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Abstract. The aim of this paper is to compare various criteria leading to the central limit theorem and the weak invariance principle.
These criteria are the martingale-coboundary decomposition developed by Gordin in Dokl. Akad. Nauk SSSR 188 (1969), the
projective criterion introduced by Dedecker in Probab. Theory Related Fields 110 (1998), which was subsequently improved by
Dedecker and Rio in Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) and the condition introduced by Maxwell and Woodroofe
in Ann. Probab. 28 (2000) later improved upon by Peligrad and Utev in Ann. Probab. 33 (2005). We prove that in every ergodic
dynamical system with positive entropy, if we consider two of these criteria, we can find a function in L

2 satisfying the first but
not the second.

Résumé. Le but de cet article est de comparer différents critères conduisant au théoreme limite centrale et au principe d’invariance
faible. Ces critères sont la décomposition martingale-cobord développée par Gordin dans Dokl. Akad. Nauk SSSR 188 (1969), le
critère projectif introduit par Dedecker dans Probab. Theory Related Fields 110 (1998), par la suite amélioré par Dedecker et Rio
dans Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) et la condition introduite par Maxwell et Woodroofe dans Ann. Probab.
28 (2000), plus tard améliorée par Peligrad et Utev dans Ann. Probab. 33 (2005). On montre que dans tout système dynamique
ergodique d’entropie strictement positive, si l’on considère deux de ces critères, on peut trouver une fonction dans L

2 vérifiant le
premier mais pas le deuxième.
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1. Introduction

Let (Ω,A,μ) be a probability space and T :Ω → Ω a bijective bimeasurable transformation preserving the measure
μ (i.e., μ(T −1A) = μ(A), ∀A ∈ A). (Ω,A,μ,T ) is called a dynamical system. We will assume that it is ergodic,
i.e., T −1A = A implies μ(A) = 0 or 1. Let f be a measurable function defined on Ω , then (f ◦ T i)i∈Z is a stationary
process. On the other hand, for every stationary random process (Xi)i∈Z, there exists a dynamical system (Ω,A,μ,T )

and a function f on Ω such that (f ◦T i)i∈Z and (Xi)i∈Z have the same distribution (see, e.g., [4], p. 178). We assume
that E(f ) = 0.

Let Sn(f ) = ∑n−1
i=0 f ◦ T i . We say that f satisfies the Central Limit Theorem (CLT) if 1√

n
Sn(f ) converge in

distribution to a normal law.
Let Sn(f, t) = S�tn�(f )+(tn−�tn�)f ◦T �tn�, where �x� denotes the greatest integer that is smaller than x. We say

that f satisfies the weak invariance principle (or Donsker invariance principle) if the process { 1√
n
Sn(f, t) | t ∈ [0,1]}

converges in distribution to a Brownian motion in the space C[0,1] with the uniform norm. In the sequel, we shall
call this the invariance principle.
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These two limit theorems have been extensively studied and several methods of proving them have been developed.
In this paper, we restrict our attention to three of them.

Martingale-coboundary decomposition

This method of proving the CLT was first used by Gordin [8]. The idea is to represent f in the form

f = m + g − g ◦ T ,

where (m◦T i)i∈Z is a martingale difference sequence. The term g −g ◦T is called a coboundary and g is the transfer
function. This decomposition is called a martingale-coboundary decomposition.

If m ∈ L
2(Ω), the CLT for martingale differences of Billingsley [1] and Ibragimov [12] applies. If g is measurable,

the telescopic sum 1√
n

∑n−1
i=0 (g − g ◦ T ) ◦ T i goes to zero in probability. So, if we can find the above decomposition

with m ∈ L
2(Ω) and g measurable, the CLT holds for f by application of Theorem 4.1 of [2]. Moreover, in this

case, if g ∈ L
2(Ω), we also have the invariance principle, as proved in [11] (see also [10]). On the other hand, there

exist counterexamples with g ∈ L
1(Ω) and g − g ◦ T ∈ L

2 where the invariance principle does not hold, see [21].
According to [10,21], if m ∈ L

2(Ω), a necessary and sufficient condition to have the invariance principle is

1√
n

max
i≤n

∣∣g ◦ T i
∣∣ −→
n→∞ 0 in probability.

We say that (f ◦ T i)i∈Z (or f ) admits a martingale-coboundary decomposition in L
p , p ≥ 1, if m and g are in L

p .
Let F ⊂ A be a T -invariant σ -algebra, i.e., F ⊂ T −1F . Note Fi = T −iF . If we assume that f is F∞-measurable
and E(f |F−∞) = 0, then f admits a martingale-coboundary decomposition in L

p with (m ◦ T i)i∈Z adapted to the
filtration (Fi )i∈Z if and only if the series

∞∑
i=0

E
(
f ◦ T i |F0

)
and

∞∑
i=0

(
f ◦ T −i − E

(
f ◦ T −i |F0

))

converge in L
p , see [10,20]. This is the characterisation that we shall always use.

Moreover, when the filtration (Fi )i∈Z is adapted to the process (f ◦ T i)i∈Z, the second sum equals zero. This will
be the case in the sequel.

According to what precedes, existence of martingale-coboundary decomposition in L
p , with p ≥ 2 implies the

invariance principle.
This method gives results in various situations. An interesting example is its application to differentiable dynamical

systems. It is well adapted to the hyperbolic case (e.g. [14]), or the partially hyperbolic case (e.g. [13]).

