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Abstract. In previous work of D. Turaev, A. Winter and the author, the Law of Large Numbers for the local mass of certain
superdiffusions was proved under an ergodicity assumption. In this paper we go beyond ergodicity, that is we consider cases when
the scaling for the expectation of the local mass is not purely exponential. Inter alia, we prove the analog of the Watanabe–Biggins
LLN for super-Brownian motion.

Résumé. Dans un travail précédent, l’auteur, D. Turaev et A. Winter, ont prouvé la Loi des Grand Nombres pour la masse locale
de certaines diffusions sous une hypothèse d’ergodicité. Dans cet article nous allons au delà de l’ergodicité, plus précisement nous
considérons des cas où le scaling de l’espérance de la masse locale n’est pas purement exponentiel. Entre autres, nous prouvons
l’analogue de la LGN de Watanabe–Biggins pour le super mouvement brownien.
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1. Introduction and statement of results

Since this paper extends some results of [5], it will be helpful if the reader has [5] at hand, especially regarding
notation and the notion of H -transformed (or weighted) superprocesses.

Let D ⊆ R
d be a domain. We use the standard notation Mf (D), ‖μ‖, μ ∈ Mf (D), C+

b (D), C+
c (D), Ck,η(D)

and Cη(D) exactly as in [5]. For example, Ck,η(D) is the usual space of functions whose kth order derivatives are
η-Hölder. Furthermore, A ⊂⊂ D means that the closure of the bounded domain A is in D. Let L be an elliptic operator
on D of the form

L := 1

2
∇ · a∇ + b · ∇, (1)

where ai,j , bi ∈ C1,η(D), i, j = 1, . . . , d , for some η ∈ (0,1], and the matrix a(x) := (ai,j (x)) is symmetric, and
positive definite for all x ∈ D. In addition, let α,β ∈ Cη(D), and assume that α is positive and β is bounded from
above. In this paper X denotes the (L,β,α;D)-superdiffusion (for the definition, even with time-inhomogeneous
coefficients, see [5]). Here α is the ‘variance’ or ‘intensity’ parameter and β is the ‘mass creation’ or ‘growth bias’
term. The corresponding probabilities will be denoted by {Pμ;μ ∈ Mf (D)}.

In order to understand what follows, we need a brief review on some concepts from the criticality theory of second
order elliptic operators. Let

λc = λc(L + β,D) := inf{λ ∈ R: ∃u > 0 satisfying (L + β − λ)u = 0 in D}

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/07-AIHP156
mailto:englander@pstat.ucsb.edu


2 János Engländer

denote the generalized principal eigenvalue for L + β on D. By standard theory, λc < ∞ whenever β is upper
bounded. The operator L+β −λc is called critical if the associated space of positive harmonic functions is nonempty
but the operator does not possess a (minimal positive) Green’s function. In this case the space of positive harmonic
functions is in fact one dimensional. Moreover, the space of positive harmonic functions of the adjoint of L + β − λc

is also one dimensional. Suppose that φ and φ̃ are representatives of these two spaces. We say that L + β − λc is
product-critical, if, in addition to criticality,

∫
D

φφ̃ dx < ∞ holds (in which case one usually picks φ and φ̃ with the
normalization

∫
D

φφ̃ dx = 1).
Our principal interest is in establishing a Weak Law of Large Numbers (WLLN) for the local mass of certain

superdiffusions. Since Pinsky proved that X exhibits local extinction if and only if λc ≤ 0, we can only hope to have
the WLLN if we assume that λc > 0. In fact, the following has been shown in [5]:

Proposition 1 ([5], Theorem 1). In addition to the assumption λc > 0, also assume that L + β − λc is product-
critical, that αφc is bounded and that X starts in a state μ with 〈μ,φc〉 < ∞. Let f ∈ C+

c (D). If f �≡ 0 and ‖μ‖ �= 0,
then there exists a nonnegative non-degenerate random variable denoted by W∞ satisfying that

lim
t→∞

〈Xt,f 〉
Eμ〈Xt,f 〉 = W∞

〈μ,φc〉 , in Pμ-probability. (2)

