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Assessing immune responses to study vaccines as surrogates of protec-
tion plays a central role in vaccine clinical trials. Motivated by three ongoing
or pending HIV vaccine efficacy trials, we consider such surrogate endpoint
assessment in a randomized placebo-controlled trial with case-cohort sam-
pling of immune responses and a time to event endpoint. Based on the princi-
pal surrogate definition under the principal stratification framework proposed
by Frangakis and Rubin [Biometrics 58 (2002) 21–29] and adapted by Gilbert
and Hudgens (2006), we introduce estimands that measure the value of an im-
mune response as a surrogate of protection in the context of the Cox propor-
tional hazards model. The estimands are not identified because the immune
response to vaccine is not measured in placebo recipients. We formulate the
problem as a Cox model with missing covariates, and employ novel trial de-
signs for predicting the missing immune responses and thereby identifying
the estimands. The first design utilizes information from baseline predictors
of the immune response, and bridges their relationship in the vaccine recip-
ients to the placebo recipients. The second design provides a validation set
for the unmeasured immune responses of uninfected placebo recipients by
immunizing them with the study vaccine after trial closeout. A maximum
estimated likelihood approach is proposed for estimation of the parameters.
Simulated data examples are given to evaluate the proposed designs and study
their properties.

1. Introduction. The evaluation of vaccine efficacy in vaccine clinical trials is
generally costly, either because it takes a long trial period for the clinical outcomes
to be observed, or because the vaccine may only be partially effective. Therefore,
identifying vaccine-induced immune responses as surrogate markers for the true
study endpoint has spawned interest in vaccine research [Halloran (1998), Chan,
Wang and Heyse (2003) and Gilbert et al. (2005)]. The potential surrogate would
usually be measured shortly after administration of the study vaccine, and if it
can be validated then the vaccine’s protective effect can be inferred from it. As
knowledge builds on the immunological mechanism for protecting against disease
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by a pathogen, finding a good immunological surrogate is promising for iteratively
guiding refinement of the vaccine formulation, and ultimately for providing a basis
for regulatory decisions.

There is an extensive literature on the evaluation of surrogate endpoints for ther-
apeutic development [e.g., Prentice (1989), Lin, Fleming and De Gruttola (1997),
DeGruttola et al. (2002), Molenberghs et al. (2002) and Weir and Walley (2006)].
The assessment of an immunological surrogate focuses on contrasting the clinical
outcome rate between vaccine recipients and placebo recipients, given the mea-
sured immune responses. Since immune response measurements are made post-
randomization, this assessment is subject to selection bias [Frangakis and Rubin
(2002) and Gilbert, Bosch and Hudgens (2003)]. To address this problem, Gilbert
and Hudgens (2006) (henceforth GH) proposed to evaluate the value of a bio-
marker as a surrogate endpoint by estimating the causal effect predictiveness (CEP)
surface, which contrasts the clinical outcome rates between the vaccine recipients
and placebo recipients within principal strata formed by joint values of the poten-
tial immune responses under assignment to vaccine or placebo. This work built on
Frangakis and Rubin (2002)’s potential outcomes framework for evaluating prin-
cipal surrogate endpoints. GH considered a binary clinical outcome and used a
baseline predictor approach to predict the principal strata and estimate the CEP
surface nonparametrically. We develop a similar method for a time-to-event clini-
cal endpoint, which is most commonly used in vaccine clinical trials, and use the
Cox proportional hazards model [Cox (1972)] to describe the relationship between
the survival outcome and covariates including the potential surrogate. Our likeli-
hood calculations utilize discrete failure time models, which are suitable for many
vaccine trials because clinical endpoints are often assessed at pre-specified dates.

In the principal stratification framework, the principal strata are subject to miss-
ingness as only the immune response to the actual treatment assignment (vaccine
or placebo) is observed. This situation was described as the “fundamental chal-
lenge of causal inference” [Holland (1986)]. The unobserved immune response
is missing for the subjects that receive the “opposite” assignment. We focus on a
marginal estimand that conditions on the immune response to the vaccine. Conse-
quently, the assessment of a surrogate in the Cox model framework can be cast as a
problem of estimation with a missing covariate. Although methods for estimating
the Cox model with missing covariates have been extensively studied [e.g., Lin and
Ying (1993), Robins, Rotnitzky and Zhao (1994), Zhou and Pepe (1995), Paik and
Tsai (1997), Chen and Little (1999), Herring and Ibrahim (2001), Chen (2002) and
Little and Rubin (2002)], their application to the proposed surrogate assessment
are not direct, as the missing data are entirely in the placebo group. Techniques are
called for to predict the “missing” immune responses in the placebo recipients, or
a random sample of them. Therefore, we extend the innovative designs proposed
by Follmann (2006) for a binary endpoint to the Cox model setting.

Follmann (2006) proposed two novel components to vaccine trials: baseline ir-
relevant predictor (BIP), and closeout placebo vaccination (CPV), which enable
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inference about the vaccine-specific immune responses of placebo recipients. BIP
utilizes association between the response of interest and another baseline immune
response thought to be irrelevant to infection in the vaccinated subjects. CPV in-
volves vaccinating uninfected placebo recipients after study completion. To match
ongoing and pending HIV vaccine trials, we extend these strategies to accommo-
date a time to event clinical endpoint and sampling of immune responses via a
case-cohort design [e.g., Prentice (1986), Borgan et al. (2000), Scheike and Mar-
tinussen (2004) and Kulich and Lin (2004)]. We focus on a sampling design that
uses data from all infected subjects and a random subcohort of uninfected subjects
for whom the immune response to the vaccine is measured (termed “immunogenic-
ity subcohort,” IC). The methods also apply for other sampling designs, such as
failure status-independent case-cohort sampling. We also consider measuring the
BIP on some subjects outside the IC, which can help improve efficiency.

Under the BIP design placebo subjects cannot be selected into the IC; similarly,
infected placebo subjects cannot enter IC in the CPV design. Such null selection
probabilities violate a key assumption for most semiparametric approaches to han-
dling missing covariates in Cox regression, including all that are based on partial
likelihood. Accordingly, we employ a full-likelihood based estimation procedure
based on DFT models. For continuous failure time data, we also consider an ap-
proximate semiparametric algorithm for the estimation of the BIP-alone design by
extending the EM algorithm of Chen (2002).