Projective criterion

Another method is to establish a projective property developed by Dedecker [5]. He introduced this criterion to prove
CLT for random vector fields. Dedecker and Rio [6] have shown that it gives a powerful criterion for proving the
invariance principle (in dimension one). We say that (f ◦ T i)i∈Z (or f ) satisfies the projective criterion if

∞∑
k=1

f E
(
f ◦ T k|F0

)
converges in L

1,

where (Fi )i∈Z is a filtration adapted to (f ◦ T i)i∈Z.
According to [6], if f ∈ L

2 satisfies the projective criterion, then f satisfies the invariance principle (and the CLT).
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Maxwell–Woodroofe condition

We say that (f ◦ T i)i∈Z (or f ) satisfies the Maxwell–Woodroofe condition if

∞∑
n=1

‖E(Sn(f )|F0)‖2

n3/2
< ∞.

This criterion was first introduced by Maxwell and Woodroofe [15]. They proved that the CLT holds under this
condition. Recently, Peligrad and Utev [18] have shown that the same condition also implies the invariance principle.

For examples of applications of the last two methods, the reader can see [16].
Our purpose is to compare the dependence between these criteria. Section 2 contains the statement of our main

result while the remainder of the paper is devoted to its proof. Sections 3 and 4 present a general type of a suitable
function in a dynamical system. In Section 5, this model is used to produce specific functions proving our result.

2. Main results

It is of interest to know whether one of the considered criteria implies another. This is the question that we propose to
answer. First, note that a simple application of the Hölder inequality∥∥∥∑

f E
(
f ◦ T k|F0

)∥∥∥
1
≤

∥∥∥∑
E

(
f ◦ T k|F0

)∥∥∥
p
‖f ‖q (1)

with 1
p

+ 1
q

= 1, leads to the following remark.

Remark 1. The martingale-coboundary decomposition in L
2 implies the projective criterion.

Proof. It follows from the convergence of (
∑n

k=1 E(f ◦ T k|F0))n≥1 in L
2 and the inequality (1) with

p = q = 2. �

Remark 2. The martingale-coboundary decomposition in L
2 implies the Maxwell–Woodroofe condition.

So we are interested in the martingale-coboundary decomposition in L
1. The same kind of arguments show:

Remark 3.

(a) For bounded functions, the martingale-coboundary decomposition in L
1 implies the projective criterion.

(b) For a function f such that |f | > C > 0, the inverse implication is true.

Proof. (a) follows from application of (1) with p = 1 and q = ∞. For (b), it is enough to note that 1
f

is a bounded
function. �

We will see, by counterexamples in L
2, that in general, the martingale-coboundary decomposition in L

1, the pro-
jective criterion, and the Maxwell–Woodroofe condition do not result from each other, even if the function verifies the
CLT or the invariance principle. Clearly, for the example constructed in [21], which verifies the martingale-coboundary
decomposition in L

1 but not the invariance principle, the projective criterion and the Maxwell–Woodroofe condition
do not hold. We can also find counterexamples in the class of functions satisfying the invariance principle. Our main
result is the following theorem.

Theorem. Let (Ω,A,μ,T ) be an ergodic dynamical system with positive entropy. In each case, there exists a function
in L

2(Ω) satisfying:

(i) the projective criterion but not the martingale-coboundary decomposition in L
1;

(ii) the martingale-coboundary decomposition in L
1 and the invariance principle, but not the projective criterion;



Comparison between criteria leading to the weak invariance principle 327

(iii) the Maxwell–Woodroofe condition but not the martingale-coboundary decomposition in L
1;

(iv) the martingale-coboundary decomposition in L
1 and the invariance principle, but not the Maxwell–Woodroofe

condition;
(v) the Maxwell–Woodroofe condition but not the projective criterion;

(vi) the projective criterion but not the Maxwell–Woodroofe condition.

3. Preliminary

To prove the theorem, in each case, we will produce a function in L
2 satisfying the first condition but not the second

one. These functions will be defined in the same way, so we begin by a general construction. The first step is to choose
disjoint sets having a nice property. This section is devoted to the exposition of the construction of these sets.

Let C be a sub-σ -algebra of A such that T −1C = C. We assume that the measure μ restricted to C is non-atomic.
The goal is to establish Lemma 2 corresponding to the construction of disjoint sets Ak quasi-invariant under a finite
number of iterations of the transformation. Moreover, we want to control the measure of the Ak . First, we recall the
following lemma. A proof can be found in [7], as a particular case of Theorem 2.2. It can also be done directly by
using the Rokhlin lemma.

Lemma 1. Let N ∈ N, 0 < ρ < 1 and ε > 0. There exists a set A ∈ C such that μ(A) = ρ and for all i, j ∈ {0, . . . ,N},
μ

(
T −iAΔT −jA

) ≤ ε.

Remark 4. If μ(A1ΔA2) ≤ ε1 and μ(B1ΔB2) ≤ ε2, then μ((A1 \ B1)Δ(A2 \ B2)) ≤ ε1 + ε2.

We are going to use this remark as well as Lemma 1 to show:

Lemma 2. Let (Nk)k∈N ⊂ N with Nk ↗ ∞.
Let ρk = λk (0 < λ < 1

2 ) and a = 1 − ∑
k≥1 ρk ∈ (0,1).

Let (εk)k∈N be a strictly decreasing sequence of positive reals converging to zero.
There exists (Ak)k∈N ⊂ C such that:

(i) the sets Ak are mutually disjoint;
(ii) aρk ≤ μ(Ak) ≤ ρk , for all k;

(iii) for all k ≥ 1 and for all i, j ∈ {0, . . . ,Nk}, μ(T −iAkΔT −jAk) ≤ εk .

Proof. First, denote δk = εk − εk−1, k ≥ 1.
For every k ≥ 1, by Lemma 1, there exists a set A′

k ∈ C such that μ(A′
k) = ρk and μ(T −iA′

kΔT −jA′
k) ≤ δk for all

i, j ∈ {0, . . . ,Nk}.
We define Ak = A′

k \ ⋃∞
j=k+1 A′

j .
Hence, (i) holds by construction. We have μ(Ak) ≤ μ(A′

k) = ρk and

μ(Ak) ≥ μ(A′
k) −

∞∑
j=k+1

μ(A′
j ) ≥ ρk − ρk

∞∑
j=1

ρj = aρk.

