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MULTISOURCE BAYESIAN SEQUENTIAL CHANGE DETECTION

BY SAVAS DAYANIK,1 H. VINCENT POOR2 AND SEMIH O. SEZER2

Princeton University, Princeton University and University of Michigan

Suppose that local characteristics of several independent compound Pois-
son and Wiener processes change suddenly and simultaneously at some unob-
servable disorder time. The problem is to detect the disorder time as quickly
as possible after it happens and minimize the rate of false alarms at the same
time. These problems arise, for example, from managing product quality in
manufacturing systems and preventing the spread of infectious diseases. The
promptness and accuracy of detection rules improve greatly if multiple inde-
pendent information sources are available. Earlier work on sequential change
detection in continuous time does not provide optimal rules for situations
in which several marked count data and continuously changing signals are
simultaneously observable. In this paper, optimal Bayesian sequential detec-
tion rules are developed for such problems when the marked count data is in
the form of independent compound Poisson processes, and the continuously
changing signals form a multi-dimensional Wiener process. An auxiliary op-
timal stopping problem for a jump-diffusion process is solved by transform-
ing it first into a sequence of optimal stopping problems for a pure diffusion
by means of a jump operator. This method is new and can be very useful in
other applications as well, because it allows the use of the powerful optimal
stopping theory for diffusions.

1. Introduction. Suppose that at some unobservable disorder time �, the lo-
cal characteristics of several independent compound Poisson and Wiener processes
undergo a sudden and simultaneous change. More precisely, the pairs (λ

(i)
0 , ν

(i)
0 ),

1 ≤ i ≤ m, consisting of the arrival rate and mark distribution of m compound
Poisson processes (T

(i)
n ,Z

(i)
n )n≥1, 1 ≤ i ≤ m, become (λ

(i)
1 , ν

(i)
1 ), 1 ≤ i ≤ m, and d

Wiener processes W
(j)
t , 1 ≤ j ≤ d gain drifts μ(j), 1 ≤ j ≤ d at time �.

We assume that � is a random variable with the zero-modified exponential dis-
tribution

P{� = 0} = π and P{� > t} = (1 − π)e−λt , t ≥ 0,(1.1)
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and (λ
(i)
0 , ν

(i)
0 )1≤i≤m, (λ

(i)
1 , ν

(i)
1 )1≤i≤m, (μ(j))1≤j≤d , π , and λ are known. The ob-

jective is to detect the disorder time � as soon as possible after disorder happens
by using the observations of (T

(i)
n ,Z

(i)
n )n≥1, 1 ≤ i ≤ m, and

X
(j)
t = X

(j)
0 + μ(j)(t − �)+ + W

(j)
t , t ≥ 0,1 ≤ j ≤ d.

More precisely, if F = {Ft }t≥0 denotes the observation filtration, then we would
like to find, if it exists, an F-stopping time τ whose Bayes risk

Rτ (π) � P{τ < �} + cE(τ − �)+, 0 ≤ π < 1(1.2)

is the smallest for any given constant cost parameter c > 0 and calculate its Bayes
risk. If such a stopping time exists, then it provides the best trade-off between false
alarm frequency P{τ < �} and expected detection delay cost cE(τ − �)+.

Important applications of this problem are the quickest detection of manufac-
turing defects during product quality assurance, online fault detection and iden-
tification for condition-based equipment maintenance, prompt detection of shifts
in the riskiness of various financial instruments, early detection of the onset of an
epidemic to protect public health, quickest detection of a threat to homeland secu-
rity, and online detection of unauthorized access to privileged resources in the fight
against fraud. In many of those applications, a range of data, changing over time ei-
ther continuously or by jumps or both, are collected from multiple sources/sensors
in order to detect a sudden unobserved change as quickly as possible after it hap-
pens, and the problems can be modeled as the quickest detection of a change in the
local characteristics of several Wiener and compound Poisson processes. For ex-
ample, in condition-based maintenance, an equipment is monitored continuously
by a web of sensors for both continuously-changing data (such as oil level, tem-
perature, pressure) and marked count data (e.g., number, size and type of wear
particles in the oil); see Byington and Garga [6]. For the assessment of financial
risks of an electricity delivery contract, the spot price of electricity is sometimes
modeled by a jump-diffusion process; see, for example, Weron, Bierbrauer and
Trück [18] and Cartea and Figueroa [7].

In the past, the Bayesian sequential change-detection problems have been stud-
ied for Wiener processes by Shiryaev [17, Chapter 4] and for Poisson processes by
Peskir and Shiryaev [15, 14], Gapeev [10], Bayraktar, Dayanik and Karatzas [2,
3] and Dayanik and Sezer [9], but have never been considered for the combination
of Wiener and Poisson processes. Clearly, an unobserved change can be detected
more accurately if there are multiple independent sources of information about the
disorder time. If all of the information sources consist of exclusively either Wiener
or Poisson process observations, then the problem can be solved by applying the
results of Shiryaev ([17], Chapter 4) in the Wiener case and Dayanik and Sezer [9]
in the Poisson case to a weighted linear combination or superposition of all obser-
vation processes; see Section 5. If Wiener and Poisson processes can be observed
simultaneously, then previous work does not provide an answer; the solution of the
problem in this case is the current paper’s contribution.
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We solve the problem in detail for m = d = 1, namely, when we observe exactly
one Wiener and one Poisson process simultaneously; in Section 5 we show the easy
extension to multiple Wiener and multiple Poisson processes. Therefore, except in
Section 5, we drop all of the superscripts in the sequel. We show that the first time
τ[φ∞,∞) � inf{t ≥ 0;�t ≥ φ∞} that the conditional odds-ratio process

�t � P{� ≤ t | Ft }
P{� > t | Ft } , t ≥ 0(1.3)

enters into some half-line [φ∞,∞) ⊂ R+ gives the smallest Bayes risk. To calcu-
late the critical threshold φ∞ and the minimum Bayes risk, we reduce the original
problem to an optimal stopping problem for the process �, which turns out to
be a jump-diffusion jointly driven by the Wiener and point processes; see (2.8)
for its dynamics. The value function of the optimal stopping problem satisfies
certain variational inequalities, but they involve a difficult second order integro-
differential equation.

We overcome the anticipated difficulties of directly solving the variational in-
equalities by introducing a jump operator. By means of that operator, we transform
the original optimal stopping problem for the jump-diffusion process � into a se-
quence of optimal stopping problems for the diffusion part Y of the process � be-
tween its successive jumps. This decomposition allows us to employ the powerful
optimal stopping theory for one-dimensional diffusions to solve each sub-problem
between jumps. The solutions of those sub-problems are then combined by means
of the jump operator, whose role is basically to incorporate new information about
disorder time arriving at jump times of the point process.

Solving optimal stopping problems for jump-diffusion processes by separat-
ing jump and diffusion parts with the help of a jump operator seems new and
may prove to be useful in other applications, too. Our approach was inspired by
several personal conversations with Professor Erhan Çinlar on better ways to cal-
culate the distributions of various functionals of jump processes. For Professor
Çinlar’s interesting view on this more general matter, his recent lecture [8] in
honor of the 2006 Blackwell–Tapia prize recipient, Professor William Massey,
in the Blackwell–Tapia conference, held between 3–4 November 2006, may be
consulted.

In Section 2 we start our study by giving the precise description of the detection
problem and by modeling it under a reference probability measure; the equiva-
lent optimal stopping problem is derived, and the conditional odds-ratio process
is examined. In Section 3 we introduce the jump operator. By using it repeatedly,
we define “successive approximations” of the optimal stopping problem’s value
function and identify their important properties. Their common structure is in-
herited in the limit by the value function and is used at the end of Section 4 to
describe an optimal alarm time for the original detection problem. Each succes-
sive approximation is itself the value function of some optimal stopping problem,
but now for a diffusion, and their explicit calculation is undertaken in Section 4.



MULTISOURCE BAYESIAN SEQUENTIAL CHANGE DETECTION 555

The successive approximations converge uniformly and at an exponential rate to
the original value function. Therefore, they are built into an efficient and accu-
rate approximation algorithm, which is explained in Section 6 and illustrated on
several examples. Examples suggest that observing Poisson and Wiener processes
simultaneously can reduce the Bayes risk significantly. Baron and Tartakovsky [1]
have recently derived asymptotic expansions of both optimal critical threshold and
minimum Bayes risk as the detection delay cost c tends to zero. In Section 6 we
have compared in one of the examples those expansions to the approximations of
actual values calculated by our numerical algorithm. Finally, some of the lengthy
calculations are deferred to the Appendix.

2. Problem description and model. Let (	,F ,P) be a probability space
hosting a marked point process {(Tn,Zn);n ≥ 1} whose (E,E)-valued marks Zn,
n ≥ 1 arrive at times Tn, n ≥ 1, a one-dimensional Wiener process W , and a ran-
dom variable � with distribution in (1.1). The counting measure

p((0, t] × A)) �
∞∑

n=1

1(0,t]×A(Tn,Zn), t ≥ 0,A ∈ E

generates the internal history Fp = {F p}t≥0,

F
p
t � σ {p((0, s] × A);0 ≤ s ≤ t,A ∈ E},

of the marked point process {(Tn,Zn);n ≥ 1}. At time �, (i) the drift of the Wiener
process W changes from zero to μ, and (ii) the (P,Fp)-compensator of the count-
ing measure p(dt × dz) changes from λ0 dtν0(dz) to λ1 dtν1(dz). The process W

is independent of � and (Tn,Zn)n≥1. Neither W nor � are observable. Instead,

Xt = X0 + μ(t − �)+ + Wt, t ≥ 0

and {(Tn,Zn);n ≥ 1} are observable. The observation filtration F = {Ft }t≥0 con-
sists of the internal filtrations of X and (Tn,Zn)n≥1; that is,

Ft � F X
t ∨ F

p
t and F X

t � σ {Xs;0 ≤ s ≤ t} for every t ≥ 0.

If we enlarge F by the information about � and denote the enlarged filtration by
G = {Gt }t≥0,

Gt � Ft ∨ σ {�}, t ≥ 0,

then for every nonnegative G-predictable process {H(t, z)}t≥0 indexed by z ∈ E,
we have

E
[∫

(0,∞)×E
H(s, z)p(ds × dz)

]
= E

[∫ ∞
0

∫
E

H(s, z)λ(s, dz) ds

]
,

where E is the expectation with respect to P, and

λ(s, dz) � λ0ν0(dz)1[0,�)(s) + λ1ν1(dz)1[�,∞)(s), s ≥ 0,
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is the (P,G)-intensity kernel of the counting measure p(dt ×dz); see Brémaud [5],
Chapter VIII.

The rates 0 < λ,λ0, λ1 < ∞, the drift μ ∈ R \ {0}, and the probability measures
ν0(·), ν1(·) on (E,E) are known. The objective is to find a stopping time τ of
the observation filtration F with the smallest Bayes risk Rτ (π) in (1.2) for every
π ∈ [0,1).

