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THE PIGEONHOLE BOOTSTRAP1

BY ART B. OWEN

Stanford University

Recently there has been much interest in data that, in statistical language,
may be described as having a large crossed and severely unbalanced random
effects structure. Such data sets arise for recommender engines and informa-
tion retrieval problems. Many large bipartite weighted graphs have this struc-
ture too. We would like to assess the stability of algorithms fit to such data.
Even for linear statistics, a naive form of bootstrap sampling can be seriously
misleading and McCullagh [Bernoulli 6 (2000) 285–301] has shown that no
bootstrap method is exact. We show that an alternative bootstrap separately
resampling rows and columns of the data matrix satisfies a mean consistency
property even in heteroscedastic crossed unbalanced random effects models.
This alternative does not require the user to fit a crossed random effects model
to the data.

1. Introduction. Many important statistical problems feature two interlock-
ing sets of entities, customarily arranged as rows and columns. Unlike the usual
cases by variables layout, these data fit better into a cases by cases interpretation.
Examples include books and customers for a web site, movies and raters for a rec-
ommender engine, and terms and documents in information retrieval. Historically
data with this structure has been studied with a crossed random effects model. The
new data sets are very large and haphazardly structured, a far cry from the setting
for which normal theory random effects models were developed. It can be hard to
estimate the variance of features fit to data of this kind.

Parametric likelihood and Bayesian methods typically come with their own in-
ternally valid methods of estimating variances. However, the crossed random ef-
fects setting can be more complicated than what our models anticipate. If in IID
sampling we suspect that our model is inadequate, then we can make a simple and
direct check on it via bootstrap resampling of cases. We can even judge sampling
uncertainty for computations that were not derived from any explicit model.

We would like to have a version of the bootstrap suitable to large unbalanced
crossed random effect data sets. Unfortunately for those hopes, McCullagh (2000)
has proved that no such bootstrap can exist, even for the basic problem of finding
the variance of the grand mean of the data in a balanced setting with no missing
values and homoscedastic variables.
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McCullagh (2000) included two reasonably well performing approximate meth-
ods for balanced data sets. They yielded a variance that was nearly correct under
reasonable assumptions about the problem. One approach was to fit the random
effects model and then resample from it. That option is not attractive for the kind
of data set considered here. Even an oversimplified model can be hard to fit to
unbalanced data, and the results will lack the face value validity that we get from
the bootstrap for the IID case. The second method resampled rows and columns
independently. This approach imitates the Cornfield and Tukey (1956) pigeonhole
sampling model, and is preferable operationally. We call it the pigeonhole boot-
strap, and show that it continues to be a reasonable estimator of variance even
for seriously unbalanced data sets and inhomogenous (nonexchangeable) random
effects models.

In notation to be explained further below, we find that the true variance of
our statistic takes the form (νAσ 2

A + νBσ 2
B + σ 2

E)/N , where νA and νB can be
calculated from the data and satisfy 1 � ν � N in our motivating applications.
A naive bootstrap (resampling cases) will produce a variance estimate close to
(σ 2

A + σ 2
B + σ 2

E)/N and thus be seriously misleading. The pigeonhole bootstrap
will produce a variance estimate close to ((νA + 2)σ 2

A + (νB + 2)σ 2
B + 3σ 2

E)/N . It
is thus mildly conservative, but not unduly so in cases where each ν � 2 and σ 2

E

does not dominate.
McCullagh (2000) leaves open the possibility that a linear combination of sev-

eral bootstrap methods will be suitable. In the present setting the pigeonhole boot-
strap overestimates the variance by twice the amount of the naive bootstrap. One
could therefore bootstrap both ways and subtract twice the naive variance from
the pigeonhole variance. That approach, of course, brings the usual difficulties of
possibly negative variance estimates. Also, sometimes we do not want the variance
per se, just a histogram that we think has approximately the right width, and the
variance is only a convenient way to decide if a histogram has roughly the right
width. Simply accepting a bootstrap histogram that is slightly too wide may be
preferable to trying to make it narrower by an amount based on the naive vari-
ance.

Many of the motivating problems come from e-commerce. There one may have
to decide where on a web page to place an ad or which book to recommend. Be-
cause the data sets are so large, coarse granularity statistics can be estimated with
essentially negligible sampling uncertainty. For example, the Netflix data set has
over 100 million movie ratings and the average movie rating is very well deter-
mined. Finer, subtle points, such as whether classical music lovers are more likely
to purchase a Harry Potter book on a Tuesday are a different matter. Some of these
may be well determined and some will not. An e-commerce application can keep
track of millions of subtle rules, and the small advantages so obtained can add up to
something commercially valuable. Thus, the dividing line between noise artifacts
and real signals is worth finding, even in problems with large data sets.
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The outline of this paper is as follows. Section 2 introduces the notation for row
and column entities and sample sizes, including the critical quantities νA and νB ,
as well as the random effects model we consider and the linear statistics we in-
vestigate. Section 3 introduces two bootstrap models: the naive bootstrap and the
pigeonhole bootstrap. Section 4 derives the variance expressions we need. Sec-
tion 5 presents a small example, using the bootstrap to determine whether movie
ratings at Netflix that were made on a Tuesday really are lower than those from
other days. There is a discussion in Section 6 including application to models us-
ing outer products as commonly fit by the SVD. The Appendix contains the proof
of Theorem 3. Shorter proofs appear inline, but can be easily skipped over on first
reading.

2. Notation. The row entities are i = 1, . . . ,R and the column entities are
j = 1, . . . ,C. The variable Zij ∈ {0,1} takes the value 1 if we have data for the
(i, j) combination and is 0 otherwise. The value Xij ∈ R

d holds the observed data
when Zij = 1 and otherwise it is missing. To hide inessential details we will work
with d = 1, apart from a remark in Section 4.4.

The data are Xij for i = 1, . . . ,R and j = 1, . . . ,C for those ij pairs with
Zij = 1. The number of times that row i was seen is ni• = ∑C

j=1 Zij . Similarly,

column j was seen n•j = ∑R
i=1 Zij times. The total sample size is N = n•• =∑

i

∑
j Zij .

In addition to the R × C layout with missing entries described above, we can
also arrange the data as a sparse matrix via an N × 3 array S with �th row
(I�, J�,X�) for � = 1, . . . ,N . The value X� in this layout equals XI�J�

from the
R × C layout. The value I� = i appears ni• times in column 1 of S, and similarly,
J� = j appears n•j times in column 2.

The ratios

νA ≡ 1

N

R∑
i=1

n2
i• and νB ≡ 1

N

C∑
j=1

n2•j ,

prove to be important later. The value of νA is the expectation of ni• when i is
sampled with probability proportional to ni•. If two not necessarily distinct ob-
servations having the same i are called “row neighbors,” then νA is the average
number of row neighbors for observations in the data set. Similarly, νB is the av-
erage number of column neighbors.