So, (ii) is verified. For (iii), we use the preceding remark to have, for all k ≥ 1, i, j ∈ {0, . . . ,Nk},

μ
(
T −iAkΔT −jAk

) ≤
∞∑

j=k

δj = εk.
�

An important feature of Lemma 2 is that there is no dependence between Nk and ρk and the εk can be chosen
arbitrarily small.
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4. General approach

Here, we give the general model from which the counterexamples will be constructed, proving our theorem. We
will define a “pattern function” depending on sequences (Nk)k∈N ⊂ N, (θk)k∈N ⊂ R+, (ρk)k∈N ⊂ (0,1) and (εk)k∈N

(εk � ρk). In Section 5, we will see that changing the values of the sequences provides different counterexamples.

4.1. The model

(Ω,A,μ,T ) is an ergodic dynamical system with positive entropy. By the Sinai theorem, it admits a factor which
is a Bernoulli shift with the same entropy (see [19]). So, it is sufficient to consider the case where (Ω,A,μ,T ) is a
Bernoulli shift with positive entropy. This means that:

Ω = {0,1, . . . , l}Z, for some l ∈ N
∗ = {1,2, . . .};

A is the product σ -algebra;
μ is the product measure given by μ({ω ∈ Ω :w0 = i}) = pi , for i = 0, . . . , l, with pi > 0 and

∑l
i=0 pi = 1;

T is the left shift on Ω , i.e., (T w)i = wi+1.
Now, using the Ornstein isomorphism theorem (see [17]), we can see that a Bernoulli shift is isomorphic to a product
of two Bernoulli shifts. In particular, our system admits two independent Bernoulli factors. We denote by B and C
the T -invariant σ -algebras corresponding to them. In order to simplify some proof, we assume that the first one is a
Bernoulli ( 1

2 , 1
2 ). The reader can check that all the upcoming proofs remain valid for another Bernoulli shift. So, we

can define a B-measurable function e0 :Ω → {−1,1} such that μ({e0 = −1}) = μ({e0 = 1}) = 1
2 and if ei = e0 ◦ T i

for i ∈ Z, then (ei)i∈Z is an i.i.d. sequence. Of course, (ei)i∈Z is independent of C.
Let F0 = C ∨ σ {ei | i ≤ 0} and Fk = T −kF0 = C ∨ σ {ei | i ≤ k}, k ∈ Z.
By application of Lemma 2, we consider the sets Ak ∈ C corresponding to sequences (Nk)k∈N, (ρk)k∈N and

(εk)k∈N. The function f is defined by

f =
∞∑

k=1

fk1Ak
with fk = θke−Nk

, (2)

where 1A is the indicator function of A. The εk can be chosen arbitrarily small. So, we shall not define them in each
example. We just assume that

∞∑
k=1

θkNk
√

εk < ∞, (3)

which implies
∑∞

k=1 θkNkεk < ∞ (εk < 1).
We consider the stationary process (f ◦ T i)i∈Z for which (Fi )i∈Z is an adapted filtration.

Proposition 1. The function f belongs to L
2 if and only if

∑∞
k=1 θ2

k ρk < ∞.

Proof. By disjointness of the sets Ak ,

‖f ‖2
2 =

∞∑
k=1

‖fk1Ak
‖2

2 =
∞∑

k=1

θ2
k μ(Ak).

Now, by Lemma 2, aρk ≤ μ(Ak) ≤ ρk . Thus,

a

∞∑
k=1

θ2
k ρk ≤ ‖f ‖2

2 ≤
∞∑

k=1

θ2
k ρk.

�

In what follows, we apply the three studied criteria to our function f . We express f satisfying one of them by
conditions concerning the sequences (Nk)k∈N, (θk)k∈N and (ρk)k∈N.
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Proposition 2. The stationary process (f ◦ T i)i∈Z admits a martingale-coboundary decomposition in L
1(Ω) if and

only if
∑∞

k=1 θk

√
Nkρk < ∞.

Proof. Recall that the function f admits a martingale-coboundary decomposition in L
1 if and only if (

∑n
i=1 E(f ◦

T i |F0))n≥1 converges in L
1.

Necessary condition. We assume that
∑∞

k=1 θk

√
Nkρk = ∞. We shall show that if

∑∞
i=1 E(f ◦ T i |F0) converges

in L
1 then E|∑∞

i=1 E(f ◦ T i |F0)| = ∞, a contradiction.
For all k and i, 1Ak

◦ T i is F0-measurable, so

∞∑
i=1

E
(
f ◦ T i |F0

) =
∞∑
i=1

∞∑
k=1

E
(
fk ◦ T i |F0

)
1Ak

◦ T i.

We will use the fact that the measure of AkΔT −iAk is small when i ≤ Nk to simplify the summation. Note that
E(ei |F0) = ei if i ≤ 0 and E(ei |F0) = 0 if i > 0, so

∞∑
i=1

E
(
f ◦ T i |F0

) =
∞∑

k=1

θk

Nk∑
i=1

e−Nk+i1T −iAk

=
∞∑

k=1

θk

Nk∑
i=1

e−Nk+i1Ak
+

∞∑
k=1

θk

Nk∑
i=1

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

). (4)

Note that |1T −iAk\Ak
− 1Ak\T −iAk

| = 1T −iAkΔAk
and by construction, μ(T −iAkΔAk) ≤ εk for i ≤ Nk . Therefore,

E

∣∣∣∣∣
∞∑

k=1

θk

Nk∑
i=1

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

∣∣∣∣∣ ≤
∞∑

k=1

θk

Nk∑
i=1

E|1T −iAk\Ak
− 1Ak\T −iAk

|

≤
∞∑

k=1

θkNkεk < ∞, by (3).