(The precise definition of W∞ is given in the paragraph preceding Theorem 1 of this paper.)
In fact, product-criticality is equivalent to the property that the semigroup corresponding to L + β scales precisely

exponentially (see again [5], or see [4]). For example a simple case of a superdiffusion is when D = R
d, d ≥ 1, L =

1
2Δ, with α,β positive constants (supercritical super-Brownian motion). Then λc = β, φ = φ̃ ≡ 1 and so this case is
not included in the setup of [5]. On the other hand, the corresponding (Strong) LLN is well known for discrete particle
systems. Based on ideas in [7], Biggins [1] proved the Strong LLN for the case when branching-Brownian motion is
replaced by branching random walk (in discrete time).

The purpose of this paper is to prove the WLLN for a class of superprocesses that includes supercritical super-
Brownian motion. Instead of trying to adapt the Watanabe–Biggins approach to our setting, our method will use some
ingredients from [5] and some results from [3,6] too. Note that the Watanabe–Biggins result gives an a.s. limit; thus,
it would be interesting to see if our main result (see Theorem 1 later) can be strengthened to an a.s. result.

Throughout the paper the following, fairly mild assumption will be in force.

Assumption 1. Let S = {St }t≥0 denote the semigroup corresponding to L + β − λc on D.

(A.1) (Local survival) λc > 0.
(A.2) (Scaling of linear semigroup) There exist two functions s : (0,∞) → (0,∞), and h :D → (0,∞), h ∈ C2,η(D),

and a locally finite measure r(dx) such that
(a) log st = O(log t) (i.e. supt>0

log st
log t

< ∞) and limt→∞(log st )
′ = 0,

(b) supD αh < ∞,

(c) limt→∞〈μ(dx), st · St (f )(x)〉 = 〈r, f 〉 · 〈μ,h〉 for all f ∈ C+
c (D), and μ ∈ 1

h
Mf (D).

(A.3) (Spatial spread) There exist a function, ζ : (0,∞) → (0,∞) and a family of subdomains {Dt ; t ≥ 0}, Dt ⊂ D

such that
(a) limt→∞ ζt = ∞,
(b) log(t + ζt ) = o(t), t → ∞,
(c) limt→∞ st+ζt /sζt = 1,
(d) limt→∞ P μ[Xt(D

�
t ) > 0] = 0,

(e) if f ∈ C+
c (D), then

lim
t→∞ sup

x∈Dt

∣∣∣∣ sζt

h(x)
· Sζt (f )(x) − 〈r, f 〉

∣∣∣∣ = 0.
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Let H(x, t) := exp(−λct)h(x), where λc and h are as in Assumption 1 and consider the weighted superprocess
(XH , P̃hμ) defined by

XH
t (dx) := H(t, x)Xt (dx), t ≥ 0.

Let Xt
H := ‖XH

t ‖. Following [5], we first show that

lim
t→∞ Ṽarhμ(

Xt
H ) =

∫ ∞

0
ds e−2λcs

〈
μ, Ss

[
αh2]〉 < ∞, (3)

and that if the diffusion process Ŷ corresponding to Lh
0 := L + a ∇h

h
· ∇ on D is conservative (that is, it never leaves

D with probability one), then X
H

is a uniformly integrable (UI) P̃hμ-martingale, whereas in general, X
H

is a (non-
negative) P̃hμ-supermartingale.

Let S = {Ss}s≥0 denote the semigroup corresponding to Ŷ (i.e. to Lh
0), that is, S := Sh. Clearly, Ss1 ≤ 1. (If Ŷ is

conservative, then actually Ss1 = 1.) If Ŷ is conservative, then consider the class

C(D) := {
f ∈ C2(D) :∃� ⊂ D bounded s.t. � ⊂ D; f = const on D \ �

}
.

By Theorem A2 in [2], we have that for all f ∈ C(D),

d
〈
XH

t , f
〉 = 〈

XH
t ,Lh

0f
〉
dt + dMt(f ), (4)

where {Mt(f )}t≥0 is a square-integrable P̃hμ-martingale, and its quadratic variation 〈M(f )〉 is given by

〈
M(f )

〉
t
=

∫ t

0
ds e−λcs

〈
XH

s ,αhf 2〉, t ≥ 0. (5)

(The point is that one can take the function class C(D) instead of just C2
c (D) when Ŷ is conservative.)