In the extreme where no column has been seen twice, every n•j = 1 and then
νB = 1. In the other extreme where there is only one column, having n•1 = N ,
then νB = N . Typically encountered problems should have 1 � νB � N and 1 �
νA � N . For example, an R × C table with no missing values has νB = C and we
may expect both R and C to be large. Often there will be a Zipf-like distribution
on n•j , and then for large problems we will find that 1 � νB � N . Similarly, cases
with 1 � νA � N are to be expected.
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For the Netflix data set, ν for customers is about 646 and ν for movies is about
56,200. As we will see below, these large values mean that naive sampling models
seriously underestimate the variance.

We also need the quantities

µ•j ≡ 1

N

∑
i

Zijni•

and

µi• ≡ 1

N

∑
j

Zijn•j .

Here µ•j is the probability that a randomly chosen data point has a “row neighbor”
in column j and an analogous interpretation holds for µi•. If column j is full, then
µ•j = 1. Ordinarily we expect that most, and perhaps even all, of the µ•j will be
small, and similarly for µi•.

2.1. Random effect model. We consider the data to have been generated by
a model in which the pattern of observations has been fixed, but those observed
values might have been different. That is, Zij are fixed values for i = 1, . . . ,R and
j = 1, . . . ,C. The model has

Xij = µ + ai + bj + εij ,(1)

where µ is an unknown fixed value and ai , bj and εij are random.
In a classical random effects model (see Searle, Casella and McCulloch (1992),

Chapter 5) we suppose that ai ∼ N(0, σ 2
A), bj ∼ N(0, σ 2

B) and εij ∼ N(0, σ 2
E)

all independently. We relax the model in several ways. By taking ai ∼ (0, σ 2
A)

for i = 1, . . . ,R, we mean that ai has mean 0 and variance σ 2
A but is not nec-

essarily normally distributed. Similarly, we suppose that bj ∼ (0, σ 2
B) and that

εij ∼ (0, σ 2
E). We refer to this model below as the homogenous random effects

model. The homogenous random effects model is a type of “superpopulation”
model as often used for sampling finite populations. In a superpopulation model
we suppose that a large but finite population is itself a sample from an infinite
population that we want to study.

Next, there may be some measured or latent attributes making ai more vari-
able than ai′ , for i �= i ′. We allow for this possibility by taking ai ∼ (0, σ 2

A(i)),

where σ 2
A(1), . . . , σ

2
A(R) are variances specific to the row entities. Similarly, bj ∼

(0, σ 2
B(j)) and εij ∼ (0, σ 2

E(i,j)).
The variables ai , bj and εij are mutually independent. That condition can be

relaxed somewhat, as described in Section 6.
The choice to model conditionally on the observed Zij values is a pragmatic

one. The actual mechanism generating the observations can be very complicated. It
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includes the possibility that any particular row or column sum might sometimes be
positive and sometimes be zero. By conditioning on Zij , we avoid having to model
unobserved entities. Also, in practice, one often finds that the smallest entities
have been truncated out of the data in a preprocessing step. For example, rows
might be removed if ni• is below a cutoff like 10. A column entity that is popular
with the small row entities might be seriously affected, perhaps even to the point
of falling below its own cutoff level. Similarly, the large entities are sometimes
removed, but for different reasons. In information retrieval, one often removes
extremely common “stop words” like “and,” “of” and “the” from the data. Working
conditionally lets us avoid modeling this sort of truncation.

2.2. Linear statistics. We focus on a simple mean

µ̂x = 1

N

∑
i

∑
j

ZijXij = 1

N

N∑
�=1

X�.

A bootstrap method that gives the correct variance for a mean can be expected
to be reliable for more complicated statistics such as differences in means, other
smooth functions of means and estimating equation parameters θ̂ defined via

0 = 1

N

∑
i

∑
j

Zijf (Xij , θ̂ ) = 1

N

N∑
�=1

f (X�, θ̂).

Conversely, a bootstrap method that does not work reliably for linear statistics like
a mean cannot be trusted for more complicated usages.

LEMMA 1. Under the random effects model described above,

VRE(µ̂x) = 1

N2

(
R∑

i=1

n2
i•σ 2

A(i) +
C∑

j=1

n2•jσ 2
B(i) +

R∑
i=1

C∑
j=1

Zijσ
2
E(i,j)

)
.(2)

Under the homogenous random effects model,

VRE(µ̂x) = νA

σ 2
A

N
+ νB

σ 2
B

N
+ σ 2

E

N
.(3)

PROOF. Because the ai , bi and εij are uncorrelated,

VRE(µ̂x) = VRE

(
1

N

R∑
i=1

C∑
j=1

Zij (µ + ai + bj + εij )

)

= VRE

(
1

N

R∑
i=1

ni•ai

)
+ VRE

(
1

N

C∑
j=1

n•j bi

)
+ VRE

(
1

N

R∑
i=1

C∑
j=1

Zij εij

)
,

which reduces to (2). In the homogenous case (2) further reduces to (3). �
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In the nonhomogenous case, the unequal variance contributions for row enti-
ties are weighted proportionally to n2

i•. Thus, when the frequent entities are more
variable than the others, care must be taken estimating variance components for
the homogenous model. Using a pooled estimate σ̂ 2

A that weights entities equally
would lead to an underestimate of the variance of µ̂x .

3. Bootstrap methods. We would like to bootstrap the data in such a way
that the variance of the bootstrap resampled value µ̂∗ approximates VRE(µ̂x). Even
better, we would like to do this without having to model the details of the random
effects involved in Xij and without having to explicitly account for the varying ni•
values.

Here we define a naive bootstrap, which treats the data as IID, and the pigeon-
hole bootstrap. The latter resamples both rows and columns. Neither of these boot-
straps faithfully imitates the random effects mechanism generating the data. Also,
neither of them holds fixed the sample sizes ni• and the latter does not even hold N

fixed. Thus both bootstraps must be tested to see whether they yield a serious sys-
tematic error.

3.1. Naive bootstrap. The usual bootstrap procedure resamples the data IID
from the empirical distribution. It can be reliable even when the underlying gen-
erative model fails to hold. For example, in IID regression models, resampling the
cases gives reliable inferences for a regression parameter even when the regression
errors have unequal variance.

It would be naive to apply IID resampling of the N observed data points to the
random effects setting, because the Xij values are not independent. Under such a
naive bootstrap, (I ∗

� , J ∗
� ,X∗

� ) is drawn independently and uniformly from the N

rows of S, for � = 1, . . . ,N . Then

µ̂∗
x = 1

N

N∑
�=1

X∗
� .

LEMMA 2. The expected value in the random effects model of the naive boot-
strap variance of µ̂∗

x is ERE(VNB(µ̂∗
x)), which is equal to

1

N2

∑
i

σ 2
A(i)ni•

(
1 − ni•

N

)
(4)

+ 1

N2

∑
j

σ 2
B(j)n•j

(
1 − n•j

N

)
+ 1

N2

∑
i

∑
j

Zijσ
2
E(i,j).