Hence, it remains to prove the L
1-divergence of the first term in (4).

By disjointness of the Ak and by independence between the ei and the Ak for all i and k,

E

∣∣∣∣∣
∞∑

k=1

θk

Nk∑
i=1

e−Nk+i1Ak

∣∣∣∣∣ =
∞∑

k=1

θkE

∣∣∣∣∣
Nk∑
i=1

e−Nk+i

∣∣∣∣∣μ(Ak).

Now, by independence of the ei , we can use the Marcinkiewicz–Zygmund inequality (see e.g. Theorem 8.1 in [9] or
Theorem 10.3.2 in [3]). There exists a constant A > 0, such that

E

∣∣∣∣∣
Nk∑
i=1

e−Nk+i

∣∣∣∣∣ ≥ AE

(
Nk∑
i=1

e2−Nk+i

)1/2

= A
√

Nk.

Recall that μ(Ak) ≥ aρk (Lemma 2). So,

E

∣∣∣∣∣
∞∑

k=1

θk

Nk∑
i=1

e−Nk+i1Ak

∣∣∣∣∣ ≥ aA

∞∑
k=1

θk

√
Nkρk = ∞, by assumption.

This concludes the proof of the necessary condition.

Sufficient condition. We assume that
∑∞

k=1 θk

√
Nkρk < ∞.
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Let In = ∑n
i=1 E(f ◦ T i |F0). We will prove that In ∈ L

1 for all n and that the sequence (In)n≥1 is a Cauchy
sequence in L

1. The proposition will follow from the completeness of L
1.

To begin, we use the structure of the sets Ak in the same way as in the first part of the proof. We have

In =
n∑

i=1

∞∑
k=1

E
(
fk ◦ T i |F0

)
1Ak

◦ T i

=
∞∑

k=1

θk

min(n,Nk)∑
i=1

e−Nk+i1Ak
+

∞∑
k=1

θk

min(n,Nk)∑
i=1

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

= Γ 1
n + Γ 2

n (5)

and

E
∣∣Γ 2

n

∣∣ ≤
∞∑

k=1

θk

min(n,Nk)∑
i=1

E
∣∣e−Nk+i (1T −iAk\Ak

− 1Ak\T −iAk
)
∣∣

≤
∞∑

k=1

θk

min(n,Nk)∑
i=1

μ
(
T −iAkΔAk

)

≤
∞∑

k=1

θkNkεk < ∞, by (3). (6)

On the other hand, by the Marcinkiewicz–Zygmund inequality, there exists a constant B > 0 such that

E

∣∣∣∣∣
min(n,Nk)∑

i=1

e−Nk+i

∣∣∣∣∣ ≤ BE

(min(n,Nk)∑
i=1

e2−Nk+i

)1/2

.

Recall that μ(Ak) ≤ ρk (Lemma 2). Because ei is independent of Ak for all i, k, we have

E
∣∣Γ 1

n

∣∣ ≤ B

∞∑
k=1

θkE

(min(n,Nk)∑
i=1

e2−Nk+i

)1/2

ρk

≤ B

∞∑
k=1

θk

√
Nkρk < ∞, by assumption. (7)

Applying (6) and (7) to (5) shows that In ∈ L
1 for all n ∈ N.

Now, we will show that (In)n≥1 is a Cauchy sequence in L
1.

We fix p ∈ N
∗. We have

In+p − In =
∞∑

k=1

min(n+p,Nk)∑
i=min(n,Nk)+1

E
(
fk ◦ T i |F0

)
1Ak

◦ T i.

Using successively assumption (3), the Marcinkiewicz–Zygmund inequality and the independence between ei and Ak

for all i and k (see the calculus made before for In), we obtain

E|In+p − In| ≤ B

∞∑
k=1

θkE

( min(n+p,Nk)∑
i=min(n,Nk)+1

e2−Nk+i

)1/2

ρk +
∞∑

k=1

θk

min(n+p,Nk)∑
i=min(n,Nk)+1

μ
(
T −iAkΔAk

)
.
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Note that
∑min(n+p,Nk)

i=min(n,Nk)+1 is empty if Nk ≤ n, is composed of Nk − (n + 1) terms if n < Nk < n + p and of p terms
otherwise. In the second and in the third case, the number of terms in the sum is less than Nk . So, for all p ∈ N

∗,

E|In+p − In| ≤ B
∑

k : Nk>n

θk

√
Nkρk +

∑
k : Nk>n

θkNkεk. (8)

By assumption and hypothesis (3),
∑∞

k=1 θk

√
Nkρk < ∞ and

∑∞
k=1 θkNkεk < ∞. Hence, both sums in (8) go to 0

with n → ∞ uniformly for all p ∈ N
∗.

(In)n≥1 is thus a Cauchy sequence. �

Proposition 3. If f ∈ L
2, the stationary process (f ◦ T i)i∈Z verifies the projective criterion if and only if∑∞

k=1 θ2
k

√
Nkρk < ∞.

Proof. It follows the idea of the proof of Proposition 2. So, some similar passages are given with less details.

Necessary condition. We assume that
∑∞

k=1 θ2
k

√
Nkρk = ∞. We shall show that if

∑∞
i=1 f E(f ◦ T i |F0) converges

in L
1, then E|∑∞

i=1 f E(f ◦ T i |F0)| = ∞. First,

∞∑
i=1

f E
(
f ◦ T i |F0

) =
∞∑

k=1

f θk

∞∑
i=1

E
(
e−Nk

◦ T i |F0
)
1T −iAk

=
∞∑

k=1

f θk

Nk∑
i=1

e−Nk+i1T −iAk
. (9)

Like in the proof of Proposition 2, we decompose 1T −iAk
into 1Ak

+ (1T −iAk\Ak
−1Ak\T −iAk

). Applying the Cauchy–
Schwarz inequality, we obtain

E

∣∣∣∣∣
∞∑

k=1

f θk

Nk∑
i=1

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

∣∣∣∣∣ ≤ ‖f ‖2

∞∑
k=1

θk

Nk∑
i=1

‖1T −iAkΔAk
‖2

≤ ‖f ‖2

∞∑
k=1

θkNk
√

εk.

