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THE EMERGENCE OF THE DETERMINISTIC HODGKIN–HUXLEY
EQUATIONS AS A LIMIT FROM THE UNDERLYING

STOCHASTIC ION-CHANNEL MECHANISM

BY TIM D. AUSTIN

University of California at Los Angeles

In this paper we consider the classical differential equations of Hodgkin
and Huxley and a natural refinement of them to include a layer of stochastic
behavior, modeled by a large number of finite-state-space Markov processes
coupled to a simple modification of the original Hodgkin–Huxley PDE.
We first prove existence, uniqueness and some regularity for the stochastic
process, and then show that in a suitable limit as the number of stochastic
components of the stochastic model increases and their individual contribu-
tions decrease, the process that they determine converges to the trajectory
predicted by the deterministic PDE, uniformly up to finite time horizons in
probability. In a sense, this verifies the consistency of the deterministic and
stochastic processes.

1. Introduction: Ion channels of excitable membranes. Most neurons in
most organisms have an axon: a long, narrow conduit connecting the central,
roughly spherical part of the cell (the soma) to a network of smaller branches
and ultimately to the synapses, which form connections with other neurons (prin-
cipally at branched projections from the latter called dendrites). The axon connects
the soma to synapses that may be a great distance away (often several cm) relative
to the size of the soma or the diameter of the axon (typically a few μm). The func-
tion of the neuron relies partly on its ability to transmit signals from the soma to
other neurons over this long distance via the axon.

The nature of these signals had begun to become clear during the 1930s, but
only with Hodgkin and Huxley’s (Nobel Prize-winning) work on the mechanism
of signal transmission in the squid giant axon in the early 1950s were the first
foundations laid of an accurate mathematical model of their behavior (see [12]).

Since then Hodgkin and Huxley’s original analysis has been extended and re-
fined repeatedly. The mathematics underlying the resulting models has been stud-
ied for the sake of both more accurate numerical modeling and better theoretical
understanding. In particular, Hodgkin and Huxley’s empirical, deterministic model
has been refined to a model of the axon in which the relevant behavior arises from
the combined contributions of a large number of small stochastic components.
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Since the present paper is primarily about mathematics, we will assume famil-
iarity with the basic physiological origins of the deterministic and stochastic mod-
els (in particular, the working of voltage-dependent ion channels and the action
potential). In these terms we will give a brief motivation for the two models in
Section 2.1. However, once we have reached the definitions of the equations them-
selves further references to the physiology will be peripheral, and not important
for understanding the paper. A thorough treatment of this physiology can be found
in Hille’s classic text [11], while a more mathematical description of various such
models can be found in Cronin [2].

It is worth noting that, while the deterministic mathematical model has been
studied intensively (particularly for numerical computation purposes), the results
for the stochastic model are fairly few. As far as I am aware, the pure mathematics
behind the stochastic model considered below has never been worked out in detail.
In this paper we will prove an existence theorem for that stochastic process, and,
more interestingly, the convergence of its various components (such as the function
giving the membrane potential along the axon at a particular instant in time) to
their counterpart trajectories in the deterministic theory, uniformly up to finite time
horizons in probability.

(Results analogous to this have been obtained by Fox and Lu [9] (building on
a simulation method of DeFelice and Isaac [3]) for the case in which the mem-
brane potential is assumed constant along the entire length of the axon at each
instant. In this case the partial differential equations we will encounter simplify to
ordinary differential equations, coupled with a finite number of discrete stochastic
processes that can then be studied using the standard methods of Fokker–Planck
and Langevin equations. In fact, this simpler case corresponds more closely to the
original experimental set up of Hodgkin and Huxley, in which a fine conducting
silver wire was inserted along the axon, causing the membrane potential to adjust
to a single common value along the axon effectively instantaneously.)

The consequences of the general stochastic model have received increased in-
terest in recent efforts, first by Chow and White [1] and then Faisal, White and
Laughlin [8], to estimate how much noise the actual stochastic nature can intro-
duce to a real neuron (behavior that would not appear in the deterministic approx-
imation) and what constraints this places on the size of the axon if it is to function
reliably. We will remark more on this briefly in Section 5.

REMARK. When a suitable stimulus is applied (e.g., from the soma at one
end of the axon), exceeding a certain threshold, the trajectory of the potential dif-
ference along the axon evolves through a family of subthreshold configurations
into an action potential. After moving away from its point of origin, this trajectory
asymptotically takes the special form of a traveling wave. Although the possibil-
ity of such a traveling wave is key to the axon’s ability to transmit a signal, we
will not refer to it again in this paper. Our subsequent convergence results require
only the existence of some sufficiently regular time evolution of the system given
appropriate initial conditions.
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2. The mathematical models. In this section we describe the precise mathe-
matical models that we will study. We will assume standard notions from stochastic
analysis and PDE.

2.1. Basic components. This subsection assumes some knowledge of the
physiology of axons; the disinterested reader may skip to the definitions of the
equations in the next subsection without impediment.

In microscopic detail, the instantaneous electrical state of the axon depends on
the locations of all the ions in solution inside and outside the axon, on the loca-
tions and internal states of any molecular mechanisms at work in the axon (the
ion channels, in particular), and on various other components of the system. As
usual, we do not actually work at this level of detail, but instead make a number of
simplifications. However, there is some choice in this procedure. We will see that
heuristically the two different models to be studied arise from two different such
approximations, one coarser than the other: in particular, the stochastic model de-
scribes the working of individual ion channels, whereas the deterministic model
“averages out” their behavior, involving instead functions that describe the propor-
tion of those channels in a small neighborhood of a point that are in each possible
state.

Before explaining this difference in more detail, we will describe some simple
approximations that are made in both cases. First, although the axon is described
above as a tube (and actually has a membrane with considerable molecular struc-
ture of its own and further cellular components within the axonal fluid), its diame-
ter is so small compared with its length (typically less than 10 μm compared with
a few cm) that all the relevant quantities vary only negligibly across it, and so we
simplify the geometric description of the axon to an interval I = [−�, �]. We write
I ◦ for the interior (−�, �) of this interval.

It is worth noting that voltage-dependent ion channels embedded in a cellular
membrane seem to be involved in physiological processes other than the work-
ing of axons, sometimes in a pattern spread over a nontrivial area, rather than
the approximately-linear distribution we are assuming here. It is possible that the
analysis that follows below could be adapted to this case, but I have not tried this.
For details of such physiology see Hille [11].

Second, in both models we also approximate the distribution of the individual
ions in space by continuous concentrations, to be described by suitable PDE. How-
ever, it is possible to go further and avoid altogether the need to work with separate
data for each different kind of ion. To do this we deal instead only with the varia-
tion of membrane potential along the axon. That this contains all the information
we need follows from the further assumption that the flows of the different ions
across the axonal membrane, although enough to give rise to the relevant changes
in the membrane potential, are negligible compared with the concentration levels
that remain both inside and outside the axon. This assumption guarantees that the
concentration gradients change only negligibly during the working of the axon, and
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therefore that the effect of ion influx and efflux on membrane potential is correctly
described by an equivalent driving potential for each kind of ion. We will omit the
relevant mathematical working to establish this description here; see page 37 of
Hille [11].

Thus the state of our system is partly described by a function v : I → R giving
the value of the membrane potential at each point along the axon. Since ions can
diffuse along the axon, the variation of this function with time will also exhibit
diffusive behavior, allowing us to impose certain regularity conditions on it. For
simplicity we will assume that the diffusivity constant is 1 throughout this paper;
a simple scaling of I recovers the general case.

It will turn out to be suitable that we assume v Lipschitz and in the Sobolev
space H 1. In fact, we will assume a little more for technical simplicity. In a real
axon the equilibrium potential need not be zero; however, we can and will shift our
origin so that we can treat it as zero. We do this because we will find it helpful to
impose the condition that our functions vanish at ±� and so to restrict attention to
potential difference functions in H 1

0 (I ). If we do not make this change of origin,
then our results for such functions will certainly still be valid; the problem, rather,
is that they will no longer apply to the biophysically interesting situation.

We will write vt for the potential difference function at time t in the determinis-
tic model, and Vt for that in the stochastic model. In both cases these should evolve
following a continuous trajectory in H 1

0 (I ) (in the stochastic case, this means as a
process in this space with continuous sample paths).

Next we must decide how to model the ion channels and their effect on the
membrane potential; it is here that our two models of the axon will diverge.

We do restrict ourselves in both models to the case in which all ion channels are
identical, and can be in any of a finite set E of possible channel states. On the other
hand, it turns out that there is no great increase in difficulty if we allow several of
the possible states ξ ∈ E to allow the passage of ions with different conductivities.
In reality there are different kinds of channel for different kinds of ion, but one
finds at once that the resulting mathematical descriptions differ only in notation.
Also, in practice there is a constant leak conductivity (corresponding to ion flow
across the axonal membrane other than through channels); for simplicity we ignore
this also, as we may assume that it has been absorbed by a suitable modification of
the conductivities of our channels.

As already mentioned, to each kind of ion there corresponds an equivalent po-
tential difference which “drives” the passage of those ions either into or out of the
axon through their corresponding ion channels. Given our treatment of all chan-
nels as identical, as described above, in our model these driving potentials vξ will
actually correspond to the different possible channel states ξ ∈ E (it will follow
at once from the form of the equations that in this arrangement suitable values of
the vξ can be taken as sums of those corresponding to different types of ion, and
that in the case of a state ξ that allows no ions to flow, the value we give to vξ

will be of no consequence). In our stochastic model a channel at position x will
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jump between states ξ, ζ at random at rates αξ,ζ (V ), where V is the value of the
potential difference at the relevant point x. We will write αξ for the total rate of
leaving state ξ :αξ =∑ζ∈E αξ,ζ .

We will assume that the functions αξ,ζ are all smooth and take values between
two fixed constants in (0,∞) (this certainly holds in the actual models that are
used). I do not know to what extent this condition could be weakened in what
follows; certainly some regularity is needed, and we will use the finiteness of
Lip(αξ,ζ ) explicitly.

Write v− = minξ∈E vξ , v+ = maxξ∈E vξ , and assume that v− < 0 < v+ (this is
also true in real axons).

Now we can describe our stochastic model; in fact there will be one such model
for each N ∈ N. In the N th member of this sequence, the axon is populated by
�2N�� − 2 channels at positions 1

N
(Z ∩ NI ◦), and each has the normalized ion

conductivities 1
N

cξ corresponding to the states ξ ∈ E (the values cξ ≥ 0 being
fixed independent of N ).

We will generally write �t for the configuration of all the channels in such a
stochastic model; this is in the state space EZ∩NI ◦

. If we want to make N explicit,
we include it as a superscript, as in �

(N)
t and V(N)

t .
Our deterministic model arises heuristically as the limit of the stochastic model

with very many very small ion channels; that is, for large N . In the deterministic
model we introduce a new family of functions, pξ ∈ Lip(I, [0,1]) for ξ ∈ E, that
replicates the role of the individual-channel configurations � ∈ EZ∩NI ◦

. The value
pξ (x) is to be interpreted as “the proportion of those channels in a small neighbor-
hood of the point x that are in state ξ”; we will see that at all times

∑
ξ∈E pξ = 1.

We will write pξ,t for the proportion functions at time t ; these should all evolve
following continuous paths in Lip(I, [0,1]).

REMARKS ON NOTATION. Henceforth we will use the Sobolev spaces H 1
0

and H−1 without further comment. Many good treatments of Sobolev and other
function spaces are available in standard texts on PDE; see, for example, Chapter 5
and Section 7.1 of Evans [7].

Given a nonnegative integrable function f ∈ L1(I ) and writing μ for Lebesgue
measure on I , we denote by μ�f the indefinite-integral measure:

μ�f (Y ) =
∫
Y

f dμ.

We will also sometimes regard such measures as bounded linear functionals on
one or other function space. Given a function g in such a space and a functional μ,
we write 〈g,μ〉 for the evaluation in the obvious way.

We will write D for differentiation of differentiable functions on I and � for
the one-dimensional Laplacian D2, and will use the notation χE for the indicator
function of a set E.
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2.2. The deterministic equations. Henceforth suppose that we have v0 ∈ H 1
0

with v− ≤ v0 ≤ v+ and a family (pξ,0)ξ∈E of Lipschitz functions I → [0,1] such
that

∑
ξ∈E pξ,0 = 1 everywhere; these are our initial conditions for the determin-

istic model described in the previous subsection. We also fix now and for the rest
of the paper a finite but arbitrary time horizon T > 0.

We are now ready to make the following definition. Note that we are using
implicitly a suitable notion of weak solution for our PDE (since we ask only that
the time derivative of the trajectory be in the space of functionals H−1).