Model. Let (	,F ,P0) be a probability space hosting the following indepen-
dent stochastic elements:

(i) a one-dimensional Wiener process X = {Xt ; t ≥ 0},
(ii) an (E,E)-valued marked point process {(Tn,Zn);n ≥ 1} whose counting

measure p(dt × dz) has (P0,Fp)-compensator λ0 dt ν0(dz),
(iii) a random variable � with zero-modified exponential distribution

P0{� = 0} = π, P0{� > t} = (1 − π)e−λt , t ≥ 0.(2.1)

Suppose that ν1(·) is absolutely continuous with respect to ν0(·) and has the
Radon–Nikodym derivative

f (z) � dν1

dν0

∣∣∣∣
E
(z), z ∈ E.(2.2)

Define a new probability measure P on G∞ = ∨
t≥0 Gt locally by means of the

Radon–Nikodym derivative of its restriction to Gt ,

dP
dP0

∣∣∣∣
Gt

= ξt � 1{t<�} + 1{t≥�}
Lt

L�

, t ≥ 0,

where

Lt � exp
{
μXt −

(
μ2

2
+ λ1 − λ0

)
t

} ∏
n:0<Tn≤t

(
λ1

λ0
f (Zn)

)
, t ≥ 0(2.3)

is a likelihood-ratio process with the dynamics L0 = 1, and

dLt = LtμdXt + Lt−
∫
E

(
λ1

λ0
f (z) − 1

)
[p(dt × dz) − λ0 dt ν0(dz)],

(2.4)
t ≥ 0.

Under the probability measure P, the processes X and {(Tn,Zn);n ≥ 1} and the
random variable � jointly have exactly the same properties as in the above de-
scription of the problem. Moreover, the minimum Bayes risk U(·) can be written
as

U(π) � inf
τ∈F

Rτ (π) = 1 − π + c(1 − π)V

(
π

1 − π

)
, π ∈ [0,1)(2.5)
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in terms of the value function

V (φ) � inf
τ∈F

Eφ
0

[∫ τ

0
e−λtg(�t) dt

]
, φ ≥ 0, where g(φ) � φ − λ

c
(2.6)

of the optimal stopping problem above for the conditional odds-ratio process �

in (1.3); see, for example, Bayraktar, Dayanik and Karatzas [2, Proof of Proposi-
tion 2.1]. In (2.6), the expectation Eφ

0 is taken with respect to P0 conditionally on
�0 = φ ≥ 0. Bayes formula gives for every t ≥ 0 that

�t = E0[ξt1{�≤t} | Ft ]
E0[ξt1{�>t} | Ft ]

= E0[(Lt/L�)1{�≤t} | Ft ]
P0{� > t}(2.7)

= �0e
λtLt +

∫ t

0
λeλ(t−s) Lt

Ls

ds;

by the chain rule and dynamics in (2.4) of the likelihood-ratio process L we find
that

d�t = (λ + a�t) dt + �tμdXt

(2.8)

+ �t−
∫
E

(
λ1

λ0
f (z) − 1

)
p(dt × dz), t ≥ 0,

where

a � λ − λ1 + λ0.

Let us define for every k ≥ 0 that T0 = T
(k)

0 ≡ 0, and

X(k)
u � XTk+u − XTk

, u ≥ 0,(
T

(k)
� ,Z

(k)
�

)
� (Tk+� − Tk,Zk+�), � ≥ 1,

F (k)
0 � σ {(Tn,Zn),1 ≤ n ≤ k} ∨ σ {Xv,0 ≤ v ≤ Tk},

F (k)
u � F (k)

0 ∨ σ
{(

T
(k)
� ,Z

(k)
�

);0 < T
(k)
� ≤ u

}∨ σ
{
X(k)

v ,0 ≤ v ≤ u
}
,

u ≥ 0,

L(k)
u � LTk+u

LTk

= exp
{
μX(k)

u −
(

μ2

2
+ λ1 − λ0

)
u

} ∏
� : 0<T

(k)
� ≤u

(
λ1

λ0
f
(
Z

(k)
�

))
,

u ≥ 0.
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Then, as in (2.7), we have

�t = �Tk
eλ(t−Tk)L

(k)
t−Tk(2.9)

+
∫ t−Tk

0
λeλ(t−Tk−u)

L
(k)
t−Tk

L
(k)
u

du, t ≥ Tk, k ≥ 0,

and X(k) = {X(k)
u , u ≥ 0} is a (P0, {F (k)

u }u≥0)-Wiener process and P0-independent
of the marked point process {(T (k)

� ,Z
(k)
� );� ≥ 1}, whose local (P0, {F (k)

u }u≥0)-

characteristics are (λ0, ν0(·)) for every k ≥ 0, since X(0) ≡ X, {(T (0)
� ,Z

(0)
� )}�≥1 ≡

{(Tn,Zn)}n≥1, and {F (0)
t }t≥0 ≡ F. Thus, the first of two implications of (2.9) is

that for every Borel h : R+ 	→ R+ we have

Eφ
0

[
h(�t)1{t≥Tk} | FTk

]= 1{t≥Tk}E
�Tk

0 [h(�v)]|v=t−Tk
, k ≥ 0,

which also follows from the strong Markov property of the process � applied at
the stopping time Tk of the filtration F. To state the second implication, let us
introduce the processes

Y k,y
u = yeλu exp

{
μX(k)

u −
(

μ2

2
+ λ1 − λ0

)
u

}
+
∫ u

0
λeλ(u−s) exp

{
μ
(
X(k)

u − X(k)
s

)
(2.10)

−
(

μ2

2
+ λ1 − λ0

)
(u − s)

}
ds

for every u, k, y ≥ 0, which is (2.9) with u = t − Tk and y = �Tk
after all of

future jumps are stripped away. Then for every k ≥ 0, the process {Y k,y
u , u ≥ 0} is

a diffusion on R+ with the dynamics

dY
k,y
t = (λ + aY

k,y
t ) dt + μY

k,y
t dX

(k)
t , t ≥ 0 and

(2.11)
Y

k,y
0 = y ≥ 0, k ≥ 0.

Since X(0) ≡ X, we shall drop the superscript 0 from Y 0,y and denote that process
by Yy . Because for every k ≥ 0, X(k) is a Wiener process, the processes Y k,y ,
k ≥ 0 and Yy have the same finite-dimensional distributions, and (2.9) implies that

�t =
⎧⎪⎨⎪⎩

Y
k,�Tk

t−Tk
, t ∈ [Tk, Tk+1),

λ1

λ0
f (Zk+1)�t−, t = Tk+1.

(2.12)

The superscript k in Y
k,�Tk

t−Tk
≡ Y

k,y
u |y=�Tk

,u=t−Tk
indicates that, when {Y k,y

u ;u ≥
0} is calculated according to (2.10) or (2.11), the increments of the driving Wiener

process {X(k)
u ;u ≥ 0} are those of the process X after the kth arrival time Tk of the

marked point process.
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3. Jump operator. Let us now go back to the optimal stopping problem in
(2.6). By (2.12), we have �t = Y

0,�0
t ≡ Y

�0
t for 0 ≤ t < T1. This suggests that

every F-stopping time τ coincides on the event {τ < T1} with one of the stopping
times of the process Y�0 . On the other hand, the process � regenerates at time T1

starting from its new position �T1 = (λ1/λ0)f (Z1)Y
�0
T1

. Moreover, on the event

{τ > T1}, the expected total running cost Eφ
0 [∫ T1

0 e−λtg(Y
�0
t ) dt] incurred until

time T1 is sunken at time T1, and the smallest Bayes risk achievable in the future
should be V (�T1) independent of the past. Hence, if we define an operator J acting
on the bounded Borel functions w : R+ 	→ R according to

(Jw)(φ) � inf
τ∈FX

Eφ
0

[∫ τ∧T1

0
e−λtg(�t) dt + 1{τ≥T1}e−λT1w(�T1)

]
,

(3.1)
φ ≥ 0,

then we expect that V (φ) = (JV )(φ) for every φ ≥ 0. In the next section we prove
that V (·) is indeed a fixed point of w 	→ Jw, and if we define vn : R+ 	→ R, n ≥ 0,
successively by

v0(·) ≡ 0 and vn+1(·) � (Jvn)(·), n ≥ 0,(3.2)

then {vn(·)}n≥1 converges to V (·) uniformly. This result will allow us to describe
not only an optimal strategy, but also a numerical algorithm that approximates the
optimal strategy and the value function.

Note that the infimum in (3.1) is taken over stopping times of the Wiener process
X. Since X and the marked point process (Tn,Zn)n≥1 are P0-independent, the
decomposition in (2.12) and some algebra lead to

(Jw)(φ) = inf
τ∈FX

Eφ
0

[∫ τ

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
, φ ≥ 0,(3.3)

where K is the operator acting on bounded Borel functions w : R+ 	→ R according
to

(Kw)(φ) �
∫
E

w

(
λ1

λ0
f (z)φ

)
ν0(dz), φ ≥ 0,(3.4)

where f (·) is the Radon–Nikodym derivative in (2.2). The identity in (3.3) shows
that (Jw)(φ) is the value function of an optimal stopping problem for the one-
dimensional diffusion Yφ ≡ Y 0,φ , whose dynamics are given by (2.11). Standard
variational arguments imply that, under suitable conditions, the function Jw(·)
satisfies

0 = min{−(Jw)(φ), [A0 − (λ + λ0)](Jw)(φ) + g(φ) + λ0(Kw)(φ)},
(3.5)

φ ≥ 0,
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where for every twice continuously-differentiable function w̃ : R+ 	→ R,

(A0w̃)(φ) � μ2

2
φ2w̃′′(φ) + (λ + aφ)w̃′(φ)(3.6)

is the (P0,F)-infinitesimal generator of the process Yy , with drift and diffusion
coefficients

μ(φ) � λ + aφ and σ(φ) � μφ,(3.7)

respectively. If both w and Jw are replaced with V , then (3.5) becomes

0 = min{−V (φ), (A − λ)V (φ) + g(φ)}, φ ≥ 0,(3.8)

where for every twice continuously-differentiable function w̃ : R+ 	→ R,

(Aw̃)(φ) � (A0w̃)(φ) + λ0[(K − 1)w̃](φ), φ ≥ 0(3.9)

is the (P0,F)-infinitesimal generator of the process � in (1.3)–(2.8). The identity
in (3.8) coincides with the variational inequalities satisfied by the function V (·) of
(2.6) under suitable conditions. This coincidence is the second motivation for the
introduction of the operator J in (3.1) and for the claim that V = JV must hold.

Reversing the arguments gives additional insight about the role of the operator
J . If one decides to attack first to the variational inequalities in (3.8) for V (·),
then she realizes that solving integro-differential equation (A − λ)V + g = 0 is
difficult. Substituting into (3.8) the decomposition in (3.9) of the operator A due
to diffusion and jump parts gives

0 = min{−V (φ), [A0 − (λ + λ0)]V (φ) + g(φ) + λ0(KV )(φ)}, φ ≥ 0.

Now [A0 − (λ+λ0)]V (φ)+g(φ)+λ0(KV )(φ) = 0 is a nonhomogeneous second
order ordinary differential equation (ODE) with the forcing function −g−λ(KV ).
If one wants to take full advantage of the rich theory for the solutions of second
order ODEs, then she only needs to break the cycle by replacing the unknown V

in the forcing function with some known function w and call by Jw the solution
of the resulting variational inequalities, namely, (3.5). By repeatedly replacing w

with Jw, one then hopes that Jnw converges to V as n → ∞. As the next remark
shows, the jump operator J can be applied repeatedly to bounded functions, since
Jw is bounded whenever w is bounded.