Hypothesis (3), the fact that f belongs to L
2, and (9) show that the convergence of the integral

E

∣∣∣∣∣
∞∑
i=1

f E
(
f ◦ T i |F0

)∣∣∣∣∣
is equivalent to the convergence of

E

∣∣∣∣∣
∞∑

k=1

f θk

(
Nk∑
i=1

e−Nk+i

)
1Ak

∣∣∣∣∣.
Now, the sets Ak being disjoint, we have

∞∑
k=1

f θk

(
Nk∑
i=1

e−Nk+i

)
1Ak

=
∞∑

k=1

∞∑
j=1

θj e−Nj
θk

(
Nk∑
i=1

e−Nk+i

)
1Ak

1Aj

=
∞∑

k=1

θ2
k e−Nk

(
Nk∑
i=1

e−Nk+i

)
1Ak

.
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Using the disjointness of the sets Ak again, the independence between ei and Ak for all i and k, the independence of
the e−Nk+i , i = 0, . . . ,Nk , the Marcinkiewicz–Zygmund inequality and the assumption, we obtain

E

∣∣∣∣∣
∞∑

k=1

f θk

(
Nk∑
i=1

e−Nk+i

)
1Ak

∣∣∣∣∣ =
∞∑

k=1

θ2
k E|e−Nk

|E
∣∣∣∣∣

Nk∑
i=1

e−Nk+i

∣∣∣∣∣μ(Ak)

≥ A

∞∑
k=1

θ2
k E

(min(n,Nk)∑
i=1

e2−Nk+i

)1/2

μ(Ak)

≥ aA

∞∑
k=1

θ2
k

√
Nkρk = ∞, (10)

where a comes from Lemma 2 and A > 0 comes from the Marcinkiewicz–Zygmund inequality.

Sufficient condition. We assume that
∑∞

k=1 θ2
k

√
Nkρk < ∞.

Let Jn = ∑n
i=1 f E(f ◦T i |F0). We’ll prove that (Jn)n≥1 is a Cauchy sequence in L

1, which proves the proposition.
First, we show that Jn ∈ L

1 for all n, i.e., E|Jn| < ∞ for all n. Indeed,

Jn =
∞∑

k=1

f θk

min(n,Nk)∑
i=1

e−Nk+i1T −iAk
.

So, decomposing 1T −iAk
into 1Ak

+ (1T −iAk\Ak
−1Ak\T −iAk

), using the Cauchy–Schwarz inequality and (3), we show
that it is enough to prove the convergence of

E

∣∣∣∣∣
∞∑

k=1

f θk

(min(n,Nk)∑
i=1

e−Nk+i

)
1Ak

∣∣∣∣∣.
We repeat the calculus leading to (10) and we apply the Marcinkiewicz–Zygmund inequality. So, there exists B > 0

such that

E

∣∣∣∣∣
∞∑

k=1

f θk

(min(n,Nk)∑
i=1

e−Nk+i

)
1Ak

∣∣∣∣∣ =
∞∑

k=1

θ2
k E|e−Nk

|E
∣∣∣∣∣

min(n,Nk)∑
i=1

e−Nk+i

∣∣∣∣∣μ(Ak)

≤ B

∞∑
k=1

θ2
k

√
Nkρk < ∞, by assumption.

Now, we fix p ∈ N
∗. By similar arguments, we can show that

E|Jn+p − Jn| ≤ B

∞∑
k=1

θ2
k E

( min(n+p,Nk)∑
i=min(n,Nk)+1

e2−Nk+i

)1/2

ρk + ‖f ‖2

∞∑
k=1

θk

min(n+p,Nk)∑
i=min(n,Nk)+1

‖1T −iAkΔAk
‖2.

The same considerations about
∑min(n+p,Nk)

i=min(n,Nk)+1 as in the proof of Proposition 2 lead to

E|Jn+p − Jn| ≤ B
∑

k: Nk>n

θ2
k

√
Nkρk + ‖f ‖2

∑
k: Nk>n

θkNk
√

εk.

By assumption and by (3), both sums go to 0 with n → ∞, uniformly for p ∈ N
∗. Hence, (Jn)n≥1 is a Cauchy

sequence in L
1, which is complete. �
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Proposition 4.

∞∑
n=1

‖E(Sn(f )|F0)‖2

n3/2
< ∞ if and only if

∞∑
n=1

(
∑∞

k=1 θ2
k min(n,Nk)ρk)

1/2

n3/2
< ∞.

Proof. Note that

E
(
Sn(f )|F0

) =
∞∑

k=1

θk

min(n,Nk)∑
i=1

e−Nk+i1Ak
+

∞∑
k=1

θk

min(n,Nk)∑
i=1

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

and ∥∥∥∥∥
∞∑

k=1

θk

min(n,Nk)∑
i=1

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

∥∥∥∥∥
2

≤
∞∑

k=1

θk min(n,Nk)
√

εk.

So, by (3),

∞∑
n=1

‖E(Sn(f )|F0)‖2

n3/2
< ∞ if and only if

∞∑
n=1

‖∑∞
k=1 θk

∑min(n,Nk)
i=1 e−Nk+i1Ak

‖2

n3/2
< ∞.