DEFINITION 2.1. A continuous function v : [0, T ] → H 1
0 (I ) and a family

(pξ )ξ∈E of continuous functions pξ : [0, T ] → Lip(I, [0,1]) will be said to satisfy
the generalized deterministic Hodgkin–Huxley equations (D) with initial condi-
tions v0, pξ,0 if

• (Regularity)

d

dt
v ∈ L2

H−1(I )
[0, T ],

d

dt
pξ ∈ L∞

C(I)[0, T ] ∀ξ ∈ E;
• (Dynamics: PDE)

d

dt
vt = �vt + ∑

ξ∈E

cξ pξ,t · (vξ − vt ) ∀t ∈ [0, T ]

[we will refer to this equation as (D-PDE)];
• (Dynamics: proportions)

d

dt
pξ,t = ∑

ζ∈E\{ξ}

(
(αζ,ξ ◦ vt ) · pζ,t − (αξ,ζ ◦ vt ) · pξ,t

) ∀ξ ∈ E, t ∈ [0, T ]

[we will refer to this system of equations as (D-prop)];
• (Initial conditions: PDE)

v0 = v0;
• (Initial conditions: proportions)

pξ,0 = pξ,0 ∀ξ ∈ E;
• (Boundary conditions: PDE only)

vt (±�) = 0 ∀t ∈ [0, T ].
REMARK. It follows at once by adding the relevant differential equations that

the sum
∑

ξ∈E pξ,t is constant, and so is always equal to 1 everywhere; this means
we remain safe in our interpretation of pξ,t as the proportion of channels in a
particular state.
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2.3. The stochastic equations. We carry over the PDE initial condition v0
from the previous subsection, but now also assume given �0 ∈ EZ∩NI ◦

, the initial
configuration of individual-channel states in the N th stochastic model.

DEFINITION 2.2. Suppose that (	,F , (Ft )0≤t≤T ,P) is a filtered probabil-
ity space satisfying the usual conditions. Given a pair (Vt ,�t )0≤t≤T of càdlàg
adapted stochastic processes such that each sample path of V is a continuous map
[0, T ] → H 1

0 (I ) and �t is in EZ∩NI ◦
for all t ∈ [0, T ], we will say that they satisfy

the N th stochastic Hodgkin–Huxley equations (SN ) with initial conditions v0, �0
if

• (Regularity) The map t �→ d
dt

Vt lies in L2
H−1(I )

[0, T ] almost surely;
• (Dynamics: PDE)

d

dt
Vt = �Vt + 1

N

∑
i∈Z∩NI ◦

c�t (i)

(
v�t (i) − Vt (i/N)

)
δi/N

∀t ∈ [0, T ], P-a.s.

[we will refer to this equation as (SN -PDE)];
• (Dynamics: jump)

P
(
�t+h(i) = ζ | �t (i) = ξ

)= αξ,ζ (Vt (i/N))h + oh↓0(h)

∀t ∈ [0, T ), h ∈ (0, T − t],
with the coordinate processes (�t+h(i))h>0 independent to first order in h as
h ↓ 0 conditional on Ft [we will refer to this system of equations and conditions
as (SN -jump)];

• (Initial conditions: PDE)

V0 = v0;
• (Initial conditions: jump)

�0 = �0;
• (Boundary conditions: PDE only)

Vt (±�) = 0 ∀t ∈ [0, T ].

2.4. The goal of this paper. Before we can state the main result of this paper
we need a little more notation. For ξ ∈ E we write Cξ,N for the map EZ∩NI ◦ →
H−1(I ) given by

Cξ,N (�) = 1

N

∑
i∈Z∩NI ◦, �(i)=ξ

δi/N
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[the Dirac deltas δi/N are readily interpreted as elements of H−1(I )]; so Cξ,N (�)

places a mass of 1/N on each point i/N ∈ I ◦ at which � is in state ξ . We refer to
it as the empirical distribution for ξ . We introduce the distributions Cξ,N for each
individual state ξ to meet the notational needs of the subsequent analysis.

We are now ready to state the result:

THEOREM 2.3. Let ε > 0, and suppose given initial conditions v0, pξ,0. Then
for any N sufficiently large, say N ≥ N1, there exists an initial condition �0 for
(SN ) so that there is some “high-probability” 	1 ⊆ 	 with P(	\	1) < ε and such
that

sup
0≤t≤T

∥∥V(N)
t − vt

∥∥
H 1

0 (I ) < ε,

sup
0≤t≤T

∥∥Cξ,N

(
�

(N)
t

)− pξ,t

∥∥
H−1(I ) < ε,

on 	1.

Colloquially, this theorem tells us that as N → ∞ the stochastic ion-channel
model of the axon gives a time-evolution of the potential difference along the axon
that converges to that given by the deterministic model, uniformly up to a given
finite time horizon, in probability.

This theorem will be proved in Section 4. The overarching idea when proving
theorems of this sort is often to find an inequality that bounds the growth rate of the
deviation in terms of the values the deviation has taken thus far; or, by integrating
this inequality, to bound the current value of the deviation in terms of some average
of the values it has taken so far. The most common formalization of this idea, and
the one we will rely on, is Gronwall’s lemma; we quickly recall this here:

PROPOSITION 2.4 (Gronwall’s lemma). Suppose T > 0 and f : [0, T ] → R

is continuous. Suppose further that there are constants A,B > 0 such that

f (t) ≤ A + B

∫ t

0
f (s) ds

for all t ∈ [0, T ]. Then f (t) ≤ AeBt for all t ∈ [0, T ].

2.5. The three scales of the models. One interesting feature of the stochastic
Hodgkin–Huxley model is that it relates behavior on three distinct scales: the flow
of charge at the scale of individual ions; the opening and shutting of ion channels
at the scale of large protein molecules; and the working of the whole axon.

The stochastic model of the ion channel is faithful at the second and third of
these, but uses a simplified description of the behavior at the first—the smallest—
as a continuum charge distribution. As is standard, the “random” movement of a
rarefied distribution of very many very small particles in a suitable medium (here
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ions in solution) is simplified to a continuum evolving in time according to a par-
abolic PDE.

In this sense the stochastic model “averages away” the random behavior at the
smallest scale. However, it retains a detailed description of the intermediate scale,
whereas the deterministic equation takes an average here also: the simultaneous
states of a great many small ion channels are forgotten, with only the proportion
of channels in each state within each small length of the axon being retained.

Thus we can think of the difference between the stochastic and deterministic
models as one of resolution: although neither model can “see” the individual ions,
the stochastic model can see single channels, whereas even these are beyond the
deterministic model. In this sense the main result of this paper is a check that if
we average out over the smallest scale to obtain the stochastic model, and then
consider a suitable limit of this to represent the vanishing size of the intermediate
scale, we recover the model obtained by averaging over both smallest and inter-
mediate scales from the start.

Some slightly unusual features of the stochastic model can be traced back to
this three-scale property of the system under study. More common applications of
Markov processes to the modeling of real-world systems need consider only two
scales, often corresponding to the smallest and largest of the above. In this simpler
case the state of the full Markov process will typically describe the complete state
of the system in terms of a (large) discrete collection of components, possibly
distributed in space; this may then have a continuum limit (often deterministic, but
sometimes still stochastic, depending on the regime) in which the small scale has
undergone averaging and so only a single, large-scale picture remains. The many
stochastic components in the full model are traded in for a more complicated large-
scale description, often based on spatially variable quantities evolving following a
PDE.

However, because we obtain our stochastic model by performing only some of
the possible averaging, not all, we are left with both a large number of stochastic
components (the ion channels), and a complicated, spatially variable deterministic
system following a PDE (the membrane potential along the axon) coupled to them.
We will find that this occasionally puts the analysis of the stochastic model slightly
beyond the reach of more routine results in either stochastic processes or PDE, and
so just a little thought is needed to combine both disciplines and obtain useful re-
sults. We will see this first when proving existence for the stochastic processes, and
again when we come to the estimates for the growth of various related stochastic
processes that we need for proving convergence.

3. Preliminary results. In the first two subsections below we discuss various
general facts about a relevant diffusion semigroup and about the sample paths of
finite-state-space Markov processes. We then move on to discuss existence and
regularity for our equations (D) and (SN ).
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3.1. A diffusion semigroup. To prove our main existence and regularity results
later in this section we will need some facts about the Feller semigroup (Pt )t≥0
corresponding to Brownian motion in I absorbed at the end-points of I .

This semigroup can help us because of the connection between diffusive PDE
and Feller diffusion processes that allows us to rewrite (D-PDE) in the integral
form

vt = Ptv0 +
∫ t

0
Pt−s

(∑
ξ∈E

cξ pξ,s · (vξ − vs)

)
ds,

and similarly for (SN -PDE). In order to use this integral representation we first
need to prove certain regularity properties of the semigroup.

LEMMA 3.1. Let y be in the interior of I . Then Ptδy is a smooth function on
I vanishing at the end-points for any t > 0. Furthermore:

1. there is some constant C1 > 0, depending on T but otherwise not on t ∈ [0, T ],
such that for any continuous function f : [0, t] → R we have that the function

I → R :x �→
∫ t

0
f (s)Pt−sδy(x) ds

is in H 1
0 (I ) and satisfies the estimate∥∥∥∥

∫ t

0
f (s)Pt−sδy(·) ds

∥∥∥∥
H 1

0 (I )

≤ C1‖f ‖∞;

2. for any fixed ε > 0 there is some constant C2(ε), depending on ε and T but
otherwise not on t ∈ [0, T ], such that for any continuous function f : [0, t] → R

we have ∥∥∥∥
∫ t−ε

0
f (s)Pt−sδy(·) ds

∥∥∥∥
H 1

0 (I )

≤ C2(ε)

∫ t−ε

0
|f (s)|ds.

for any t ∈ [0, T ].

REMARK. Note that the imposition of a fixed ε > 0 in the second estimate is
necessary; without it the result can be made to fail for any given choice of C2 by
choosing f to be zero apart from in (t −η, t), where it rapidly becomes very large,
for some sufficiently small η > 0.

PROOF OF LEMMA 3.1. By additivity we may assume f ≥ 0. One-dimen-
sional Brownian motion has the transition density

pt(x, y) = 1√
2πt

e−|x−y|2/2t ,



STOCHASTIC HODGKIN–HUXLEY EQUATIONS 1289

so that for f ∈ Cb(R) the corresponding Feller semigroup (Qt)t≥0 is given by

Qtf (x) =
∫

R

f (y)
1√
2πt

e−|x−y|2/2t μ(dy).

Now our semigroup (Pt )t≥0 corresponds to Brownian motion absorbed at the end-
points of I (see, e.g., Chapter 24 of [14]). This semigroup has the modified transi-
tion density

pI
t (x, y) = pt(x, y) − Ex

(
pt−τ (Wτ , y)χ{τ<t}

)
= pt(x, y) − Ex

(
pt−τ (�, y)χ{τ<t,Wτ =�}

)
− Ex

(
pt−τ (−�, y)χ{τ<t,Wτ =−�}

)
,

where W is our Brownian motion and τ is the hitting time of the boundary of I .
Applying Pt to the Dirac point-mass δy we recover precisely this expression for
pI

t (x, y). That Ptδy is a smooth function vanishing at the end-points of I now
follows at once.

It remains to establish the two estimates. From the above we have∫ t

0
f (s)Pt−sδy(x) ds =

∫ t

0
f (s)

1√
2π(t − s)

e−|x−y|2/2(t−s) ds

−
∫ t

0
f (s)Ex

(
pt−τ (�, y)χ{τ<t−s,Wτ =�}

)
ds

−
∫ t

0
f (s)Ex

(
pt−s−τ (−�, y)χ{τ<t−s,Wτ =−�}

)
ds.

It suffices to prove the desired regularity for each of these three integrals separately.
That both of the estimates hold with suitable constants (the second depending on
ε) for the second and third integrals is clear, since y is fixed away from ±� and so
the expressions inside the expectations Ex are uniformly bounded functions of x

with uniformly bounded equicontinuous derivatives as s varies in (0, t).
We are left with the first integral, which we break into two pieces.
First we estimate the integral over (t − ε, t). We have∣∣∣∣

∫ t

t−ε
f (s)

1√
2π(t − s)

e−|x−y|2/2(t−s) ds

∣∣∣∣
≤ ‖f ‖∞

∫ t

t−ε

1√
2π(t − s)

e−|x−y|2/2(t−s) ds,

and now, making the substitution s = t − 1/u2, this is∫ ∞
1/

√
ε

1√
2πu2

e−(u(x−y))2/2 du.

For any given ε this is clearly a smooth function of x, since the integrand over
(1/

√
ε,∞) is dominated by 1/u2. It is also clear that it converges to 0 in ‖ · ‖L2(I ),
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by dominated convergence; by nonnegativity the same is true of the original inte-
gral involving f .

We may also differentiate our integral over (t − ε, t) with respect to x under the
integral sign (except, possibly, at x = y) to obtain the new integral

−
∫ t

t−ε
f (s)

x − y√
2π(t − s)3/2

e−|x−y|2/2(t−s) ds,

which is bounded in absolute value by

‖f ‖∞
∫ t

t−ε

|x − y|√
2π(t − s)3/2

e−|x−y|2/2(t−s) ds.

Using the substitution s = t − 1/u2 again this becomes∫ ∞
1/

√
ε

|x − y|√
2π

e−(u(x−y))2/2 du.