Applying (4) to the function f ≡ 1, it follows that X
H

is a P̃hμ-martingale. Furthermore, by (5),

Ẽhμ
[〈
XH

t ,1
〉2] = 〈μ,h〉2 +

∫ t

0
ds e−λcs

〈
hμ,Ss[αh]〉. (6)

That is

Ṽarhμ(
X

H

t

) =
∫ t

0
ds e−λcs

〈
hμ,Ss[αh]〉 = ∫ t

0
ds e−2λcs

〈
μ,Ss

[
αh2]〉. (7)

Letting t → ∞ we obtain (3). Replacing t by ∞ in the first of the integrals in (7), we have from the fact that Ss1 ≤ 1
and from our assumptions that

Ṽarhμ(
X

H

t

) ≤
∫ ∞

0
ds e−λcs

〈
hμ,Ss[αh]〉 ≤ λc

−1‖αh‖∞ 〈μ,h〉 < ∞.

Hence, by (6), supt≥0 Ẽμh(X
H

t )2 < ∞, and consequently X
H

is UI.

Abbreviate W := XH and let W denote the total mass process: W := X
H = ‖XH ‖. Let D := D ∪ {Δ} be the one-

point compactification of D (when the underlying diffusion process Ŷ is non-conservative on D, Δ is the cemetery
state for Ŷ ). Relaxing the assumption on the conservativeness of Ŷ , the argument in [2], pp. 726–727 shows that,
although one can not work directly with the function class C(D) (only with its subclass C2

c (D)), one can extend
(W, P̃) appropriately and get (X, P) on D making ‖X‖ a Phμ-martingale. Since the mass on the cemetery state Δ

is nondecreasing in time, W is a P̃hμ-supermartingale. (In the non-conservative case, intuitively, mass is ‘lost’ at the
Euclidean boundary of D or at infinity.)

Now, if W∞ := limt→∞ Wt , then one does not have EμW∞ = 〈μ,h〉 in general. Nevertheless, as we have seen,
when Ŷ is conservative on D, W is a UI martingale and then, of course, EμW∞ = 〈μ,h〉 > 0 for ‖μ‖ �= 0.
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Let Mc(D) ⊂ Mf (D) denote the subspace of finite measures with compact support in D. Our main result is as
follows.

Theorem 1 (WLLN). With the notations of Assumption 1, if 0 �≡ f ∈ C+
c (D) and 0 �≡ μ ∈ Mc(D), then in Pμ-pro-

bability,

lim
t→∞

〈Xt,f 〉
Eμ〈Xt,f 〉 = W∞

〈μ,h〉 .

The limit is mean-one (and thus, it is not identically zero) when Lh
0 corresponds to a conservative diffusion.

(The proof is given in Section 2.)
In order to give a simple condition for the limit to be mean-one, let us recall that the superprocess X possesses the

compact support property if Pμ(
⋃

0≤s≤t supp (Xs) ⊂⊂ D) = 1, for all μ ∈ Mc(D), t ≥ 0. Since there are various
conditions given in [2,3] for the compact support property to hold, the following result is useful. (The proof is given
in Section 2.)

Theorem 2 (No loss of mass in the limit). If the compact support property holds, then the diffusion process corre-
sponding to Lh

0 on D is conservative, and consequently, the limit appearing in Theorem 1 is mean-one.

We close this section with examples for D = R
d .

Example 1 (Supercritical SBM). The assumptions are satisfied for supercritical super-Brownian motion. Indeed, if
β(·) ≡ β > 0, then λc = β , because λc(Δ,R

d) = 0. Furthermore choose h ≡ 1, r(dx) := dx and the Brownian scaling
factor st := td/2. Finally, as far as the spatial spread of the process is concerned, Dt can be defined as Dt := B(

√
2β+ε)t ,

ε > 0, where Br denotes the ball of radius r > 0 centered at the origin (see [6]); thus ζt can be defined e.g. as ζt = tm

with m > 2. This setting satisfies conditions (A.1)–(A.3), as long as 0 < α is bounded from above, and so Theorem 1
holds.