Under the homogenous random effects model,

ERE(VNB(µ̂∗
x)) = σ 2

A

N

(
1 − νA

N

)
+ σ 2

B

N

(
1 − νB

N

)
+ σ 2

E

N
.(5)
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PROOF. The naive bootstrap variance of µ̂∗
x is s2

x/N , where s2
x = (1/N)×∑N

�=1(X� − µ̂x)
2. Using the U -statistic formulation, we may write it as

VRE(µ̂x) = 1

2N3

N∑
�=1

N∑
�′=1

(X� − X�′)2

= 1

2N3

∑
i

∑
j

∑
i′

∑
j ′

ZijZi′j ′(ai − ai′ + bj − bj ′ + eij − ei′j ′)2.

Then under the random effects model,

ERE(VNB(µ̂x))

= 1

2N3

∑
i

∑
j

∑
i′

∑
j ′

ZijZi′j ′E(ai − ai′ + bj − bj ′ + eij − ei′j ′)2

= 1

2N3

∑
i

∑
j

∑
i′

∑
j ′

ZijZi′j ′
(
1i �=i′

(
σ 2

A(i) + σ 2
A(i′)

)
+ 1j �=j ′

(
σ 2

B(j) + σ 2
B(j ′)

)
+ (

1 − 1i=i′1j=j ′
)(

σ 2
E(i,j) + σ 2

E(i′,j ′)
))

= 1

N2

∑
i

σ 2
A(i)ni•

(
1 − ni•

N

)
+ 1

N2

∑
j

σ 2
B(j)n•j

(
1 − n•j

N

)

+ 1

N2

∑
i

∑
j

Zijσ
2
E(i,j). �

The homogenous case shows the differences clearly. The error term σ 2
E gets

accounted for correctly, but not the other terms. Where the row variable really
contributes νAσ 2

A/N to the variance, the naive bootstrap only captures σ 2
A(1 −

νA/N)/N of it. It underestimates this variance by a factor of νA/(1−νA/N) ≈ νA,
which may be substantial. The variance due to the column variables is similarly
under-estimated in the naive bootstrap.

3.2. Pigeonhole bootstrap. The naive bootstrap fails because it ignores simi-
larities between elements of the same row and/or column. A more principled boot-
strap would be based on estimating the component parts of the random effects
model, and resampling from it. However, finding a good way to estimate such a
model can be burdensome. Normal theory random effects models for severely un-
balanced data sets are hard to fit. More worryingly, the data may depart seriously
from normality, the variances σ 2

A(i) might be nonconstant, and could even be cor-
related somehow with the sample sizes ni•.
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The pigeonhole bootstrap is named for a model used by Cornfield and Tukey
(1956) to study balanced anovas with fixed, mixed and random effects. We place
the data into an R × C matrix, resample a set of rows, resample a set of columns,
and take the intersections as the bootstrapped data set. The original pigeonhole
model involved sampling without replacement. The pigeonhole bootstrap samples
with replacement. The appeal of the pigeonhole bootstrap is that it generates a
resampled data set with values taken from the original data. There is no need to
form synthetic combinations of row and column entities that were never observed
together, nor response values Xij that were not observed.

Formally, in the pigeonhole bootstrap we sample rows r∗
i IID from U{1, . . . ,R}

for i = 1, . . . ,R and columns c∗
j IID from U{1, . . . ,C} for j = 1, . . . ,C. Rows

and columns are sampled independently.
The resampled data set has Z∗

ij = Zr∗
i c∗

j
and when Z∗

ij = 1, we take X∗
ij = Xr∗

i c∗
j
.

The bootstrap sample sizes are n∗
i• = ∑C

j=1 Z∗
ij , n∗•j = ∑R

i=1 Z∗
ij and N∗ = n∗•• =∑R

i=1
∑C

j=1 Z∗
ij .

The bootstrap process above is repeated independently, some number B of
times.

Row i = 1 in Z∗
ij does not ordinarily correspond to the same entity as row i = 1

in Zij . Should we want to keep track of the number of times that original row
entity r appeared in the resampled data, we would use

ñ∗
r• =

R∑
i=1

C∑
j=1

Zr∗
i c∗

j
× 1r∗

i =r =
R∑

i=1

n∗
i•1r∗

i =r .

Similarly, column c appears ñ∗•c = ∑C
j=1 n∗•j 1c∗

j =c times among the resampled val-
ues.

4. Variances. Here we develop the variance formulas for pigeonhole boot-
strap sampling. It is convenient to consider the entities as belonging to a large but
finite set. Then we may work with population totals, a concept that makes no sense
for an infinite pool of entities.

There are two uncertainties in a bootstrap variance estimate. One is sampling
uncertainty, the variance under bootstrapping B times of our variance estimate.
The other is systematic uncertainty, the difference between the expectation of our
bootstrap variance estimate and the variance we wish to estimate. We focus on the
latter because the resampling model differs from the one we assume has generated
the data. The former issue can be helped by increasing B , and will be less severe
for large N . It will be possible to construct examples where sampling fluctuations
dominate, but we do not consider that case here. McCullagh (2000) also chose to
compare expected bootstrap variance to sampling variance.
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4.1. Variance of totals in pigeonhole bootstrap. The total value of X over the
sample is Tx = ∑

i

∑
j ZijXij . In bootstrap sampling, the total of X∗ is T ∗

x =∑
i

∑
j Z∗

ijX
∗
ij .

LEMMA 3. Under pigeonhole bootstrap sampling,

EPB(T ∗
x ) = Tx and EPB(N∗) = N.

PROOF. First, E(T ∗
x ) = ∑R

i=1
∑C

j=1 EB(Z∗
ijX

∗
ij ) = RCEPB(Z∗

11X
∗
11) by sym-

metry. The first result then follows because EPB(Z∗
11X

∗
11) = 1/(RC)

∑
i

∑
j Zij ×

Xij . The second result follows on putting N = Tz and N∗ = T ∗
z and considering

the case Xij = Zij . �

THEOREM 1. Under pigeonhole bootstrap sampling,

VPB(T ∗
x ) =

(
1

RC
− 1

R
− 1

C

)
T 2

x +
(

1 − 1

C

)∑
i

T 2
xi•

+
(

1 − 1

R

)∑
j

T 2
x•j + ∑

i

∑
j

ZijX
2
ij ,

where Txi• = ∑C
j=1 ZijXij and Tx•j = ∑R

i=1 ZijXij .

