε

(
1 + O

(
e−(log ε)2/4))g(x, x) dx

=
∫ ∞
pi

g(x, x) dx + O
(√

ε log ε
)
.

This concludes the proof of the lemma. �

3. Theorem 1.3.

3.1. Multilayer discrete PNG. Before we give the proof of Theorem 1.3 we
must present some preliminary results.

How does one get a hand on the process h described in the Introduction? In [7]
it is shown that h can be embedded as the top curve in a multilayer process given
by a family of nonintersecting paths {hi,0 ≤ i < N}, h = h0. It turns out (see [7])
that this multilayer process is an example of a discrete determinantal process.

THEOREM 3.1 ([7]). Let u, v ∈ Z be such that |u|, |v| < N and let q = α2. Set

G(z,w) = (1 − α)2(v−u) (1 − α/z)N+u(1 − αw)N−v

(1 − αz)N−u(1 − α/w)N+v
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and

K̃N(2u,x;2v, y) = 1

(2πi)2

∫
γr2

dz

z

∫
γr1

dw

w

z

z − w
G(z,w),

where γr is the circle with radius r centered around the origin, α < r1 < r2 < 1/α

and x, y ∈ Z. Furthermore, define

φ2u,2v(x, y) = 1

2π

∫ π

−π
ei(y−x)θG(eiθ , eiθ ) dθ

for u < v and φ2u,2v(x, y) = 0 for u ≥ v. Set

KN(2u,x;2v, y) = K̃N(2u,x;2v, y) − φ2u,2v(x, y).

Then,

P
[
(2u,x2u

j ) ∈ {(2t, hi(2t,2N − 1)
);0 ≤ i < N, |t | < N

}
,

|u| < N,1 ≤ j ≤ ku

]
= det(KN(2u,x2u

i ;2v, x2v
j ))|u|,|v|<N,1≤i≤ku,1≤j≤kv

for any x2u
j ∈ Z and any ku ∈ {0, . . . ,N}.

The asymptotic information about the kernel KN needed to prove Theorem 1.3
is contained in two lemmas. The first can be extracted from [7], Chapter 4, and
the proof of the second is provided at the end of this section. Please note that we
make a slight redefinition of the function φ from the last section. However, for the
purposes of this text φ acts as one and the same.

LEMMA 3.1. Let τ, τ ′ be any real numbers such that

u = 1 + α

1 − α
d−1N2/3τ ∈ Z+,

v = 1 + α

1 − α
d−1N2/3τ ′ ∈ Z+.

Let x, y ∈ Z+ and define x′, y′ by

x = 2α(1 − α)−1N + (x′ − τ 2) dN1/3,

y = 2α(1 − α)−1N + (y′ − τ ′2) dN1/3.

For any L ∈ R there exist positive constants, c and C, such that

|K̃N(2u,x;2v, y)| ≤ CN−1/3e−c(x′+y′)

if x′, y′ ≥ L.
If |x′|, |y′| ≤ logN , then there exists c > 0 such that

dN1/3K̃N(2u,x;2v, y) = e((τ 3−τ ′3)/3)+y′τ ′−x′τ Ã(τ, x′; τ ′, y′) + O(N−c).



GAUSSIAN FLUCTUATIONS IN THE AIRY PROCESSES 1077

LEMMA 3.2. Let x, y ∈ Z+ and define x′, y′ by

x = 2α(1 − α)−1N + x′ dN1/3,

y = 2α(1 − α)−1N + y′ dN1/3.

Take s > 0, let u ∼ N2/3 and define v by

v = u + 1 + α

1 − α
d−1sNγ

where 0 < γ < 2
3 . There exists a constant C > 0 such that

φ2u,2v(x, y) = 1

dN1/3 φ(x′, y′) + φE(x′, y′)

where

φ(x′, y′) = 1√
4πsNγ−2/3

e−(x′−y′)2/(4sNγ−2/3)

and

|φE(x′, y′)| ≤
⎧⎨⎩CN−3γ /2,

C

N1/3|x′ − y′|Nγ
,

for all x, y.

3.2. Proof of Theorem 1.3. This proof is really a discrete analogue of the proof
of Theorem 1.1. Unfortunately things are more involved in this case where Nγ−2/3

plays the role of ε.
Please recall that J1 = μN + ψ dN1/3, where μ = 2α(1 − α)−1 and q = α2.