REMARK 3.1. For every bounded w : R+ 	→ R, the function Jw : R+ 	→ R−
is bounded, and

−
(

λ

c
+ λ0‖w−‖

)
1

λ + λ0
≤ (Jw)(·) ≤ 0,

where ‖w−‖ is the sup-norm of the negative part of w(·). If w is bounded and
w(·) ≥ −1/c, then 0 ≥ (Jw)(·) ≥ −1/c. If w : R+ 	→ R is concave, then so is
Jw : R+ 	→ R−. The mapping w 	→ Jw on the collection of bounded functions is
monotone.
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PROOF. Suppose that w(·) is bounded. Since τ ≡ 0 is an FX-stopping time,
we have (Jw)(·) ≤ 0. Since (Kw)(·) ≥ −‖w−‖ and g(�t) = �t − (λ/c) ≥ −λ/c

for every t ≥ 0, we have

0 ≥ Jw(φ) ≥ inf
τ∈FX

Eφ
0

∫ τ

0
e−(λ+λ0)t

(
−λ

c
− λ0‖w−‖

)
dt

= −
(

λ

c
+ λ0‖w−‖

)
1

λ + λ0
.

If w(·) ≥ −1/c, then ‖w−‖ ≤ 1/c and 0 ≥ (Jw)(·) ≥ −1/c. Suppose that w(·)
is concave. The explicit form in (2.10) indicates that Y

y
t ≡ Y

0,y
t is an affine func-

tion of Y
y
0 ≡ Y

0,y
0 = y. Since g(·) is affine and (Kw)(·) is concave, the mapping

y 	→ g(Y
y
t ) + λ0(Kw)(Y

y
t ) is also concave. Therefore, the integral in (3.3) and

its expectation are concave for every FX-stopping time τ . Because (Jw)(·) is the
infimum of concave functions, it is also concave. The monotonicity of w 	→ Jw is
evident. �

REMARK 3.2. For every φ ≥ 0, we have Eφ
0 [∫∞

0 e−λt�t dt] = ∞,

Eφ
0

[∫ ∞
0

e−(λ+λ0)t�t dt

]
= φ + 1

λ0
− 1

λ + λ0
,

Eφ
0

[∫ ∞
0

e−(λ+λ0)tY
�0
t dt

]
= 1

λ1

(
φ + 1

λ + λ0

)
.

PROOF. The proof follows from (2.7), (2.10), Fubini’s theorem, and (P0,F)-
martingale property of L = {Lt ; t ≥ 0} after noting that

Eφ
0 �t = (1 + φ)eλt − 1

and

Eφ
0 Y

�0
t = φe(λ−λ1+λ0)t + λ[e(λ−λ1+λ0)t − 1]

λ − λ1 + λ0
. �

REMARK 3.3. The sequence {vn(·)}n≥0 in (3.2) is decreasing, and the limit
v∞(φ) � limn→∞ vn(φ) exists. The functions φ 	→ vn(φ), 0 ≤ n ≤ ∞, are con-
cave, nondecreasing and bounded between −1/c and zero.

PROOF. We have v1(φ) = (Jv0)(φ) ≤ 0 ≡ v0, since stopping immediately is
always possible. Suppose now that vn ≤ vn−1 for some n ≥ 1. Then vn+1 = Jvn ≤
Jvn−1 = vn by Remark 3.1, and {vn(·)}n≥1 is a decreasing sequence by induc-
tion. Since v0 ≡ 0 is concave and bounded between 0 and −1/c, Remark 3.1 and
another induction imply that every vn(·), 1 ≤ n ≤ ∞, is concave and bounded be-
tween −1/c and 0. Finally, every concave bounded function on R+ must be non-
decreasing; otherwise, the negative right-derivative at some point does not increase
on the right of that point, and the function eventually diverges to −∞. �
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LEMMA 3.1. The function v∞(·) � limn→∞ vn(·) is the unique bounded so-
lution of the equation w(·) = (Jw)(·).

PROOF. Since by Remark 3.3 {vn(·)}n≥0 is a decreasing sequence of bounded
functions, the dominated convergence theorem implies that

v∞(φ) = inf
n≥1

vn+1(φ)

= inf
n≥1

inf
τ∈FX

Eφ
0

[∫ τ

0
e−(λ+λ0)t [g(Y

�0
t ) + λ0(Kvn)(Y

�0
t )]dt

]

= inf
τ∈FX

inf
n≥1

Eφ
0

[∫ τ

0
e−(λ+λ0)t [g(Y

�0
t ) + λ0(Kvn)(Y

�0
t )]dt

]

= inf
τ∈FX

Eφ
0

[∫ τ

0
e−(λ+λ0)t

[
g(Y

�0
t ) + λ0

(
K inf

n≥1
vn

)
(Y

�0
t )

]
dt

]
= (Jv∞)(φ).

Let u1(·) and u2(·) be two bounded solutions of w = Jw. Fix any arbitrary φ ∈ R+
and ε > 0. Because (Ju1)(φ) is finite, there is some τ1 = τ1(φ) ∈ FX such that

u1(φ) = (Ju1)(φ) ≥ Eφ
0

[∫ τ1

0
e−(λ+λ0)t

(
g + λ0(Ku1)

)
(Y

�0
t ) dt

]
− ε.

Because Ku1 − Ku2 = K(u1 − u2) ≤ ‖u1 − u2‖, we have

u2(φ) − u1(φ) ≤ Eφ
0

[∫ τ1

0
e−(λ+λ0)t

(
g + λ0(Ku2)

)
(Y

�0
t ) dt

]
− Eφ

0

[∫ τ1

0
e−(λ+λ0)t

(
g + λ0(Ku1)

)
(Y

�0
t ) dt

]
+ ε

= Eφ
0

[∫ τ1

0
e−(λ+λ0)tλ0

(
K(u2 − u1)

)
(Y

�0
t ) dt

]
+ ε

≤ ‖u2 − u1‖
∫ ∞

0
λ0e

−(λ+λ0)t + ε ≤ λ0

λ + λ0
‖u2 − u1‖ + ε.

Since ε is arbitrary, this implies u2(φ) − u1(φ) ≤ [λ0/(λ + λ0)]‖u2 − u1‖. Inter-
changing u1 and u2 gives u1(φ) − u2(φ) ≤ [λ0/(λ + λ0)]‖u2 − u1‖, and the last
two inequalities yield |u1(φ) − u2(φ)| ≤ [λ0/(λ + λ0)]‖u1 − u2‖ for every φ ≥ 0.
Therefore, ‖u1 −u2‖ ≤ [λ0/(λ+λ0)]‖u1 −u2‖, and because 0 < λ0/(λ+λ0) < 1,
this is possible if and only if ‖u1 − u2‖ = 0; hence, u1 ≡ u2. Therefore, w = v∞
is the unique bounded solution of w = Jw. �

LEMMA 3.2. The sequence {vn(φ)}n≥0 converges to v∞(φ) as n → ∞ uni-
formly in φ ≥ 0. More precisely, we have

v∞(φ) ≤ vn(φ) ≤ v∞(φ) + 1

c

(
λ0

λ + λ0

)n

∀n ≥ 0,∀φ ≥ 0.(3.10)
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PROOF. The first inequality follows from Remark 3.3. We shall prove the sec-
ond inequality by induction on n ≥ 0. This inequality is immediate for n = 0 since
−1/c ≤ v∞(·) ≤ 0. Suppose that it is true for some n ≥ 0. Then induction hypoth-
esis implies that

vn+1(φ) = inf
τ∈FX

Eφ
0

[∫ τ

0
e−(λ+λ0)t [g(Y

�0
t ) + λ0(Kvn)(Y

�0
t )]dt

]

≤ inf
τ∈FX

Eφ
0

[∫ τ

0
e−(λ+λ0)t

[
g(Y

�0
t )

+ λ0(Kv∞)(Y
�0
t ) + λ0

c

(
λ0

λ + λ0

)n]
dt

]
≤ inf

τ∈FX

(
Eφ

0

[∫ τ

0
e−(λ+λ0)t [g(Y

�0
t ) + λ0(Kv∞)(Y

�0
t )]dt

]

+
∫ ∞

0
e−(λ+λ0)t

λ0

c

(
λ0

λ + λ0

)n

dt

)

= (Jv∞)(φ) +
∫ ∞

0
e−(λ+λ0)t

λ0

c

(
λ0

λ + λ0

)n

dt

= v∞(φ) + 1

c

(
λ0

λ + λ0

)n+1

,

since v∞ = Jv∞ by Lemma 3.1. �

4. Solution of the optimal stopping problem. The main results of this sec-
tion are that v∞(·) coincides with the value function V (·) of the optimal stopping
problem in (2.6), and that the first entrance time of the process � of (1.3) into
half line [φ∞,∞) for some constant φ∞ > 0 is optimal for (2.6). We also describe
ε-optimal F-stopping times for (2.6) and summarize the calculation of its value
function V (·).

We shall first find an explicit solution of the optimal stopping problem in
(3.3). The second order ODE (λ + λ0)h(·) = A0h(·) on (0,∞) admits two twice-
continuously differentiable solutions, ψ(·) and η(·), unique up to multiplication by
a positive constant, such that they are increasing and decreasing, respectively. For
this and other facts below about one-dimensional diffusions, see, for example, Itô
and McKean [11], Borodin and Salminen [4] Karlin and Taylor [12], Chapter 15.

The explicit form in (2.10) of the process Yy ≡ Y 0,y suggests that the process
may start at y = 0, but then moves instantaneously into (0,∞) without ever com-
ing back to 0. It can neither start at nor reach from inside to the right boundary
located at ∞. Indeed, calculated in terms of the scale function S(·) and speed
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measure M(·), defined respectively by

S(dy) � exp
{
−2

∫ y

c

μ(u)

σ 2(u)
du

}
dy, y > 0 and

(4.1)

M(dy) � dy

σ 2(y)S′(y)
, y > 0

for some arbitrary but fixed constant c > 0, Feller’s boundary tests give

S(0+) = −∞ and
∫ c

0

∫ z

0
M(dy)S(dz) < ∞,(4.2) ∫ ∞

c

∫ ∞
z

S(dy)M(dz) = ∞ and
∫ ∞
c

∫ ∞
z

M(dy)S(dz) = ∞,(4.3)

as shown in Appendix A.1, and according to Table 6.2 of Karlin and Taylor ([12],
page 234), we conclude that y = 0 and y = ∞ are entry-not-exit and natural
boundaries of the state-space [0,∞), respectively. Therefore, ψ(·) and η(·) sat-
isfy boundary conditions

0 < ψ(0+) < ∞, η(0+) = ∞,

lim
y→0+

ψ ′(y)

S′(y)
= 0, lim

y→0+
η′(y)

S′(y)
> −∞,

(4.4)
ψ(∞) = ∞, η(∞) = 0,

lim
y→∞

ψ ′(y)

S′(y)
= ∞, lim

y→∞
η′(y)

S′(y)
= 0.