PROOF. We write

EPB((T ∗
x )2) = ∑

i

∑
j

∑
i′

∑
j ′

EPB(Z∗
ijX

∗
ijZ

∗
i′j ′X∗

i′j ′)

and then split the sum into four cases depending on whether i = i ′ or not and
whether j = j ′ or not. By symmetry, we only need to consider i, j , i ′ and j ′ equal
to 1 or 2. Thus,

EPB((T ∗
x )2) = R(R − 1)C(C − 1)EPB(Z∗

11X
∗
11Z

∗
22X

∗
22)

+ RC(C − 1)EPB(Z∗
11X

∗
11Z

∗
12X

∗
12)

+ R(R − 1)CEPB(Z∗
11X

∗
11Z

∗
21X

∗
21)

+ RCEPB(Z∗
11X

∗
11Z

∗
11X

∗
11)

= R(R − 1)C(C − 1)
T 2

x

R2C2 + RC(C − 1)
1

RC2

∑
i

T 2
xi•

+ R(R − 1)C
1

R2C

∑
j

T 2
x•j + RC

1

RC

∑
i

∑
j

ZijX
2
ij ,

which, combined with Lemma 3, yields the result. �
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4.2. Ratio estimation. The simple mean of X is µ̂x = Tx/N . Under bootstrap
resampling, we generate µ̂∗

x = T ∗
x /N∗. The mean and variance of µ̂∗

x are com-
plicated because they are ratios. The bootstrap sample size N∗, appearing in the
denominator, is not constant.

There is a standard way to handle ratio estimators in sampling theory [Cochran
(1977)]. It amounts to use of the delta method. The approximate variance of µ̂∗

x

using ratio estimation takes the form

V̂PB(µ̂∗
x) = 1

N2 EPB

((
T ∗

x − Tx

N
N∗

)2)
.(6)

THEOREM 2. Under pigeonhole bootstrap sampling,

V̂PB(µ̂∗
x) = 1

N2

[(
1 − 1

C

)∑
i

n2
i•(X̄i• − µ̂x)

2 +
(

1 − 1

R

)∑
j

n2•j (X̄•j − µ̂x)
2

+∑
i

∑
j

Zij (Xij − µ̂x)
2

]
,

where X̄i• = ∑C
j=1 ZijXij /ni• and X̄•j = ∑R

i=1 ZijXij /n•j .

PROOF. Let Yij = Xij −TxZij /N when Zij = 1. Then Ty = Tx − TxTz/N = 0.
Also, T ∗

y = T ∗
x − TxN

∗/N and so EPB((T ∗
x − TxN

∗/N)2) = VPB(T ∗
y ).

From Theorem 1 applied to Y instead of X we have

V̂PB(µ̂∗
x) = 1

N2

[(
1 − 1

C

)∑
i

T 2
yi• +

(
1 − 1

R

)∑
j

T 2
y•j + ∑

i

∑
j

ZijY
2
ij

]
.

We find that Xij − ZijTx/N = Xij − µ̂x whenever Zij = 1, and so

∑
i

T 2
yi• = ∑

i

(∑
j

Zij (Xij − ZijTx/N)

)2

= ∑
i

(∑
j

Zij (Xij − µ̂x)

)2

= ∑
i

n2
i•(X̄i• − µ̂x)

2

and a similar expression holds for
∑

i T
2
yi•. Also,∑

i

∑
j

ZijY
2
ij = ∑

i

∑
j

Zij (Xij − µ̂x)
2.

�

Next we study the expected value under the random effects model of the boot-
strap variance V̂PB(µ̂∗

x). We get an exact but lengthy formula and then apply sim-
plifications.
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THEOREM 3. The expected value under the random effects model of the pi-
geonhole variance is

ERE(V̂PB(µ̂∗
x)) = 1

N2

[∑
i

σ 2
A(i)λ

A
i + ∑

j

σ 2
B(j)λ

B
j + ∑

i

∑
j

Zijσ
2
E(i,j)λ

E
i,j

]
,

where

λA
i =

(
1 − 1

C

)
n2

i•
(

1 − 2
ni•
N

+ νA

N

)
+

(
1 − 1

R

)(
ni• − 2µi•ni• + νBn2

i•
N

)

+ ni•
(

1 − ni•
N

)2
+ n2

i•
N2 (N − ni•),

λB
j =

(
1 − 1

R

)
n2•j

(
1 − 2

n•j
N

+ νB

N

)
+

(
1 − 1

C

)(
n•j − 2µ•jn•j + νAn2•j

N

)

+ n•j
(

1 − n•j
N

)2

+ n2•j
N2 (N − n•j ),

and for Zij = 1,

λE
i,j =

(
1 − 1

C

)(
1 − 2

ni•
N

+ νA

N

)
+

(
1 − 1

R

)(
1 − 2

n•j
N

+ νB

N

)
+ 1 − 1

N
.

PROOF. See the Appendix.

The variance expression above is unwieldy. We use the notation ≈ to indicate
that terms like 1/R, 1/C, ni•/N , n•j /N , νA/N , νB/N , µi• and µ•j are consid-
ered negligible compared to 1, as they usually are in the motivating applications.
We do not suppose that ni•/n2

i• is negligible because some or even most of the ni•
could be small. Under these conditions,

λA
i ≈ n2

i• + 2ni•,

λB
j ≈ n2•j + 2n•j and for Zij = 1,

λE
i,j ≈ 3.

COROLLARY 1.

ERE(V̂PB(µ̂∗
x))

≈ 1

N2

[∑
i

σ 2
A(i)(n

2
i• + 2ni•)(7)

+ ∑
j

σ 2
B(j)(n

2•j + 2n•j ) + 3
∑
i

∑
j

Zijσ
2
E(i,j)

]
,
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and under the homogenous random effects model,

ERE(V̂PB(µ̂∗
x)) ≈ 1

N

(
σ 2

A(νA + 2) + σ 2
B(νB + 2) + 3σ 2

E(i,j)

)
.

PROOF.

ERE(V̂PB(µ̂∗
x))

= 1

N2

[∑
i

σ 2
A(i)λ

A
i + ∑

j

σ 2
B(j)λ

B
j + ∑

i

∑
j

Zijσ
2
E(i,j)λ

E
i,j

]

≈ 1

N2

[∑
i

σ 2
A(i)(n

2
i• + 2ni•)

+ ∑
j

σ 2
B(j)(n

2•j + 2n•j ) + 3
∑
i

∑
j

Zijσ
2
E(i,j)

]
.

The specialization to the homogenous case follows easily. �

The variance contribution from εij is overestimated by a factor of 3 in the pi-
geonhole bootstrap. In the homogenous case this overestimate is not important
when σ 2

E � max(νAσ 2
A, νBσ 2

B). When νA and νB are large, it only takes a small
amount of variation in σ 2

A and σ 2
B to make σ 2

E unimportant. A similar conclusion
follows for the inhomogenous case in terms of appropriately weighted averages of
the variances.