The proposed methods will be applied to analyze three U.S. National Institutes
of Health-sponsored HIV vaccine efficacy trials. These trials randomize HIV neg-
ative high risk volunteers to vaccine or placebo in a 1:1 ratio, and follow partic-
ipants until a fixed number of HIV infection events. The first two trials (named
STEP 502 [Mehrotra, Li and Gilbert (2006)] and HVTN 503) are ongoing in
the Americas and South Africa, respectively, and evaluate Merck’s Adenovirus
serotype 5 (Ad5) vector vaccine in approximately 3000 subjects. The third trial
(named PAVE-100), co-sponsored by the U.S. Military HIV Research Program,
the International AIDS Vaccine Initiative, and the Centers for Disease Control and
Prevention, is being planned. The current PAVE-100 design will randomize ap-
proximately 8500 volunteers from 13 countries in the Americas, East Africa, and
Southern Africa to placebo or the Vaccine Research Center’s prime-boost vaccine
regimen (DNA prime:Ad5 vector boost). The trials plan to analyze approximately
100, 120 and 280 HIV infection events, respectively. A secondary objective of
each trial is to evaluate the magnitude of CD8+ T cell response levels, as mea-
sured by the ELISpot assay from blood samples drawn after Ad5 immunization, as
a surrogate for HIV infection. The neutralizing antibody titer to Ad5 is measured
at baseline for all participants. Because it is inversely correlated with the CD8+ T
cell responses [Catanzaro et al. (2006)], it potentially may be used as a BIP.

To develop our approach for assessing surrogate endpoints in vaccine trials,
we present the general framework, assumptions, and definition of the estimands
in Section 2, design considerations in Section 3, and an estimation procedure in
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Section 4. In Section 5 we evaluate the approach with simulated trials designed to
match the aforementioned HIV trials. A discussion follows in Section 6.

2. The principal stratification framework. In this section we introduce the
principal stratification framework based on potential outcomes and principal strat-
ification [Frangakis and Rubin (2002) and Rubin (2005)].

Let n denote the total number of subjects in the vaccine trial. For subject i

(i = 1, . . . , n), let Vi denote the observed treatment indicator, Wi denote a col-
lection of first-phase baseline covariates in the case-cohort sampling (measured
on everyone), and Si(V ) denote the potential immune response of the subject if
he/she is assigned vaccine (V = 1) or placebo (V = 0). Similarly, for V = 1,0, let
Ti(V ) and Ci(V ) be the potential failure time and censoring time, and Xi(V ) =
min{Ti(V ),Ci(V )} and δi(V ) = I (Ti(V ) ≤ Ci(V )). Let t1, . . . , tK indicate the
fixed visit times, with t2, . . . , tK the possible discrete failure times for Xi(Vi). Let
t+K denote censored at the final visit and Mi denote the last visit number of subject
i during the trial period, thus, Mi ∈ {1, . . . ,K}. For vaccine recipients at-risk at t1
and in the IC, the immune response Si(V ) is measured at time t1. Letting Ri(V )

denote the potential at-risk indicator at t1, Si(V ) is only defined if Ri(V ) = 1; oth-
erwise, we put Si(V ) = ∗. We assume that the censoring process Ci(V ) and failure
time distribution Ti(V ) are independent given {Wi,Ri(V ), Si(V )}.

Suppose that {Vi,Wi,Ri(0),Ri(1), Si(0), Si(1),Xi(0),Xi(1), δi(0), δi(1), i =
1, . . . , n} are i.i.d. We make the following assumptions to identify the estimands:

A1. Stable unit treatment value assumption (SUTVA).
A2. Ignorable treatment assignments. Conditional on Wi , Vi is independent of

{Ri(0),Ri(1), Si(0), Si(1),Xi(0),Xi(1), δi(0), δi(1)}.
Assumption A1 guarantees the “consistency” property (i.e., the observed out-

comes for a subject assigned V equals his potential outcomes if assigned V ) and
that the potential outcomes of one subject are not impacted by the treatment as-
signments of other subjects. A2 holds for randomized, blinded trials.

Under the above assumptions, we define two vaccine efficacy estimands: 1.
Conditional on joint potential outcomes (joint VE)

VE(s1, s0)

≡ 1 − Pr(T (1) = tk|T (1) ≥ tk−1, S(1) = s1, S(0) = s0,R(1) = 1,R(0) = 1)

Pr(T (0) = tk|T (0) ≥ tk−1, S(1) = s1, S(0) = s0,R(1) = 1,R(0) = 1)
.

2. Conditional on marginal potential outcome (marginal VE)

VE(s1) ≡ 1 − Pr(T (1) = tk|T (1) ≥ tk−1, S(1) = s1,R(1) = 1)

Pr(T (0) = tk|T (0) ≥ tk−1, S(1) = s1,R(1) = 1)
,

k = 2, . . . ,K.
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The estimand VE(s1, s0) conditions on membership in the basic principal stra-
tum {S(1) = s1, S(0) = s0,R(1) = R(0) = 1}, and VE(s1) conditions on mem-
bership in a union of basic principal strata [Frangakis and Rubin (2002)]. The
estimands condition on Ri(1) = Ri(0) = 1 or on Ri(1) = 1 because Si(V ) is only
defined if Ri(V ) = 1,V = 0,1. The estimands are principal stratification esti-
mands in that the pair (S(1), S(0)) or S(1) can be treated as a baseline covariate.
However, they are not causal estimands, because the numerators and denomina-
tors condition on different events T (1) ≥ tk−1 and T (0) ≥ tk−1. Nevertheless they
are scientifically interesting, in the same way that a hazard ratio conditional on
baseline covariates is interesting.

To help identify the estimands, only subjects with Ri(Vi) = 1 are included in
the analysis, and we assume the following:

A3. Equal drop-out and risk up to time t1: Ri(1) = 1 ⇐⇒ Ri(0) = 1.

A3 implies that subjects observed to be at risk at t1 will have Ri(1) = Ri(0) = 1,
so that Si(1) and Si(0) are both defined.