We shall set ψ(0) = ψ(0+) and η(0) = η(0+). The Wronskian B(·) of ψ(·)
and η(·) equals

B(y) � ψ ′(y)η(y) − ψ(y)η′(y) = B(c)S′(y), y > 0,(4.5)

where the constant c and that in the scale function S(·) in (4.1) are the same. The
second equality is obtained by solving the differential equation A0B = 0, which
follows from the equations A0ψ = (λ + λ0)ψ and A0η = (λ + λ0)η after first
multiplying these respectively with η and ψ , and then, subtracting from each other.
Observe that

B(c) = B(y)

S′(y)
= ψ ′(y)

S′(y)
η(y) − ψ(y)

η′(y)

S′(y)
, y ≥ 0

is constant. Dividing (4.5) by −ψ2(y) and then integrating the equation give

η(y)

ψ(y)
= η(c)

ψ(c)
−
∫ y

c
B(c)

S′(z)
ψ2(z)

dz, y ≥ 0.(4.6)

This identity implies that the constant B(c) must be strictly positive, since the
functions ψ(·) and η(·) are linearly independent [note that their nontrivial linear
combinations cannot vanish at 0 because of (4.4)].
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For every Borel subset D of R+, denote the first entrance time of Yy and �

to D by

τD � inf{t ≥ 0 :Yy
t ∈ D} and τ̃D � inf{t ≥ 0 :�t ∈ D},(4.7)

respectively. If D = {z} for some z ∈ R+, we will use τz(τ̃z) instead of τ{z}(τ̃{z}).
Then

Ey
0

[
e−(λ+λ0)τz

]= ψ(y)

ψ(z)
· 1(0,z](y) + η(y)

η(z)
· 1(z,∞)(y)

(4.8)
∀z > 0,∀y ≥ 0,

which can be obtained by applying the optional sampling theorem to the (P0,F)-
martingales {e−(λ+λ0)tψ(Y

y
t ); t ≥ 0} and {e−(λ+λ0)tη(Y

y
t ); t ≥ 0}. For every fixed

real number z > 0, (4.8) implies that

ψ(y) =
⎧⎪⎨⎪⎩

ψ(z)Ey
0

[
e−(λ+λ0)τz

]
, 0 ≤ y ≤ z

ψ(z)

Ez[e−(λ+λ0)τy ] , y > z

⎫⎪⎬⎪⎭ ,

η(y) =
⎧⎪⎨⎪⎩

η(z)

Ez[e−(λ+λ0)τy ] , 0 ≤ y ≤ z

η(z)Ey
0

[
e−(λ+λ0)τz

]
, y > z

⎫⎪⎬⎪⎭ ,

and suggests a way to calculate functions ψ(·) and η(·) up to a multiplication by a
constant on a lattice inside (0, z] by using simulation methods. Let us set ψ(z) =
η(z) = 1 (or to any arbitrary positive constant), and suppose that the grid size h > 0
and some integer N are chosen such that Nh = z. Let zn = nh, n = 0, . . . ,N . Then
(4.8) implies that one can calculate

ψ(zn) = ψ(zn+1)E
zn

0 [exp{−(λ + λ0)τzn+1}], n = N − 1, . . . ,1,0,
(4.9)

η(zn) = η(zn+1)/Ezn+1
0 [exp{−(λ + λ0)τzn}], n = N − 1, . . . ,1,0,

backward from zN ≡ z by evaluating expectations using simulation.
The functions ψ(·) and η(·) can also be characterized as power series or Kum-

mer’s functions; see Polyanin and Zaitsev ([16], pages 221, 225, 229, Equation
134 in Section 2.1.2). Those functions take simple forms for certain values of λ,
λ1, λ0 and μ. For example, if a = λ + λ0 − λ1 ≥ 0 and

(n − 1)λ = (n − 2)
[
(λ + λ0) + 1

2μ2(n − 1)
]

for some n ∈ N and n > 2,

then ψ(·) is a polynomial of the form ψ(φ) = ∑n−1
k=0 βkφ

k , where β0 = 1, β1 =
(λ + λ0)/λ, and

βk =
[
(λ + λ0) − (k − 1)a − 0.5μ2(k − 1)(k − 2)

kλ

]
βk−1 for k ≥ 2,
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and η(·) can be obtained in terms of ψ(·) from (4.6). However, we make no such
assumptions about the parameters and work with general ψ(·) and η(·).

LEMMA 4.1. Every moment of the first entrance times τ[r,∞) and τ̃[r,∞) of the
processes Y�0 and �, respectively, into half line [r,∞) is uniformly bounded for
every r ≥ 0.

PROOF. Fix r > 0 and 0 ≤ φ < r ; the cases r = 0 or φ ≥ r are obvious. Since
the sample paths of Y�0 are continuous, we have τ[r,∞) ≡ τr , and (4.8) implies
that

Pφ
0 {τr < T1} = Eφ

0 e−λ0τr ≥ Eφ
0 e−(λ+λ0)τr

(4.10)

= ψ(φ)

ψ(r)
≥ ψ(0)

ψ(r)
∈ (0,1), φ ∈ [0, r).

Let α �
√

1 − (ψ(0)/ψ(r)) < 1. The strong (P0,F)-Markov property of Y�0 im-
plies that

Pφ
0 {τr > Tn}

= Pφ
0 {τr > Tn−1, τr > Tn}

(4.11)

= Eφ
0

[
1{τr>Tn−1}

(
1{τr>T1} ◦ θTn−1

)]= Eφ
0

[
1{τr>Tn−1}P

Y
�0
Tn−1

0 {τr > T1}]
≤ Pφ

0 {τr > Tn−1}
[
1 − ψ(0)

ψ(r)

]
≤
[
1 − ψ(0)

ψ(r)

]n

= α2n

by induction on n, because Y
�0
Tn

∈ [0, r) on {τr > Tn} for every n ≥ 1. For every
k ≥ 1,

Eφ
0 τ k

r ≤ Eφ
0

∞∑
n=0

T k
n+11{Tn<τr≤Tn+1}

≤
∞∑

n=0

Eφ
0 T k

n+11{τr>Tn} ≤
∞∑

n=0

√
Eφ

0 T 2k
n+1Pφ

0 {τr > Tn}(4.12)

≤ λ−k
0

∞∑
n=0

√
(n + 2k)!

n! αn ≤ λ−k
0

∞∑
n=0

(n + 2k)kαn < ∞

independent of the initial state φ ≥ 0. Since Pφ
0 {τ̃[r,∞) < T1} = Pφ

0 {τr < T1} ≥
ψ(0)/ψ(r) for every φ ∈ [0, r) by (4.10), both (4.11) and (4.12) remain correct if
we replace τr and Y

�0
Tn−1 with τ̃[r,∞) and �Tn−1 , respectively. �

ASSUMPTION. In the remainder, suppose that w : R+ 	→ R is an arbitrary but
fixed bounded and continuous function, and 0 < l < r < ∞.
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Define

(Hl,rw)(φ) � Eφ
0

[∫ τ[0,l]∧τ[r,∞)

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
,

(4.13)
φ ≥ 0,

(Hrw)(φ) � Eφ
0

[∫ τ[r,∞)

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
,

φ ≥ 0.

We shall first derive the analytical expression below in (4.16) for (Hrw)(·). Since
the left boundary at 0 is entrance-not-exit for the process Y�0 , that boundary is
inaccessible from the interior (0,∞) of the state-space, and liml↘0 τl ∧τr = τr Pφ

0 -
a.s. for every φ > 0. Because (Kw)(·), is bounded, and g(φ) = φ − (λ/c), φ ≥ 0,
is bounded from below, Remark 3.2 and the monotone convergence theorem imply
that

(Hrw)(φ) = lim
l↘0

(Hl,rw)(φ), φ > 0 and

(4.14)
(Hrw)(0) = lim

φ↘0
lim
l↘0

(Hl,rw)(φ)

follows from the strong Markov property; see Appendix A.2 for the details. By
means of the first equality, the second becomes (Hrw)(0) = limφ↘0(Hrw)(φ),
that is, the function φ 	→ (Hrw)(φ) is continuous at φ = 0. In terms of the funda-
mental solutions

ψl(y) � ψ(y) − ψ(l)

η(l)
η(y) and ηr(y) � η(y) − η(r)

ψ(r)
ψ(y)

of the equation [A0 − (λ + λ0)]h(y) = 0, l < y < r with boundary conditions
h(l) = 0 and h(r) = 0, respectively, and their Wronskian

Bl,r (y) � ψ ′
l (y)ηr(y) − ψl(y)η′

r (y) = B(y)

[
1 − ψ(l)

η(l)

η(r)

ψ(r)

]
,

we find, as shown in Appendix A.3, that

(Hl,rw)(φ)

= ψl(φ)

∫ r

φ

2ηr(z)

σ 2(z)Bl,r (z)

(
g + λ0(Kw)

)
(z) dz(4.15)

+ ηr(φ)

∫ φ

l

2ψl(z)

σ 2(z)Bl,r (z)

(
g + λ0(Kw)

)
(z) dz, 0 < l ≤ φ ≤ r,

where σ(z) = μz is the diffusion coefficient of the process Y�0 in (3.7). After tak-
ing the limit as l ↘ 0, the monotone convergence and boundary conditions in (4.4)
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give

(Hrw)(φ)

= ψ(φ)

∫ r

φ

2η(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz

(4.16)

+ η(φ)

∫ φ

0

2ψ(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz

− ψ(φ)
η(r)

ψ(r)

∫ r

0

2ψ(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz, 0 < φ ≤ r,

and (Hrw)(0) = limφ↘0(Hrw)(φ) by (4.14). Finally, (Hrw)(φ) = 0 for every
φ > r by the definition in (4.13). For every r > 0, the function φ 	→ (Hrw)(φ)

is continuous on [0,∞); it is twice continuously-differentiable on (0,∞), possi-
bly except at φ = r . Direct calculation shows that (Hrw)(r) = (Hrw)′(r+) = 0
and

(Hrw)′(r−) =
[
η′(r) − η(r)

ψ(r)
ψ ′(r)

]∫ r

0

2ψ(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz.

Since z 	→ η(z) − [η(r)/ψ(r)]ψ(z) is strictly decreasing,

(Hrw)′(r−) = 0
(4.17)

⇐⇒ (Gw)(r) �
∫ r

0

2ψ(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz = 0.

LEMMA 4.2. If w(·) is nondecreasing and nonpositive, then (Gw)(φ) = 0
has exactly one strictly positive solution φ = φ[w]. If we denote by φ�[w] the
unique solution φ of (g + λ0(Kw))(φ) = 0 and define φr [w] � φ[−‖w‖], then
φ�[w] ≤ φ[w] ≤ φr [w]. Moreover, (Gw)(φ) is strictly negative for φ ∈ (0, φ[w])
and strictly positive for φ ∈ (φ[w],∞).