The average value of the variance in equation (7) tracks very closely with the
desired random effects variance of µ̂x given by (2), even when the effects are
heteroscedastic. Where the latter has n2

i•, the former has n2
i• + 2ni•, and similarly

for n2•j . Outside of extreme cases
∑

i ni•σ 2
A(i) � ∑

i n
2
i•σ 2

A(i).
In some applications some or many of the µi• and µ•j may be nontrivially large.

In recommender settings, a small number of books or movies may have been rated
by a large fraction of people, or some people may have rated an astonishingly
large number of items. In information retrieval, some terms might appear in most
documents, as, for example, when we choose to retain the stop words. Under such
conditions, we get a slight variance reduction:

λA
i ≈ n2

i• + 2(1 − µi•)ni•
and

λB
j ≈ n2•j + 2(1 − µ•j )n•j ,

while λE
i,j remains approximately 3. But when µi• is not small, then we may rea-

sonably expect ni• to be large and n2
i• � ni•. Thus, the approximation in Corol-

lary 1 is still appropriate.
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4.3. Mean consistency. The expression ≈ conveys what we ordinarily expect
to be the important terms. We find EREV̂PB(µ̂∗

x) ≈ VRE(µ̂x) or EREV̂PB(µ̂∗
x)/

VRE(µ̂x) ≈ 1. However, the earlier section left open the possibility of extreme
cases where

∑
i ni•σ 2

A(i) was not negligible compared to
∑

i n
2
i•σ 2

A(i). For example,

suppose that σ 2
A(i) = 0 for all i with ni• > 1. Then (n2

i• + 2ni•)σ 2
A(i) = 3n2

i•σ 2
A(i)

and the pigeonhole bootstrap could essentially triple the variance contribution from
the row entities.

To formulate “mean consistency” of V̂PB(µ̂∗
x) more carefully, we define

εN = max
(

1

R
,

1

C
,
νA

N
,
νB

N
,

1

νA

,
1

νB

,max
i

ni•
N

,max
j

n•j
N

)
,(8)

and work in the limit as N → ∞ with εN → 0.
Arranging the terms in each λ, we get

λA
i = n2

i•
(
1 + O(εN)

) + 2ni•(1 − µi•)
(
1 + O(εN)

)
,

λB
j = n2•j

(
1 + O(εN)

) + 2n•j (1 − µ•j )
(
1 + O(εN)

)
and

λE
i,j = 3 + O(εN),

where the implied constant in all the O(εN) terms is independent of i and j .
To rule out pathological heteroscedasticity, we suppose that

0 < mA ≤ σ 2
A(i) ≤ MA < ∞,

0 < mB ≤ σ 2
B(j) ≤ MB < ∞

and

0 < mE ≤ σ 2
E(i,j) ≤ ME < ∞

holds for all 1 ≤ i ≤ R = R(N) and 1 ≤ j ≤ C = C(N).

THEOREM 4. Suppose that σ 2
A(i), σ 2

B(j) and σ 2
E(i,j) obey the bounds above,

and that εN → 0 as N → ∞. Then

E(VPB(µ̂x)) − VRE(µ̂x)

VRE(µ̂x)
= O(εN).

PROOF. Gathering up the pieces,

E(VPB(µ̂x)) − VRE(µ̂x)

VRE(µ̂x)
= O(εN) + 2

(
1 + O(εN)

) × ρN,

where

ρN =
∑

i ni•(1 − µi•)σ 2
A(i) + ∑

j n•j (1 − µ•j )σ 2
B(j) + ∑

i

∑
j Zijσ

2
E(i,j)∑

i n
2
i•σ 2

A(i) + ∑
j n2•jσ 2

B(j) + ∑
i

∑
j Zijσ

2
E(i,j)

.
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The numerator of ρN lies between NmE and N(MA + MB + ME), while the
denominator is at least N(νAmA + νBmB + mE). Therefore,

0 ≤ ρN ≤ MA + MB + ME

νAmA + νBmB + mE

= O(εN). �

4.4. Covariances. The variance expressions in this paper generalize in an un-
surprising way to covariances of pairs of responses. The simplest way to express
this is to suppose that Xij ∈ R

d . Then we may generalize σ 2
A(i), σ 2

B(j) and σ 2
E(i,j)

to be d × d covariance matrices. The variance formulas go through as above.
Expressions like

∑
i ni•σ 2

A(i) � ∑
i n

2
i•σ 2

A(i) then mean that
∑

i ni•u′σ 2
A(i)u �∑

i n
2
i•u′σ 2

A(i)u for all u ∈ R
d with ‖u‖ = 1.

5. Netflix movie ratings example. As an example of a small effect near
the uncertainty level, we consider the day of the week effect in movie ratings
for the Netflix data. This data set is described and is available from http://www.
netflixprize.com/index. It has 100,480,507 ratings on 17,770 movies from 480,189
customers. As mentioned above, ν for customers is about 646 and ν for movies is
about 56,200. The number of ratings per customer ranges from 1 to 17,653. The
number of ratings for movies ranges from 3 to 232,944.

5.1. Day of the week effect. It would be interesting to examine the effects of
demographic variables on movie ratings, but for privacy purposes those are not
included in the data. The data set does, however, supply a date for each rating.
For each day of the week, we may find the average movie rating given out. The
smallest value is 3.595808 for Tuesdays and the largest is 3.616449 for Sundays.
The day of the week effect is very small.

Perhaps the movie ratings given out on Sunday do tend to be larger than those
given out on Sunday. If so, we might investigate whether this arises from a different
mix of movies being rated that day, a different set of customers rating on that
day, or some subtle interaction. But before doing such followup, we should check
whether the difference might just be a sampling fluctuation. For such a large data
set, sampling fluctuations are expected to be small. But the observed effect is also
quite small, and the sampling fluctuations include random effects from movies and
customers that can make them much larger than we were used to in the IID setting.

Figure 1 shows results for 10 pigeonhole bootstrap samples. In each sample
the means for all 7 days of the week were recorded. There is clearly a bias in
the bootstrap resampling. The average score on any given day in resampling is a
ratio estimate of the total of all scores given for that day divided by the number of
ratings for that day. The bias is very small in absolute terms, but not compared to
the pigeonhole bootstrap standard deviation.

A day versus day comparison is more interesting than the absolute level for
a given day. To compare Tuesday and Sunday, we look at the 10 paired average

http://www.netflixprize.com/index
http://www.netflixprize.com/index
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FIG. 1. The horizontal axis depicts the day of the week from Monday at 0 to Sunday at 6. The
vertical axis has average movie rating scores. For each day the solid dot shows that day’s average
movie rating in the original data set. The open dots show the average in each of 10 pigeonhole
bootstrap samples.

scores. These are shown in Figure 2. The solid point is 0.0206 units above the
forty-five degree line, indicating that Sunday scores average that much higher than
Tuesday scores. The resampled points average 0.0214 units above the line. This is
very close to the sample difference. The biases for the two days’ scores have almost
completely cancelled out, so that some resampled points are farther from the line
than the original point while others are closer. The average resampled difference
in means is about 8.16 times as large as the standard deviation of the resampled
differences. The 10 bootstrap differences are independent, and should be nearly
normal because of the large sample sizes involved. Then Pr(|t(9)| ≥ 8.16)

.= 1.88×
10−5. This is small enough for us to conclude that the difference is real, even
if we take account of having selected the most significant of all 21 day to day
comparisons.