In addition to A1–A3, identifiability of VE(s1, s0) requires a way to predict
Si(1) for subjects with Vi = 0 and a way to predict Si(0) for subjects with Vi =
1. Identifiability of VE(s1) is easier because only the Si(1) for subjects in arm
Vi = 0 must be predicted. Furthermore, for our motivating application, typically
the immune response Si(0) is zero for all placebo recipients, because exposure
to the vaccine is necessary to stimulate an immune response. For these reasons,
henceforth, we focus on the marginal estimand VE(s1). Note that, for applications
with Si(0) = 0 for all i, VE(s1) = VE(s1,0).

We propose a Cox model for the discrete cumulative hazard function �(t),

d�
(
tk;V,S(1) = s1,R(1) = 1,W

) = exp(Z′β)d�0(tk),
(1)

k = 2, . . . ,K,

with Z = {V,S(1),V S(1),W ′}′, β = {β1, β2, β3,β
′
4}′, and �0(·) is the discrete

baseline cumulative hazard function. The marginal VE(s1) can be expressed as

VE(s1) = 1 − d�(tk;V = 1, S(1) = s1,R(1) = 1)

d�(tk;V = 0, S(1) = s1,R(1) = 1)
, k = 2, . . . ,K.

The discrete hazards always condition on {R(1) = 1} and, henceforth, we assume
this implicitly. For subjects with a particular baseline covariate w, a similar esti-
mand VE(s1|w) can be formed by conditioning on W = w in the hazards.

The population estimand VE(s1) contrasts the rate of the clinical event for sub-
jects with S(1) = s1 under assignment to vaccine versus under assignment to
placebo. Supposing S(1) is bounded below at value zero which indicates a neg-
ative immune response, we define S to be a predictive surrogate if VE(0) = 0 and
VE(s1) > 0 for all s1 > C for some constant C ≥ 0. These conditions reflect pop-
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ulation level necessity and sufficiency of the immune response to achieve positive
vaccine efficacy.

Under A1–A3 and the Cox model (1), the estimand equals

VE(s1) = 1 − exp(β1 + s1β3).(2)

In equation (2) a negative value of β3 indicates that a higher immune response to
vaccine predicts greater vaccine efficacy. On the other hand, β3 = 0 implies VE(s1)

is constant in s1 so that the marker does not predict vaccine efficacy. Therefore,
testing H0 :β3 = 0 versus H1 :β3 < 0 assesses sufficiency. A value β1 = 0 indi-
cates necessity, and both β1 = 0 and β3 < 0 indicate the marker is a predictive
surrogate. The magnitude of β3 indicates the quality of the predictive surrogate
with β3 = 0 suggesting no surrogate value [VE(s1) is constant in s1] and larger
|β3| suggesting greater surrogate value (greater predictiveness).

3. Augmented designs for estimation. The immune response to the study
vaccine, S(1), cannot be measured in placebo recipients, but it may be inferred
when utilizing either the BIP or CPV designs (see Figure 1).

Baseline Irrelevant Predictor (BIP). Assume a baseline covariate B is avail-
able that does not affect (i.e., is “irrelevant” for) clinical risk after accounting for
the immune response S(1) and first-phase covariates W :

A4. d�(tk;V,S(1),W,B) = d�(tk;V,S(1),W), k = 2, . . . ,K , V = 0,1.

Assumptions A1–A3 imply that the relationship between S(1) and B is the same
regardless of treatment assignment

[Si(1)|Vi = 1,Bi,Ri(1) = 1] d= [Si(1)|Vi = 0,Bi,Ri(1) = 1].(3)

Therefore, Si(1) can be predicted or imputed for placebo subjects based on Bi .
For vaccine recipients with the BIP measured and who are outside the IC, their
immune responses are predicted using the BIP as well.

In case-cohort designs, good baseline predictors need to be highly correlated
with the biomarker S(1), and preferably include first-phase (measured on every-
one) inexpensive covariates to achieve efficiency gains.

Closeout Placebo Vaccination (CPV). This design entails vaccinating unin-
fected placebo subjects after the study closeout, and measuring their immune re-
sponse Sc

i (1). The closeout measurement Sc
i (1) is made at a visit t1 time units after

vaccination, to match the measurement schedule in the vaccine trial. We need to
make an additional assumption to bridge the marker values Si(1) and Sc

i (1). Let
Strue

i (1) be the true immune response at time t1, allowing that the observed immune
response is subject to some assay measurement error.
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FIG. 1. Illustration of an HIV vaccine trial design under the BIP and CPV strategies. Under BIP
or BIP + CPV, baseline measurements of W and B are obtained from all (or a random sample of)
the study participants prior to the randomization at time 0. The study subjects are then randomized
to receive inoculation V of the study vaccine or placebo. For some vaccine recipients, the immune
response to the vaccine S(1) is measured at time t1. The subsequent assessments of HIV infection
are conducted at discrete times t2, . . . , tK . The study subjects are followed until diagnosis of HIV
infection (HIV+) or study closeout at or after tK . Under CPV or BIP + CPV, placebo recipients
uninfected (HIV−) at study closeout (or a random sample of them) are immunized with the study
vaccine and the immune response Sc(1) is measured t1 units of time afterward.

A5. Time constancy of Strue
i (1): For uninfected placebo recipients, Si(1) =

Strue
i (1) + ei1 and Sc

i (1) = Strue
i (1) + ei2, where ei1 and ei2 are independent

and identically distributed random errors with mean 0.

This assumption implies that the true immune response is unchanged from time
t1 to study closeout plus t1, and the measurement errors have the same distribution.
Thus, Si(1) and Sc

i (1) are exchangeable and one can be used in lieu of the other.
To be concrete, suppose only one shot is given, the trial is three years, and t1 is 6
months after the shot. A5 states that the true immune response 6 months after the
shot is the same whether it is measured January 1, 2004 or January 1, 2007. In the
Discussion we outline how our methods can be generalized to use Strue

i (1) in the
Cox model (1) rather than Si(1). Note that even if the regression involves Strue

i (1),
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a valid test of the effect of Strue
i (1) obtains when using Si(1) [Prentice (1982)]. If

time constancy of immune response is not reasonable, then Sc
i (1) cannot be used

in lieu of Si(1) and CPV may be questionable. See Follmann (2006) for further
discussion of this issue, including how to examine this assumption.