Set Ji = Ji−1 + yi dNγ/2 ∈ Z, i = 2, . . . ,m, and

Ĩi = {z ∈ Z|z > Ji}.
Here the yi ’s are arbitrary numbers such that Ji ∈ Z. For later convenience we also
define ψi , i = 1, . . . ,m, by Ji = μN + ψi dN1/3.

We will prove that

P[#J2 = · · · = #Jm = 1,#Ĩ2 = · · · = #Ĩm = 0|#J1 = 1,#Ĩ1 = 0]
= φ2K1,2K2(J1, J2) · · ·φ2Km−1,2Km(Jm−1, Jm)

+ O((N−γ /2)m−1N−c).

This implies Theorem 1.3:

φ2K1,2K2(J1, J2) · · ·φ2Km−1,2Km(Jm−1, Jm)

= 1√
4πs2

e−y2
2/(4s2) · · · 1√

4πsm
e−y2

m/(4sm) 1

(dNγ/2)m−1

(
1 + O(N−c)

)
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by Lemma 3.2. The sum of this function over the sets Ai is a Riemann sum that is
well approximated by the integral in Theorem 1.3.

Define the finite integer intervals Ii , 1 ≤ i ≤ m, by

Ii = {z ∈ Z;Ji < z < μN� + N}.
The probability of finding a particle in Ĩi but outside of Ii is very small:

P[#(Ĩi \ Ii) ≥ 1] ≤ ∑
x∈Ĩi\Ii

P[#x = 1] = ∑
x∈Ĩi\Ii

K(x, x)

=
∞∑

k=0

K

(
μN� +

(
1

d
N2/3 + k

dN1/3

)
dN1/3,

μN� +
(

1

d
N2/3 + k

dN1/3

)
dN1/3

)

≤ Ce−(1/d)N2/3
∞∑

k=0

e−k/(dN1/3) = O(e−cN2/3
).

This means that we can work with Ii instead of Ĩi . We now proceed much like we
did in the proof of Theorem 1.1. If we set

A = {#J1 = 1, . . . ,#Jm = 1},
then

P[A,#I1 = · · · = #Im = 0] + P[A,#I1 = 0, (#I2 = · · · = #Im = 0)c]
= P[A,#I1 = 0],

where

P[A,#I1 = 0, (#I2 = · · · = #Im = 0)c]

= P

[
A,#I1 = 0,

m⋃
i=2

{#Ii �= 0}
]

≤
m∑

i=2

P[A,#I1 = 0,#Ii �= 0] ≤
m∑

i=2

P[A,#Ii �= #I1]

and

P[A,#Ii �= #I1] = E
[
χ{#J1=1} · · ·χ{#Jm=1} · χ{#I1 �=#Ii}

]
= E

[
#J1 · · ·#Jm · χ{#I1 �=#Ii}

]
≤ E[#J1 · · ·#Jm(#I1 − #Ii)

2].
The second equality holds since the probability of finding two particles at the same
place is zero.

We need to prove three things:
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1. P[A,#I1 = 0] = φ2K1,2K2(J1, J2) · · ·φ2Km−1,2Km(Jm−1, Jm)

× P[#J1 = 1,#I1 = 0] + O(N−1/3−c(N−γ /2)m−1).

2. E[#J1 · · ·#Jm(#I1 − #Ii)
2] = O(N−1/3−c(N−γ /2)m−1).

3. P[#J1 = 1,#I1 = 0] ≥ CN−1/3.

Before giving the proofs we need some preliminaries.
When summing a function f (x) over, say, I1 we can write

∑
x∈I1

f (x) =
T1∑
l=1

f

(
μN +

(
ψ1 + l

dN1/3

)
dN1/3

)
,

where T1 ∼ N . The next lemma will be frequently used later on.

LEMMA 3.3. There exist constants C1,C2 > 0 such that
∞∑

k=1

φ(k/N1/3, x)N−1/3 ≤ C1

and

N2∑
k=1

φE(k/N1/3, x) ≤ C2N
−γ /2

for any x ∈ R.