PROOF. Since φ 	→ (g + λ0(Kw))(φ) = φ − (λ/c) + λ0(Kw)(φ) is negative
at φ = 0 and increases unboundedly as φ → ∞, it has unique root at some φ =
φ�[w] > 0. Therefore,

(Gw)′(φ) = 2ψ(φ)

σ 2(φ)B(φ)

(
g + λ0(Kw)

)
(φ)

changes its sign exactly once at φ = φ�[w], from negative to positive, and the
continuously differentiable function (Gw)(φ) = ∫ φ

0 (Gw)′(z) dz is strictly negative
on (0, φ�[w]]. Since (Gw)(φ) is increasing at every φ ∈ [φ�[w],∞), the proof will
be complete if we show that limφ→∞(Gw)′(φ) = ∞. Since σ 2(φ) = μ2φ2, and

S′(φ) = exp
{
−2

∫ φ

c

λ + au

μ2u2 du

}
= const. × exp

{
2λ

μ2φ

}
φ−2a/μ2

,
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we have

lim
φ→∞(Gw)′(φ) = lim

φ→∞
2ψ(φ)φ

σ 2(φ)B(φ)
= const. × lim

φ→∞
ψ(φ)

φ1−(2a/μ2)
,

which equals ∞ if 1 − (2a/μ2) ≤ 0. Otherwise, the L’Hospital rule and (4.4) give

lim
φ→∞(Gw)′(φ) = const. × lim

φ→∞
ψ ′(φ)

φ−2a/μ2

= const. × lim
φ→∞

ψ ′(φ)

S′(φ)
exp

{
− 2λ

μ2φ

}
= ∞.

Finally, constant function w0(φ) � −‖w‖, φ ≥ 0, is also bounded continuous non-
decreasing and nonpositive. By the first part of the lemma, (Gw0)(φ) = 0 has
exactly one strictly positive solution φ = φ[w0] =: φr [w]. Since w(·) ≥ −‖w‖,
we have (Gw)(·) ≥ (Gw0)(·), and therefore, φ[w] ≤ φr [w]. �

Lemma 4.2 and (4.17) show that in the family of functions {Hr(φ),φ ∈ R+}r>0
there is exactly one function that “fits smoothly at φ = r” and is therefore continu-
ously differentiable on the whole φ ∈ (0,∞), and that function corresponds to the
unique strictly positive solution r = φ[w] of the equation (Gw)(r) = 0 in (4.17).

LEMMA 4.3. Suppose that w(·) is nondecreasing and nonpositive. Then the
function

(Hw)(φ) �
(
Hφ[w]w

)
(φ), φ ≥ 0,(4.18)

equals zero for φ > φ[w] and

ψ(φ)

∫ φ[w]
φ

2η(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz

+ η(φ)

∫ φ

0

2ψ(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz

for 0 < φ ≤ φ[w]. It is bounded continuous on [0,∞), continuously differentiable
on (0,∞) and twice continuously differentiable on (0,∞) \ {φ[w]}. It satisfies
(Hw)(φ[w]) = (Hw)′(φ[w]) = 0 and the variational inequalities

{
(Hw)(φ) < 0

[A0 − (λ + λ0))](Hw)(φ) + (
g + λ0(Kw)

)
(φ) = 0

}
,(4.19)

φ ∈ (0, φ[w]),{
(Hw)(φ) = 0

[A0 − (λ + λ0)](Hw)(φ) + (
g + λ0(Kw)

)
(φ) > 0

}
,(4.20)

φ ∈ (φ[w],∞).
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PROOF. The explicit form of (Hw)(·) follows from (4.16) after noticing that
the third term equals −ψ(φ)[η(r)/ψ(r)](Gw)(r) and vanishes for r = φ[w] by
definition. Since (Hrw)(·) is continuous on [0,∞) and twice continuously dif-
ferentiable on (0,∞) \ {r} and (Hrw)(r) = 0 for every r > 0, so is (Hw)(·) ≡
(Hφ[w]w)(·) and (Hw)(φ[w]) = 0. It is also continuously differentiable at φ =
φ[w] since (Hw)′(φ[w]−) ≡ (Hφ[w]w)′(φ[w]−) = 0 = (Hw)′(φ[w]+) by (4.17)
and Lemma 4.2. Because the function (Hw)(·) is continuous everywhere and van-
ishes outside the closed and bounded interval [0, φ[w]], it is bounded everywhere.
Direct calculation gives immediately the equalities in (4.19) and (4.20). The in-
equality in (4.20) follows from substitution of (Hw)(φ) = 0 for φ > φ[w] and
that (g + λ0(Kw))(φ) > 0 for φ > φ[w] > φ�[w] by Lemma 4.2, where φ�[w] is
the unique root of nondecreasing function φ 	→ (g + λ0(Kw))(φ). For the proof
of the inequality in (4.19), note that (Hw)′(φ) equals

ψ ′(φ)

∫ φ[w]
φ

2η(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz

+ η′(φ)

∫ φ

0

2ψ(z)

σ 2(z)B(z)

(
g + λ0(Kw)

)
(z) dz

for 0 < φ ≤ φ[w]. The second term is positive since (i) η(·) is strictly decreasing,
and (ii) (Gw)(φ) in (4.17) is strictly negative for φ ∈ (0, φ[w]) by Lemma 4.2.
The first term is strictly negative for φ ∈ (φ�[w], φ[w]), since (i) ψ(·) is strictly
increasing, and (ii) (g +λ0(Kw))(z) > 0 for z > φ�[w]. Therefore, (Hw)′(φ) > 0
for φ ∈ [φ�[w], φ[w]). Because continuously differentiable (Hw)(φ) vanishes at
φ = φ[w], we have

(Hw)(φ) = −
∫ φ[w]
φ

(Hw)′(z) dz < 0 for every φ�[w] ≤ φ < φ[w].

Finally, for every 0 ≤ φ ≤ φ�[w], the strong Markov property of the process Y�0

applied at the F-stopping time τφ�[w] gives

(Hw)(φ) = Eφ
0

[∫ τφ�[w]

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
+ Eφ

0

[
e−(λ+λ0)τφ�[w]](Hw)(φ�[w]),

and both terms are strictly negative, since (g +λ0(Kw))(φ) < 0 for φ ∈ [0, φ�[w])
and (Hw)(φ�[w]) < 0 by the previous displayed equation. �

PROPOSITION 4.1. Suppose w(·) is nondecreasing and nonpositive. Then

(Jw)(φ) = (Hw)(φ) ≡ Eφ
0

[∫ τ[φ[w],∞)

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
,

φ ≥ 0.
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PROOF. For every 0 < l < φ < r and FX-stopping time τ , Itô’s rule yields

e−(λ+λ0)(τ∧τl∧τr )(Hw)(Y
�0
τ∧τl∧τr

)

= (Hw)(φ)

+
∫ τ∧τl∧τr

0
e−(λ+λ0)tμY

�0
t (Hw)′(Y�0

t ) dXt

+
∫ τ∧τl∧τr

0
e−(λ+λ0)t [A0 − (λ + λ0)](Hw)(Y

�0
t ) dt.

Since (Hw)′(·) is continuous by Lemma 4.3, it is bounded on [l, r]. Taking expec-
tations gives

Eφ
0

[
e−(λ+λ0)(τ∧τl∧τr )(Hw)(Y

�0
τ∧τl∧τr

)
]

= (Hw)(φ) + Eφ
0

[∫ τ∧τl∧τr

0
e−(λ+λ0)t [A0 − (λ + λ0)](Hw)(Y

�0
t ) dt

]
≥ (Hw)(φ) − Eφ

0

[∫ τ∧τl∧τr

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
,

because (Hw)(·) satisfies the variational inequalities in (4.19) and (4.20) by
Lemma 4.3. Since (Hw)(·) ≡ (Hφ[w])(·) is nonpositive continuous and bounded
by the same lemma, letting l → 0, r → ∞ and the dominated convergence theo-
rem (see Remark 3.2) give

0 ≥ Eφ
0

[
e−(λ+λ0)τ (Hw)(Y�0

τ )
]

≥ (Hw)(φ) − Eφ
0

[∫ τ

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
.

Thus, we have

Eφ
0

[∫ τ

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
≥ (Hw)(φ).

Taking infimum over FX-stopping times τ gives (Jw)(φ) ≥ (Hw)(φ), φ > 0.
If we replace every τ above with the first entrance time τ[φ[w],∞) of the process

Y�0 into [φ[w],∞), then Pφ
0 {τ < ∞} = 1 and the variational inequalities in (4.19)

and (4.20) ensure that every inequality above becomes an equality. This proves
(Jw)(φ) = (Hw)(φ) for every φ > 0. Finally, that equality extends to φ = 0 by
the continuity of (Jw)(·) and (Hw)(·). �

COROLLARY 4.1. Recall the sequence {vn(·)}n≥0 of functions defined suc-
cessively by (3.2) and its pointwise limit v∞(·), all of which are bounded, concave,
nonpositive and nondecreasing by Remark 3.3. Then every vn(·), 0 ≤ n ≤ ∞, is
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continuous on [0,∞) continuously differentiable on (0,∞), and twice continu-
ously differentiable on (0,∞) \ {φn}, where

φn+1 � φ[vn], 0 ≤ n < ∞ and φ∞ � φ[v∞](4.21)

are the unique strictly positive roots of the functions (Gvn)(·), 0 ≤ n ≤ ∞, as in
(4.17). Moreover,

vn+1(·) = (Hvn)(·), 0 ≤ n < ∞, and v∞(·) = (Hv∞)(·).(4.22)

For every n ≥ 0, we have vn(φn) = v′
n(φn) = 0, and vn+1(·) and vn(·) satisfy{

vn+1(φ) < 0
[A0 − (λ + λ0)]vn+1(φ) + (

g + λ0(Kvn)
)
(φ) = 0

}
,

(4.23)
φ ∈ (0, φn+1),{

vn+1(φ) = 0
[A0 − (λ + λ0)]vn+1(φ) + (

g + λ0(Kvn)
)
(φ) > 0

}
,

(4.24)
φ ∈ (φn+1,∞).

The function v∞(·) satisfies v∞(φ∞) = v′∞(φ∞) = 0 and the variational inequal-
ities {

v∞(φ) < 0
[A0 − (λ + λ0)]v∞(φ) + (

g + λ0(Kv∞)
)
(φ) = 0

}
,

(4.25)
φ ∈ (0, φ∞),{

v∞(φ) = 0
[A0 − (λ + λ0)]v∞(φ) + (

g + λ0(Kv∞)
)
(φ) > 0

}
,

(4.26)
φ ∈ (φ∞,∞).