Making the second substitution u = w/|x − y|, this becomes in turn

‖f ‖∞
1√
2π

∫ ∞
|x−y|/√ε

e−w2/2 dw

[noting the cancelation of two factors of (x − y)], which is bounded as x → y and
so is also in L2(I ) as a function of x. Another appeal to the Dominated Conver-
gence Theorem completes the proof that this tends to zero in ‖ · ‖L2(I ) as ε → 0.

Therefore for any η > 0 we can choose ε > 0 so small that∥∥∥∥
∫ t

t−ε
f (s)Pt−sδy(·) ds

∥∥∥∥
H 1

0 (I )

≤
∥∥∥∥
∫ t

t−ε
f (s)Pt−sδy(·) ds

∥∥∥∥
L2(I )

+
∥∥∥∥D
(∫ t

t−ε
f (s)Pt−sδy(·) ds

)∥∥∥∥
L2(I )

≤ ‖f ‖∞
(∥∥∥∥
∫ ∞

1/
√

ε

1√
2πu2

e−u2|(·)−y|2/2 du

∥∥∥∥
L2(I )

+
∥∥∥∥ 1√

2π

∫ ∞
|(·)−y|/√ε

e−w2/2 dw

∥∥∥∥
L2(I )

)

<
1

2
η‖f ‖∞.

Having done so, the uniform boundedness and smoothness properties of Pt−sδy(x)

(as a function of x) for s bounded away from t give at once some δ > 0 such that
if t ≤ T and ‖f ‖L1[0,T ] ≤ δ, then∥∥∥∥

∫ t−ε

0
f (s)Pt−sδy(·) ds

∥∥∥∥
H 1

0 (I )

< 1
2η.

For suitable η this is just the second estimate that we wanted, and adding to our
previous inequality gives also the first estimate. �
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3.2. Finite-state-space Markov processes. We recall here some facts about
Markov processes with a finite state space S and the corresponding space of sam-
ple paths DS[0,∞); or rather, as we will need, the space DS[0, T ] of paths taken
only up to (and at) a finite time-horizon T . This space of paths is treated compre-
hensively in Chapter 3 of Ethier and Kurtz [5].

For any complete, separable metric space S the space DS[0,∞) of càdlàg paths
from [0,∞) into S is also complete and separable when endowed with its Sko-
rohod topology; in particular, this is so if S is a finite set with its discrete metric.
The same is clearly true of our space DS[0, T ]. We will write πt for the time-t
projection map DS[0,∞) → S :ω �→ ωt . The process (πt )t≥0 is referred to as the
canonical process, and defines the canonical filtration

Ft = σ({πs : s ≤ t}).
In the case of S a finite set each path ω ∈ DS[0, T ] is completely characterized

by the following data:

• the total number N(ω) of jumps performed by the path (this is always finite);
• the sequence of numbers σj (ω) > 0, j = 1,2, . . . ,N(ω), giving the time of the

j th jump (for convenience we also set σ0 = 0, σN(ω)+1 = T );
• the sequence of states ξj , j = 0,1, . . . ,N(ω), giving the starting state for j = 0

and the landing state ωσj (ω) after the j th jump for j ≥ 1.

It is clear that all of the above define measurable (in fact, continuous) functions on
DS[0, T ].

When we come to construct a solution to our stochastic equations, we will need
the following explicit computation of the absolutely continuous change of mea-
sure on the path space DS[0, T ] implied by the Girsanov theorem in the context
of Markov processes with finite state spaces; in this sense it is an analogue of
the Cameron–Martin theorem. The required theory and calculations are treated in
Chapter III, Section 5 of Jacod and Shiryaev [13] (in a rather more general setting).

LEMMA 3.2. Suppose that P1 is a probability measure on 	 = DS[0, T ] for
which the canonical process (πt )t∈[0,T ] is a Markov process with all jump rates
equal to 1; and suppose also that for each ξ, ζ ∈ S, ξ �= ζ , we are given a progres-
sively measurable function λξ,ζ :	 × [0, T ] → [0,∞) with λξ,ζ (ω, ·) continuous
for every ω. Define h :	 → R by

h(ω) =
∏N(ω)

j=0 exp(− ∫ σj+1(ω)

σj (ω) λξj (ω)(ω, s) ds)λξj (ω),ξj+1(ω)(ω,σj+1(ω))∏N(ω)
j=0 exp(−(σj+1(ω) − σj (ω)))

= eT
N(ω)∏
j=0

exp
(
−
∫ σj+1(ω)

σj (ω)
λξj (ω)(ω, s) ds

)
λξj (ω),ξj+1(ω)(ω,σj+1(ω))
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and P = P1�h. Then under P the canonical process is a time-inhomogeneous
Markov process with jump rates λξ,ζ (ω, t) for t ∈ [0, T ], and P is the unique prob-
ability on 	 with this property.

3.3. Existence and uniqueness for the deterministic equations.

PROPOSITION 3.3. There is a unique weak solution to (D), and it satisfies
v− ≤ vt ≤ v+ for all t .

PROOF. This is a classical example of the use of fixed-point theorems and
Gronwall’s lemma in the study of nonlinear parabolic PDE, and we will not de-
scribe it here (we will see a more complicated example in the existence and unique-
ness result for the stochastic equations anyway). A thorough and readable treat-
ment is Lamberti’s [16], although the first existence and uniqueness results are for
strong solutions and go back to Evans and Shenk [6]. Note that both of these papers
give an analysis specific to the original Hodgkin–Huxley equations, with particular
forms for the states ξ and proportions pξ ; the method of analysis, however, extends
to our case immediately. �

3.4. Existence and uniqueness for the stochastic equations. Concerning the
stochastic equations, our later proof of convergence will need only a suitable form
of weak existence of solutions, and not uniqueness. However, it seems only natural
to include proofs of both existence and uniqueness here.

In constructing the process (V,�) we will need to introduce a particular under-
lying filtered probability space (	,F , (Ft )0≤t≤T ,P), even though our later con-
vergence results hold for a suitable process on any such space. We will choose
the probability space with some additional structure that allows us to interpret any
ω ∈ 	 as a driving signal from which we can (almost surely) construct a cor-
responding sample path of our desired process. Thus, the choice of a particular
filtered probability space, and the subsequent construction of a probability on it,
can be thought of as the choice of how to mimic the randomness apparent in the
real-world system.

Now, the process we want takes values in the overall state space H 1
0 (I ) ×

EZ∩NI ◦
, which is far from locally compact, and so the above construction is not

contained within the standard machinery of Feller processes: we will need to con-
struct our process with a little more care. We remark that this lack of local com-
pactness is an artifact of our model’s two different “small” scales (see Section 2.5):
the function space arises as a result of the averaging over the “very small,” and so
leaves us to cope with the infinite-dimensional topology of that function space,
while we still want to model the “fairly small” scale stochastically.

The key to our construction is to observe from the dynamics of (SN ) that, if
we already knew the final form of the process �, then for a fixed sample path
of � the evolution of the corresponding sample path of the process V would be
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deterministic. Happily, regarded just as a PDE, (SN -PDE) is a nonlinear parabolic
equation, and at the core of the theory of these is a standard procedure for proving
existence of solutions. It relies on a handful of classical fixed-point theorems for
Banach spaces and a few ways of choosing how to apply one of them to a suitable
function space. We will use a slight modification of that procedure applied ω-by-ω.

To do this, we again convert the PDE to an integral equation:

Vt = Ptv0 +
∫ t

0

1

N
Pt−s

( ∑
i∈Z∩NI ◦

c�s (v�s − Vs)δi/N

)
ds

= Ptv0 + 1

N

∑
i∈Z∩NI ◦

∫ t

0
c�s (v�s − Vs)(Pt−sδi/N) ds,

where (Pt )t≥0 is the Feller semigroup from Section 3.1.
We will apply our chosen fixed-point result to the Banach space X =

CH 1
0 (I )[0, T ]; the required differentiability properties of the function V will then

follow from the integral equation. It is worth commenting on this choice of space.
For many applications in PDE the larger space CL2(I )[0, T ], with its less restrictive
topology, would be the appropriate choice. We are forced to work with the smaller
space by the slightly unusual nature of our PDE: the right-hand term contains a
linear combination of Dirac measures, and so is not itself a function but only a
member of H−1(I ). It will turn out when we construct our map from X to itself
below that the smoothing properties of the heat semigroup are not enough to give
a continuous self-map of CL2(I )[0, T ], and so we are forced to work with the more
complicated space.

Motivated by these observations, we will attempt to construct (V,�) on the
space 	 = DEZ∩NI◦ [0, T ] of càdlàg paths from [0, T ] into EZ∩NI ◦

, regarded as
a filtered space as described in Section 3.2. We will start by defining a “simple”
probability P1 on this space, and will later obtain the desired probability P as
a suitable indefinite-integral measure with respect to P1, using Lemma 3.2. This
use of the path space makes more concrete the above-mentioned driving signal
interpretation of ω ∈ 	.

We choose our probability P1 by specifying that under it the canonical process
(πt )t∈[0,T ] is a Feller process with all jump rates between different configurations
in EZ∩NI ◦

equal to 1 (the existence of such a probability is guaranteed by the usual
theory of Feller processes).

PROPOSITION 3.4. Fix N ≥ 1 and let the filtered space (	,F , (Ft )0≤t≤T ,P)

be as above. Then the space carries a solution to (SN ) with initial conditions v0
and �0, and the law of this solution is unique.

PROOF. The proof strategy is as follows:
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1. Obtain from the integral form of (SN -PDE) an equation for the trajectory
(Vt (ω))0≤t≤T for a given input signal ω ∈ DEZ∩NI◦ [0, T ]. This equation will
then be of the form V(ω) = �(V(ω),ω) for a suitable map � :X × 	 → X.

2. Show that for each ω separately the map �ω = �(·,ω) :X → X:
(a) is continuous;
(b) has the compactness property needed for Schaefer’s Fixed-Point Theorem

(the appropriate fixed-point theorem for this proof, since we do not have
any obvious contraction mapping);

(c) has the boundedness property needed for Schaefer’s theorem;
and so obtain a nonempty set of fixed points for every ω ∈ 	. It is here that we
will need our preliminary lemmas about the semigroup (Pt )t≥0. At this point
we will also show that the trajectory V(ω) is unique, given ω.

3. Show that � :X × 	 → X is measurable, and hence that the set of pointwise
fixed points {(U,ω) :�(U,ω) = U} is measurable and has a nonempty section
above every ω ∈ 	, and apply the Measurable Selector Theorem to give the
function V.

4. Having thus obtained a suitable trajectory V(ω) for each ω, varying pro-
gressively measurably with the sample path ω in DEZ∩NI◦ [0, T ], we can use
Lemma 3.2 to write down a suitable Radon–Nikodým derivative for a new
probability P with respect to P1 so that under P the equation (SN -jump) is
also satisfied.

5. Finally, uniqueness will follow from the uniqueness for the PDE corresponding
to a single ω proved at the end of Step 2, and the uniqueness part of Lemma 3.2.

STEP 1. For each ω ∈ DEZ∩NI◦ [0, T ] we need to solve the integral equation

Vt (ω) = Ptv0 + 1

N

∑
i∈Z∩NI ◦

∫ t

0
cωs(i)

(
vωs(i) − Vs(ω)(i/N)

)
(Pt−sδi/N) ds;

we let �(V(ω),ω)t be the expression on the right-hand side.

STEP 2. Fix ω. Recall Schaefer’s Fixed-Point Theorem (see, e.g., Theorem 4
of Section 9.2.2 in Evans [7]):

SCHAEFER’S FIXED-POINT THEOREM. Suppose that X is a Banach space
and that � :X → X is a continuous map that converts bounded sequences to pre-
compact sequences. Assume further that the set

{u ∈ X :u = λ�u for some λ ∈ [0,1]}
is bounded in X. Then � has a fixed point.

We will check these relevant properties separately for � = �ω. We write �ω as

�ω(U) = Ptv0 + 1

N

∑
i∈Z∩NI ◦

�ω,i(U)
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where

�ω,i(U)t =
∫ t

0
cωs(i)

(
vωs(i) − Us(i/N)

)
(Pt−sδi/N) ds.

STEP 1 (Continuity). It suffices to prove this for each �ω,i , for which it will
follow from Lemma 3.1. Suppose U,W ∈ X. Then

�ω,i(U)t − �ω,i(W)t

=
∫ t

0

(
cωs(i)

(
vωs(i) − Us(i/N)

)
− cωs(i)

(
vωs(i) − Ws(i/N)

))
(Pt−sδi/N) ds

=
∫ t

0
cωs(i)

(
Ws(i/N) − Us(i/N)

)
(Pt−sδi/N) ds.

Since by Poincaré’s inequality the norm

sup
0≤t≤T

‖Ut − Wt‖H 1
0 (I )

is stronger than

sup
0≤t≤T

‖Ut − Wt‖∞

to within a multiplicative constant, it follows that by selecting the former suffi-
ciently small we may make the multiplier cωs(i)(vωs(i) − Ws(i/N)) of Pt−sδi/N

uniformly small in the above integrand, and so make the norm

‖�ω,i(U)t − �ω,i(W)t‖H 1
0 (I )

as small as we please uniformly in t ∈ [0, T ], by Lemma 3.1.