PROOF.
∞∑

k=1

φ(k/N1/3, x)N−1/3

=
∞∑

k=1

φ

(
k − xN1/3

N1/3 ,0
)
N−1/3

≤
∞∑

k=−∞
φ

(
k − xN1/3

N1/3 ,0
)
N−1/3 = [f := xN1/3 − xN1/3�]

=
∞∑

k=−∞
φ

(
k − f

N1/3 ,0
)
N−1/3

≤
0∑

k=−∞
φ

(
k

N1/3 ,0
)
N−1/3 + φ

(
1 − f

N1/3 ,0
)
N−1/3 +

∞∑
k=2

φ

(
k − 1

N1/3 ,0
)
N−1/3

≤ 2
∞∑

k=1

φ

(
k

N1/3 ,0
)
N−1/3 + 2 ≤ C
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and

N2∑
k=1

φE(k/N1/3, x)

≤ CN−γ
xN1/3−Nγ∑

k=1

1

xN1/3 − k

+ C

xN1/3+Nγ∑
xN1/3−Nγ

N−3γ /2 + CN−γ
N2∑

xN1/3+Nγ

1

k − xN1/3

≤ CN−γ logN + CN−γ /2 + CN−γ logN ≤ CN−γ /2. �

We now turn to the proof of item 1. As in the proof of Theorem 1.1 we get

P[A,#I1 = 0] =
∞∑

k=0

(−1)k

k! E
[
#J1 · · ·#Jm#I

[k]
1

]
.(3.1)

For 0 ≤ r ≤ m − 1 set

Dr(k)

= φ2K1,2K2(J1, J2)φ2K2,2K3(J2, J3) · · ·φ2Kr,2Kr+1(Jr , Jr+1)
∑

xi∈I1,1≤i≤k

×

∣∣∣∣∣∣∣∣∣
K(Jr+1, J1) K(Jr+1, Jr+2) . . . K(Jr+1, Jm) K(Jr+1, xj )

...
...

...
...

K(Jm,J1) K(Jm,Jr+2) . . . K(Jm,Jm) K(Jm,xj )

K(xi, J1) K(xi, Jr+2) . . . K(xi, Jm) K(xi, xj )

∣∣∣∣∣∣∣∣∣ .
The indicies i, j run from 1 to k and if r = 0 the (empty) product of φ-functions
is to be interpreted as 1. Let D̃r(k) be like Dr(k) but having K̃(Jr+1, Jr+2) in
position (1,2) in the matrix. We want to show that

|D0(k) − Dr(k)| ≤ N−1/3−c(N−γ /2)m−1(Ck)(k+m)/2

which, by the induction argument in the proof of Theorem 1.1, follows if we can
prove that

|D̃r(k)| ≤ N−1/3−c(N−γ /2)m−1(Ck)(k+m)/2.(3.2)

To show this we shall use Hadamard’s inequality and therefore need to estimate
sums of column elements squared (cf. with the proof of Theorem 1). Lemmas 3.1,
3.2 and 3.3 will be frequently used below.

Column 1:
m∑

i=r+1

K2(Ji, J1) +
k∑

i=1

K2(xi, J1) ≤ CN−2/3(m + k).
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Column 2:

K̃2(Jr+1, Jr+2) +
m∑

i=r+2

K2(Ji, Jr+2) ≤ CN−2/3m

and
k∑

i=1

K2(xi, Jr+2)

≤ CN−2/3
k∑

i=1

[1 + φ(li/dN1/3,ψ1 − ψr+2)

+ N1/3φE(li/dN1/3,ψ1 − ψr+2)]2.

Columns 3, . . . ,m − r (r + 3 ≤ j ≤ m), if they exist:

m∑
i=r+1

K2(Ji, Jj ) +
k∑

i=1

K2(xi, Jj ) ≤ CN−γ (k + m).

Last k columns (1 ≤ j ≤ k):

m∑
i=r+1

K2(Ji, xj ) +
k∑

i=1

K2(xi, xj ) ≤ C(k + m)N−2/3e−cljN−1/3
.

Using Hadamard’s inequality, we get after some manipulations that

|D̃r(k)| ≤
T1∑

l1,...,lk=1

N−2/3(N−γ /2)m−2(Ck)(k+m)/2(N−1/3)k
k∏

i=1

e−cliN
−1/3

×
k∑

i=1

[1 + φ(li/dN1/3,ψ1 − ψr+2)

+ N1/3|φE(li/dN1/3,ψ1 − ψr+2)|].
It follows from Lemma 3.3 that

T1∑
li=1

e−cliN
−1/3

φ(li/dN1/3,ψ1 − ψr+2)N
−1/3 ≤ C

and also that
T1∑

li=1

e−cliN
−1/3 |φE(li/dN1/3,ψ1 − ψr+2)| ≤ CN−γ /2.