PROOF. Since v0(·) ≡ 0 is continuous, v1(·) � (Jv0)(·) = (Hv0)(·) by (3.2)
and Proposition 4.1, and v1(·) is continuous by Lemma 4.3. Then an induction
on n and repeated applications of (3.2), Proposition 4.1 and Lemma 4.3 prove
that every vn(·), 0 ≤ n < ∞, is continuous, and that the equalities on the left in
(4.22) hold. Since v∞(·) is the uniform pointwise limit of the sequence {vn(·)}n≥0
of continuous functions on R+ by Lemma 3.2, it is also continuous. Therefore,
Lemma 3.1 and Proposition 4.1 also imply that v∞(·) = (Jv∞)(·) = (Hv∞)(·),
which is the second equality in (4.22). The remainder of the corollary now follows
from (4.22) and Lemma 4.3. �

PROPOSITION 4.2. The pointwise limit v∞(·) of the sequence {vn(·)}n≥0 in
(3.2) and the value function V (·) of the optimal stopping problem in (2.6) coincide.
The first entrance time τ̃[φ∞,∞) of the process � of (1.3)–(2.9) into the half interval
[φ∞,∞) is optimal for the Bayesian sequential change detection problem in (1.2)
and (2.5).
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PROOF. Let τ̃ be an F-stopping time, and τ̃l,r � τ̃[0,l]∧ τ̃[r,∞) for some 0 < l <

r < ∞. Then for every φ > 0, the chain rule implies that e−λ(τ̃∧τ̃l,r )v∞(�τ̃∧τ̃l,r
)

equals

v∞(�0) +
∫ τ̃∧τ̃l,r

0
e−λt ([A0 − (λ + λ0)]v∞(�t−) + λ0(Kv∞)(�t−)

)
dt

+
∫ τ̃∧τ̃l,r

0
e−λtμ�t−v′∞(�t−) dXt

+
∫ τ̃∧τ̃l,r

0

∫
E

e−λt

[
v∞

(
λ1

λ0
f (z)�t−

)
− v∞(�t−)

]
q(dt, dz)

in terms of the (Pφ
0 ,F)-compensated counting measure q(dt, dz) � p(dt, dz) −

λ0 dt ν0(dz) on [0,∞) × E. The stochastic integrals with respect to X and q

are square-integrable martingales stopped at some F-stopping time with finite ex-
pectation by Remark 3.2, since continuous v′∞(·) is bounded on [l, r], and v∞(·)
is bounded everywhere. Therefore, taking expectations of both sides implies that
Eφ

0 [e−λ(τ̃∧τ̃l,r )v∞(�τ̃∧τ̃l,r
)] equals

v∞(φ) + Eφ
0

[∫ τ̃∧τ̃l,r

0
e−λt ([A0 − (λ + λ0)]v∞(�t−) + λ0(Kv∞)(�t−)

)
dt

]
≥ v∞(φ) − Eφ

0

[∫ τ̃∧τ̃l,r

0
e−λtg(�t−) dt

]

= v∞(φ) − Eφ
0

[∫ τ̃∧τ̃l,r

0
e−λtg(�t) dt

]
,

since [A0 − (λ + λ0)]v∞(·) + (g + λ0(Kv∞))(·) ≥ 0 because of the variational
inequalities in (4.25) and (4.26). Since v∞(·) is bounded and continuous, letting
l → 0, r → ∞, the bounded and monotone convergence theorems give

Eφ
0 [e−λτ̃ v∞(�τ̃ )] ≥ v∞(φ) − Eφ

0

[∫ τ̃

0
e−λtg(�t) dt

]
and

Eφ
0

[∫ τ̃

0
e−λtg(�t) dt

]
≥ v∞(φ)

for every F-stopping time τ̃ , because v∞(·) is nonpositive. By taking the infimum
of both sides of the second inequality over all τ̃ ∈ F, we find that V (φ) ≥ v∞(φ)

for every φ ∈ (0,∞).
If we replace every τ̃ above with the Pφ

0 -a.s. finite (by Lemma 4.1) F-

stopping time τ̃[φ∞,∞), then we have Eφ
0 [e−λτ̃[φ∞,∞)v∞(�τ̃[φ∞,∞)

)] = 0 and
every inequality becomes an equality by Corollary 4.1. Therefore, V (φ) ≤
Eφ

0 [∫ τ̃[φ∞,∞)

0 e−λtg(�t) dt] = v∞(φ). Hence,

V (φ) = Eφ
0

[∫ τ̃[φ∞,∞)

0
e−λtg(�t) dt

]
= v∞(φ) for every φ > 0,(4.27)
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and τ[φ∞,∞) is optimal for (2.6) for every φ > 0.
The same equalities at φ = 0 and optimality of the stopping time τ[φ∞,∞) when

the initial state is 0 follow after taking limits in (4.27) as φ goes to zero if we
prove that three functions in (4.27) are continuous at φ = 0. The function v∞(·) is
continuous on [0,∞) by Corollary 4.1. If we let τ̃ = τ̃[φ∞,∞) and τ = τ[φ∞,∞) as
in (4.7), then the strong Markov property of � at the first jump time T1 gives

w(φ) � Eφ
0

[∫ τ̃[φ∞,∞)

0
e−λtg(�t) dt

]

= Eφ
0

[∫ τ̃∧T1

0
e−λtg(�t) dt + 1{τ̃>T1}

∫ τ̃

T1

e−λtg(�t) dt

]

= Eφ
0

[∫ τ

0
e−λt1{t<T1}g(Y

�0
t ) dt + 1{τ>T1}e−λT1w

(
λ1

λ0
f (Z1)Y

�0
T1

)]
= Eφ

0

[∫ τ

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
= (Hφ∞w)(φ), φ ≥ 0,

which is continuous at φ = 0 by (4.14). It remains to show that φ 	→ V (φ) is
continuous at φ = 0. Let us denote by τ̃h and τh the stopping times τ̃[h,∞) and
τ[h,∞) for every h > 0, as in (4.7). Since g(φ) < 0 for 0 ≤ φ < λ/c, it is never
optimal to stop before � reaches [λ/c,∞), and for every 0 < h ≤ λ/c, we have

V (0) = E0
0

[∫ τ̃h∧T1

0
e−λtg(�t) dt + e−λ(τ̃h∧T1)V (�τ̃h∧T1)

]

= E0
0

[∫ τh∧T1

0
e−λtg(�t) dt + e−λ(τh∧T1)V (�τh∧T1)

]
= E0

0

[∫ τh

0
e−λt1{t<T1}g(Y

�0
t ) dt + 1{τh<T1}e−λτhV (Y�0

τh
)

+ 1{τh≥T1}e−λT1V

(
λ1

λ0
f (Z1)Y

�0
T1

)]
= E0

0

[∫ τh

0
e−(λ+λ0)tg(Y

�0
t ) dt + e−(λ+λ0)τhV (Y�0

τh
)

+
∫ τh

0
e−(λ+λ0)tλ0(KV )(Y

�0
t ) dt

]
= E0

0

[∫ τh

0
e−(λ+λ0)t

(
g + λ0(KV )

)
(Y

�0
t ) dt

]
+ V (h)

ψ(0)

ψ(h)
,

because {τ̃h < T1} = {τh < T1} and τ̃h ∧ T1 = τh ∧ T1. Since V (·) is bounded, the
first term on the right-hand side vanishes as h ↘ 0 by Remark 3.2. Because ψ(0) >

0, limh↘0 ψ(0)/ψ(h) = 1. Therefore, limh↘0 V (h) exists and equals V (0). Hence,
V (φ) is also continuous at φ = 0. �
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REMARK 4.1. The value function V (·) ≡ v∞(·) can be approximated uni-
formly by the elements of the sequence {vn(·)} at any desired level of accuracy
according to the inequalities in (3.10). Since {vn(·)}n≥0 decreases to v∞(·), the
optimal continuation region

C � {φ ≥ 0 :V (φ) < 0} ≡ {φ ≥ 0 :v∞(φ) < 0} = [0, φ∞)

is the increasing limit of Cn � {φ ≥ 0 :vn(φ) < 0} = [0, φn), n ≥ 0, and φ∞ =
limn→∞ ↑ φn.

Moreover, for every ε > 0 and for every n ≥ 1 such that [λ0/(λ+λ0)]n < cε, the
stopping time τ̃[φn,∞) = inf{t ≥ 0;�t ≥ φn} is ε-optimal for (2.6). More precisely,

V (φ) ≤ Eφ
0

[∫ τ̃[φn,∞)

0
e−λtg(�t) dt

]

≤ V (φ) + 1

c

(
λ0

λ + λ0

)n

, φ ≥ 0, n ≥ 1.

PROOF. We shall prove the last displayed equation. Since τ̃[φn,∞) is the Pφ
0 -

a.s. finite F-stopping time by Lemma 4.1, as shown for τ̃[φ∞,∞) in the proof of
Proposition 4.2, Itô’s rule and the localization argument imply that

Eφ
0

[
e−λτ̃[φn,∞)v∞

(
�τ̃[φn,∞)

)]− v∞(φ)

= Eφ
0

[∫ τ̃[φn,∞)

0
e−λt ([A0 − (λ + λ0)]v∞ + λ0(Kv∞)

)
(�t) dt

]
= −Eφ

0

[∫ τ̃[φn,∞)

0
e−λtg(�t) dt

]
,

since ([A0 −(λ+λ0)]v∞ +g+λ0(Kv∞))(φ) = 0 for every φ ∈ (0, φn) ⊆ (0, φ∞)

according to (4.25). Therefore, for every φ ≥ 0, we have

v∞(φ) = Eφ
0

[∫ τ̃[φn,∞)

0
e−λtg(�t) dt

]
+ Eφ

0

[
e−λτ̃[φn,∞)v∞

(
�τ̃[φn,∞)

)]
≥ Eφ

0

[∫ τ̃[φn,∞)

0
e−λtg(�t) dt

]
+ Eφ

0

[
e−λτ̃[φn,∞)vn

(
�τ̃[φn,∞)

)]
− 1

c

(
λ0

λ + λ0

)n

by the second inequality in (3.10). The result now follows immediately because
we have Pφ

0 -a.s. vn(�τ̃[φn,∞)
) = 0 by Lemma 4.1 and Corollary 4.1. �

5. Quickest detection of a simultaneous change in several independent
Wiener and compound Poisson processes. Suppose that at the disorder time
�, the drift of a d-dimensional Wiener process �W = (W(1), . . . ,W(d)) changes
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from �0 to �μ = (μ(1), . . . ,μ(d)) for some 1 ≤ d < ∞ and �μ ∈ Rd \ {�0}. Then in the
model of Section 2, the likelihood-ratio process of (2.3) and its dynamics in (2.4)
become

Lt � exp
{

�μ �Xt −
(‖�μ‖2

2
+ λ1 − λ0

)
t

} ∏
n:0<Tn≤t

(
λ1

λ0
f (Zn)

)
, t ≥ 0,

dLt = Lt �μd �Xt + Lt−
∫
E

(
λ1

λ0
f (z) − 1

)
[p(dt × dz) − λ0 dt ν0(dz)], t ≥ 0,

in terms of the d-dimensional observation process

�Xt = �X0 + �μ(t − �)+ + �Wt, t ≥ 0.(5.1)

The representation in (2.5) of the minimum Bayes risk U(·) in terms of the value
function V (·) of the optimal stopping problem in (2.6) for the conditional odds-
ratio process � of (1.3) remains valid, but instead of (2.8), the dynamics of � now
become

d�t = (λ + a�t) dt + �t �μd �Xt
(5.2)

+ �t−
∫
E

(
λ1

λ0
f (z) − 1

)
p(dt × dz), t ≥ 0.

However, if we define

μ � ‖�μ‖ =
√(

μ(1)
)2 + · · · + (

μ(d)
)2 and X � 1

‖�μ‖ �μ �X,(5.3)

then the one-dimensional process X is a (Pφ
0 ,F)-Wiener process Pφ

0 -independent
of the marked point process (Tn,Zn)n≥1. In terms of the Wiener process X and the
new scalar μ �= 0 in (5.3), the dynamics in (5.2) of the sufficient statistic � can be
rewritten exactly as in (2.8). Hence, quickest detection of a change from �0 to �μ in
the drift of a multi-dimensional Wiener process is equivalent to quickest detection
of a change from 0 to μ ≡ ‖�μ‖ in the scalar drift of a suitable one-dimensional
Wiener process. This is true both in the absence and presence of an independent
and observable marked point process whose local characteristics change at the
same time � as described earlier.