STEP 2 (Compactness). Here also it suffices to consider each �ω,i sepa-
rately. Compactness now follows directly from the estimates of Lemma 3.1,
which allow us to approximate the integral expression by a linear combination
of the functions Psδi/N for s taken from some sufficiently large finite subset of
(0, t).

STEP 3 (Boundedness). Suppose that U ∈ X has U = λ�ω(U) for some λ ∈
[0,1]. Writing this out more fully, it reads

Ut = λPtv0 + λ
1

N

∑
i∈Z∩NI ◦

∫ t

0
cωs(i)

(
vωs(i) − Us(i/N)

)
(Pt−sδi/N) ds.
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Hence

‖Ut‖H 1
0 (I )

≤ λ‖Ptv0‖H 1
0 (I )

+ λ
1

N

∑
i∈Z∩NI ◦

∥∥∥∥
∫ t

0
cωs(i)

(
vωs(i) − Us(i/N)

)
(Pt−sδi/N) ds

∥∥∥∥
H 1

0 (I )

≤ λ‖Ptv0‖H 1
0 (I ) + λ

1

N

∑
i∈Z∩NI ◦

∥∥∥∥
∫ t

0
cωs(i)vωs(i)(Pt−sδi/N) ds

∥∥∥∥
H 1

0 (I )

+ λ
1

N

∑
i∈Z∩NI ◦

∥∥∥∥
∫ t

0
cωs(i)Us(i/N)(Pt−sδi/N) ds

∥∥∥∥
H 1

0 (I )

.

Rather than try to bound the growth of ‖Ut‖H 1
0 (I ) directly using the above inequal-

ity, we consider the maximal function u(t) = max0≤s≤t ‖Ut‖H 1
0 (I ). By Lemma 3.1,

the first of the above sums is bounded by a fixed constant (since there are only fi-
nitely many possible values for cξ,ζ and vξ ), which can be chosen independent of
t ∈ [0, T ]. For the second sum, we break the integral in each term into two pieces:
an integral over a small interval (t − ε, t) that we can bound using the length ε of
the interval, and another over what remains that we can bound because Pt−sδi/N

is more regular there. This idea is similar to that in the proof of Lemma 3.1. We
select ε so small that

max
ξ∈E

|cξ |
∥∥∥∥
∫ t

t−ε
Pt−sδi/N ds

∥∥∥∥
H 1

0 (I )

≤ 1

2C1
,

and so, using Lemma 3.1,∥∥∥∥
∫ t

t−ε
cωs(i)Us(i/N)(Pt−sδi/N) ds

∥∥∥∥
H 1

0 (I )

≤ 1
2u(t).

Now the second estimate of Lemma 3.1 gives∥∥∥∥
∫ t−ε

0
cωs(i)Us(i/N)(Pt−sδi/N) ds

∥∥∥∥
H 1

0 (I )

≤ C2(ε)max
ξ∈E

|cξ |
∫ t−ε

0
‖Us‖∞ ds

≤ CC2(ε)max
ξ∈E

|cξ |
∫ t

0
u(s) ds,

where C is the constant so that ‖ · ‖∞ ≤ C‖ · ‖H 1
0 (I ), guaranteed by Poincaré’s

inequality. Reassembling the above inequalities, we find

‖Ut‖H 1
0 (I ) ≤ A + λB

∫ t

0
u(s) ds + λ

2
u(t),

where

A = λ‖Ptv0‖H 1
0 (I ) + λ

1

N

∑
i∈Z∩NI ◦

sup
0≤t≤T

∥∥∥∥
∫ t

0
cωs(i)vωs(i)(Pt−sδi/N) ds

∥∥∥∥
H 1

0 (I )
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and

B = CC2(ε)max
ξ∈E

|cξ |,

and so

u(t) ≤ 2A + 2B

∫ t

0
u(s) ds

(as λ ≤ 1). Now Gronwall’s lemma gives a fixed bound on u(t) for t ∈ [0, T ], and
so we have the desired bound in the space X.

COMPLETION OF STEP 2. Thus the set Yω of fixed points of �ω is nonempty
for every ω ∈ 	.

We also wish to show that the solution to our PDE (or, equivalently, integral
equation) for a fixed ω is unique, that is, that Yω is a singleton for every ω ∈ 	. This
is an easy calculation; for suppose Vj (ω) = �ω(Vj ), j = 1,2, are two solutions
for some ω. Then, taking the difference, we find that U := V1(ω)−V2(ω) satisfies

Ut = −1

N

∑
i∈Z∩NI ◦

∫ t

0
cωs(i)Us(i/N)(Pt−sδi/N) ds.

Repeating the trick of breaking (0, t) into (0, t − ε) and (t − ε, t) and applying
Lemma 3.1, as used in Step 3 above, we now obtain the estimate

‖Ut‖H 1
0 (I ) ≤ B

∫ t

0
u(s) ds + 1

2u(t),

where once again u(t) = max0≤s≤t ‖Ut‖H 1
0 (I ). Hence

u(t) ≤ B

∫ t

0
u(s) ds + 1

2u(t),

for all t ∈ [0, T ], and by Gronwall’s lemma u ≡ 0, and thus V1(ω) = V2(ω).

STEP 3. Now set

Y = {(U,ω) ∈ X × 	 : U is a fixed point for �ω}
= {(U,ω) ∈ X × 	 :�(U,ω) − U = 0}.

Since the map X × 	 → X sending (U,ω) to �(U,ω) − U is measurable, so is
the set Y ; and by Step 2, all of the sections Y ∩ (X × {ω}) = Yω are nonempty.
X is a separable Banach space, and so the Measurable Selector Theorem (for a
suitable version see, e.g., Theorem 10.1 in the Appendix to Ethier and Kurtz [5])
guarantees a measurable function V :	 → X with V(ω) ∈ Yω for all ω.
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STEP 4. Now we can obtain P as a suitable indefinite-integral measure with
respect to P1 so that (SN -jump) is satisfied. This follows from Lemma 3.2 by
taking the global jump-rates in EZ∩NI ◦

that correspond to the independent jump-
rates of single components given by (SN -jump); that is, for distinct configurations
�1,�2 ∈ EZ∩NI ◦

,

λ�1,�2(ω, t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if �1, �2 differ in two coordinates
or more,

αξ,ζ (Vt (ω)(i/N)), if �1(i) = ξ �= ζ = �2(i)

and �1, �2 agree everywhere else.

In order to apply the lemma, we need only note that the sample paths of the process
Vt are continuous and depend only on the evolution of the jump process up to time
t [from the form of the integral solution to (SN -PDE)], and so the rate processes
λ�1,�2 are continuous and progressively measurable.

STEP 5. It remains to prove uniqueness in law. Suppose now that (V0
t ,

�0
t )0≤t≤T is some solution to (SN ) on some abstract filtered space (	0,F 0,

(F 0
t )0≤t≤T ,P

0). Then, from (SN -PDE), we know that

V0
t = Ptv0 + 1

N

∑
i∈Z∩NI ◦

∫ t

0
c�0

s (i)

(
v�0

s (i)
− V0

s (i/N)
)
(Pt−sδi/N) ds

for all t ∈ [0, T ], P
0-almost surely. From the end of Step 2 above we know that

this equation specifies V0 uniquely, given the sample path �0, and therefore V0 =
V(�0), P

0-almost surely. It now follows from (SN -jump) that the law of �0 under
P

0 must have the same inhomogeneous Markov property as described for P in
Step 4, and so, by the uniqueness part of Lemma 3.2, these probability measures
must be equal. The result follows. �

3.5. Three additional regularity results. In this subsection we collect three
additional results that will be needed later.

The first is almost immediate.

PROPOSITION 3.5. Suppose v0 ∈ H 1
0 (I ), v− ≤ v0 ≤ v+, and consider (D)

with initial conditions (v0, (pξ,0)ξ∈E) and each (SN ) with initial conditions

(v0,�
(N)
0 ). Then there is some constant C3 > 0 (independent of the exact initial

conditions and of N ) such that

‖vt‖∞,
∥∥V(N)

t

∥∥∞ ≤ C3

for all N ≥ 1 and all t ∈ [0, T ].

PROOF. It follows from Proposition 3.3 that the constant maxξ∈E |vξ | itself
works for the deterministic trajectory v; it will therefore suffice to find a constant
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that works simultaneously for all of the stochastic equations. However, we have
already proved this while establishing the boundedness in Step 3 in the proof of
existence for the stochastic equations, for the constants A and B used there did not
depend on N , t ∈ [0, T ] or ω and we may just set λ = 1. This completes the proof.

�

REMARK. In fact it seems intuitively clear that C3 = maxξ∈E |vξ | should work
for the stochastic equations also, but I have not proved this.

The next result tells us a little more about the regularity of the map v:

LEMMA 3.6. Suppose v0 and pξ , ξ ∈ E, have common Lipschitz constant
K < ∞, and that v and pξ are a solution to (D). Then

sup
0≤t≤T

‖Dvt‖∞ < ∞.

REMARK. An L∞ bound such as this seems a little odd for a PDE for which
existence of solutions is most naturally studied in the Sobolev space H 1

0 (I ), and
which has a distinctly quadratic flavor owing to its diffusive nature. We will need
this L∞ estimate later as a consequence of the very specific form of the nonlinear
term in (D-PDE).

PROOF OF LEMMA 3.6. We observe first that since v : [0, T ] → H 1
0 (I ) is con-

tinuous, so is the function from [0, T ] × I → R defined by (t, y) �→ vt (y). There-
fore we do have

sup
0≤t≤T

‖vt‖∞ < ∞,

and hence also

sup
0≤t≤T

∥∥∥∥∥
∑
ξ∈E

cξ pξ,t · (vξ − vt )

∥∥∥∥∥∞ < ∞.

Now the proof makes another use of conversion to an integral equation, this
time for (D-PDE):

vt = Ptv0 +
∫ t

0
Pt−s

(∑
ξ∈E

cξ pξ,s · (vξ − vs)

)
ds

= Ptv0 + ∑
ξ∈E

cξ

∫ t

0
Pt−s

(
pξ,s · (vξ − vs)

)
ds.
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The easiest way to proceed is to appeal to the specific form for t > 0 of the
transition density pI

t (x, y) corresponding to the semigroup (Pt )t≥0, as in the proof
of Lemma 3.1:

pI
t (x, y) = 1√

2πt
e−|x−y|2/2t − Ex

(
pt−τ (�, y)χ{τ<t,Wτ =�}

)
− Ex

(
pt−τ (−�, y)χ{τ<t,Wτ =−�}

)
,

where τ is the hitting time of the boundary of I for a standard Brownian motion.
Using this, we can write for a continuous function f : I → R and x ∈ R

Ptf (x) =
∫
I
f (y)

1√
2πt

e−|x−y|2/2t μ(dy)

−
∫
I
f (y)Ex

(
pt−τ (�, y)χ{τ<t,Wτ =�}

)
μ(dy)

−
∫
I
f (y)Ex

(
pt−τ (−�, y)χ{τ<t,Wτ =−�}

)
μ(dy)

=
∫
I
f (y)

1√
2πt

e−|x−y|2/2t μ(dy)

− Ex

(∫
I
f (y)

(
pt−τ (�, y)χ{τ<t,Wτ =�}

)
μ(dy)

)

− Ex

(∫
I
f (y)

(
pt−τ (−�, y)χ{τ<t,Wτ =−�}

)
μ(dy)

)

(where the second rearrangement follows from Fubini’s theorem), and therefore∫ t

0
Pt−sf (x) ds

=
∫ t

0

∫
I
f (y)

1√
2π(t − s)

e−|x−y|2/2(t−s) μ(dy)ds

− Ex

(∫ t

0

∫
I
f (y)

(
pt−s−τ (�, y)χ{τ<t−s,Wτ =�}

)
μ(dy)ds

)

− Ex

(∫ t

0

∫
I
f (y)

(
pt−s−τ (−�, y)χ{τ<t−s,Wτ =−�}

)
μ(dy)ds

)
.

We can differentiate the first of these three terms with respect to x under the
integral sign to give∫ t

0

∫
I
f (y)

x − y√
2π(t − s)3/2

e−|x−y|2/2(t−s) μ(dy)ds
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=
∫
I
(x − y)f (y)

(∫ t

0

1√
2π(t − s)3/2

e−|x−y|2/2(t−s) ds

)
μ(dy),

and now can see that this is bounded directly, since

(x − y)

∫ t

0

1√
2π(t − s)3/2

e−|x−y|2/2(t−s) ds

is bounded as x → y by the same fixed estimate as appeared in the proof of
Lemma 3.1.

Bounds for the second and third integrals are proved by using just the same
estimates inside the expectations Ex , and the explicit form of the hitting time τ .
The result follows. �

The last result in this subsection gives us bounds on the spatial derivatives of
solutions to SN that are independent of N , giving us a certain delicate control that
will be needed later when proving convergence.

PROPOSITION 3.7. Suppose v0 ∈ H 1
0 (I ), v− ≤ v0 ≤ v+ and consider (D) with

initial conditions (v0, (pξ,0)ξ∈E) and each (SN ) with initial conditions (v0,�
(N)
0 ).