Under A5, the distribution of [Si(1)|Vi = 0, δi = 1] can be inferred from the

marginal distributions [Si(1)|Vi = 1] d= [Si(1)|Vi = 0]. However, in case-cohort
sampling, if the IC is small, then the large amount of missing data and the inferred
immune responses in placebo recipients may challenge the performance of the
method.

Baseline irrelevant predictor and closeout placebo vaccination combined
(BIP + CPV). The BIP and CPV designs can be combined by imputing Si(1)

with Sc
i (1) for all uninfected placebo recipients with Sc

i (1) measured, and pre-
dicting Si(1) with Bi for all others with Bi measured. Combining the designs can
yield large efficiency gains. In the situation where there is no good baseline predic-
tor or the baseline predictor is expensive to collect, conducting small-scale CPV
on a random sample of the uninfected placebo recipients can add accuracy and
precision to the estimates.

4. Estimation. Estimation of the estimand is challenged by the amount of
missing S(1)’s. We focus on the maximum estimated likelihood (MEL) estimation
procedure that applies to all three designs. We then briefly outline an approximate
EM-type algorithm for estimation with the BIP-alone design.

4.1. Maximum estimated likelihood estimation. We present below the estima-
tion procedure for the BIP + CPV design, which includes estimation under the
BIP- or CPV-alone designs as special cases.

Let ICV denote the immunogenicity cohort that contributes second-phase data
S(1) in vaccine recipients, and ICP denote the cohort within uninfected placebo
subjects that received vaccination at study closeout, so that IC = ICV ∪ ICP . Let
IB denote the set of subjects with B measured, which can be larger than IC. For
placebo subjects that do not have S(1) measured, their likelihood contribution in-
tegrates over the marginal distribution of S(1) or the conditional distribution of
S(1)|B . The full log-likelihood of model (1) under the BIP + CPV design (with
convention that

∏1
j=2 = 1) is given by

logL(β,λ0) = ∑
i∈ICV

logL1(Oi) + ∑
i∈ICP

logL2(Oi) + ∑
i∈�IC,IB

logL3(Oi)

(4)
+ ∑

i∈�IC,�IB
logL4(Oi),
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where

L1(Oi) =
Mi−1∏
j=2

(1 − λ0j )
exp{Viβ1+Si(1)β2+ViSi(1)β3+W ′

i β4}Ri(Vi)

× {
1 − (1 − λ0,Mi

)exp{Viβ1+Si(1)β2+ViSi(1)β3+W ′
i β4}}δiRi(Vi)

× (1 − λ0,Mi
)exp{Viβ1+Si(1)β2+ViSi(1)β3+W ′

i β4}(1−δi )Ri(Vi),

L2(Oi) =
Mi∏
j=2

(1 − λ0j )
exp{Viβ1+Sc

i β2+ViS
c
i β3+W ′

i β4}Ri(Vi),

L3(Oi) =
∫ Mi−1∏

j=2

(1 − λ0j )
exp{Viβ1+sβ2+Visβ3+W ′

i β4}Ri(Vi)

× {
1 − (1 − λ0,Mi

)exp{Viβ1+sβ2+Visβ3+W ′
i β4}}δiRi(Vi)

× (1 − λ0,Mi
)exp{Viβ1+sβ2+Visβ3+W ′

i β4}(1−δi )Ri(Vi) dP (s|Bi,Wi),

L4(Oi) =
∫ Mi−1∏

j=2

(1 − λ0j )
exp{Viβ1+sβ2+Visβ3+W ′

i β4}Ri(Vi)

× {
1 − (1 − λ0,Mi

)exp{Viβ1+sβ2+Visβ3+W ′
i β4}}δiRi(Vi)

× (1 − λ0,Mi
)exp{Viβ1+sβ2+Visβ3+W ′

i β4}(1−δi )Ri(Vi) dP (s|Wi).

Here λ0 = {λ02, . . . , λ0K}T are unknown baseline hazards (with λ0k = d�0(tk),
k = 2, . . . ,K), and P(s|w) and P(s|b,w) are the conditional c.d.f.’s of S(1).

In the Cox model formulation, the estimand VE(s1) depends only on β while
the parameters in the conditional c.d.f.’s P(s|w) and P(s|b,w) are nuisance para-
meters. Rather than maximizing the full likelihood over the entire parameter space,
we take the MEL approach [Pepe and Fleming (1991)] to avoid specifying the joint
distribution of (S(1),B,W) and the intensive computations entailed in the numeri-
cal integration. The conditional c.d.f.’s P(s|w) and P(s|b,w) are first consistently
estimated from the vaccine recipients’ data (Section 4.1.1), and then the estimated
likelihood logL(β,λ, P̂ (·), P̂ (·|·)) is constructed.

For a categorical W , P(s|w) and P(s|b,w) can be estimated nonparametrically.
However, if W is continuous, then nonparametric estimation will require smooth-
ing and much larger sample sizes are needed for tractable computation. Therefore,
if W is continuous or multi-component, parametric assumptions on the conditional
c.d.f.’s will usually be needed to achieve stable estimation in practice. An advan-
tage of the MEL approach is that it can straightforwardly accommodate any ap-
proach to estimating the nuisance parameters P(s|w) and P(s|b,w). In the MEL
approach we first estimate these distributions consistently using data from the vac-
cine recipients, and then construct the estimated likelihood L(β,λ, P̂ (·), P̂ (·|·)).
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We outline three key steps in the evaluation of the log-likelihood (4) in the
absence of the first-phase covariates W :

1. Estimation of p(s) and p(s|b). Let p(s), p(b), and p(s, b) be marginal and
joint p.d.f.s (or p.m.f.s for discrete variables) for S(1) and B . Because vaccine
recipients in the ICV provide nonrandom samples of S(1) and B , and vaccine
recipients in the IB contribute additional data for B , it follows that

p(s) = f11(s)p11 + f10(s)p10,

p(b) = f11(b)p11 + f10(b)p10,(5)

p(s, b) = f11(s, b)p11 + f10(s, b)p10,

where, for h = 1,0, f1h(·) is the conditional p.d.f. or p.m.f. of S(1) given V = 1
and δ = h, and p1h ≡ Pr(δ = h|V = 1). The probabilities {p1h} can be estimated
by their sample counterparts {p̂1h} and estimates of {f1h(s), f1h(b), f1h(s, b)}.