5.2. Parameters and hypothesis. This section makes clear what hypothesis is
being tested by the bootstrap analysis and what are the underlying parameters.
Then it looks at how well the random effects model might fit the present setting.

Let Yij be the score for a movie and let Zij be an indicator that it was observed.
Introduce binary covariates DTue

ij taking the value 1 if and only if the ij measure-
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FIG. 2. The horizontal axis shows the average movie rating given on Tuesday. The vertical axis
shows Sunday. The open circles are from 10 pigeonhole bootstrap samples. The solid point is from
the original data. For each day the solid dot shows that day’s average movie rating in the original
data set. The open dots show the average in each of 10 bootstrap samples.

ment happened on Tuesday. Similarly, let DSun
ij be the day of week indicator for

Sunday.
The sample average for Tuesday is

µ̂Tue =
∑

ij ZijD
Tue
ij Yij∑

ij ZijD
Tue
ij

(9)
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and µ̂Sun is defined similarly. We interpret µ̂Tue above as an estimate of

µTue = ERE(
∑

ij ZijD
Tue
ij Yij )

ERE(
∑

ij ZijD
Tue
ij )

,(10)

so that µTue is the solution to ERE(
∑

ij ZijD
Tue
ij (Yij − µTue)) = 0.

The null hypothesis H0 being tested by the pigeonhole bootstrap analysis is that
µSun − µTue = 0.

In bootstrapping µ̂Tue plays the role of the parameter and µ̂∗
Tue plays that of the

estimate. The parameter µTue is well defined so long as Pr(
∑

ij ZijD
Tue
ij = 0) > 0.

We have neglected the possibility that the denominator in µ̂∗
Tue is zero. In practice,

one might add a small constant to the denominator of each µ̂∗
Tue, or condition on

the denominator being positive. Such small resampled denominators are, however,
a sign that the delta method approximation for the variance of the ratio may be
inaccurate.

The simplest path between the random effects model and the data set is to sup-
pose that the triple (Yij ,D

Tue
ij ,DSun

ij ) approximately follows a crossed random ef-
fects model of the form studied in this paper. Such a model is somewhat unnatural
though, because two of the variables are binary.

All we need, however, is that the first term in the linearization of the test statistic
follows approximately a crossed random effects model. The linearized statistic is
not binary.

Dropping the subscript and superscript for Tuesday, and writing the ratio in (9)
as Tzdy/Tzd , the delta method linearization of this ratio is

µ + Tzdy − E(Tzdy)

E(Tzd)
− Tzd − E(Tzd)

E(Tzd)2

= const + ∑
ij

ZijDij

(
YijE(Tzd)−1 − E(Tzd)−2)

.

The linearization for Tuesdays takes six different values, corresponding to five
different values when DTue

ij = 1 and one value for all cases with DTue
ij = 0. After

linearizing the Sunday versus Tuesday difference, there are eleven different values
arising as five for Sunday ratings, five for Tuesday ratings, and one for ratings
made on the other five days.

5.3. A deeper look into the data. Sunday ratings are about 0.02 points higher
than Tuesday ratings. This difference is small, but statistically significant, even
allowing for random customer and movie effects.

What follows is an informal data analytic exploration of the nature of this dis-
crepancy. Making the analysis formal would take us somewhat beyond the results
proved here.

Several explanations for the day of week effect are plausible. One is that the
harder to please customers rate more often on Tuesday. A second is that a given
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customer making a rating supplies a lower rating if the day is Tuesday. There
are also versions of these explanations centered on movies. The movies rated on
Tuesday might tend to be less popular, or a given movie getting rated on a Tuesday
might tend to get a lower rating than on a Sunday.

A simple proxy for how well a movie is liked is the average score it gets. Simi-
larly, the generosity level of a customer may be judged by the average score that he
or she gives. There were 17,784,852 Tuesday ratings and the average over these
ratings of our simple movie score is 3.600 (rounded to the nearest 1/1000th),
slightly higher than the simple average of all Tuesday scores. The comparable
numbers for Sunday are 10,730,350 and 3.616. Therefore, it appears that slightly
more popular movies are being rated on Sundays than on Tuesdays. This simple
analysis yields an estimated gap of 0.016 compared to the observed gap of 0.020.
A customer-based version of this analysis yields a gap of only 0.010 (from 3.610
versus 3.600).

By this analysis, the effect seems to be due slightly more to which movies are
being ranked than to who is doing the ranking. If we add both effects, we get a
predicted gap of 0.026. This value is higher than what was observed, indicating that
some amount of double counting is taking place. This double counting is consistent
with a strong feature in the data. Popular movies get more ratings and also higher
ratings. Very active customers give more ratings, have a harder time restricting
themselves to just the popular movies, and, not surprisingly, tend to give out lower
ratings. Thus, knowing that Tuesday has the less popular movies already leads one
to suspect it will have the busier and, hence, less generous customers.

Another analysis looks at customers who gave ratings on both Tuesday and
Sunday. For each such customer we can measure their average Sunday rating and
subtract their average Tuesday rating. This gives each customer a Sunday versus
Tuesday differential. The mean over customers of this differential is 0.016. Perhaps
coincidentally, this matches the average movie effect. The mean over movies of a
comparable movie differential is −0.008. It has an unexpected sign, meaning that
by this measure Sunday scores are lower than Tuesday scores. A more proper
analysis uses a weighted average of customers or movies, with weights depending
on how many data points they contribute. The proper weighting may be a matter
of debate, but, for simplicity, we use the harmonic mean of nTue and nSun where
these are the number of Tuesday and Sunday ratings made by the customer. Now
the weighted mean differential is 0.009. Taking this at face value, customers seem
to be slightly harder to please on Tuesday. A similar weighted analysis by movies
gives a differential of 0.011, so movies tend to get lower scores on Tuesday.

The pattern in the differentials is somewhat more subtle than the analysis above
describes. For a given customer, let Y denote the average of their Sunday scores
minus the average of their Tuesday scores and let X denote the simple average of
those two average scores. A plot of Y versus X has a great many data points, but a
spline smooth, using the harmonic mean weights described above shows a pattern.
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Generous customers are even more generous on Sundays than Tuesdays. But hard
to please customers give even lower ratings on Sundays than Tuesdays.

In other words, the customers are slightly more extreme on Sundays than they
are on Tuesdays. Because high scores are more common, this raises the average
score on Sunday versus Tuesday. A comparable analysis by movie shows that un-
popular movies get even lower scores on Tuesdays, popular movies get about the
same score on both days, and intermediate movies get somewhat higher scores on
Tuesdays. These curves are shown in Figure 3.