Then there is some constant C4 > 0 such that∫ t

0
‖Dvs‖2

L2(I )
ds,

∫ t

0

∥∥DV(N)
s

∥∥2
L2(I ) ds ≤ C4

for all N ≥ 1 and all t ∈ [0, T ].

PROOF. We write

d

dt

∥∥V(N)
t

∥∥2
L2(I )

= 2
〈
V(N)

t ,
d

dt
V(N)

t

〉

= 2
〈
V(N)

t ,�V(N)
t

〉+
〈
V(N)

t ,
1

N

∑
i∈Z∩NI ◦

c�t (i)

(
v�t (i) − V(N)

t (i/N)
)
δi/N

〉

= −2
∥∥DV(N)

t

∥∥2
L2(I ) +

〈
V(N)

t ,
1

N

∑
i∈Z∩NI ◦

c�t (i)

(
v�t (i) − V(N)

t (i/N)
)
δi/N

〉
,

and so, rearranging and integrating,∫ t

0

∥∥DV(N)
s

∥∥2
L2(I ) ds

= −1

2

∫ t

0

d

ds

∥∥V(N)
s

∥∥2
L2(I ) ds
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+ 1

2

∫ t

0

〈
V(N)

s ,
1

N

∑
i∈Z∩NI ◦

c�s (i)

(
v�s (i) − V(N)

s (i/N)
)
δi/N

〉
ds

≤ 1

2

(∥∥V(N)
0

∥∥2
L2(I ) − ∥∥V(N)

t

∥∥2
L2(I )

)

+ �t

(
max
ξ∈E

cξ

)
C3

(
C3 + max

ξ∈E
|vξ |

)

≤ C2
3 + �T

(
max
ξ∈E

cξ

)
C3

(
C3 + max

ξ∈E
|vξ |

)
;

now this right-hand side is a constant independent of N . The same reasoning ap-
plied to (D) gives another constant independent of N , and so we may take C4 to
be the larger of these two constants to give a simultaneous bound on∫ t

0
‖Dvs‖2

L2(I )
ds and

∫ t

0

∥∥DV(N)
s

∥∥2
L2(I ) ds. �

4. The main convergence result.

4.1. A decomposition. Suppose that (v,(pξ )ξ∈E) is a solution of (D) and that
(Vt ,�t )0≤t≤T is a solution of (SN ) for some N ≥ 1 (in this subsection we largely
suppress N in our notation, although it will be retained later when we consider
more than one value of N at once).

For each ξ ∈ E we will need to consider the process of differences (Cξ,N (�t )−
μ�pξ,t )0≤t≤T taking values in H−1(I ). We will decompose this as follows:

Cξ,N (�t ) − μ�pξ,t = Cξ,N (�0) − μ�pξ,0 +
∫ t

0
Qξ,s(�s,Vs) ds + Mξ,t ,

where

Qξ,s(�,V )

= 1

N

∑
i∈Z∩NI ◦

∑
ζ∈E\{ξ}

(
δζ,�(i)αζ,ξ (V (i/N)) − δξ,�(i)αξ,ζ (V (i/N))

)
δi/N

− μ� d

ds
pξ,s

and the above relation is taken as the definition of the process (Mξ,t )0≤t≤T . We
note that we have defined Qξ,s(�,V ) for arbitrary �, V , but that the functions
pξ,t are taken as given, and so play a part in the definition.

For the purposes of this paper, we will refer to the integral of Qξ,s(�s,Vs) as
the finite variation part of this difference process and to Mξ as the martingale
part. These names are motivated by the analogy with the definition of a Stroock–
Varadhan martingale arising from a Feller process, and are justified by Lemma 4.1
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below. However, as we have already remarked, here the underlying state space is
not locally compact, and Mξ,t takes values in the space of functionals H−1, so we
need to be careful about what we mean by martingale.

LEMMA 4.1. Suppose φ is a bounded measurable function on I and consider
the process (〈φ,Cξ,N (�t ) − μ�pξ,t 〉)0≤t≤T .

This decomposes as

〈φ,Cξ,N (�t ) − μ�pξ,t 〉 = 〈φ,Cξ,N (�0) − μ�pξ,0〉
+
∫ t

0
〈φ,Qξ,s(�s,Vs)〉ds + 〈φ,Mξ,t 〉

and (〈φ,Mξ,t 〉)0≤t≤T is an (Ft )0≤t≤T -adapted càdlàg martingale.

PROOF. Although this result can be made to fall under the general theory of
the Stroock–Varadhan martingale (see Proposition 1.7 in Chapter 4 of Ethier and
Kurtz [5]), we give the calculation here. The càdlàg property is clear. Suppose
t ∈ [0, T ) and h ∈ (0, T − t]; then

E
(〈φ,Mξ,t+h〉 − 〈φ,Mξ,t 〉 | Ft

)
= E

(〈φ,Cξ,N (�t+h) − Cξ,N (�t ) − μ�(pξ,t+h − pξ,t ) | Ft

)
−
∫ t+h

t
E(〈φ,Qξ,s(�s,Vs)〉 | Ft ) ds.

Dividing by h, letting h ↓ 0 and comparing with (D-prop) and (SN -jump), we see
at once that the derivative

d

dh
E(〈φ,Mξ,t+h〉 | Ft )|h=0

exists and equals 0; but now we can apply the Dominated Convergence Theorem
for conditional expectation to deduce that for any h0 < T − t ,

d

dh
E(〈φ,Mξ,t+h〉 | Ft )

∣∣∣∣
h=h0

= E

(
d

du
E(〈φ,Mξ,t+h0+u〉|Ft+h0)

∣∣∣∣
u=0

∣∣∣Ft

)
= 0,

and so E(〈φ,Mξ,t+h〉 | Ft ) does not depend on h and therefore equals 〈φ,Mξ,t 〉
for all h. �

Before leaving this subsection, we recall some of the standard machinery of
jump measures and compensators in the context of our decomposition. A general
treatment can be found, for example, in Chapter 22 of [14].
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Given the sample paths (�t )0≤t≤T , we define for i ∈ Z ∩NI ◦ the random jump
measures κi on (0, T ] × E by

κi = ∑
t∈(0,T ], �t (i) �=�t−(i)

δ(t,�t (i)),

and also the associated compensators νi (also measures on (0, T ] × E) by

νi(dt, dy) = ∑
ζ∈E\{�t−(i)}

α�t−(i),ζ (Vt (i/N))δζ,y dt.

Given these, we can now rewrite

Qξ,s(�,V ) = 1

N

∑
i∈Z∩NI ◦

(∫
(0,t]×E

(
δξ,y − δξ,�s−(i)

)
νi(ds, dy)

)
δi/N

− μ� d

ds
pξ,s,

and can express the martingale part of our decomposition as

Mξ,t = 1

N

∑
i∈Z∩NI ◦

(∫
(0,t]×E

(
δξ,y − δξ,�s−(i)

)
(κi − νi)(ds, dy)

)
δi/N

(note that the pξ do not enter here at all). In particular, for φ as in Lemma 4.1, we
have

〈φ,Mξ,t 〉 = 1

N

∑
i∈Z∩NI ◦

∫
(0,t]×E

φ(i/N)
(
δξ,y − δξ,�s−(i)

)
(κi − νi)(ds, dy).

The reason we have given these details is so that, when we next use this decom-
position in Section 4.3, we can call on the following standard result:

LEMMA 4.2. With φ, νi , κi as above we can evaluate the L2-norm of 〈φ,Mξ,t 〉
thus:

E(〈φ,Mξ,t 〉2) = 1

N2

∑
i∈Z∩NI ◦

∫
(0,t]×E

φ(i/N)2(δξ,y − δξ,�s−(i)

)2
νi(ds, dy).

4.2. The plan of campaign. There is a standard theory of convergence and
characterization of Markov processes. This is well developed for Feller processes
with a locally compact state space, in which case it relies on convergence criteria
for the generator of the corresponding Feller semigroup, but becomes much more
complicated and less applicable in more general metric spaces. A thorough account
of both cases can be found in Ethier and Kurtz [5]; in particular, the various more
general convergence theorems are given in Section 4.8.

In this paper we use more hands-on estimates to prove our desired form of con-
vergence; given our large state space, I do not know whether the result could be
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proved by verifying enough conditions to apply one of the above-mentioned more
general convergence theorems. The ideas we will use are motivated by a treatment
of Kurtz’s theorem which deals solely with explicit bounds on norms and prob-
abilities, developed in the first instance for the case of fluid limits of pure jump
processes, as described in [4]. This is due to Darling and Norris; Kurtz’s origi-
nal argument can be found, for example, in Kurtz [15]. In a sense, we follow an
infinite-dimensional version of the Darling–Norris argument in a function space;
this is made possible by the smoothing diffusive properties of the time-evolution
PDE that takes the place of the ODE in their theory.

Our plan of campaign for proving our main theorem is as follows:

1. Decide which quantities should converge to the deterministic behavior as N →
∞, and (importantly) in what sense they should converge: we will be working
mostly in certain function spaces and their duals, and the desired convergence
will hold only in the appropriate topology. The relevant choices are explicit in
the statement of Theorem 2.3: we measure the deviation in the potential differ-
ence functions V(N)

t and Vt by the H 1
0 -norm ‖V(N)

t − vt‖H 1
0 (I ) and the devi-

ation in the channel states by the H−1-norm ‖Cξ,N (�
(N)
t ) − μ�pξ,t‖H−1(I ).

These particular choices are not uncommon in the study of deterministic
PDE. Their motivation is certainly partly that they capture the relevant sort of
convergence—the process Cξ,N (�

(N)
t ) − μ�pξ,t can converge only in a fairly

weak sense, since a linear combination of Dirac measures can be “close to” an
absolutely continuous measure only in a weak sense—but it is also important
that we can calculate using these particular norms very easily. We will see this
in Section 4.5.

2. Having decided how to measure the deviations of the stochastic evolution from
the deterministic, we will work (quite hard) to prove either absolute bounds
or Gronwall-like growth conditions on those deviations by using properties of
the equations (D) and (SN ) and of the function spaces involved. In fact we
will prove such bounds for three different processes. First we prove an absolute
bound (in probability) on the H−1-norm of the martingale part of the difference
processes Cξ,N (�

(N)
t ) − μ�pξ,t .

3. Next we bound the growth of the H−1-norm of the finite variation part of the
difference processes Cξ,N (�

(N)
t ) − μ�pξ,t .

4. Finally we bound the growth of the difference of potentials V(N)
t − vt . In fact,

most of the work will go into bounding the L2-norm ‖V(N)
t −vt‖L2(I ), and then

combining this with the bounds on the different parts of Cξ,N (�
(N)
t ) − μ�pξ,t

to enable an application of Gronwall’s lemma. Only after an analogous version
of the main theorem has been proved with this weaker L2-estimate on V(N)

t −vt

will we bootstrap our results to give the desired H 1
0 -bound; this will follow from

standard properties of the semigroup (Pt )t≥0.

This plan will be executed fully in the subsections that follow.
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4.3. Bounding the martingale part.

LEMMA 4.3. For any φ ∈ L∞(I ) we have

E(〈φ,Mξ,t 〉2) ≤ 8� max
ξ,ζ∈E

‖αξ,ζ‖∞
‖φ‖2∞

N
t

for all t ∈ [0, T ], N ≥ 1.

REMARK. It is for the proof of this result that we introduced jump measures
and compensators in Section 4.1, as we find here that Lemma 4.2 makes our lives
very much easier.

PROOF OF LEMMA 4.3. As in Lemma 4.2:

E(〈φ,Mξ,t 〉2) = 1

N2

∑
i∈Z∩NI ◦

∫
(0,t]×E

φ(i/N)2(δξ,y − δξ,�s−(i)

)2
νi(ds, dy).

Substituting our definition of νi , this becomes

E(〈φ,Mξ,t 〉2)

= 1

N2

∑
i∈Z∩NI ◦

∑
ζ∈E\{�t−(i)}

∫
(0,t]×E

φ(i/N)2(δξ,y − δξ,�s−(i)

)2
× α�t−(i),ζ (Vt (i/N))δζ,y ds

= 1

N2

∑
i∈Z∩NI ◦

∑
ζ∈E\{�t−(i)}

∫
(0,t]

φ(i/N)2(δξ,ζ − δξ,�s−(i)

)2
× α�t−(i),ζ (Vt (i/N)) ds,

and now the given bound is clear by inspection. �

LEMMA 4.4. Fix C > 0 and suppose T > 0 and ε > 0. Then for any suffi-
ciently large N , say N ≥ N1, we can find a subset 	1 of 	 such that

P(	 \ 	1) < ε

and for any ψ ∈ H 1
0 (I ) satisfying both ‖ψ‖L2(I ) ≤ C and ‖Dψ‖L2(I ) < C we

have (
sup

0≤t≤T

|〈ψ,Mξ,t 〉|
)2

≤ ε

on all of 	1.



STOCHASTIC HODGKIN–HUXLEY EQUATIONS 1307

REMARK. This lemma tells that for sufficiently large N the martingales
〈ψ,Mξ 〉 for ψ of the form described can all be controlled simultaneously with
high probability. We will prove this by using estimates on this martingale for fi-
nitely many individual functions, and then approximating an arbitrary function by
combinations of these.