Suppose that, in addition to the process �X in (5.1), m compound Poisson
processes (T

(i)
n ,Z

(i)
n )n≥1, 1 ≤ i ≤ m, independent of each other and the process

�W , are observed on some common mark space (E,E). At the same disor-
der time �, their arrival time and mark distribution change from (λ

(i)
0 , ν

(i)
0 )

to (λ
(i)
1 , ν

(i)
1 ), respectively. Then their superposition forms a new marked point

process (Tn,Zn)n≥1, which is independent of �W , and whose local characteristics
are

(λ0, ν0) �
(

m∑
i=1

λ
(i)
0 ,

m∑
i=1

λ
(i)
0

λ0
ν

(i)
0

)
and(5.4)
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(λ1, ν1) �
(

m∑
i=1

λ
(i)
1 ,

m∑
i=1

λ
(i)
1

λ1
ν

(i)
1

)

before and after the disorder time, respectively. Therefore, the solution method of
the previous section, as summarized by Remark 4.1, can be applied directly with
the new choices in (5.3) and (5.4) of parameters μ,λ0, λ1, probability distributions
ν0, ν1 on (E,E) and processes X and (Tn,Zn)n≥1.

6. Numerical examples. We describe briefly the numerical computation of
the fundamental solution ψ(·) of the ODE (λ + λ0)h = A0h and successive ap-
proximations vn(·), n ≥ 0, in (3.2) of the value function V (·) in (2.6). These com-
putations are based on Kushner and Dupuis’s [13] Markov chain approximation
and Monte Carlo estimation of certain expectations. We use these methods on
several examples and illustrate that reduction in Bayes risk can be significant if
multiple sources are used simultaneously in order to detect an observable disorder
time.

6.1. Calculation of the function ψ(·) over a fine grid on some interval [0, z].
Let us fix a number z > 0, grid size h > 0 and an integer N such that z = Nh.
Denote by Sh the collection of grid points zn = nh, n ≥ 0. Set ψ(z) = 1 (or to any
other positive constant). Then we can calculate the function ψ(·) on the grid Sh

according to (4.9) if we can evaluate

Ey
0[exp{−(λ + λ0)τz}] for every y, z > 0.(6.1)

To do that, we will approximate the diffusion Y in (2.11) with a continuous-time
process {ξh(t); t ≥ 0} obtained from a discrete-time Markov chain {ξh

n ;n ≥ 0}
on the state space Sh by replacing unit-length sojourn times with state-dependent
deterministic times. The derivation of one-step transition probabilities ph(y, v),
y, v ∈ Sh of the Markov chain {ξh

n ;n ≥ 0} and “interpolation intervals” �th(y),
y ∈ Sh become more transparent if we set our goal to approximate the more general
expectation

Vβ(y) � Ey
0

[∫ τz

0
e−βtk(Yt ) dt + e−βτzg(Yτz)

]
, 0 < y < z,(6.2)

for some fixed z ∈ Sh, discount rate β ≥ 0, and bounded functions k(·) and g(·).
Let us study V0 first (namely, β = 0). If we denote the drift and diffusion coeffi-
cients of the process Y by μ(·) and σ(·), then, under certain regularity conditions,
we expect V0(·) to solve the second order ODE

σ 2(y)

2
V ′′

0 (y) + μ(y)V ′
0(y) + k(y) = 0, 0 < y < z,



578 S. DAYANIK, H. V. POOR AND S. O. SEZER

subject to boundary condition V0(z) = g(z). If we replace V ′′
0 (y) and V ′

0(y) with
their finite-difference approximations

V h
0 (y + h) + V h

0 (y − h) − 2V h
0 (y)

h2 ,

V h
0 (y + h) − V h

0 (y)

h
1[0,∞)(μ(y)) + V h

0 (y) − V h
0 (y − h)

h
1(−∞,0)(μ(y)),

respectively, then we obtain

σ 2(y)

2

V h
0 (y + h) + V h

0 (y − h) − 2V h
0 (y)

h2

+ V h
0 (y + h) − V h

0 (y)

h
μ+(y)

+ V h
0 (y) − V h

0 (y − h)

h
μ−(y) + k(y) = 0, 0 < y < z.

Rearranging the terms implies that V h
0 (y) equals

V h
0 (y − h)

(σ 2(y)/2) + hμ−(y)

σ 2(y) + h|μ(y)| + V h
0 (y + h)

(σ 2(y)/2) + hμ+(y)

σ 2(y) + h|μ(y)|

+ h2

σ 2(y) + h|μ(y)|k(y),

which can be rewritten as

V h
0 (y) = V h

0 (y − h)ph(y, y − h)
(6.3)

+ V h
0 (y + h)ph(y, y + h) + �th(y)k(y) = 0,

for every y ∈ Sh ∩ [0, z], if we define⎧⎪⎪⎪⎨⎪⎪⎪⎩
ph(y, y ± h) � (σ 2(y)/2) + hμ±(y)

σ 2(y) + h|μ(y)|
�th(y) � h2

σ 2(y) + h|μ(y)|

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , y ∈ Sh.(6.4)

Let {ξh
n ;n ≥ 0} be the discrete-time Markov chain on Sh with transition prob-

abilities ph(y, y ± h), y ∈ Sh, in (6.4), and define the continuous-time process
{ξh(t); t ≥ 0} on the same space by adding the “interpolation interval” �th(ξh

n )

before the jump from ξh
n to ξh

n+1, namely,

ξh(t) � ξh
n t ∈ [thn , thn+1), n ≥ 0

where th0 ≡ 0, thn+1 � thn + �thn , n ≥ 0 and �thn � �th(ξh
n )
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are deterministic functions of the embedded discrete-time Markov chain (ξh
n )n≥0.

Then the solution V h
0 (y), y ∈ Sh ∩ [0, z] of (6.3) with the boundary condition

V h
0 (z) = 0 is the same as the expectation

V h
0 (y) = Ey

0

[∫ τh

0
k(ξh(t)) dt + g(ξh(τh))

]
, y ∈ Sh ∩ [0, z].(6.5)

The process {ξh(t); t ≥ 0} is locally consistent with {Yt ; t ≥ 0}; and therefore,
that process and the function V h

0 (·) well approximate {Yt ; t ≥ 0} and V0(·), respec-
tively; see Kushner and Dupuis [13] for the details. In general,

V h
β (y) � Ey

0

[∫ τh

0
e−βtk(ξh(t)) dt + e−βτh

g(ξh(τh))

]
,

(6.6)
y ∈ Sh ∩ [0, z],

is a good approximation of the function Vβ(·) in (6.2), and if we define

Nh � inf{n ≥ 0 : ξh
n = z},

then (6.6) simplifies to

V h
β (y) = Ey

0

[
Nh−1∑
n=0

k(ξh
n )e−βthn

1 − e−β�thn

β
+ exp{−βth

Nh}g(z)

]
,

(6.7)
y ∈ Sh ∩ [0, z].

In (6.1), β = λ + λ0, k ≡ 0, and g ≡ 1. Thus, (6.1) is approximated well by

Ey
0[exp{−(λ + λ0)t

h
Nh}]

(6.8)
for y ∈ Sh ∩ [0, z] as well as y ∈ Sh ∩ [z,∞).

Finally, we can estimate (6.8) by using Monte Carlo simulation in the following
way:

(i) Set the initial state ξh
0 = y.

(ii) Simulate the Markov chain ξh
n until the first time Nh that it hits the state

z ∈ Sh.
(iii) Calculate exp{−(λ+λ0)

∑Nh−1
n=0 �th(ξh

n )}, which is now a sample estimate
of (6.8).

(iv) Repeat until the standard error of the sample average of individual esti-
mates obtained from independent simulation runs reduces to an acceptable level.
Report upon stopping the sample average as the approximate value of (6.8).

For the calculations in (4.9), notice that initial state y and target state z are
always adjacent. This usually helps to keep the number of simulations low. In the
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detection problem, the dynamics in (6.4) of the Markov chain that approximates
the diffusion Y in (2.11) become⎧⎪⎪⎪⎨⎪⎪⎪⎩

ph(y, y ± h) = (μ2/2)y2 + h(λ + ay)±

μ2y2 + h|λ + ay|
�th(y) = h2

μ2y2 + h|λ + ay|

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , y ∈ Sh.(6.9)

We choose h so small that ph(h,2h) � ph(h,0), that is, reaching to 0 from inside
Sh is made almost impossible.

6.2. Calculation of the successive approximations vn(·), n ≥ 0, in (4.22) of
the value function V (·) in (2.6). Recall from (3.2), Corollary 4.1 and (4.22) that
bounded, nonpositive and nondecreasing functions vn(·), n ≥ 0, can be found by
successive applications of the operator H in (4.13) and (4.18). Therefore, it is
enough to describe the calculation of (Hw)(·) for a bounded, nonpositive and
nondecreasing function w(·).

Since the function ψ(·) is now available, the unique root φ[w] of (Gw)(φ) = 0
in (4.17) can be found by solving numerically the equation∫ φ[w]

0
z2[(a/μ2)−1]e−2λ/(μ2z)ψ(z)[g(z) + λ0(Kw)(z)]dz = 0.

By Lemma 4.3, we have (Hw)(φ) = 0 for every φ ≥ φ[w]. Let Sh denote once
again the grid points zn = nh, n < N , where h > 0 is small and zN = φ[w]. Then
by simulating the approximate Markov chain {ξh

n ;n ≥ 0} with transition probabil-
ities and interpolation interval given in (6.9), we can approximate (Hw)(φ) on Sh

with the Monte Carlo estimate of

Ezn

0

[
Nh−1∑
n=0

(
g + λ0(Kw)

)
(ξh

n )e−(λ+λ0)t
h
n

1 − e−(λ+λ0)�thn

λ + λ0

]
(6.10)

at every zn ∈ Sh;
compare (6.2) and (6.7) with (4.13) and (6.10) when r = φ[w].

6.3. Examples. Figure 1 describes an algorithm that calculates the approxi-
mations vn(·), n ≥ 0, of the value function V (·) by means of the tools described in
Sections 6.1 and 6.2. In the following examples, we employ that algorithm to com-
pute the approximations vn(·), n ≥ 0, until the maximum difference between two
successive functions is reduced to an acceptable level. The termination of the algo-
rithm with guaranteed error bounds follows from Lemma 3.2, which also provides
an upper bound on the number of successive approximations.

Nine panels in Figure 2 display the approximate value functions correspond-
ing to nine examples. In each example, the observation process is (X,N); the
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Initialization: Calculate simultaneously
• the increasing fundamental solution ψ(·) by simulating (6.8) on the interval φ ∈ [0, u],
• the function

I (z) � z2[(a/μ2)−1]e−2λ/(μ2z)ψ(z) ∝ 2ψ(z)

σ 2(z)B(z)
for every z ∈ [0, u],

• and the unique strictly positive solution u � φ[−1/c] of the inequality

0 ≤
∫ u

0
I (z)

(
g(z) − λ0

c

)
dz ∝ (Gw)(u), where w(·) ≡ −1

c
.