Now, by independence, applying the Marcinkiewicz–Zygmund inequality, we can see that there exist A, B > 0 such
that

aA

∞∑
k=1

θ2
k min(n,Nk)ρk ≤ E

∣∣∣∣∣
∞∑

k=1

θk

min(n,Nk)∑
i=1

e−Nk+i1Ak

∣∣∣∣∣
2

≤ B

∞∑
k=1

θ2
k min(n,Nk)ρk.

The proposition is proved. �

5. Proof of the theorem

5.1. Counterexample 1, proofs of (i) and (iii)

In this section, we give an example of a function satisfying the projective criterion and also the Maxwell–Woodroofe
condition but not the martingale-coboundary decomposition in L

1. To do this, we consider the function f defined
at (2) by the sequences

ρk = 1

4k
, Nk = 42k and θk = 1

k
.

First,

∞∑
k=1

θ2
k ρk =

∞∑
k=1

1

k24k
< ∞,

then, by Proposition 1, the function f belongs to L
2. We have

∞∑
k=1

θk

√
Nkρk =

∞∑
k=1

1

k
= ∞,
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hence, by Proposition 2, the stationary process (f ◦ T i)i∈Z does not admit a martingale-coboundary decomposition
in L

1. But,

∞∑
k=1

θ2
k

√
Nkρk =

∞∑
k=1

1

k2
< ∞

and Proposition 3 show that it satisfies the projective criterion. This proves (i).
To verify that the process (f ◦ T i)i∈Z satisfies the Maxwell–Woodroofe condition, by Proposition 4, we have to

study the sums

∞∑
k=1

θ2
k min(n,Nk)ρk =

�(lnn)/(2 ln 4)�∑
k=1

θ2
k Nkρk + n

∞∑
k=�(lnn)/(2 ln 4)�+1

θ2
k ρk. (11)

The first term on the right-hand side can be estimated by

�(lnn)/(2 ln 4)�∑
k=1

θ2
k Nkρk =

�(lnn)/(2 ln 4)�∑
k=1

4k

k2
≤

�(lnn)/(2 ln 4)�∑
k=1

4k = O
(√

n
)
.

For the second term,

∞∑
k=�(lnn)/(2 ln 4)�+1

θ2
k ρk =

∞∑
k=�(lnn)/(2 ln 4)�+1

1

k24k
≤

∞∑
k=�(lnn)/(2 ln 4)�+1

1

4k
= O

(
1√
n

)
.

From (11), we derive

∞∑
k=1

θ2
k min(n,Nk)ρk = O

(√
n
)

and

(
∑∞

k=1 θ2
k min(n,Nk)ρk)

1/2

n3/2
= O

(
n−5/4).

Therefore, by Proposition 4,

∞∑
n=1

‖E(Sn(f )|F0)‖2

n3/2
< ∞.

This proves (iii).

5.2. Counterexample 2, proofs of (ii) and (v)

Here, we show a process which satisfies the martingale-coboundary decomposition in L
1 and the Maxwell–Woodroofe

condition but fails to satisfy the projective criterion. We consider the function f defined at (2), this time, by the
sequences

ρk = 1

4k
, Nk = k2 and θk = 2k

k
.

We have

∞∑
k=1

θ2
k ρk =

∞∑
k=1

1

k2
< ∞,

∞∑
k=1

θk

√
Nkρk =

∞∑
k=1

1

2k
< ∞ and

∞∑
k=1

θ2
k

√
Nkρk =

∞∑
k=1

1

k
= ∞.



Comparison between criteria leading to the weak invariance principle 335

By Propositions 1, 2 and 3, f belongs to L
2 and satisfies the martingale-coboundary decomposition in L

1 but not the
projective criterion.

The process (f ◦ T i)i∈Z verifies the Maxwell–Woodroofe condition. Indeed,

∞∑
k=1

θ2
k min(n,Nk)ρk =

�√n�∑
k=1

1 + n

∞∑
k=�√n�+1

1

k2
= O

(√
n
)

and, like in counterexample 1, using Proposition 4, we deduce

∞∑
n=1

‖E(Sn(f )|F0)‖2

n3/2
< ∞.

5.3. Counterexample 3, proof of (iv)

In this section our example verifies the martingale-coboundary decomposition in L
1 with the invariance principle but

not the Maxwell–Woodroofe condition. First, we consider the function f defined at (2) by the sequences

ρk = 1

4k
, Nk = 4k and θk = 2k

k3/2
.

We have

∞∑
k=1

θ2
k ρk =

∞∑
k=1

1

k3
< ∞ and

∞∑
k=1

θk

√
Nkρk =

∞∑
k=1

1

k3/2
< ∞.

This implies that f belongs to L
2 and admits a martingale-coboundary decomposition in L

1 (Propositions 1 and 2).
For the Maxwell–Woodroofe condition:

∞∑
k=1

θ2
k min(n,Nk)ρk =

�(lnn)/ln 4�∑
k=1

4k

k3
+ n

∞∑
k=�(lnn)/ln 4�+1

1

k3
≥ C

n

ln2 n
,

for some C > 0. Therefore,

∞∑
n=1

(
∑∞

k=1 θ2
k min(n,Nk)ρk)

1/2

n3/2
≥ √

C

∞∑
n=1

1

n lnn
= ∞

and by Proposition 4, the Maxwell–Woodroofe condition does not hold.
To prove (iv), it remains to show that the invariance principle holds. Actually, to do that, we will add hypotheses in

the definition of the sets Ak . All the preceding results of this section will remain valid.
We have shown that f admits a martingale-coboundary decomposition in L

1. Thus, f = m + g − g ◦ T , where
m,g ∈ L

1 and (m ◦ T i)i∈Z is a martingale difference sequence. Here, we assume that μ(T −(Nk+1)AkΔAk) ≤ εk for
all k (in Lemma 2, take Nk + 1 instead of Nk). It is clear that this assumption does not change the previous results.
Now, we can show:

Proposition 5. In the decomposition f = m + g − g ◦ T , m belongs to L
2.