This is possible because, by the previous lemma, we can control the size of
〈ψ,Mξ,t 〉 if we know only the uniform norm ‖ψ‖∞ of ψ ; but any bounded subset
in the Sobolev space H 1

0 (I ) is compact for the uniform topology on C(I). [In-
deed, as is well known, H 1

0 (I ) embeds continuously into the space of functions
on I that are Hölder- 1

2 continuous, and so we have the equicontinuity needed to
apply the Arzelà–Ascoli theorem.] This means that, in the uniform norm, we can
approximate the whole of any bounded subset of H 1

0 (I ) with only finitely many of
its members.

PROOF OF LEMMA 4.4. Let E be the set of ψ satisfying the stated bounds.
Since 〈(−ψ),Mξ,t 〉 = −〈ψ,Mξ,t 〉 and ψ ∈ E if and only if −ψ ∈ E, it suffices to
prove the above with the last inequality replaced by(

sup
0≤t≤T

〈ψ,Mξ,t 〉
)2

≤ ε.

Since (Mξ,t )0≤t≤T is a martingale, replacing ε by ε
4 and using Doob’s L2 martin-

gale inequality shows further that it actually suffices to prove the inequality

〈ψ,Mξ,t 〉2 ≤ ε.

STEP 1. Since we can bound Cξ,N (�), μ�pξ,t and Qξ,s(�,V ) in H−1(I )

independently of N and t ∈ [0, T ], we can choose some η > 0 such that whenever
‖ψ‖∞ ≤ η, then also 〈ψ,Mξ,t 〉2 ≤ ε

4 .

STEP 2. Use the above-mentioned compact embedding to choose finitely
many φ1, φ2, . . . , φk ∈ E so that any ψ ∈ E has ‖ψ − φj‖∞ ≤ η for some j ≤ k.
Applying Lemma 4.3 to each of the functions φi , we can choose N1 ≥ 1 such that
if N ≥ N1, then we have

E(〈φi,Mξ,t 〉2) <
ε2

4k

for all t ∈ [0, T ] and for 1 ≤ i ≤ k. It follows from Chebyschev’s inequality that

P

(
〈φi,Mξ,t 〉2 ≥ ε

4
for some 1 ≤ i ≤ k, t ∈ [0, T ]

)
≤ ε;

set

	1 =
{
〈φi,Mξ,t 〉2 <

ε

4
for all 1 ≤ i ≤ k, t ∈ [0, T ]

}
.
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STEP 3. Now let ψ ∈ E, and choose j ≤ k so that ‖ψ − φj‖ ≤ η. Since 〈ψ −
φj ,Mξ,t 〉2 ≤ ε

4 , on 	1 we must have

〈ψ,Mξ,t 〉2 ≤ (|〈ψ − φj ,Mξ,t 〉| + |〈φj ,Mξ,t 〉|)2 ≤
(√

ε

2
+

√
ε

2

)2

= ε. �

COROLLARY 4.5. Suppose T > 0 and δ, ε > 0. Then for any sufficiently large
N , say N ≥ N1, we can find a subset 	1 of 	 such that

P(	 \ 	1) < ε

and

sup
0≤t≤T

‖Mξ,t‖H−1(I ) ≤ δ

on all of 	1.

4.4. Bounded growth of the finite variation part. In this subsection we will
start to tie together the processes Cξ,N (�

(N)
t ) − μ�pξ,t and V(N)

t − vt (retaining
now the superscript N ).

LEMMA 4.6. With the notation of the start of Section 3, there is a constant
C5 > 0 independent of N such that for every ξ ∈ E, � ∈ EZ∩NI ◦

and V ∈ H 1
0 (I )

‖Qξ,t (�,V )‖H−1(I ) ≤ C5
(
1 + ‖V ‖H 1

0 (I )

) ∑
ζ∈E

‖Cζ,N (�,V ) − μ�pζ,t‖H−1(I )

+ C5‖V − vt‖L2(I )

for all t ∈ [0, T ].

PROOF. Writing out more fully the definition of Qξ,t (�,V ) and expanding
using (D-prop) we have

Qξ,t (�,V )

= 1

N

∑
i∈Z∩NI ◦

∑
ζ∈E\{ξ}

(
δζ,�(i)αζ,ξ (V (i/N)) − δξ,�(i)αξ,ζ (V (i/N))

)
δi/N

− μ� d

dt
pξ,t

= 1

N

∑
i∈Z∩NI ◦

∑
ζ∈E\{ξ}

(
δζ,�(i)αζ,ξ (V (i/N)) − δξ,�(i)αξ,ζ (V (i/N))

)
δi/N

− μ�
∑

ζ∈E\{ξ}

(
(αζ,ξ ◦ vt ) · pζ,t − (αξ,ζ ◦ vt ) · pξ,t

)
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=
(

1

N

∑
i∈Z∩NI ◦

∑
ζ∈E\{ξ}

δζ,�(i)αζ,ξ (V (i/N))δi/N

− ∑
ζ∈E\{ξ}

μ�(αζ,ξ ◦ vt ) · pζ,t

)

−
(

1

N

∑
i∈Z∩NI ◦

∑
ζ∈E\{ξ}

δξ,�(i)αξ,ζ (V (i/N))δi/N

− ∑
ζ∈E\{ξ}

μ�(αξ,ζ ◦ vt ) · pξ,t

)

= ∑
ζ∈E\{ξ}

(
1

N

∑
i∈Z∩NI ◦

δζ,�(i)αζ,ξ (V (i/N))δi/N − μ�(αζ,ξ ◦ vt ) · pζ,t

)

− ∑
ζ∈E\{ξ}

(
1

N

∑
i∈Z∩NI ◦

δξ,�(i)αξ,ζ (V (i/N))δi/N − μ�(αξ,ζ ◦ vt ) · pξ,t

)
.

This has put Qξ,t into a form with which we can work: we will now consider
separately the individual terms in each sum. We will show the working for the
first; the second is treated similarly.

The term in question is

1

N

∑
i∈Z∩NI ◦

δζ,�(i)αζ,ξ (V (i/N))δi/N − μ�(αζ,ξ ◦ vt ) · pζ,t ;

let us call this Qξ,ζ,t (�,V ). Suppose that θ ∈ H 1
0 (I ) with ‖θ‖H 1

0 (I ) ≤ 1; then we
find

〈θ,Qξ,ζ,t (�,V )〉
= 1

N

∑
i∈Z∩NI ◦

δζ,�(i)αζ,ξ (V (i/N))θ(i/N) −
∫
I
θ · (αζ,ξ ◦ vt ) · pζ,t dμ

= 1

N

∑
i∈Z∩NI ◦

δζ,�(i)αζ,ξ (V (i/N))θ(i/N) −
∫
I
θ · (αζ,ξ ◦ V ) · pζ,t dμ

+
∫
I
θ · ((αζ,ξ ◦ V ) − (αζ,ξ ◦ vt )

) · pζ,t dμ.

The first line above is just

〈θ · (αζ,ξ ◦ V ),Cζ,N(�) − μ�pζ,t 〉,
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and so, bounding the first and second terms separately (using Cauchy–Schwarz for
the second),

|〈θ,Qξ,ζ,t (�,V )〉| ≤ ‖θ · (αζ,ξ ◦ V )‖H 1
0 (I ) · ‖Cζ,N (�) − μ�pζ,t‖H−1(I )

+ Lip(αζ,ξ ) · ‖θ‖∞ · √2�‖V − vt‖L2(I ).

Next we note that for any φ,ψ ∈ H 1
0 (I ) we have

D(φψ) = (Dφ)ψ + φ(Dψ), μ-a.e.;
this can be seen directly, using the fact that Dψ and Dφ both exist as the usual limit
of quotients μ-a.e. It follows that φψ ∈ H 1

0 (I ), and that we can bound ‖φψ‖2
H 1

0 (I )

in the following way:∫
I
(φψ)2 + (D(φψ))2 dμ ≤ ‖φ‖2∞‖ψ‖2

L2(I )
+
∫
I

(
(Dφ)ψ + φ(Dψ)

)2
dμ

≤ ‖φ‖2∞‖ψ‖2
L2(I )

+ 2
∫
I
((Dφ)ψ)2 dμ + 2

∫
I
(φ(Dψ))2 dμ.

Applying this with φ = θ and ψ = αζ,ξ ◦ V , we obtain

‖θ · (αζ,ξ ◦ V )‖2
H 1

0 (I )

≤ ‖θ‖2∞‖αζ,ξ ◦ V ‖2
L2

+ 2
∫
I

(
(Dθ)(αζ,ξ ◦ V )

)2 + (θ(D(αζ,ξ ◦ V )
))2

dμ

≤ ‖θ‖2∞‖αζ,ξ ◦ V ‖2
L2

+ 2‖αζ,ξ‖2∞‖Dθ‖2
L2(I )

+ ‖θ‖2∞‖D(αζ,ξ ◦ V )‖2
L2(I )

.

Now by Poincaré’s inequality the norm ‖ · ‖∞ is bounded by ‖ · ‖H 1
0 (I ) to within

a multiplicative constant; since also αζ,ξ is differentiable, Lip(αζ,ξ ) < ∞ and
‖αζ,ξ‖∞ < ∞, it follows that there is some C < ∞ for which

‖θ · (αζ,ξ ◦ V )‖2
H 1

0 (I )
≤ C2(1 + ‖V ‖2

L2(I )
+ ‖DV ‖2

L2(I )

)≤ C2(1 + ‖V ‖H 1
0 (I )

)2
whenever ‖θ‖H 1

0 (I ) ≤ 1. Replacing C by C ∨ (
√

2�maxζ,ξ∈E Lip(αζ,ξ )) if neces-
sary and substituting back into our bound for

|〈θ,Qξ,ζ,t (�,V )〉|,
we obtain

|〈θ,Qξ,ζ,t (�,V )〉|
≤ C

(
1 + ‖V ‖H 1

0 (I )

)‖Cζ,N (�) − μ�pζ,t‖H−1(I ) + C‖V − vt‖L2(I )
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when ‖θ‖H 1
0 (I ) ≤ 1. Summing over ζ ∈ E to recover the terms of our original

expression for Qξ,s(�,V ) and picking C5 = 2|E|C now gives the result. �

COROLLARY 4.7. There is a constant C6 > 0 independent of N such that the
process (Cξ,N (�

(N)
t ) − μ�pξ,t )0≤t≤T satisfies∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I )

≤ ‖Cξ,N (�0) − μ�pξ,0‖H−1(I )

+ C6

√√√√(∫ t

0

∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥2
H−1(I ) ds

)

+ C6
√

t

√∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds

+ ‖Mξ,t‖H−1(I ).

PROOF. Integrating the inequality from the previous lemma in the decompo-
sition of the difference process yields∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I )

≤ ‖Cξ,N (�0) − μ�pξ,0‖H−1(I )

+ C5

∫ t

0

∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥
H−1(I ) ds

+ C5

∫ t

0

∥∥V(N)
s

∥∥
H 1

0 (I )

∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥
H−1(I ) ds

+ C5

∫ t

0

∥∥V(N)
s − vs

∥∥
L2(I ) ds + ‖Mξ,t‖H−1(I ).

Now we apply the Cauchy–Schwarz inequality to each of the three integrals on the
right-hand side to obtain∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I )

≤ ‖Cξ,N (�0) − μ�pξ,0‖H−1(I )

+ C5
√

t

√√√√√∫ t

0

(∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥
H−1(I )

)2

ds

+ C5

√∫ t

0

∥∥V(N)
s

∥∥2
H 1

0 (I ) ds

√√√√√∫ t

0

(∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥
H−1(I )

)2

ds
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+ C5
√

t

√∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds

+ ‖Mξ,t‖H−1(I ).

Another application of the Cauchy–Schwarz inequality, this time to the sum inside
the first and second integrals, gives∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I )

≤ ‖Cξ,N (�0) − μ�pξ,0‖H−1(I )

+ C5
√

t

√√√√∫ t

0
|E|∑

ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥2
H−1(I ) ds

+ C5

√∫ t

0

∥∥V(N)
s

∥∥2
H 1

0 (I ) ds

√√√√∫ t

0
|E|∑

ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥2
H−1(I ) ds

+ C5
√

t

√∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds

+ ‖Mξ,t‖H−1(I ).

This gives the desired result with

C6 = C5
(
1 ∨ (√T +√|E|C4

))
,

where C4 is the constant from Proposition 3.7 such that∫ t

0

∥∥V(N)
s

∥∥2
H 1

0 (I ) ds ≤ C4

for all N ≥ 1 and t ∈ [0, T ]. �

The above inequality is not yet of the particular form needed to apply Gron-
wall’s lemma (since we need a Gronwall-like bound on the growth of the square
of the H−1-norm of the difference process); however, this requires only one further
(slightly brutal) manipulation.