Consider now the simplest case of the previous example, the one when α is a positive constant. Then the non-
degenerate random variable W∞ can be thought of as the scaled limit of a one dimensional diffusion. Indeed, Y :=
‖X‖ is a diffusion corresponding to the operator x(α ∂2

∂x2 +β ∂
∂x

) on [0,∞) with Y0 = ‖μ‖, and W∞ = limt→∞ e−βtYt .

Next, take a smooth, positive, but otherwise arbitrary function h :D → R and recall that the spatial h-transform is a
particular case of the space–time H -transform with H(t, x) = h(x), t ≥ 0.

Let X be the supercritical super-Brownian motion of Example 1 (β > 0 is constant and α > 0 is upper bounded).
Since the WLLN holds true for X starting with any nonzero measure in Mc(D), therefore it is also true for Xh starting
with any nonzero measure in Mc(D).

Then, different particular choices of h lead to different further examples as follows. Write x = (x1, x2, . . . , xd) and
x2 := |x|2 = ∑d

i=1 x2
i . The supercritical SBM with drift, supercritical SBM with outward drift, supercritical Super

Ornstein–Uhlenbeck process with quadratic β and supercritical outward SOU with quadratic β can all be treated by
applying h-transforms (where h(x) := ecx1 , h(x) := ec|x|, |x| � 1, h(x) := e−cx2

and h(x) := ecx2
, respectively and

c > 0). The WLLN for these cases follows from h-transform invariance and the limiting random variable is always
non-degenerate. Since αh = αh, in each case α has to satisfy α(x) = O(h(x)), as |x| → ∞.

2. Proofs

Proof of Theorem 1. We first claim that (L+β)h = λch. To see, this note that (A.2)(c) with μ = δx yields limt→∞ st ·
St (f )(x) = 〈r, f 〉 · h(x) for x ∈ D and f ∈ C+

c (D). Using the notation u′ for time derivative and defining β̂(t, x) :=
β(x)+ (log st )

′, the equation (L+β)h = λch follows from the fact that u(t, x) := St (f )(x) solves (L+β −λc)u = u′
and therefore v(t, x) := st · u(t, x) solves (L + β − λc)v = v′ − (log st )

′v, that is (L + β̂ − λc)v = v′. By (A.2)(a),
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supx∈D |β̂(t, x) − β(x)| tends to zero as t ↑ ∞. Then a standard argument (see [2], p. 708) together with the second
relation in (A.2)(a) gives that w(x) := limt→∞ v(t, x) = 〈f, r(dy)〉 · h(x) belongs to C2,η(D) and solves the steady
state equation (L + β − λc)w = 0. Then, also

(L + β − λc)h = 0, (8)

and

Lh
0(u) = (L + β − λc)

h(u) = h−1(L + β − λc)(hu) = H−1(L + β + ∂t )(Hu).

By (8), (XH , P̃) is the (Lh
0,0, αhe−λct ;D)-superdiffusion. Recalling the definition of S and defining ν :=

hμ, g := f/h, q := hr, one can reformulate (A.2)(c):

(A*.2)(c) lim
t→∞

〈
ν(dx), st · St (g)(x)

〉 = 〈q,g〉 · ‖ν‖, g ∈ C+
c (D), ν ∈ Mf (D).

Similarly, (A.3)(d)–(A.3)(e) become

(A*.3)(d) lim
t→∞ P̃ ν

[
Wt

(
D�

t

)
> 0

] = 0 and

(A*.3)(e) lim
t→∞ sup

x∈Dt

∣∣sζt · Sζt (g)(x) − 〈q,g〉∣∣ = 0, g ∈ C+
c (D).

Finally, the theorem itself transforms into the following statement: if 0 �≡ g ∈ C+
c (D) and 0 �≡ ν ∈ Mc(D), then in

P̃ν -probability,

lim
t→∞

〈XH
t , g〉

Ẽν〈XH
t , g〉 = W∞

‖ν‖ or, equivalently, lim
t→∞ st 〈Wt,g〉 = 〈q,g〉W∞. (9)

(Recall (A*.2)(c) and note that S is the expectation semigroup.)
In order to show (9), the main idea is to use the comparison with the deterministic flow as in [5], however, there

is an essential difference. In [5] we argued that by considering some large time t + T (both t and T are large), the

changes of X
H

are negligible after t , while the remaining time T is still long enough to distribute the produced mass
according to the ergodic flow given by the H -transformed migration. We then let T ↑ ∞ and then t ↑ ∞.