The informal data analysis above gives some support to all four explanations
offered. Tuesday appears to get more of the tougher customers and the weaker
movies. Furthermore, a given customer or movie seems to result in a lower score if
the rating is made on Tuesday. From the figure we see that the within customer or
within movie day of the week effect can be positive or negative and may be much
larger than 0.002 in absolute value.

FIG. 3. These curves show how the Sunday versus Tuesday rating difference varies with the popu-
larity of movies. The solid curve shows an analysis by customers, the dashed curve shows an analysis
by movies. Suppose that a customer makes nTue ≥ 1 ratings on Tuesday with average value ȲTue and
similarly for Sunday. Then the solid curve is a spline smooth on 8 degrees of freedom of ȲSun − ȲTue
versus (ȲSun + ȲTue)/2 over customers, with weights 2/(1/nSun + 1/nSun). The dashed curve is
computed the same way, using counts and averages per movie.
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6. Discussion. Ultimately we would like to have a trustworthy bootstrap
analysis for elaborate methods such as the spectral biclustering procedure of
Dhillon (2001), among others. Running five or ten repeats would give insight as to
which features of the analysis remain stable and which ones might be idiosyncratic
to the data set at hand. There is a large complexity gap between the output of such
methods and the simple mean considered here. It does, however, seem reasonable
to rule out methods that cannot handle the global mean and focus further research
on one that does.

We would also wish to have a bootstrap that works under more flexible set-
tings than the additive random effects model in (1). The rest of this discussion
presents two simple generalizations of (1) where the pigeonhole bootstrap can be
applied and then discusses the issue of bias, and the difference between fixed and
random Zij models.

6.1. Relaxing independence. It is not hard to see that the same variance results
arise if the ai , bj and εij are simply uncorrelated and not necessarily independent.
This helps us in settings where Xij must be in a restricted set.

For example, if the Xij values can only belong to a finite set, such as movie rat-
ings {1,2,3,4,5}, then given ai and bj there are only 5 allowable values for εij .
Because these allowable values depend on ai + bj the error εij cannot be inde-
pendent of ai and bj . It can, however, weight its allowable values in such a way
that E(εij | ai, bj ) = 0 and V (εij | ai, bj ) = σ 2

E(i,j). Therefore, a model with εij

mutually independent from (0, σ 2
E(i,j)) conditionally on a1, . . . , aR and b1, . . . , bC

is plausible. In such a model the εij are uncorrelated with ai and bj .
The relaxation does not go quite as far as we might want. For example, if there

is an upper bound on Xij , then the largest possible ai and largest possible bj must
sum to at most that bound, or else εij cannot have mean 0.

6.2. Outer product models. We might suppose that instead of the additive ran-
dom effects model, that an outer product representation is more appropriate. Such
SVD type models have become important in information retrieval [Deerwester
et al. (1990)] and DNA microarray analysis [Alter, Brown and Botstein (2000)].

Under such a model we write

Xij = µ + ai + bj +
L∑

�=1

λ�ui�vj� + εij ,(11)

where the new pieces are scalar singular values λ� and the singular vectors with
components ui� and vj�. Ordinarily the singular vectors are fit to the data subject
to a norm constraint. As a model for how the data might have arisen, we don’t have
to impose that constraint. We can make the pieces random with ui� ∼ (0, τ 2

U(i,�)),

and vj� ∼ (0, τ 2
V (j,�)) independently of each other and the ai and bj .

The model (11) is popular in crop science [Crossa and Cornelius (2002)] where
the rows and columns correspond to genotypes and environments. Surprisingly, to
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modern readers that model (with L = 1) is about as old as the earliest ANOVA
papers, going back to Fisher and Mackenzie (1923).

Writing

ηij =
L∑

�=1

λ�ui�vj� + εij ,

we find that ηij are uncorrelated with each other and with ai and bj . Uncorrelated
errors ηij lead to the same variances as independent ones do. Therefore, we can
subsume randomly generated outer products into the εij term of model (1). As a
consequence, we can apply the pigeonhole bootstrap without knowing what the
value of L is, including the possibility that L = 0 might be the best description of
the data.

A very early outer product model is the one degree of freedom for nonadditivity
of Tukey (1949). In this model

Xij = µ + ai + bj + λaibj + εij .(12)

It differs from the additive plus outer product model in having the same variables
appear in both places. Once again, we can subsume the outer product part into the
error because λaibj + εij is uncorrelated with ai , bj and λai′bj + εi′j when i �= i ′,
if all the ai , bj and εij are independent.

6.3. Bias. It is a commonplace that biases affect overall levels much more
than they affect comparisons. The EPA used to say about automobile efficiency
that while “your mileage may vary” from what they report, reported differences
between vehicles should be accurate. (Now they say “your mpg will vary.”) In
practice with the bootstrap, we would like to know whether a given statistic is
performing with bias like the Tuesday score, or with much less bias like the Sunday
versus Tuesday difference. For a scalar parameter we can compare the resampled
values to the original one.

For our hypothetical bookseller wondering whether classical music lovers are
more likely to purchase a Harry Potter book on a Tuesday, it now becomes clear
that “more likely than what?” is an important consideration. A contrast with other
days, other books or other customer types will be better determined than the ab-
solute level.

It would be interesting to know whether the bias in the pigeonhole bootstrap
tracks with the sampling bias in any reasonable generative model having random
sample sizes. The mixed model (1) with fixed sample sizes does not allow for
possibility of bias in sample means.

6.4. Random observation patterns. The analysis here is conditional on the val-
ues of Zij . The conditional and unconditional variances of µ̂x can be very differ-
ent. When that happens the pigeonhole bootstrap will estimate the conditional vari-
ance which may differ greatly from the unconditional one, when Zij is correlated
with the response variable.
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For the Netflix data, it is clear that there are strong dependencies between Zij

and Yij . Most people only rate movies they’ve seen, and those tend to be ones
that they like or think they will like. A few people might be more likely to supply
ratings for the movies they do not like, hoping to educate the algorithm about their
tastes. Probably a few people spam the ratings to boost some movies and/or harm
others. But on the whole, positive correlation is expected.

If we want to understand the values of Yij for ij pairs that were not observed,
then an unconditional analysis accounting for varying Zij is appropriate. If we
want to predict Yij ratings that will be made later, then conditioning is appropriate,
because those future ratings will have similar, if not the same, selection bias.

Sometimes the unconditional problem is much more interesting. In the extreme,
the unconditional analysis is essential when all we observe are the Zij and we want
to study co-ocurrence. But the conditional problem is interesting too. For example,
the Netflix competition is only about predicting ratings that were actually made and
then held out, not about predicting rating values that might have been made. So it
is a conditional estimation problem. Similarly, in e-commerce, Zij = 1 may mean
that customer i saw an ad for product j , and the retailer studying what happens
next is doing a conditional inference.