From this we get (3.2).
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To get 1 we also need to show that∑
xi∈I1,1≤i≤k

det
[
K(Jm,J1) K(Jm,xj )

K(xi, J1) K(xi, xj )

]
1≤i,j≤k

= ∑
xi∈I1,1≤i≤k

det
[
K(J1, J1) K(J1, xj )

K(xi, J1) K(xi, xj )

]
1≤i,j≤k

(3.3)

+ N−1/3−cO
(
(Ck)(k+m)/2).

Write

xi = μN +
(
ψ1 + li

dN1/3

)
dN1/3

and consider first the case 1 ≤ li ≤ N1/3 logN . From Lemmas 2.3 and 3.1 it is
straightforward to deduce that if z = xi or z = J1, then

K(Jm, z) = K(J1, z) + O(N−1/3−c).

We now expand the determinant in the sum to the left in (3.3):

det
[
K(Jm,J1) K(Jm,xj )

K(xi, J1) K(xi, xj )

]
1≤i,j≤k

= det
[
K(J1, J1) K(J1, xj )

K(xi, J1) K(xi, xj )

]
1≤i,j≤k

+ O(N−1/3−c)

k∑
p=1

det[K(xi, J1)K(xi, xj )]1≤i,j≤k,j �=p

+ O(N−1/3−c)det[K(xi, xj )]1≤i,j≤k.

We now use Hadamard’s inequality to get

N1/3 logN∑
li=1

|det[K(xi, J1)K(xi, xj )]1≤i,j≤k,j �=p|

≤
N1/3 logN∑

li=1

(CkN−2/3)k/2e−N−1/3(l1+···+lp−1+lp+1+···+lk)

≤ (Ck)k/2 logN

and
N1/3 logN∑

li=1

|det[K(xi, xj ]1≤i,j≤k|

≤
N1/3 logN∑

li=1

(CkN−2/3)k/2e−N−1/3(l1+···+lk) ≤ (Ck)k/2.
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This takes care of the summation over 1 ≤ li ≤ N1/3 logN , 1 ≤ i ≤ m. By using
Hadamard’s inequality once more, one readily shows that the contribution coming
from the remaining terms in the sums in (3.3) is small enough to make (3.3) hold.

We now prove item 2. Note that

(#I1 − #Ii)
2 = I

[2]
i + I

[2]
1 + Ii + I1 − 2IiI1.

By arguing as in the proof of item 1 above we obtain

E
[
#J1 · · ·#Jm#I [k]

u

]= φ2K1,2K2(J1, J2) · · ·φ2Km−1,2Km(Jm−1, Jm)

× ∑
x1,xk∈Iu

det
[
K(Jm,J1) K(Jm,xs)

K(xr, J1) K(xr, xs)

]
1≤r,s≤k

+ O
(
N−1/3−c−γ (m−1)/2),

where u = 1, i and k = 1,2. One also gets

E[#J1 · · ·#Jm#I1#Ii] = φ2K1,2K2(J1, J2) · · ·φ2Km−1,2Km(Jm−1, Jm)

× ∑
x∈I1,y∈Ii

det

⎡⎣K(Jm,J1) K(Jm,x) K(Jm,y)

K(x, J1) K(x, x) K(x, y)

K(y, J1) K(y, x) K(y, y)

⎤⎦
+ O

(
N−1/3−c−γ (m−1)/2).

We omit the details. Using Lemma 3.1 and Lemma 2.3 one readily gets∑
x1,xk∈Ii

det
[
K(Jm,J1) K(Jm,xs)

K(xr, J1) K(xr, xs)

]
1≤r,s≤k

= E
[
#J1#I

[k]
1

]+ O(N−1/3−c)

for k = 1,2 and∑
x∈I1,y∈Ii

det

⎡⎣K(Jm,J1) K(Jm,x) K(Jm,y)

K(x, J1) K(x, x) K̃(x, y)

K(y, J1) K(y, x) K(y, y)

⎤⎦= E
[
#J1#I

[2]
1

]+ O(N−1/3−c).

We now see that item 2 follows if∑
x∈I1,y∈Ii

φ2K1,2Ki
(x, y)det

[
K(Jm,J1) K(Jm,x)

K(y, J1) K(y, x)

]
(3.4)

= E[#J1#I1] + O(N−1/3−c).