By the Billingsley and Ibragimov theorem for martingale difference sequences and by the stochastic boundedness
of partial sums of g − g ◦ T , it follows:

Corollary 1. The process (f ◦ T i)i∈Z verifies the CLT.
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Proof. Actually, we shall prove that g − g ◦ T ∈ L
2. In fact, see [20], g = ∑∞

i=0 E(f ◦ T i |F0). So,

g − g ◦ T =
∞∑
i=0

E
(
f ◦ T i |F0

) −
∞∑
i=0

E
(
f ◦ T i+1|F1

)

=
∞∑

k=1

θk

(
Nk∑
i=0

e−Nk+i1T −iAk
−

Nk∑
i=0

e−Nk+i+11T −(i+1)Ak

)

=
∞∑

k=1

θk(e−Nk
− e1)1Ak

+
∞∑

k=1

θk

Nk∑
i=0

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

−
∞∑

k=1

θk

Nk∑
i=0

e−Nk+i+1(1T −(i+1)Ak\Ak
− 1Ak\T −(i+1)Ak

).

Now, by (3),∥∥∥∥∥
∞∑

k=1

θk

Nk∑
i=0

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

∥∥∥∥∥
2

≤
∞∑

k=1

θk

Nk∑
i=0

‖1T −iAkΔAk
‖2 ≤

∞∑
k=1

θkNk
√

εk < ∞. (12)

In the same way,∥∥∥∥∥
∞∑

k=1

θk

Nk∑
i=0

e−Nk+i+1(1T −(i+1)Ak\Ak
− 1Ak\T −(i+1)Ak

)

∥∥∥∥∥
2

≤
∞∑

k=1

θkNk
√

εk < ∞. (13)

By disjointness of the sets Ak , by independence of the functions e−Nk
− e1 and 1Ak

,∥∥∥∥∥
∞∑

k=1

θk(e−Nk
− e1)1Ak

∥∥∥∥∥
2

2

≤
∞∑

k=1

θ2
k ‖e−Nk

− e1‖2
2μ(Ak) ≤ 4

∞∑
k=1

θ2
k ρk < ∞. (14)

(12)–(14) lead to the proposition. �

Let vk = θk

∑Nk

i=0 e−Nk
◦ T i . For R ∈ N

∗, the quantity
∑R

k=1 ‖vk‖∞ is finite. Thus, there exists an (not necessarily
strictly) increasing sequence (Rn)n∈N → ∞ such that

1√
n

Rn−1∑
k=1

‖vk‖∞ −→
n→∞ 0. (15)

The sequence (Rn)n∈N being fixed, we construct the sets Ak in the following way. For all k, let nk be the greatest
integer such that Rnk

≤ k. To define the sets Ak , we apply Lemma 2 with (max(nk,Nk + 1))k∈N instead of (Nk)k∈N.
Again, it is easy to see that previous results remain valid. With this construction, we have the following property.

∀k ≥ Rn,∀i, j ∈ {0, . . . , n}, μ
(
T −iAkΔT −jAk

) ≤ εk. (16)

Proposition 6. The process (f ◦ T i)i∈Z verifies the invariance principle.

Proof. Since m ∈ L
2, as recalled in the Introduction, according to [21], it is enough to show that 1√

n
maxi≤n |g ◦

T i | −→
n→∞ 0 in probability. We have

g =
∞∑
i=0

E
(
f ◦ T i |F0

) =
∞∑

k=1

θk

(
Nk∑
i=0

e−Nk+i

)
1Ak

+
∞∑

k=1

θk

(
Nk∑
i=0

e−Nk+i (1T −iAk\Ak
− 1Ak\T −iAk

)

)
= g1 + g2.



Comparison between criteria leading to the weak invariance principle 337

By the Markov inequality, for all λ > 0,

μ
{

max
i≤n

∣∣g2 ◦ T i
∣∣ ≥ λ

√
n
}

≤ E(maxi≤n |g2 ◦ T i |)
λ
√

n

≤ 1

λ
√

n

∞∑
k=1

θk(Nk + 1)εk −→
n→∞ 0, by (3).

So, 1√
n

maxi≤n |g2 ◦ T i | converges to 0 in probability.

It remains to prove the same thing for g1 = ∑∞
k=1 vk1Ak

. By (15),

1√
n

max
i≤n

∣∣∣∣∣
Rn−1∑
k=1

vk ◦ T i1Ak
◦ T i

∣∣∣∣∣ ≤ 1√
n

Rn−1∑
k=1

‖vk‖∞ −→
n→∞ 0.

Hence, it converges to zero in probability.
Now, for all λ > 0, μ{maxi≤n |∑∞

k=Rn
vk ◦ T i1Ak

◦ T i | ≥ 2λ
√

n} is smaller than

μ

{
max
i≤n

∣∣∣∣∣
∞∑

k=Rn

vk ◦ T i1Ak

∣∣∣∣∣ ≥ λ
√

n

}
+ μ

{
max
i≤n

∞∑
k=Rn

∣∣vk ◦ T i
∣∣1T −iAkΔAk

≥ λ
√

n

}
.

For the first term, the Tchebychev inequality gives

μ

{
max
i≤n

∣∣∣∣∣
∞∑

k=Rn

vk ◦ T i1Ak

∣∣∣∣∣ ≥ λ
√

n

}
≤ μ

{ ∞∑
k=Rn

max
i≤n

∣∣vk ◦ T i
∣∣1Ak

≥ λ
√

n

}

≤ E((
∑∞

k=Rn
maxi≤n |vk ◦ T i |1Ak

)1/3)

λn1/6

≤
∑∞

k=Rn
θ

1/3
k (Nk + 1)1/3ρk

λn1/6
−→
n→∞ 0,

because

∞∑
k=1

θ
1/3
k N

1/3
k ρk =

∞∑
k=1

1√
k2k

< ∞.