In some cases the conditional and unconditional variances can be expected to
be close. Let Z represent Zij for i = 1, . . . ,R and j = 1, . . . ,C. Letting Z be
random, we write

V (µ̂x) = E
(
VRE(µ̂x | Z)

) + V
(
ERE(µ̂x | Z)

)
.

When Zij = 0 describes a “missing at random” phenomenon, then ERE(µ̂x | Z) =
µ has zero variance. Combining missing at random with the random effects model,
we get

V (µ̂x) = E

(
1

N2

R∑
i=1

n2
i•σ 2

A(i) +
C∑

j=1

n2•j σ 2
B(i) +

R∑
i=1

C∑
j=1

Zijσ
2
E(i,j)

)
,(13)

which reduces to

E

(
1

N
(νAσ 2

A + νBσ 2
B + σ 2

E)

)
(14)

for a homogenous random effects model. When the quantity within the expecta-
tions in (13) or in (14) is stable under sampling of Z, then the conditional variance
estimated by the pigeonhole bootstrap will be close to the unconditional one.

APPENDIX: PROOF OF THEOREM 3

THEOREM 3. The expected value under the random effects model of the pi-
geonhole variance is

ERE(V̂PB(µ̂∗
x)) = 1

N2

[∑
i

σ 2
A(i)λ

A
i + ∑

j

σ 2
B(j)λ

B
j + ∑

i

∑
j

Zijσ
2
E(i,j)λ

E
i,j

]
,
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where

λA
i =

(
1 − 1

C

)
n2

i•
(

1 − 2
ni•
N

+ νA

N

)
+

(
1 − 1

R

)(
ni• − 2µi•ni• + νBn2

i•
N

)

+ ni•
(

1 − ni•
N

)2

+ n2
i•

N2 (N − ni•),

λB
j =

(
1 − 1

R

)
n2•j

(
1 − 2

n•j
N

+ νB

N

)
+

(
1 − 1

C

)(
n•j − 2µ•jn•j + νAn2•j

N

)

+ n•j
(

1 − n•j
N

)2

+ n2•j
N2 (N − n•j )

and for Zij = 1,

λE
i,j =

(
1 − 1

C

)(
1 − 2

ni•
N

+ νA

N

)
+

(
1 − 1

R

)(
1 − 2

n•j
N

+ νB

N

)
+ 1 − 1

N
.

PROOF. First,

ni•(X̄i• − µ̂x)

= ∑
j

ZijXij − ni•
N

∑
i′

∑
j

Zi′jXi′j

= ∑
i′

∑
j

Zi′jXi′j

(
1i′=i − ni•

N

)

= ∑
i′

∑
j

Zi′j (µ + ai′ + bj + εi′j )
(

1i′=i − ni•
N

)

= ∑
i′

ai′
∑
j

Zi′j

(
1i′=i − ni•

N

)
+ ∑

j

bj

∑
i′

Zi′j

(
1i′=i − ni•

N

)

+ ∑
i′

∑
j

εi′jZi′j

(
1i′=i − ni•

N

)

= ∑
i′

ai′ni′•
(

1i′=i − ni•
N

)
+ ∑

j

bj

(
Zij − n•jni•

N

)

+ ∑
i′

∑
j

εi′jZi′j

(
1i′=i − ni•

N

)
.
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Therefore,

ERE

(∑
i

n2
i•(X̄i• − µ̂x)

2

)

= ∑
i

∑
i′

σ 2
A(i′)n

2
i′•

(
1i′=i − 2 · 1i′=i

ni•
N

+ n2
i•

N2

)

+ ∑
i

∑
j

σ 2
B(j)

(
Zij − 2Zij

ni•n•j
N

+ n2
i•n2•j
N2

)

+ ∑
i

∑
i′

∑
j

σ 2
E(i′,j)Zi′j

(
1i′=i − 2 · 1i′=i

ni•
N

+ n2
i•

N2

)

= ∑
i′

σ 2
A(i′)n

2
i′•

(
1 − 2

ni′•
N

+ νA

N

)

+ ∑
j

σ 2
B(j)

(
n•j − 2µ•jn•j + νAn2•j

N

)

+ ∑
i′

∑
j

σ 2
E(i′,j)Zi′j

(
1 − 2

ni′•
N

+ νA

N

)
,

and the analogous expression holds for ERE(
∑

j n2•j (X̄•j − µ̂x)
2). Next, for cases

with Zij = 1, ERE((Xij − µ̂x)
2) equals

ERE

([
ai + bj + εij − 1

N

∑
i′

∑
j ′

Zi′j ′(ai′ + bj ′ + εi′j ′)

]2)

= σ 2
A(i)(1 − ni•/N)2 + σ 2

B(j)(1 − n•j /N)2 + σ 2
E(i,j)(1 − 1/N)2

+ ∑
i′ �=i

σ 2
A(i′)

n2
i′•

N2 + ∑
j ′ �=j

σ 2
B(j ′)

n2
•j ′

N2 + ∑
i′

∑
j ′

(1 − 1i=i′1j=j ′)σ 2
E(i′,j ′)

Zi′j ′

N2 .

Thus, ERE(
∑

i

∑
j Zij (Xij − µ̂x)

2) equals∑
i

σ 2
A(i)

[
ni•

(
1 − ni•

N

)2

+ n2
i•

N2 (N − ni•)
]

+ ∑
j

σ 2
B(j)

[
n•j

(
1 − n•j

N

)2

+ n2•j
N2 (N − n•j )

]

+ ∑
i

∑
j

Zijσ
2
E(i,j)

[(
1 − 1

N

)2

+ N − 1

N2

]
.
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Putting the pieces together and applying Theorem 2, ERE(V̂PB(µ̂∗
x)) equals

1

N2

[∑
i

σ 2
A(i)λ

A
i + ∑

j

σ 2
B(j)λ

B
j + ∑

i

∑
j

Zijσ
2
E(i,j)λ

E
i,j

]
,

where

λA
i =

(
1 − 1

C

)
n2

i•
(

1 − 2
ni•
N

+ νA

N

)

+
(

1 − 1

R

)(
ni• − 2µi•ni• + νBn2

i•
N

)

+ ni•
(

1 − ni•
N

)2

+ n2
i•

N2 (N − ni•),

λB
j =

(
1 − 1

R

)
n2•j

(
1 − 2

n•j
N

+ νB

N

)

+
(

1 − 1

C

)(
n•j − 2µ•jn•j + νAn2•j

N

)

+ n•j
(

1 − n•j
N

)2

+ n2•j
N2 (N − n•j ) and for Zij = 1,

λE
i,j =

(
1 − 1

C

)(
1 − 2

ni•
N

+ νA

N

)
+

(
1 − 1

R

)(
1 − 2

n•j
N

+ νB

N

)
+ 1 − 1

N
. �
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