We shall prove this by showing that both sides are well approximated by integrals.
On the integral containing the function φ we can then apply Lemma 2.4.

By using Lemma 3.3 we get rid of the error term associated with φE :
N∑

l1,l2=1

φE

(
ψ1 + l1

dN1/3 ,ψi + l2

dN1/3

)
e−(l1+l2)/N

1/3
N−2/3

≤ C

N∑
l2=1

e−l2/N
1/3

N−2/3−γ /2 ≤ CN−1/3−γ /2.



1084 J. HÄGG

The following calculation, again using Lemma 3.3, shows that the main contribu-
tion to the sums in (3.4) comes from summing over 1 ≤ l1, l2 ≤ N1/3 logN :

N∑
l1=N1/3 logN

N∑
l2=1

φ(l2/dN1/3,ψ1 − ψi + l2/dN1/3)e−(l1+l2)/N
1/3

N−2/3

≤
N∑

l1=N1/3 logN

Ce−l1/N
1/3

N−1/3 ≤ CN−1.

We shall use Euler’s summation formula for two variables:

LEMMA 3.4. Let f (x, y) be a function of two variables such that its partial
derivatives up to second order are continuous in the rectangle

{(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}
where a, b, c, d are integers. Then∑

a≤m≤b

∑
c≤n≤d

f (m,n) =
∫ b

a

∫ d

c
f (x, y) dx dy

+
∫ b

a

∫ d

c
fx(x, y)(x − x�) dx dy

+
∫ b

a

∫ d

c
fy(x, y)(y − y�) dx dy

+
∫ b

a

∫ d

c
fxy(x, y)(x − x�)(y − y�) dx dy.

The case that we are interested in is when

f (x, y) = φ

(
ψ1 + x

dN1/3 ,ψi + y

dN1/3

)
g(x/dN1/3, y/dN1/3)N−1,

where

|gx(x, y)|, |gy(x, y)|, |gx(x, y)| ≤ Ce−c(x+y).

We need to show that the integrals involving the absolute values of fx(x, y),
fy(x, y) and fxy(x, y) are negligible. We only present the details for |fx(x, y)|
here; the other terms are treated similarly:∫ N1/3 logN

1

∫ N1/3 logN

1
|fx(x, y)|dx dy

≤ (dN1/3)2
∫ ∞
ψ1

∫ ∞
ψi

∣∣fx

(
(x − ψ1) dN1/3, (y − ψi) dN1/3)∣∣dx dy

≤ CN−2/3
∫ ∞
ψ1

∫ ∞
ψi

(|φx(x, y)| + φ(x, y)
)
e−c(x+y) dx dy.
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By Lemma (2.4) ∫ ∞
ψ1

∫ ∞
ψi

φ(x, y)e−c(x+y) dx dy ≤ C.

The remaining term demands some analysis:∫ ∞
ψ1

∫ ∞
ψi

|φx(x, y)|e−c(x+y) dx dy

=
∫ ∞
ψ1

∫ ∞
ψi

|x − y|
2Nγ−2/3

1√
4πNγ−2/3

e−(x−y)2/(4Nγ−2/3)e−c(x+y) dx dy

=
∫ ∞
ψ1

dx

(∫ x

ψi

+
∫ ∞
x

) |x − y|
2Nγ−2/3

1√
4πNγ−2/3

× e−(x−y)2/(4Nγ−2/3)e−c(x+y) dy,∫ ∞
ψ1

dx

∫ x

ψi

x − y

2Nγ−2/3

1√
4πNγ−2/3

e−(x−y)2/(4Nγ−2/3)e−c(x+y) dy

=
∫ ∞
ψ1

dx

([
φ(x, y)e−c(x+y)]x

ψi
+ c

∫ x

ψi

φ(x, y)e−c(x+y) dy

)
≤ CN1/3−γ /2 + C ≤ CN1/3−γ /2.

We can do the same calculation for the remaining integral. The |fx(x, y)| inte-
gral is hence O(N−1/3−γ /2) and the same goes for the |fy(x, y)| and |fxy(x, y)|
integrals.

Set

Aτ1(x, y) = A(τ1, x + τ 2
1 ; τ1, y + τ 2

1 ).