COROLLARY 4.8. With C6 as in the previous lemma the process (Cξ,N (�
(N)
t )−

μ�pξ,t )0≤t≤T satisfies
∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥2
H−1(I )

≤ 4

(∥∥Cξ,N (�0) − μ�pξ,0
∥∥2
H−1(I )
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+ C2
6

∫ t

0

∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥2
H−1(I ) ds

+ C2
6 t

∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds + ‖Mξ,t‖2

H−1(I )

)
.

PROOF. This follows from squaring the inequality from the previous lemma
and applying the Cauchy–Schwarz inequality. �

4.5. The full result. We are now able to prove the full result (Theorem 2.3):

THEOREM 4.9. Let ε > 0, and suppose given initial conditions v0 and pξ,0.
Then for any N sufficiently large, say N ≥ N1, there exists an initial condition �0
for (SN ) so that there is some “high-probability” 	1 ⊆ 	 with P(	 \ 	1) < ε and
such that

sup
0≤t≤T

∥∥V(N)
t − vt

∥∥
H 1

0 (I ) < ε,

sup
0≤t≤T

∥∥Cξ,N

(
�

(N)
t

)− pξ,t

∥∥
H−1(I ) < ε,

on 	1.

The proof will rely on the various estimates we have made so far in the pa-
per, and so we first recall those of the relevant constants that we will need again
explicitly. There are two of these:

• C3 is a uniform bound on sup0≤t≤T ‖vt‖∞ and sup0≤t≤T ‖V(N)
t ‖∞, independent

of N ;
• C6 is such that the process (Cξ,N (�

(N)
t ) − μ�pξ,t )0≤t≤T satisfies∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥2
H−1(I )

≤ 4

(
‖Cξ,N (�0) − μ�pξ,0‖2

H−1(I )

+ C2
6

∫ t

0

∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥2
H−1(I ) ds

+ C2
6 t

∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds + ‖Mξ,t‖2

H−1(I )

)
.

PROOF OF THEOREM 2.3. The proof consists of a further sequence of esti-
mates; we break it into five steps.
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For the first four steps we lower our sights slightly to showing that for N suffi-
ciently large we can ensure the bounds

sup
0≤t≤T

∥∥V(N)
t − vt

∥∥
L2(I ) < ε,

sup
0≤t≤T

∥∥Cξ,N

(
�

(N)
t

)− pξ,t

∥∥
H−1(I ) < ε,

on some 	1 with P(	\	1) < ε; that is, our first estimate is now for ‖·‖L2(I ) rather
than ‖ · ‖H 1

0 (I ). In Step 5 we will then bootstrap from this weakened result to the
full theorem, using properties of the norms in question and the Feller semigroup
(Pt )t≥0.

STEP 1. Calculating d
dt

‖V(N)
t − vt‖2

L2(I )
from (SN -PDE) and (D-PDE),

adding the diffusion term to both sides and rearranging gives

d

dt

∥∥V(N)
t − vt

∥∥2
L2(I ) + 2

∥∥D(V(N)
t − vt

)∥∥2
L2(I )

= 2

〈
V(N)

t − vt ,
∑
ξ∈E

cξ

(
Cξ,N

(
�

(N)
t

)
�
(
vξ − V(N)

t

)− μ�pξ,t · (vξ − vt )
)〉

= −2
∑
ξ∈E

cξ

〈
V(N)

t − vt ,Cξ,N

(
�

(N)
t

)
�V(N)

t − μ�pξ,t · vt

〉

+ 2
∑
ξ∈E

cξvξ

〈
V(N)

t − vt ,Cξ,N

(
�

(N)
t

)− μ�pξ,t

〉
.

We obtain a bound on this last expression by treating the terms in these two sums
separately. First we have〈

V(N)
t − vt ,Cξ,N

(
�

(N)
t

)
�V(N)

t − μ�pξ,t · vt

〉
= 〈V(N)

t − vt ,
(
Cξ,N

(
�

(N)
t

)− μ�pξ,t

)
�V(N)

t

〉
+ 〈V(N)

t − vt ,μ�pξ,t · (V(N)
t − vt

)〉
= 〈V(N)

t

(
V(N)

t − vt

)
,Cξ,N

(
�

(N)
t

)− μ�pξ,t

〉+ 〈(V(N)
t − vt

)2
,μ�pξ,t

〉
.

We now bound these two subterms separately. The second can be bounded directly
by ‖V(N)

t − vt‖2
L2(I )

, and the first by

∥∥V(N)
t

(
V(N)

t − vt

)∥∥
H 1

0 (I )

∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I )

= ∥∥(V(N)
t − vt

)2 + vt

(
V(N)

t − vt

)∥∥
H 1

0 (I )

∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I )

≤ (∥∥(V(N)
t − vt

)2‖H 1
0 (I )
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+ ∥∥vt

(
V(N)

t − vt

)∥∥
H 1

0 (I )

)∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I ).

Hence we obtain for the sum of the two subterms∣∣〈V(N)
t − vt ,Cξ,N

(
�

(N)
t

)
�V(N)

t − μ�pξ,t · vt

〉∣∣
≤ (∥∥(V(N)

t − vt

)2∥∥
H 1

0 (I )

+ ∥∥vt

(
V(N)

t − vt

)∥∥
H 1

0 (I )

)∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I )

+ ∥∥V(N)
t − vt

∥∥2
L2(I ).

Similarly but more straightforwardly, we have for the terms in the second sum∣∣vξ

〈
V(N)

t − vt ,Cξ,N

(
�

(N)
t

)− μ�pξ,t

〉∣∣
≤ |vξ |

∥∥V(N)
t − vt

∥∥
H 1

0 (I )

∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥
H−1(I ).

Adding these two inequalities in our original equation and integrating with re-
spect to t gives∥∥V(N)

t − vt

∥∥2
L2(I ) + 2

∫ t

0

∥∥D(V(N)
t − vt

)∥∥2
L2(I ) ds

≤ ∥∥V(N)
0 − v0

∥∥2
L2(I )

+ 2
(

max
ξ∈E

cξ

)∑
ξ∈E

∫ t

0

∥∥(V(N)
s − vs

)2∥∥
H 1

0 (I )

× ∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥
H−1(I ) ds

+ 2
(

max
ξ∈E

cξ

)∑
ξ∈E

∫ t

0

∥∥vs

(
V(N)

s − vs

)∥∥
H 1

0 (I )

× ∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥
H−1(I ) ds

+ 2
(

max
ξ∈E

cξ

)∑
ξ∈E

∫ t

0
|vξ |

∥∥V(N)
s − vs

∥∥
H 1

0 (I )

× ∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥
H−1(I ) ds

+ 2
(

max
ξ∈E

cξ

)
|E|
∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds.

This is not yet in a very useful form, but to go further we will need to look first at
some parts of this expression in more detail.

STEP 2. In addition to ‖V(N)
s −vs‖H 1

0 (I ), the expressions ‖(V(N)
s −vs)

2‖H 1
0 (I )

and ‖vs(V
(N)
s −vs)‖H 1

0 (I ) have crept into our working. We do not know any bounds
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on these quantities in particular, and would like to remove them altogether; it turns
out that we can do this, using the fact that V(N)

t , vt are uniformly bounded (Propo-
sition 3.5). As in Section 4.4 we will use the inequality∫
I
(φψ)2 +(D(φψ))2 dμ ≤ ‖φ‖2∞‖ψ‖2

L2 +2
∫
I
((Dφ)ψ)2 dμ+2

∫
I
(φ(Dψ))2 dμ

for φ,ψ ∈ H 1
0 (I ).

We will apply this twice. In the first case we take ψ = φ = V(N)
t − vt to find

that ∥∥(V(N)
t − vt

)2∥∥2
H 1

0 (I ) ≤ ∥∥(V(N)
t − vt

)2∥∥2
L2(I )

+ 4
∥∥V(N)

t − vt

∥∥2
∞
∥∥D(V(N)

t − vt

)∥∥2
L2(I )

≤ ∥∥V(N)
t − vt

∥∥2
∞
(∥∥V(N)

t − vt

∥∥2
L2(I )

+ 4
∥∥D(V(N)

t − vt

)∥∥2
L2(I )

)
.

Second, we keep φ = V(N)
t − vt but take ψ = vt , to see that∥∥vt

(
V(N)

t − vt

)∥∥2
H 1

0 (I )

≤ ∥∥vt

(
V(N)

t − vt

)∥∥2
L2(I ) + 2‖Dvt‖2∞

∥∥V(N)
t − vt

∥∥2
L2(I )

+ 2‖vt‖2∞
∥∥D(V(N)

t − vt

)∥∥2
L2(I )

≤ (‖vt‖2∞ + 2‖Dvt‖2∞)
∥∥V(N)

t − vt

∥∥2
L2(I )

+ 2‖vt‖2∞
∥∥D(V(N)

t − vt

)∥∥2
L2(I ).

Here is the appearance of ‖Dvt‖∞ that we will need to bound uniformly (recall
Lemma 3.6).

STEP 3. Now we can return to our estimate from the end of Step 1. Applying
the Cauchy–Schwarz inequality there a few times, we obtain

∥∥V(N)
t − vt

∥∥2
L2(I ) + 2

∫ t

0

∥∥D(V(N)
t − vt

)∥∥2
L2(I ) ds

≤ ∥∥V(N)
0 − v0

∥∥2
L2(I )

+ 2
(

max
ξ∈E

cξ

)∑
ξ∈E

√∫ t

0

∥∥(V(N)
s − vs

)2∥∥2
H 1

0 (I ) ds

×
√∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds
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+ 2
(

max
ξ∈E

cξ

)∑
ξ∈E

√∫ t

0

∥∥vs

(
V(N)

s − vs

)∥∥2
H 1

0 (I ) ds

×
√∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds

+ 2
(

max
ξ∈E

cξ

)(
max
ξ∈E

|vξ |
)∑

ξ∈E

√∫ t

0

∥∥V(N)
s − vs

∥∥2
H 1

0 (I ) ds

×
√∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds

+ 2
(

max
ξ∈E

cξ

)
|E|
∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds.

Next we will use the AM-GM inequality on the terms comprising products of
square roots; however, we will apply it with a clever dodge well known in the study
of PDE, observing that for any a, b > 0 and any η > 0 this inequality gives us

ab ≤ ηa2 + 1

4η
b2.

(See, e.g., Section 9.1 of Evans [7].)
Applying this to the above gives, for any η > 0,

∥∥V(N)
t − vt

∥∥2
L2(I ) + 2

∫ t

0

∥∥D(V(N)
t − vt

)∥∥2
L2(I ) ds

≤ ∥∥V(N)
0 − v0

∥∥2
L2(I )

+ 2
(

max
ξ∈E

cξ

)
|E|η

∫ t

0

∥∥(V(N)
s − vs

)2∥∥2
H 1

0 (I ) ds

+ 2
(

max
ξ∈E

cξ

)∑
ξ∈E

1

4η

∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds

+ 2
(

max
ξ∈E

cξ

)
|E|η

∫ t

0

∥∥vs

(
V(N)

s − vs

)∥∥2
H 1

0 (I ) ds

+ 2
(

max
ξ∈E

cξ

)∑
ξ∈E

1

4η

∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds

+ 2
(

max
ξ∈E

cξ

)(
max
ξ∈E

|vξ |
)
|E|η

∫ t

0

∥∥V(N)
s − vs

∥∥2
H 1

0 (I ) ds

+ 2
(

max
ξ∈E

cξ

)(
max
ξ∈E

|vξ |
)∑

ξ∈E

1

4η

∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds
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+ 2
(

max
ξ∈E

cξ

)
|E|
∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds.

Combining this with the inequalities from the end of Step 2, rearranging, and tak-
ing the chance to slim down our notation a bit, it follows that there is some fixed
C7 > 0 (not depending on η) such that∥∥V(N)

t − vt

∥∥2
L2(I ) + 2

∫ t

0

∥∥D(V(N)
t − vt

)∥∥2
L2(I ) ds

≤ ∥∥V(N)
0 − v0

∥∥2
L2(I )

+ ηC7

∫ t

0

∥∥D(V(N)
t − vt

)∥∥2
L2(I ) ds

+ (1 + η)C7

∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds

+ C7

η

∑
ξ∈E

∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds.

Now we can choose η so small that 2 ≥ ηC7, and so deduce the simplified inequal-
ity ∥∥V(N)

t − vt

∥∥2
L2(I ) ≤ ∥∥V(N)

0 − v0
∥∥2
L2(I )

+ (1 + η)C7

∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds

+ C7

η

∑
ξ∈E

∫ t

0

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds;

this follows simply by dropping the terms involving ‖D(V(N)
t − vt )‖2

L2(I )
. The

whole point of introducing η was to allow us to do this; now we are left with terms
that we know more about.

STEP 4. Recall next our growth inequality for the finite variation parts of the
difference processes from Section 4.4:∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥2
H−1(I )

≤ 4

(
‖Cξ,N (�0) − μ�pξ,0‖2

H−1(I )

+ C2
6

∫ t

0

∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥2
H−1(I ) ds

+ C2
6 t

∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds + ‖Mξ,t‖2

H−1(I )

)
.
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Summing over E gives∑
ξ∈E

∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥2
H−1(I )

≤ 4

(∑
ξ∈E

‖Cξ,N (�0) − μ�pξ,0‖2
H−1(I )

+ C2
6 |E|

∫ t

0

∑
ζ∈E

∥∥Cζ,N

(
�(N)

s

)− μ�pζ,s

∥∥2
H−1(I ) ds

+ C2
6 |E|t

∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds + ∑

ξ∈E

‖Mξ,t‖2
H−1(I )

)
.