We sketch the estimation for two special cases where (A) (S(1), B) are categor-
ical and (B) (S(1),B) are bivariate normally distributed.

(A) If S(1) and B have discrete values with J and L categories, respectively,
then f1h(sj ) and p(S(1) = sj |bl) (j = 1, . . . , J, l = 1, . . . ,L) can be estimated
nonparametrically:

f̂1h(sj ) =
∑

i∈ICV
I (Si(1) = sj , δi = h)∑
i∈ICV

I (δi = h)
,

p̂
(
S(1) = sj |bl

) =
∑

i∈ICV ,Bi=bl
δiI (Si(1) = sj )∑

i∈ICV ,Bi=bl
δi

p̂11

+
∑

i∈ICV ,Bi=bl
(1 − δi)I (Si(1) = sj )∑

i∈ICV ,Bi=bl
(1 − δi)

p̂10.

(B) If (S(1),B) are jointly normally distributed, then p(s) and p(s|b) are both
normal densities and thus can be estimated using estimates of the first and second
moments from expressions in (5).

Evaluating the likelihood (4) involves integrations over s, which are briefly de-
scribed in the Appendix.

2. Maximization and implementation. The estimated log-likelihood logL(β,λ,

P̂ (·), P̂ (·|·)) is maximized using quasi-Newton methods. The assumption that
S(1) is observed with nonzero probability in all subjects is violated. Therefore,
the asymptotic variance of β̂ via the MEL approach cannot be derived analyt-
ically. We propose to obtain the standard errors for β̂ by the bootstrap. For
computational efficiency, the software for estimation is implemented in Mat-
lab 7.0.1 (Mathworks, Inc) with a C++ plug in, compiled to dynamic link li-
brary.
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4.2. Approximate EM-type estimation. In this subsection we present an esti-
mation approach that uses regression calibration to impute the missing Si(1)s for
subjects with a BIP Bi measured and employs an EM-type algorithm based on full
likelihood to accommodate the missing Si(1)s for subjects without Bi measured.
Because the CPV-based designs have missing S(1)s for the entire {V = 0, δ = 1}
stratum, the algorithm can only reliably estimate the Cox model parameters for the
BIP-alone design, as confirmed in simulations. We focus on the BIP-alone design
with a continuous BIP in this section. The proposed algorithm can be applied to
a categorical BIP with slight modification. An advantage of this EM approach is
that it accommodates continuous failure times.

Because the missingness of S(1) does not depend on unobserved S(1), and we
assume the censoring distribution does not depend on S(1), the log-likelihood for
the BIP-alone design can be expressed up to a constant factor as

l(β,α,�0)

= ∑
i∈IC

{δi(Z
′
iβ) − �0(Xi) exp(Z′

iβ)}

+ ∑
i∈�IC,IB

log
{∫

exp{δi(Z
′
iβ) − �0(Xi) exp(Z′

iβ)}dP (s|Vi,Wi,Bi)

}

+ ∑
i∈�IC,�IB

log
{∫

exp{δi(Z
′
iβ) − �0(Xi) exp(Z′

iβ)}dP (s|Vi,Wi)

}

+ δi log(d�0(Xi)),

where Xi denotes the observed failure time, �0(X) denotes the baseline cumu-
lative hazard function, and α represents unknown parameters in the conditional
distributions of S(1).

The log-likelihood score equations can be solved via an iterative EM algorithm
[Chen and Little (1999), Herring and Ibrahim (2001), Chen (2002)]. For computa-
tional efficiency, we propose to modify the double-semiparametric EM-algorithm
of Chen (2002) to incorporate the auxiliary covariate B as a predictor of the miss-
ing S(1). Given equation (3) and the relationship Si(1) = g(Bi; θ) + εi , where
g(·) is a parametric link function depending on the unknown parameter θ and εi

has mean zero and variance σ 2, Si(1) can be predicted by Ê(S(1)|Bi) = g(Bi; θ̂ ).
When the event occurrence is rare, E(S(1)|Bi) ≈ E(S(1)|Bi,Xi, δi). This fact
has been well studied in the context of regression calibration in the Cox regres-
sion [e.g., Prentice (1982) and Wang et al. (1997)]. Therefore, unobserved S(1)’s
can be replaced by Ê(S(1)|B) and treated as observed data in the EM algorithm.
We name this procedure the “Approximate Calibration-Based EM (ACEM)” algo-
rithm. An outline of this procedure is given below; interested readers are referred
to Chen (2002) for details:

1. Calibration-step: Prediction of unobserved Si(1)s by Ŝi(1) = Ê(S(1)|Bi).
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2. E-step: Given parameter values at the mth iteration (β(m),�
(m)
0 (X),α(m),

p
(m)
klj , θ (m)), for pklj denote the probability mass of the observed distinct values

of S(1) at discrete levels of V = vk and Wd = wl (W = Wd ∪ Wc where Wd

and Wc denote the categorical and continuous covariates in W , resp.), and α(m)

denote the parameters in the distribution P(Wc|S(1),V ,Wd,X, δ). Calculate
conditional expectations under P(S(1)|V,Wd,X, δ).

3. M-step: Update (β,�0(X),α,pklj , θ) by solving the corresponding score
equations.

4. Repeat the E-step and M-step above until convergence.

The advantage of the ACEM algorithm is that it can account for continuous
failure times and is computationally fast; however, since it uses regression calibra-
tion, it performs well only for the rare event situation with a highly predictive BIP.
Prevention trials, which usually have a low event rate, are an application area.