Applying the above calculations to the left-hand side of (3.4) and using Lemmas
2.2–2.4 and 3.1, we obtain∑

x∈I1,y∈Ii

φ2K1,2Ki
(x, y)det

[
K(Jm,J1) K(Jm,x)

K(y, J1) K(y, x)

]

=
N1/3 logN∑
l1,l2=1

1

dN1/3 φ(ψ1 + l1/dN1/3,ψi + l2/dN1/3)

(
1

dN1/3

)2

×
∣∣∣∣ Aτ1(ψ1,ψ1) eτ1l1/(dN1/3)Aτ1(ψ1,ψ1 + l1/dN1/3)

e−τ1l2/(dN1/3)Aτ1(ψ1 + l2/dN1/3,ψ1) Aτ1(ψi + l2/dN1/3,ψ1 + l1/dN1/3)

∣∣∣∣
+ O(N−1/3−c)

= 1

dN1/3

∫ ∞
ψ1

det
[
Aτ1(ψ1,ψ1) Aτ1(ψ1, x)

Aτ1(x,ψ1) Aτ1(x, x)

]
dx + O(N−1/3−c).
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We get the same expression for the right-hand side of (3.4) when applying Euler’s
summation formula. This concludes the proof of item 2.

Let F2(t) be the Tracy–Widom distribution function corresponding to the largest
eigenvalue of the Gaussian Unitary Ensemble (GUE) [15]. That item 3 is true
follows from the fact that F ′

2(t) > 0 ∀t (see [15]) together with the next lemma.

LEMMA 3.5. Let J1 and I1 be as above. It holds that

P[#J1 = 0,#I1 = 0] = 1

dN1/3 F ′
2(ψ1 + τ 2

1 ) + O(N−2/3).

PROOF. This will, again, be an exercise in using Hadamard’s inequality. We
have the following representation for F ′

2 [see the third equality in (2.14)]:

F ′
2(t) =

∞∑
k=0

(−1)k

k!
∫
(t,∞)k

det(A(xi, xj ))0≤i,j≤k dkx(3.5)

where x0 = t . In three steps we will now show that

dN1/3
∞∑

k=0

(−1)k

k!
∑

xi∈I1,1≤i≤k

det(K(xi, xj ))0≤i,j≤k

where x0 = J1 is well approximated by the right-hand side in (3.5). By (3.1) this
will prove the lemma. In steps one and two we will use Lemma 3.1 to insert the
kernel A instead of K . In the last step we show that we can change from summation
to integration.

First we show that we can sum over xi = μN + (ψ1 + li/dN1/3) dN1/3 where
1 ≤ li ≤ N1/3 logN , 1 ≤ i ≤ k, instead of over I1. By Hadamard’s inequality and
Lemma 3.1

det(K(xi, xj ))0≤i,j≤k ≤
(

k∏
j=0

k∑
i=0

K2(xi, xj )

)1/2

≤
(
C(k + 1)N−2/3

k∏
j=1

C(k + 1)N−2/3e−clj /N1/3

)1/2

≤ N−1/3(C(k + 1)
)(k+1)/2

k∏
j=0

e−clj /N1/3
N−1/3.

We have that
∞∑

li=1
1≤i≤k

k∏
j=1

e−clj /N1/3
N−1/3 −

N1/3 logN∑
li=1

1≤i≤k

k∏
j=1

e−clj /N1/3
N−1/3

≤ k

N1/3 logN∑
l1=1

∞∑
li=1

2≤i≤k

k∏
j=1

e−clj /N1/3
N−1/3 ≤ kCkN−1.
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Since
∞∑

k=1

1

k!N
−1/3(C(k + 1)

)(k+1)/2
kN−1 ≤ CN−4/3,

we see that we can indeed restrict the summation.
In the second step we replace K by A. As before we shall use the notation

Aτ (x, y) = A(x + τ 2, y + τ 2). For 1 ≤ li ≤ N1/3 logN it holds by Lemma 3.1 that

det(K(xi, xj ))0≤i,j≤k

= 1

(dN1/3)k+1 det
(
Aτ1(li/dN1/3, lj /dN1/3) + O(N−c)

)
0≤i,j≤k

where we let l0 = ψ1dN1/3. If we expand the determinant in the right-hand side
we get (k + 1)2 error terms of type

N−c

(dN1/3)k+1 det
(
Aτ1(li/dN1/3, lj /dN1/3) + O(N−c)

)
0≤i,j≤k

i �=i0,j �=j0

.