The end is now brought close with a monster application of Gronwall’s lemma.
Add the growth inequality obtained at the end of Step 3 to the above to find∥∥V(N)

t − vt

∥∥2
L2(I ) + ∑

ξ∈E

∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥2
H−1(I )

≤ ∥∥V(N)
0 − v0

∥∥2
L2(I )

+ 4
∑
ξ∈E

‖Cξ,N (�0) − μ�pξ,0‖2
H−1(I )

+ 4
∑
ξ∈E

‖Mξ,t‖2
H−1(I )

+ ((1 + η)C7 + 4C2
6 |E|t) ∫ t

0

∥∥V(N)
s − vs

∥∥2
L2(I ) ds

+
(

C7

η
+ 4C2

6 |E|
)∫ t

0

∑
ξ∈E

∥∥Cξ,N

(
�(N)

s

)− μ�pξ,s

∥∥2
H−1(I ) ds.

Letting

f (t) = ∥∥V(N)
t − vt

∥∥2
L2(I ) + ∑

ξ∈E

∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥2
H−1(I ),

we see that our above inequality implies

f (t) ≤ A + B

∫ t

0
f (s) ds,

and so (by Gronwall) f (t) ≤ AEBt , where

A = ∥∥V(N)
0 − v0

∥∥2
L2(I ) + 4

∑
ξ∈E

‖Cξ,N (�0) − μ�pξ,0‖2
H−1(I )

+ 4
∑
ξ∈E

sup
0≤t≤T

‖Mξ,t‖2
H−1(I )
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and

B = ((1 + η)C7 + 4C2
6 |E|T )∨ (C7

η
+ 4C2

6 |E|
)
.

Here B does not depend on N , but by choosing N sufficiently large we can make
A small in probability. Indeed, V(N)

0 = v0 = v0, and given ε1 > 0 we note the
following:

1. from Proposition 4.5, for all sufficiently large N , say N ≥ N1, we can find a
subset 	1 of 	 such that

P(	 \ 	1) < ε

and

4 sup
0≤t≤T

∑
ξ∈E

‖Mξ,t‖2
H−1 ≤ ε1

2

on all of 	1;
2. for all sufficiently large N , say N ≥ N2, we can choose �0 so that

4
∑
ξ∈E

‖Cξ,N (�0) − μ�pξ,0‖2
H−1 ≤ ε1

2

(this amounts to choosing N so large that we may approximate each μ�pξ,0 suf-
ficiently well with a linear combination of δi/N drawn from the same �0; it is
routine to see that this is possible). Therefore, for this choice of initial conditions
and for N at least N1 ∨ N2, we have for all t ∈ [0, T ]∥∥V(N)

t − vt

∥∥2
L2(I ),

∥∥Cξ,N

(
�

(N)
t

)− μ�pξ,t

∥∥2
H−1(I ) ≤ f (t) ≤ ε1e

BT

on the large subset 	1 ⊆ 	; choosing ε1 ≤ e−BT ε completes the proof of the
weakened estimates.

STEP 5. Finally we seek to improve our L2 convergence result for the differ-
ence of potentials V(N)−v to convergence in H 1

0 , by proving that for N sufficiently
large we actually have

sup
0≤t≤T

∥∥D(V(N)
t − vt

)∥∥
L2(I ) < ε

on 	1. It turns out that this follows quickly from what we already know and the
integral forms of (D-PDE) and (SN -PDE). Substituting from these and subtracting,
we have

D
(
V(N)

t − vt

)
= D

(∫ t

0
Pt−s

(
1

N

∑
i∈Z∩NI ◦

c�s

(
v
�

(N)
s

− V(N)
s

)
δi/N

− ∑
ξ∈E

cξ pξ,s · (vξ − vs)

)
ds

)
.
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Writing

μN = 1

N

∑
i∈Z∩NI ◦

c�s

(
v
�

(N)
s

− V(N)
s

)
δi/N ,

μ∞ = μ�
(∑

ξ∈E

cξ pξ,s · (vξ − vs)

)

and

λN = μN − μ∞
(all measures on I ), our above expression for the derivative becomes

D

∫ t

0
Pt−sλN ds.

Therefore we need to prove that

sup
0≤t≤T

∥∥∥∥D
∫ t

0
Pt−sλN ds

∥∥∥∥
L2(I )

< ε

on 	1 for N sufficiently large.
We now deploy again our trick of breaking the integral into two parts, say over

(0, t − ε2) and (t − ε2, t).
However, this time we use also two more standard observations for our Feller

semigroup (Pt )t≥0, which follow from the corresponding properties for the ordi-
nary heat kernel: first, that for some fixed C8 > 0 we have

|DPuλ(x)| ≤ C8
1√
u
Pu/2λ(x)

for any finite positive measure λ on I ; and second, that there is some C9 > 0 such
that for any u > 0 we have∫

I
|Puλ(x)|2 μ(dx) ≤ C9

1√
u
‖λ‖

[recalling that μ denotes Lebesgue measure, and writing ‖λ‖ for the usual norm
of a measure regarded as a linear functional on C(I)]. Combining these allows us
to estimate the “awkward” part of our integral: for t − ε2 < s < t and any finite
positive measure λ we have

‖DPt−sλ‖L2(I ) =
√∫

I
|DPt−sλ(x)|2 μ(dx)

≤ C8C9
1√
t − s

√∫
I

∣∣P(t−s)/2λ(x)
∣∣2 μ(dx)

≤ 2C8C9
1

(t − s)3/4 ‖λ‖.
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Hence, by the integral triangle inequality,∥∥∥∥D
∫ t

t−ε2

Pt−sλN ds

∥∥∥∥
L2(I )

≤ 2C8C9‖λN‖
∫ ε2

0

1

u3/4 du = 8C8C9‖λN‖ε1/4
2 .

Since ‖λN‖ ≤ ‖μN‖ + ‖μ∞‖ is bounded uniformly in N (since V(N)
t , vt are

bounded uniformly in N for t ∈ [0, T ]), we can choose ε2 so small that∥∥∥∥D
∫ t

t−ε2

Pt−sλN ds

∥∥∥∥
L2(I )

≤ 1
2ε

for every N , every t ∈ [0, T ] and on the whole state space 	.
On the other hand, owing to the smoothing properties of Pt−s for s < t bounded

away from t , if we choose N large enough that

sup
0≤t≤T

∥∥V(N)
t − vt

∥∥
L2(I )

and

sup
0≤t≤T

∥∥Cξ,N

(
�

(N)
t

)− pξ,t

∥∥
H−1(I )

are sufficiently small on the whole of the high-probability event 	1, then we can
ensure that we also have∥∥∥∥D

∫ t−ε2

0
Pt−sλN ds

∥∥∥∥
L2(I )

≤ 1
2ε

for any t ∈ [0, T ] and on the whole of 	1. Combining these two estimates now
gives the final result. �

5. Closing remarks.

5.1. Appropriateness of the model. It is worth remarking on other stochastic
models of nerve axons. These have tended to concentrate on using a white noise
continuously distributed along the axon to model its stochastic nature, coupled via
a suitable nonlinear parabolic PDE to the potential difference V in the same way
as for our stochastic individual ion channels. This white-noise approach leads to
a more traditional system of SPDE, for which there are corresponding existence
and uniqueness results. A good introduction to this approach is given starting at
Chapter 6 of Tuckwell [18], who also describes various stochastic approximations
that save on computational expense.

However, it is not clear that the regime in which this SPDE model is really
appropriate is very physically interesting, for in this regime the channel size must
be considered negligible even though the fluctuations caused by their stochastic
nature are not (this is the regime in which spatial white noise arises). It is arguably
more natural to build a model that takes individual ion channels into account and
then, if desired, proceed directly to the deterministic limit given by the classical
Hodgkin–Huxley equations. This is the procedure usually followed in physiology,
and with which the present paper is concerned.



STOCHASTIC HODGKIN–HUXLEY EQUATIONS 1323

5.2. Some further directions. We finish by describing some further directions
in which the rigorous analysis of the stochastic Hodgkin–Huxley equations might
be taken:

1. The existence and convergence results proved above are of more academic than
computational interest. However, they were originally motivated by a rather
more practical problem.

There has recently been growing interest in the deviation of a real axon
from the deterministic behavior predicted by the Hodgkin–Huxley theory as
a result of the stochastic nature of its components. In particular, Faisal, White
and Laughlin [8] have investigated numerically the question of whether a suf-
ficiently small axon might suffer frequent spontaneous action potentials gener-
ated by the chance event that a small number of Na+ channels in close proxim-
ity stay open longer than usual and so cause a small initial rise in the membrane
potential in their vicinity. They find that this can occur with a probability that
increases greatly as the axonal diameter drops below about 0.1 μm.

Faisal, White and Laughlin’s approach uses a purpose-coded computer sim-
ulator of axonal behavior and has a very high computational expense. It would
be valuable to have cleaner, analytic bounds on the probabilities (or, equiva-
lently, the long-term rates) of such events occurring. One might conjecture that,
in a suitable regime of many small ion channels but with time speeded up ac-
cordingly, spontaneous action potentials appear distributed roughly as a Poisson
point process in the relevant space-time band [0, T ] × I , where T is taken very
large.

Such a result could appear as a sort of large-deviation principle around a
point of equilibrium for our whole system, analogous to the analysis of metasta-
bility through large-deviation theory for finite-dimensional dynamical systems
perturbed by a weak additive noise, as developed by Freidlin and Wentzell in
[10]; however, their techniques would need some adaptation to suit the case of
an infinite-dimensional system coupled to a large discrete system, as in the sto-
chastic Hodgkin–Huxley model. The methods in the present paper do not seem
to extend so far.

In fact, this problem of determining the rate of spontaneous action potential
generation fits naturally among various other questions that can be asked about
the still-stochastic behavior of a real axon. Such a development in the special
case of this model might also take into account the different relative effects of
the noise in the system while it is undergoing different behavior: in particular,
it seems that for realistic channel-numbers on patches of the axonal membrane
there is much greater noise around local sub-threshold behavior (as when at
equilibrium) than super-threshold potentials (as during the transmission of the
front of an action potential). Relatedly, this analysis might also consider the
possible deterioration of an action potential in the stochastic model, for which
a strict solitary wave solution may not exist. Finally, we mention that Stein-
metz, Manwani and Koch [17] have recently studied the reliability in the times
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of the spikes output by a neuron considered as a transmission of the input times
by modeling a small patch of ion channels using the (nonspatial) stochastic
Hodgkin–Huxley model (they also conduct a similar investigation of an alter-
native, the “integrate-and-fire” model). As they remark more generally,

“The stochastic Markov version of the HH model converges to the classical, de-
terministic model as the number of channels grows large, but for realistic channel
numbers, the stochastic model can exhibit a wide variety of behaviors (spontaneous
spiking, bursting, chaos, and so on) that cannot be observed in deterministic model
. . . ”

It remains to be seen to what extent a more analytic treatment can be given of
these different behaviors.

2. The model analyzed in this paper ignores possible external effects acting on
the axon. A separate task which might be of interest is to perform the analysis
of convergence in the case of an axon subject to some stimulus: for example,
the arrival of a signal from the soma along the axon, modeled by changing
the boundary conditions of our PDE (so that a particular input arrives at the
soma end, and the conditions at the other end are free), or the application of
a trans-membrane current along the length of the axon, as is sometimes used
in experiments to stimulate an action potential. These stimuli could themselves
be deterministic or stochastic; in the former case, one would expect the be-
havior of the stochastic model to converge to the trajectory of an appropriately
modified PDE, while in the latter, even the limit model would have stochastic
components.

For deterministic inputs, it seems likely that the methods of the present paper
could still be brought to bear. However, the details of the estimates needed
for the proofs both of existence and regularity and then of convergence might
become considerably more complicated, and we have not tried to work out the
details. In the case of stochastic inputs, some further modification of the “hands-
on” convergence machinery of Darling and Norris [4], as we have adapted it to
our needs in this paper, would be needed, possibly using a suitable coupling of
the full stochastic model and the limiting stochastic model as N → ∞.

3. A different modification of the models studied in this paper would be to work
over a membrane regarded as a two-dimensional surface. This could both in-
crease the accuracy of the model studied here (recall our early simplifying as-
sumption to treat the axon as a line segment rather than a cylinder), and possibly
give an analogous account in the case of other, two-dimensional excitable mem-
branes that appear in physiology (see, e.g., Hille [11]). As for the second exten-
sion mentioned above, it seems likely that the basic methods of this paper would
still be useful, but in this case the required estimates would probably become
much more difficult, and depend strongly on the underlying two-dimensional
geometry (as far as we know, even the purely deterministic model has not been
rigorously analyzed in this setting).
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