5. Simulation study. We conducted a simulation study to evaluate the perfor-
mance of the proposed strategies for estimating the estimand VE(s1) and thereby
assessing a predictive surrogate in the Cox model setting. To simulate the real
scenarios, we roughly follow the design of the three HIV vaccine efficacy tri-
als described in the introduction. We suppose a total sample size of 5000, with
2500 subjects per arm. The treatment indicator V = 1 if assigned vaccine and
V = 0 if assigned placebo. Under the case-cohort sampling, the immunogenic-
ity subcohort (IC) consists of all infected vaccine recipients and a random sam-
ple of uninfected vaccine recipients, which include a combination of 25% or
50% of uninfected vaccine recipients. We considered one auxiliary covariate B

as the BIP for the potential immunological surrogate S(1). The variables S(1)

and B were generated from a bivariate normal distribution with mean zero and
variance 0.4 for each component [reflecting the variance of the ELISPOT as-
say used to measure S(1) = CD8+ T cell response], and correlation ρ = 0.6 or
0.9. For the BIP-alone and BIP + CPV designs, we assume that B was mea-
sured from all individuals in the IC and from 50% or 37.5% of those not in the
IC, as a precision factor. In the BIP-alone approach, S(1) was treated as missing
for all placebo recipients, while for the BIP + CPV and CPV-alone approaches,
we assume 25% or 50% uninfected placebo recipients got the CPV measure-
ment Sc(1). Infection times were generated from the continuous-time Cox model
λ(t |V,S(1)) = λ0(t) exp{β1V + β2S(1) + β3V S(1)}, and were grouped into 6
equal-length time intervals to reflect the discrete visit schedule of the trials. The
true parameters β2 = −1.109 and β3 were set at 0, −0.4, or −0.7, reflecting the
null hypothesis that S(1) has no value as a predictive surrogate and alternative hy-
potheses of 1.2-fold and 1.5-fold lower relative risks RR(S(1)) = 1 − VE(S(1))

per 1 standard deviation higher immune response S(1), corresponding to low and
high surrogate value, respectively. In addition, λ0(t) = λ0 and β1 were calibrated
to give VE(0) = 0.5 and 334 infections expected in the placebo arm, and hence, 7%
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overall infection rate. Random censoring of 10% was added to account for subject
drop out. All uninfected subjects were censored at the end of the follow-up period,
specified at 3 years. Five hundred simulation runs and 50 bootstrap replicates were
used to obtain standard error estimates for the estimated regression parameters.

We first conducted estimation through the MEL algorithm for discrete failure
times using all three designs. For the BIP-alone design, a second simulation was
conducted to compare the performance of the MEL approach for grouped failure
times, versus that of the ACEM algorithm assuming continuous failure times were
observed in a rare event setting. To evaluate efficiencies for the parameter esti-
mates, estimates from the Cox model using the full simulated data were obtained
as an unattainable “gold standard.”

Figure 2 plots the true VE(s1) curve for different true parameters (β1, β3) in
model (2). It shows that when β3 = −0.7, VE(0) = 0 and VE(s1) > 0 for s1 > 0,
indicating that the immune response variable is a predictive surrogate.

Table 1 presents simulation results for the MEL approach in different settings. It
can be seen that the method has excellent performance. There are generally small
biases, small variances of the estimates and good power of the test of H0 :β3 = 0
for surrogate value. As more CPV or auxiliary BIP information is available, both

FIG. 2. Illustration of the estimand VE(s1) as a function of the standardized potential surrogate
S(1) over the range of observable values with different values for β3.
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TABLE 1
Results from the MEL estimation

β̂1 β̂2 β̂3

Design ρ β Missing Bias SD SE RE Bias SE ASE RE Bias SD SE RE Power

BIP 0.6 β(0) Large 0.004 0.13 0.14 26 0.007 0.22 0.24 9 −0.013 0.28 0.29 15 5
Medium 0.009 0.13 0.14 26 −0.001 0.22 0.22 9 −0.009 0.27 0.27 16 5

β(4) Large −0.001 0.08 0.08 84 0.007 0.18 0.18 14 −0.010 0.21 0.20 32 52
Medium 0.001 0.08 0.08 93 0.005 0.16 0.15 18 −0.006 0.19 0.18 41 62

β(7) Large −0.001 0.09 0.08 78 −0.017 0.18 0.18 14 0.011 0.22 0.21 28 89
Medium 0.000 0.08 0.08 95 0.002 0.15 0.15 21 −0.007 0.18 0.18 43 97

0.9 β(0) Large 0.001 0.07 0.07 99 0.003 0.12 0.12 33 −0.007 0.15 0.15 54 5
Medium −0.002 0.07 0.07 94 0.003 0.10 0.10 45 −0.004 0.13 0.13 68 4

β(4) Large −0.002 0.08 0.07 93 0.005 0.12 0.11 33 −0.007 0.16 0.15 58 78
Medium 0.000 0.07 0.07 100 0.006 0.10 0.10 45 −0.007 0.14 0.13 77 86

β(7) Large −0.004 0.08 0.08 86 −0.009 0.12 0.12 32 0.004 0.17 0.15 49 99
Medium −0.001 0.08 0.08 100 −0.003 0.10 0.10 47 −0.003 0.14 0.14 72 100

BIP + CPV 0.6 β(0) Large 0.000 0.08 0.07 82 −0.002 0.14 0.13 24 −0.007 0.19 0.18 34 6
Medium −0.001 0.08 0.07 79 −0.004 0.12 0.11 32 0.004 0.16 0.15 48 6

β(4) Large 0.001 0.08 0.08 88 −0.003 0.13 0.13 26 0.002 0.18 0.18 44 61
Medium −0.004 0.08 0.08 88 0.004 0.11 0.11 35 −0.005 0.15 0.16 59 74

β(7) Large 0.003 0.08 0.08 88 −0.001 0.13 0.13 26 0.007 0.18 0.18 41 96
Medium −0.003 0.08 0.08 97 −0.004 0.11 0.11 36 0.002 0.16 0.16 51 99

0.9 β(0) Large −0.002 0.07 0.07 91 −0.002 0.10 0.10 47 −0.006 0.15 0.14 57 7
Medium −0.004 0.07 0.07 89 0.001 0.09 0.08 60 −0.002 0.13 0.13 69 8

β(4) Large −0.001 0.08 0.07 95 0.002 0.10 0.10 49 −0.002 0.14 0.14 69 81
Medium −0.005 0.08 0.07 95 0.005 0.08 0.08 66 −0.004 0.13 0.13 84 86

β(7) Large 0.002 0.08 0.08 95 0.000 0.09 0.10 53 0.006 0.14 0.15 67 100
Medium −0.004 0.08 0.08 100 0.000 0.08 0.08 64 0.000 0.14 0.13 72 100
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TABLE 1
(Continued)

β̂1 β̂2 β̂3

Design ρ β Missing Bias SD SE RE Bias SE ASE RE Bias SD SE RE Power

CPV β(0) Large 0.015 0.10 0.09 51 −0.023 0.26 0.24 7 0.031 0.31 0.29 12 8
Medium 0.011 0.08 0.08 65 −0.027 0.18 0.18 14 0.032 0.22 0.21 24 7