An application of Hadamard’s inequality together with Lemma 3.1 shows that the
total error we get when changing from K to Aτ1 is of order N−1/3−c. We omit the
details.

Finally we want to go from summation to integration. To do this we shall use
that

N1/3 logN∑
li=1

Aτ1(li/dN1/3, x)Aτ1(y, li/dN1/3)

(3.6)
= dN1/3

∫ ∞
0

Aτ1(z, x)Aτ1(y, z) dz + O(e−x−y)

and

N1/3 logN∑
li=1

Aτ1(li/dN1/3, li/dN1/3) = dN1/3
∫ ∞

0
Aτ1(z, z) dz + O(1).(3.7)

This follows from the Euler–Maclaurin summation formula and Lemma 2.3. We
will show that

N1/3 logN∑
li=1

1≤i≤k

1

(dN1/3)k+1 det
(
Aτ1(li/dN1/3, lj /dN1/3)

)
0≤i,j≤k

= 1

dN1/3

∫
(0,∞)k

det(Aτ1(yi, yj ))0≤i,j≤k dky(3.8)

+ O
(
(Ck)(k+5)/2N−2/3),
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where l0 = dN1/3ψ1 and y0 = ψ1. This will prove the lemma since

∞∑
k=1

1

k!(Ck)(k+5)/2 < ∞.

For r = 0, . . . , k we set

Dr = 1

(dN1/3)k−r+1 det(Aτ1(zi, zj ))0≤i,j≤k,

where

zi =
⎧⎨⎩

ψ1, i = 0,
yi, 1 ≤ i ≤ r ,
li/dN1/3, r + 1 ≤ i ≤ k.

Please note that D0 is what we sum over in (3.8) and that Dk is what we integrate
over. Dr should roughly be what we get after having changed summation over
l1, . . . , lr to integration over y1, . . . , yr . We can expand Dr in such a way that we
get k2 terms of type

± 1

(dN1/3)k−r+1 Aτ1(zi0, lr+1/dN1/3)Aτ1(lr+1/dN1/3, zj0)

× det(Aτ1(zi, zj ))0≤i,j≤k

i �=r+1,i0
j �=r+1,j0

and one term

1

(dN1/3)k−r+1 Aτ1(lr+1/dN1/3, lr+1/dN1/3)det(Aτ1(zi, zj )) .0≤i,j≤k

i,j �=r+1

We now apply (3.6) and (3.7) and therefore need to deal with the corresponding
errors:

C(N1/3)k−r+1e−zi0−zj0 det(Aτ1(zi, zj ))0≤i,j≤k

i �=i0,r+1
j �=j0,r+1

≤ C(N1/3)k−r+1e−zi0−zj0

(
k∏

j=0
j �=j0,r+1

C(k − 1)e−czj

)1/2

≤ (N1/3)k−r+1(C(k − 1)
)(k−1)/2

k∏
j=1

j �=r+1

e−czj .
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Since ∫
(0,∞)r

drx

N1/3 logN∑
li=1

r+2≤i≤k

k∏
j=1

j �=r+1

e−czj ≤ Ck(N1/3)k−(r+1),

we find that the error from the k2 terms of the first type is estimated by

k2(C(k − 1)
)(k−1)/2

N−2/3.

The error coming from the remaining term can be treated in the same way. Chang-
ing from summation over li to integration over yi , 1 ≤ i ≤ k, hence results in an
error estimated by

kk2(C(k − 1)
)(k−1)/2

N−2/3 = (Ck)(k+5)/2N−2/3

as needed. �

PROOF OF LEMMA 3.2. By definition

φ2u,2v(x, y) = (1 − α)2(v−u)

2π

∫ π

−π
ei(y−x)θ+(u−v) log (1+α2−2α cos θ) dθ.

Define

g(θ) = log (1 + α2 − 2α cos θ)

in [−π,π ]. This function is analytic in a neighborhood of zero and a Maclaurin
expansion gives

g(θ) = log (1 − α)2 + α

(1 − α)2 θ2 + c2θ
4 + O(θ6)

where c4 < 0. It is easy to see that for any δ > 0 there exists ε > 0 such that

g(θ) ≥ log (1 − α)2 + ε

if |θ | ≥ δ. Hence∣∣∣∣∫|θ |>δ

(1 − α)2(v−u)

2π
ei(y−x)θ+(u−v)g(θ) dθ

∣∣∣∣≤ 1

2π

∫ π

δ
e(u−v)ε dθ ∼ e−εNγ

.