For the second term, the Markov inequality, assumptions (16) and (3) show convergence to zero with n.
Thus, 1√

n
maxi≤n |g1 ◦ T i |−→n→∞ 0 in probability. �

(iv) is proved.

5.4. Counterexample 4, Proof of (vi)

To prove (vi), we have to improve our general model. To define our function f , in (2), we replace fk by
θk

∑2Nk

j=Nk+1 e−j and to define the sets Ak , we use Lemma 2 with 2Nk instead of Nk . Moreover, we assume that
εk is sufficiently small to have

∞∑
k=1

θkN
2
k

√
εk < ∞. (17)

We shall see that if the sequences are well chosen, then the process (f ◦ T i)i∈Z can verify the projective criterion but
not the Maxwell–Woodroofe condition.
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Proposition 7. The function f belongs to L
2 if and only if

∑∞
k=1 θ2

k Nkρk < ∞.

Proof. It suffices to see that

E

∣∣∣∣∣
∞∑

k=1

θ2
k

2Nk∑
j=Nk+1

e−j1Ak

∣∣∣∣∣
2

=
∞∑

k=1

θ2
k E

∣∣∣∣∣
2Nk∑

j=Nk+1

e−j

∣∣∣∣∣
2

μ(Ak)

and to use the independence between the ei . �

Proposition 8. If f ∈ L
2 and if

∑∞
k=1 θ2

k N2
k ρk < ∞, then (f ◦ T i)i∈Z satisfies the projective criterion.

Proof. Let Kn = ∑n
i=1 f E(f ◦ T i |F0). As in the proof of Proposition 3, using the properties of the sets Ak and (17)

we can see that ‖Kn‖1 < ∞ if and only if

E

∣∣∣∣∣
∞∑

k=1

θkf

(
n∑

i=1

2Nk∑
j=Nk+1

E(ei−j |F0)

)
1Ak

∣∣∣∣∣ < ∞.

Let us denote by Bk
n the function

∑n
i=1

∑2Nk

j=Nk+1 E(ei−j |F0). Recall that E(ei |F0) equals ei for i ≤ 0 and equals 0
for i > 0, then

• for n ≥ 2Nk ,

Bk
n = Nk

Nk−1∑
j=0

e−j +
Nk−1∑
j=0

(Nk − j)e−Nk−j ;

• for Nk < n < 2Nk ,

Bk
n =

2Nk−n∑
j=0

(n − Nk + j − 1)e−j +
Nk−1∑

j=2Nk−n+1

Nke−j +
Nk−1∑
j=0

(Nk − j)e−Nk−j ; and

• for n ≤ Nk ,

Bk
n =

n∑
j=0

(n − j)e−Nk+j +
Nk∑
j=1

min(n,Nk − j)e−Nk−j .

In each case, by independence between the ei , there exists B > 0 such that

‖Bk
n‖2 ≤ BN

3/2
k .

Thus, by the Cauchy–Schwarz inequality,

E

∣∣∣∣∣
∞∑

k=1

θkf Bk
n1Ak

∣∣∣∣∣ ≤
∞∑

k=1

θ2
k

∥∥∥∥∥
2Nk∑

j=Nk+1

e−j

∥∥∥∥∥
2

∥∥Bk
n

∥∥
2ρk ≤ B

∞∑
k=1

θ2
k N2

k ρk.

Therefore,
∑∞

k=1 θ2
k N2

k ρk < ∞ implies that Kn belongs to L
1 for all n. In the same manner, we can see that it also

implies that (Kn)n∈N is a Cauchy sequence in L
1. The details are left to the reader. �

Now, we choose the sequences in the definition of f . We take

ρk = 1

4k
, Nk = 2k and θk = 1

k
.
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Then

∞∑
k=1

θ2
k Nkρk =

∞∑
k=1

1

2kk2
< ∞ and

∞∑
k=1

θ2
k N2

k ρk =
∞∑

k=1

1

k2
< ∞.

Propositions 7 and 8 show that f belongs to L
2 and satisfies the projective criterion.

Using hypothesis (17) and the same observations as in the proof of Proposition 4, we see that the convergence of∑∞
n=1 n−3/2‖E(Sn(f )|F0)‖2 is equivalent to the convergence of

∞∑
n=1

n−3/2

( ∞∑
k=1

θ2
k E

∣∣∣∣∣
n∑

i=1

2Nk∑
j=Nk+1

E(e−j+i |F0)

∣∣∣∣∣
2

ρk

)1/2

.

For all n ≥ 2Nk ,

n∑
i=1

2Nk∑
j=Nk+1

E(e−j+i |F0) = Nk

Nk−1∑
j=0

e−j +
Nk−1∑
j=0

(Nk − j)e−Nk−j ,

and so

E

∣∣∣∣∣
n∑

i=1

2Nk∑
j=Nk+1

E(e−j+i |F0)

∣∣∣∣∣
2

≥ N3
k .

Here, Nk = 2k , so

∞∑
k=1

θ2
k E

∣∣∣∣∣
n∑

i=1

2Nk∑
j=Nk+1

E(e−j+i |F0)

∣∣∣∣∣
2

ρk ≥
�(lnn)/ln 2�−1∑

k=1

θ2
k N3

k ρk =
�(lnn)/ln 2�−1∑

k=1

2k

k2
≥ C

n

ln2 n
,

where C is a positive constant. We derive that

∞∑
n=1

‖E(Sn(f )|F0)‖2

n3/2
= ∞,

i.e., the Maxwell–Woodroofe condition does not hold and (vi) is proved.
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