β(4) Large 0.001 0.09 0.09 62 −0.005 0.24 0.24 8 −0.003 0.29 0.29 17 24
Medium 0.001 0.09 0.08 69 −0.012 0.18 0.18 13 0.008 0.22 0.21 29 47

β(7) Large 0.002 0.10 0.09 67 0.001 0.23 0.24 8 −0.002 0.28 0.29 17 70
Medium −0.001 0.09 0.09 73 0.001 0.17 0.18 16 −0.004 0.21 0.21 30 91

NOTE. β(0) = (−0.693,−1.109,0); β(4) = (−0.849,−1.109,−0.4); β(7) = (−0.996,−1.109,−0.7). SE = Monte Carlo standard error, ASE = average

of the bootstrap standard error from 50 bootstrap samples; RE = relative efficiency (ASE(gold standard)2/ASE (missing)2) × 100%; Power is for testing
H0 :β3 = 0. “Large Missing” and “Medium Missing” patterns indicate the IC size of 25% or 50% with additional 25% or 37.5% BIP data for designs
with BIP, and include closeout Sc(1) data from 25% or 50% uninfected placebo recipients for designs with CPV, respectively.
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FIG. 3. Relative efficiencies of parameter estimators. For designs with BIP, “Large Missing” and
“Medium Missing” patterns indicate the IC size of 25% or 50% with additional 25% or 37.5% BIP
data, respectively. For the design with CPV, “Large missing” and “Medium missing” patterns include
closeout Sc(1) data from 25% or 50% uninfected placebo recipients, respectively. True values of β

(β(0),β(4),β(7)) are as specified in Tables 1 and 2.

the accuracy and precision of the estimates improve. The efficiency of the BIP-
involved designs increases as the correlation between the BIP and S(1) increases.
The CPV-alone design is less efficient because none of the infected placebo sub-
jects have Sc(1) measured. Figure 3 displays the relative efficiencies of the pa-
rameter estimators from the three designs with missing S(1) with respect to the
gold standard estimators. Overall the relative efficiency increases as the amount
of measured immune responses increases. The relative efficiency of β̂2 is largely
impacted by the amount of missing data, while that of β̂1 is less sensitive to the
missing data pattern. These results confirm our design assumptions quite well.

Table 2 lists results from both the MEL approach and the ACEM algorithm un-
der the BIP-alone design and the medium missing case (the IC size of 50% with
additional 37.5% first phase BIP data). It demonstrates that the performance of the
ACEM method is very sensitive to the prediction accuracy of the baseline predic-
tor. When the BIP is a fairly inaccurate predictor of S(1) (ρ = 0.6), the ACEM
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TABLE 2
Comparison of results between the MEL and ACEM approaches for the BIP-alone design with the “Medium Missing” pattern (the IC size of 50% with

additional 37.5% BIP data)

β̂1 β̂2 β̂3

ρ β Method Bias SE ASE RE Bias SE ASE RE Bias SE ASE RE Power

0.6 β(0) ACEM −0.139 0.12 0.12 99 0.025 0.19 0.20 38 −0.238 0.26 0.26 57 14
MEL 0.000 0.13 0.14 87 −0.002 0.20 0.22 33 0.004 0.26 0.27 59 5

β(4) ACEM −0.151 0.13 0.13 100 0.019 0.19 0.20 37 −0.265 0.26 0.26 64 72
MEL 0.004 0.14 0.14 88 −0.013 0.21 0.21 31 0.013 0.26 0.27 60 34

β(7) ACEM −0.162 0.15 0.14 98 0.021 0.20 0.19 30 −0.292 0.27 0.26 60 95
MEL 0.006 0.15 0.14 79 −0.008 0.21 0.20 27 0.012 0.26 0.25 51 73

0.9 β(0) ACEM −0.043 0.12 0.12 99 0.012 0.13 0.13 80 −0.064 0.21 0.21 86 6
MEL −0.002 0.12 0.13 98 −0.004 0.14 0.14 75 0.007 0.21 0.21 88 6

β(4) ACEM −0.046 0.13 0.13 99 0.008 0.13 0.13 74 −0.072 0.22 0.21 89 58
MEL 0.000 0.13 0.13 97 −0.008 0.14 0.14 69 0.008 0.21 0.21 87 45

β(7) ACEM −0.054 0.15 0.14 96 0.012 0.14 0.13 70 −0.094 0.23 0.22 86 95
MEL 0.002 0.14 0.13 89 −0.004 0.14 0.13 64 0.008 0.21 0.20 79 88

NOTE. β(0) = (−0.693,−1.109,0); β(4) = (−0.849,−1.109,−0.4); β(7) = (−0.996,−1.109,−0.7). SE = Monte Carlo standard error, ASE = average

of the bootstrap standard error from 50 bootstrap samples; RE = relative efficiency (ASE(gold standard)2/ASE (missing)2) × 100%; Power is for testing
H0 :β3 = 0.
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method produces large biases and does not control the type-I error rate; while if
the calibration is reliable (ρ = 0.9), then the ACEM algorithm can generally esti-
mate well. The MEL estimation outperforms the ACEM in most settings, with a
slight loss of efficiency due to the grouping of the survival times.

6. Discussion. We have proposed a framework for assessing an immunolog-
ical predictive surrogate in a vaccine trial with a time to event endpoint and case-
cohort sampling of the immunological biomarker. While we have focused on the
methods development for vaccine trials, the proposed principles are applicable for
evaluating predictive surrogate endpoints in other biomedical applications.

We have discussed study designs and estimation procedures, and provided simu-
lation results to demonstrate their validity and applicability under assumptions. We
plan to apply the BIP-alone design to the three ongoing or pending HIV vaccine
efficacy trials. As demonstrated by the simulation study, if good baseline irrele-
vant predictors exist, then a predictive surrogate can be evaluated effectively. The
CPV-alone design is also a useful tool for the assessment that is complimentary
to the BIP-alone design. If resources permit, the BIP + CPV design merits con-
sideration because it improves accuracy and efficiency compared to the BIP-alone
design if baseline predictors are not closely correlated with the potential predictive
surrogate, or if A4 appears to be violated (i.e., the BIP affects clinical risk after
controlling for the potential surrogate and first-phase baseline covariates).