We expect that the main contribution to φ2u,2v will be

1

2π

∫ δ

−δ
ei(y−x)θ+(u−v)α/(1−α)2θ2

dθ

= 1

2π

∫ δ

−δ
ei(y′−x′)dN1/3θ−sd2Nγ θ2

dθ = [
t = √

s dN1/3θ
]

= 1

2π
√

s dN1/3

∫ δ
√

s dN1/3

−δ
√

sdN1/3
ei(y′−x′)/√st−Nγ−2/3t2

dt
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= 1

2π
√

s dN1/3

∫ ∞
−∞

ei(y′−x′)/√st−Nγ−2/3t2
dt + O(e−Nγ

)

= 1

dN1/3

1√
4πsNγ−2/3

e−(x′−y′)2/(4sNγ−2/3) + O(e−Nγ

).

Below we will analyze the error. For simplicity we take s = 1.
Define h(θ) by

g(θ) = log (1 − α)2 + α

(1 − α)2

(
θ2 + h(θ)

)
.

This means that

h(θ) =
∞∑

k=4

hkθ
k

where h4 < 0. Note that h is even since g is and also that, for δ small enough,
h(θ) < 0 if |θ | ≤ δ. The error becomes

Err =
∣∣∣∣∫ δ

−δ
ei(y′−x′)dN1/3θF (θ) dθ

∣∣∣∣,
where

F(θ) = e−d2Nγ θ2 − e−d2Nγ θ2−d2Nγ h(θ).

Next we integrate by parts:

Err ≤
∣∣∣∣[ 1

i(y′ − x′) dN1/3 ei(y′−x′) dN1/3θF (θ)

]δ

−δ

∣∣∣∣
+ 1

|y′ − x′|dN1/3

∣∣∣∣∫ δ

−δ
ei(y′−x′) dN1/3θF ′(θ) dθ

∣∣∣∣
≤ 3

|y′ − x′|dN1/3 e−d2Nγ δ2 + 1

|y′ − x′|dN1/3

∫ δ

−δ
|F ′(θ)|dθ.

The last integral will be easy to compute if we can find out where F ′(θ) changes
sign:

F ′(θ) = 2d2Nγ θe−d2Nγ (θ2+h(θ))

(
1 + h′(θ)

2θ
− ed2Nγ h(θ)

)
.

A point in [−δ, δ] \ {0} where F ′ changes sign will satisfy

1

d2Nγ
= h(θ)

log [1 + h′(θ)/(2θ)] = θ2

2
+ O(θ4).
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This shows that if N is large, then F ′ has two zeros ±θ0 in [−δ, δ] \ {0}. More-
over, θ0 is of order N−γ /2. Given this information, we check which sign F ′ has in
different intervals and get∫ δ

−δ
|F ′(θ)|dθ = 2

∫ δ

0
|F ′(θ)|dθ

= −
∫ θ0

0
F ′(θ) dθ +

∫ δ

θ0

F ′(θ) dθ

= F(0) − F(θ0) + F(δ) − F(θ0)

= O(N−γ ).

This almost finishes the proof of the second inequality in the lemma. We should not
forget the exponentially small error terms that appeared above. They do not have
the factor |x′ − y′|−1 in front of them. However, a couple of partial integrations
can be used to take care of this obstacle.

The first inequality in the lemma follows from the following calculation:∫ δ

0
|F(θ)|dθ = [θ = tN−γ /2]

= N−γ /2
∫ Nγ/2δ

0
e−d2t2−d2h(tN−γ /2)(1 − ed2Nγ h(tN−γ /2))dt

≤ N−γ /2
∫ Nγ/2δ

0
e−c1t

2
(1 − e−c2N

−γ t4
) dt

≤ N−γ /2
∫ Nγ/2δ

1
te−c1t

2
(1 − e−c2N

−γ t4
) dt + O(N−3γ /2).

We now use partial integration:∫ Nγ/2δ

1
te−c1t

2
(1 − e−c2N

−γ t4
) dt

=
[
− 1

2c1
e−c1t

2
(1 − e−c2N

−γ t4
)

]Nγ/2δ

1

+ 2c2N
−γ

c1

∫ Nγ/2δ

1
e−c1t

2
t3e−c2N

−γ t4
dt

= O(N−3γ /2).

This concludes the calculations in this section as well as in this paper. �
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