Reading carefully the proof in [5] one can see that this method relied heavily on the ergodicity of the flow and
would break down here. Hence, instead of letting first T and then t go to infinity, we now define T := Tt = ζt .

Similarly to [5], the strategy is to first show that the total mass more or less stabilizes by time Tt , then to identify the
limit of the scaled flow (starting from the state of the process at Tt ) at time t + Tt , and finally to show that it agrees
with the scaling limit of the process itself. Of course, the first part is simple: being a supermartingale, the total mass
converges:

lim
t→∞‖Wt‖ = W∞, P̃ν-a.s. (10)

Unlike in [5], however, we do not know a priori, that the limit is non-zero, and moreover, one cannot proceed
further without exploiting what is known about the radial speed of the process. Therefore we continue as fol-
lows. Let {ZWt (s)}s≥0 denote the deterministic flow starting from the (random) measure Wt . Since given Wt ,
〈ZWt (ζt ), g〉 = 〈Wt(dx),Sζt (g)(x)〉, one has

P̃ν
(∣∣sζt

〈
ZWt (ζt ), g

〉 − ‖Wt‖〈q,g〉∣∣ > ε
)

≤ P̃ν
[
‖Wt‖ sup

x∈Dt

∣∣sζt

(
Sζt (g)

)
(x) − 〈q,g〉∣∣ > ε

]
+ P̃ν

[
Wt

(
D�

t

)
> 0

]
.

Let us call the two terms on the righthand side At and Bt . By (A*.3)(d and e), one has limt→∞ At = limt→∞ Bt = 0.
Hence,

lim
t→∞ P̃ν

(∣∣sζt

〈
ZWt (ζt ), g

〉 − ‖Wt‖〈q,g〉∣∣ > ε
) = 0. (11)
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From this, (A.3)(c) and (10), one obtains the scaling limit of the flow:

lim
t→∞ P̃ν

(∣∣st+ζt

〈
ZWt (ζt ), g

〉 − W∞〈q,g〉∣∣ > ε
) = 0. (12)

Our goal is therefore to show that the scaling limit of the flow agrees with the scaling limit of the measure-valued
process. To achieve this, recall (A.2)(b). A computation using Chebysev and the supermartingale property (essentially
the same computation as the one giving formula (28) in [5]) yields:

P̃ν
(∣∣st+ζt

〈
ZWt (ζt ), g

〉 − st+ζt 〈Wt+ζt ,g〉
∣∣ > ε

) ≤ CẼν‖Wt‖s2
t+ζt

ε2λceλct
≤ C‖ν‖s2

t+ζt

ε2λceλct
,

where C = C(‖g‖,‖αh‖) := 18‖αh‖ · ‖g‖2. Recall the abbreviation T := ζt . To finish the estimate it is enough to
show that limt→∞ e−λct s2

t+T = 0. By the first condition in (A.2)(a) and by (A.3)(b), there is a k > 0 such that

log
(
e−λct s2

t+T

) = −λct + 2 log st+T ≤ −λct + 2k log(t + T )

and

lim
t→∞

[−λct + 2k log(t + T )
] = lim

t→∞ t

[
−λc + 2k log(t + T )

t

]
= −∞. �

Proof of Theorem 2. Suppose that X possesses the compact support property but the diffusion corresponding to Lh
0

is not conservative. Since the support of the superprocess is invariant under h-transforms, Xh possesses the compact
support property too. However, by Theorem 3 in [3], if the diffusion process corresponding to L on D is not conser-
vative and supx∈D α(x) < ∞ and infx∈D β(x) > −∞, then the compact support property does not hold. (In [3] the
domain is D = R

d , but the proof goes through for general D.) Since Xh is the (Lh
0, λc,αh;D)-superprocess, Lh

0 is
not conservative, and αh is bounded from above, we got a contradiction. �
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