For simplicity, we assumed equal drop-out and risk for each subject under as-
signment to vaccine or placebo over the time interval [0, t1] (assumption A3),
and restricted the analysis to subjects at risk at the time the immune response
is measured, t1. To include all randomized subjects, A3 can be relaxed by postu-
lating that the future immune response that will be measured at time t1 impacts
the risk of infection over [0, t1]. With the DFT Cox model (1), the likelihood
contribution of a subject with early infection during [0, t1] can be obtained as∫ {1− (1−λ01)

exp{Viβ1+sβ2+Visβ3+W ′
i β4}}dP (s), where P(·) is the marginal (P(s))

or conditional distribution of S(1) (P(s|Bi)) if the BIP Bi is measured. Another
way to potentially weaken A3 would be to assume equal infection probabilities in
[0, t1] for the vaccine and placebo groups, but not require that the vaccine has no
effect for every individual.

A4 is a strong untestable assumption. Because we assume B and S(1) are corre-
lated, A4 implies that the phase one covariates W capture all the causes of S(1) and
the clinical endpoint [in the sense of Pearl (2000)]. Furthermore, it may be difficult
to find a baseline covariate B that is known to not affect clinical risk after account-
ing for S(1). We suggest three potentially useful B’s for vaccine trials. First, a
study that vaccinated 75 individuals simultaneously with hepatitis A and B vac-
cines showed a linear correlation of 0.85 among A- and B-specific antibody titers
[Czeschinski, Binding and Witting (2000)]. Given there is little cross-reactivity
among the hepatitis A and B proteins, B = hepatitis A titer may be an excellent
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baseline predictor for S(1) = hepatitis B titer that satisfies A4. For HIV vaccine
trials, two available scalar B’s may plausibly satisfy A4. First, Follmann (2006)
considered as B the antibody titer to a rabies glycoprotein vaccine. Because rabies
is not acquired sexually, it is plausible that anti-rabies antibodies are independent
of risk of HIV infection given S(1). Second, in the ongoing HIV vaccine efficacy
trials, a current leading candidate B is the titer of antibodies that neutralize the
Adenovirus serotype 5 vector that carries the HIV genes in the vaccine. This B has
been shown to inversely correlate with the S(1) of primary interest (T cell response
levels measured by ELISpot) [Catanzaro et al. (2006)], and since Adenovirus 5 is
a respiratory infection virus, A4 may plausibly hold.

In general, though, it is desirable to relax A4, and fortunately this can be done
by including B as a component of W in the Cox model (1) and estimating its
coefficient (as suggested by the Associate Editor). This extra coefficient for B

is identified by the data from vaccine recipients with B measured. Based on the
argument given by Follmann (2006) and Gilbert and Hudgens (2006) for the setting
of the BIP-alone design and a dichotomous clinical endpoint, we conjecture that
the estimand VE(s1) will be identified from the observed data as long as at least
one of the interaction terms of B with V or W with V is omitted from the Cox
model.

Our approach specified a Cox regression with Si(1) and Si(1)V as covari-
ates. Another approach is to assume that the immune response is measured with
some “error,” Si(1) = Strue

i (1) + ei1 and Sc
i (1) = Strue

i (1) + ei2 (as is done in A5),
but then to use the true immune responses Strue

i (1) and Strue
i (1)V as covariates

in the Cox model. To proceed with this model, one could obtain replicates of
Si(1) and Sc

i (1), say, Si1(1), Si2(1) and Sc
i1(1), Sc

i2(1), and assume that the eis
followed a Gaussian distribution with mean 0 and unknown variance τ 2. Then
a more complicated likelihood could be written by integrating Strue

i (1) over the
distribution of Strue

i (1)|Si1(1), Si2(1), Strue
i (1)|Sc

i1(1), Sc
i2(1), or Strue

i (1)|Bi as ap-
propriate.

We have presented estimated likelihood based methods to accommodate miss-
ing data in case-cohort designs, as well as a regression calibration based double-
semiparametric EM algorithm that has reasonable performance when the regres-
sion calibration is reliable and the event is rare. This approximate algorithm enjoys
the convenience of regression calibration to incorporate auxiliary information, and
has faster and easier implementation for the continuous failure time model. Alter-
native estimation methods such as multiple imputation may also be useful, pro-
vided the posterior distribution can be properly specified. In addition, a full like-
lihood approach that maximized over (β,λ0) and the parameters of p(s|w) and
p(s|b,w) all at once could be used. While the full likelihood should be more effi-
cient if the entire joint model is correctly specified, MEL is simpler to implement
and may be more robust to joint model mis-specification.
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APPENDIX: INTEGRAL CALCULATION IN LIKELIHOOD (4)

For discrete S(1) and B , the integrations can be replaced by finite summa-
tions. When S(1) is continuous, the integrations can be made easier by positing
parametric models. Assume S(1) ∼ N(μ(·), σ (·)2), where μ(·), σ (·)2 represent
the first two moments of p(s) or p(s|b). Then for a given function g(s) of s,∫

g(s)p(·) ds = ∫
g(μ(·)+σ(·)u)φ(u)du, where p(·) denotes p(s) or p(s|b) and

φ(u) is the standard normal density function. Because the integrand g(s) in (4)
is a smooth function of s, numerical methods such as Gaussian quadrature can be
applied to evaluate the integration. Based on our experience, only a small number
(around 15) of evaluations is needed to get stable quadrature results.

When B has discrete values bl, l = 1, . . . ,L, an alternative way to integrate over
s is through the nonparametric representation of p(s) and p(s|b). The integrals∫

g(s)p(·) ds can be evaluated nonparametrically by∫
g(s)p(s) ds ≈ p11

1∑
i∈ICV

δi

∑
i∈ICV

δig(Si(1))

+ p10
1∑

i∈ICV
(1 − δi)

∑
i∈ICV

(1 − δi)g(Si(1)),

∫
g(s)p(s|bl) ds ≈ p11

1∑
i∈ICV ,Bi=bl

δi

∑
i∈ICV ,Bi=bl

δig(Si(1))

+ p10
1∑

i∈ICV ,Bi=bl
(1 − δi)

∑
i∈ICV ,Bi=bl

(1 − δi)g(Si(1)).
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