For example, set initially u = 2λ/c, calculate the functions ψ(φ) and I (φ) for every φ ∈ [0, u].
If the above inequality is satisfied, then stop, otherwise, double u and repeat. Since −1/c ≤
vn(·) ≤ 0 for every n ≥ 0 by Remark 3.3, we have 0 ≤ φn ≤ u for every n ≥ 0 by Lemma 4.2.
Recall that g(z) = z− (λ/c), z ≥ 0, and (Gw)(·) are as in (2.6) and (4.17), respectively. Finally,
set n = 0, φn = λ/c, and vn(φ) = 0 for every 0 ≤ φ ≤ u.
Step 1: Calculate the function (Kvn)(·) by using (3.4) and unique root φ̂n ≡ φ�[vn] of the
increasing function (g + λ0(Kvn))(·).
Step 2: Find the unique strictly positive solution r = φn+1 of the equation

0 =
∫ r

0
I (z)

(
g + (Kvn)

)
(z) dz ∝ (Gvn)(r).

The solution φn+1 is located in the interval (φ̂n ∨φn,u), and Newton’s method may be used to
find it.
Step 3: Set vn+1(φ) = 0 for every φn+1 ≤ φ ≤ u, and find vn+1(φ) for every 0 ≤ φ ≤ φn+1
by simulating (6.10). Increase n by one and go to Step 1.

FIG. 1. An algorithm that calculates the approximation vn(·) of the value function V (·) and the
critical thresholds φn for every n ≥ 0; see Remark 4.1.

process X is a one-dimensional Wiener process that gains a drift μ after the dis-
order time �, and N is a simple Poisson process whose arrival rate changes from
λ0 to λ1 at time �. In all of the nine examples, we have c = 1 and λ = λ1 = 1
[see (1.2) and (2.1)]; however, the post-disorder drift μ of X and the pre-disorder
arrival rate λ0 of N are different. Across every row, μ increases while λ0 does not
change. Across every column, λ0 increases while μ does not change.

The graph in each panel is divided in two parts. The upper part shows the opti-
mal Bayes risk U(·) of (2.5) on [0,1] displayed on the upper horizontal axis, and
the lower part shows the value function V (·) of the stopping problem in (2.6) on
R+ displayed on the lower horizontal axis. Both U(·) and V (·) are plotted with
solid curves. We compare those functions with Up(·), Vp(·), UX(·) and VX(·),
where Up(·) and UX(·) are obtained by taking the infimum in (2.5) over the stop-
ping times of (smaller) natural filtrations Fp and FX of N and X, respectively. On
the other hand, Vp(·) and VX(·) are the value functions of the optimal stopping
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FIG. 2. The solutions of the sequential disorder-detection problems for different pre-disorder ar-
rival rate λ0 of the Poisson process and post-disorder drift μ of the Wiener process. In each case,
λ1 = λ = c = 1. The upper part of each panel displays the Bayes risks U(·), Up(·), UX(·), and the
lower part displays the value functions V (·), Vp(·), VX(·) of the corresponding optimal stopping
problems. Solid curves are the functions U(·) and V (·). Curves with “+” are the optimal Bayes risk
Up(·) and the value function Vp(·) if only the Poisson process is observable, and curves with “�”
are the Bayes risk UX(·) and the value function VX(·) if only the Wiener process is observable. The
dashed line in the upper part is the mapping π 	→ 1 − π . It is optimal to raise a disorder alarm as
soon as the process �/(1 + �) of (2.3) enters into the region where U(π) = 1 − π ; equivalently, as
soon as � enters the region where V (φ) = 0.

problems analogous to (2.6), that is,

Vp(φ) � inf
τ∈Fp

Eφ
0

[∫ τ

0
e−λt

(
�

(p)
t − λ

c

)
dt

]
,

VX(φ) � inf
τ∈FX

Eφ
0

[∫ τ

0
e−λt

(
�

(X)
t − λ

c

)
dt

]
,

where

�
(p)
t � P{� ≤ t | F p

t }
P{� > t | F p

t } and �
(X)
t � P{� ≤ t | F X

t }
P{� > t | F X

t } ;
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Up(·), Vp(·) and UX(·), VX(·) are related to each other in the same way as U(·),
V (·) are in (2.5).

The differences in the Bayes risks Up(·), UX(·) and U(·) provide insights about
the contributions of observing the processes X and N separately or simultaneously
to the efforts of detecting the disorder time �. Sometimes, the Poisson process pro-
vides more information than the Wiener process, as in (d), (g) and (h); sometimes,
the Wiener process provides more information than the Poisson, as in (b), (c) and
(f); and some other times, the difference is negligible, as in (a), (e) and (i). In every
case, observing the Poisson and Wiener processes at the same time provides more
information, which is often significantly larger than two processes can provide
separately, as in (i), (e), (f), (h), (d) and (g).

Intuitively, we expect the contributions to increase as μ and λ0 are pulled farther
apart from 0 and λ1, respectively. The examples displayed in Figure 2 are consis-
tent with this expectation. The Bayes risks UN(·) and U(·) are shifting downward
across every column, and UX(·) and U(·) do the same across every row.

In (a), μ and λ0 are relatively close to 0 and λ1, respectively; therefore, ob-
serving both processes at the same time does not improve the optimal Bayes risk.
Observing only one of them will thus reduce costs without increasing risks. As the
post-disorder drift μ of X is increased along the first row, both UX(·) and U(·)
improve gradually. The function UX(·) stays close to U(·) because the process X

provides more information than N for the detection of the disorder time. Espe-
cially in (c), one may choose not to observe the process N anymore in order to
lower the observation costs. Similarly, if μ is close to 0, an increase in the dif-
ference between λ0 and λ1 makes Up(·) drive U(·) to lower levels; see the first
column.

6.4. Numerical comparison with Baron and Tartakovsky’s asymptotic analysis.
Let us denote the Bayes risk Rτ (π) in (1.2), minimum Bayes risk U(π) in (2.5) by
Rτ (π, c) and U(π, c), respectively, in order to display explicitly their dependence
on the cost c per unit detection delay. Let us also define

φ(c) � (μ2/2) + λ0 + λ1[log(λ1/λ0) − 1] + λ

c
and

(6.11)

f (c) � − log c

φ(c)
, c > 0.

Baron and Tartakovsky ([1], Theorem 3.5) have shown that the stopping time
τ(c) � inf{t ≥ 0;�t ≥ φ(c)} is asymptotically optimal and that the minimum
Bayes risk U(π, c) asymptotically equals f (c) for every fixed π ∈ [0,1), as the
detection delay cost c decreases to zero, in the sense that

lim
c↘0

U(π, c)

f (c)
= lim

c↘0

Rτ(c)(π, c)

f (c)
= 1 for every π ∈ [0,1).
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FIG. 3. Optimal thresholds, minimum Bayes risks and their asymptotic expansions at
c = 0.02,0.04, . . . ,0.18,0.20,0.30, . . . ,0.90,1 for (a) Poisson, (b) Wiener and (c) combination of
Poisson and Wiener observations (λ0 = 6, λ1 = λ = μ = 1).

In this subsection we revisit the example displayed in Figure 2(h), where
λ0 = 6 and λ1 = λ = μ = 1. We have calculated optimal thresholds, minimum
Bayes risks and their asymptotic expansions in (6.11) for eighteen values of c

(0.02,0.04, . . . ,0.18,0.20,0.30, . . . ,0.90,1); see Figure 3. If only the Poisson
or Wiener process is observable, then the asymptotic expansions of the optimal
thresholds and their minimum Bayes risks Up(·), UX(·) also follow from (6.11)
by setting μ = 0 in the Poisson case and by letting λ0 = λ1 in the Wiener case,
respectively. The critical thresholds and minimum Bayes risks are calculated in
Figure 3(c) by using the numerical algorithm in Figure 1, in Figure 3(a) by us-
ing Dayanik and Sezer’s [9], Figure 2 numerical algorithm, and in Figure 3(b) by
solving numerically the integral equation∫ φ∞

0

[w − (1/c)]ψX(w)

e2/w
dw = 0
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for the critical value φ∞ and by numerically evaluating VX(φ) =
ψX(φ)

∫ φ∞

φ

2[w − (1/c)]ηX(w)

e2/w
dw + ηX(φ)

∫ φ

0

2[w − (1/c)]ψX(w)

e2/w
dw

in UX(π) = 1 − π + c(1 − π)VX(π/[1 − π ]), in terms of

ψX(φ) = 1 + φ and ηX(φ) = (1 + φ)

∫ ∞
φ

e2/w

w2(1 + w)2 dw;
see also Shiryaev ([17], page 201, Theorem 9).

Optimal critical thresholds and their asymptotic expansions seem to be in good
agreement; this is especially clear for small c values as Baron and Tartakovsky
[1] predicted (as c decreases, the distance between any two curves in the first row
does not grow faster than the critical thresholds themselves, hence, the relative
error converges to zero). In the second row, the Bayes risks at three fixed values,
π = 0,0.5,0.8 (one in the middle and two close to end-points of the range [0,1]),
also seem in good agreement with the asymptotic expansions for small values of
detection delay cost c. As a reference, we have also plotted the minimum Bayes
risks at optimal critical thresholds, which do not have to agree closely with the
asymptotic expansions, because in this case minimum Bayes risks are evaluated
at different π values as c changes, and their asymptotics do not immediately fall
inside the scope of Theorem 3.5 of Baron and Tartakovsky [1].

APPENDIX

A.1. The boundary behavior of the diffusion process Yy . Once we ver-
ify (4.2) and (4.3), the conclusions follow from Karlin and Taylor ([12], Chap-
ter 15), who expressed the quantities in (4.2) and (4.3) in terms of the mea-
sures S(0, x] = ∫ x

0+ S(dy) and M(0, x] = ∫ x
0+ M(dy), and integrals �(0) =∫ x

0+ S(0, ξ ]M(dξ), N(0) = ∫ x
0+ M(0, ξ ]S(dξ) for the left boundary at 0, and

�(∞) = ∫∞
x S(ξ,∞)M(dξ), N(∞) = ∫∞

x M(ξ,∞)S(dξ) for the right bound-
ary at ∞. Since only the finiteness of �(·) and N(·) matters, the value of x > 0 in
the domain of those integrals can be arbitrary. One finds that

S(dy) = c1y
−2a/μ2

e2λ/(μ2y) dy

and

M(dy) = c2y
2[(a/μ2)−1]e−2λ/(μ2y) dy, y > 0;

above, as well as below, c1, c2, . . . will denote positive proportionality constants.
Therefore, changing the integrating variable by setting z = 1/y gives

S(x) − S(0+) =
∫ x

0+
S(dy)

= c1

∫ ∞
1/x

z(2a/μ2)−2e(2λ/μ2)z dz = +∞ ∀x > 0,
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and the first equality in (4.2) follows. After applying the same change of variable
twice, the double integral in the same equation becomes

N(0) = c3

∫ ∞
1/x

(∫ ∞
v

uαe−βu du

)
v−α−2eβv dv(A.1)

in terms of α � −2a/μ2 ∈ R and β � 2λ/μ2 > 0. Integrating the inner integral by
parts k ≥ 0 times gives that, for every k ≥ 0,∫ ∞

v
uαe−βu du =

k−1∑
j=0

α!β−(j+1)

(α − j)! vα−j e−βv

+ α!β−(k+1)

(α − k)!
∫ ∞
v

βuα−ke−βu du.

If k ≥ α, then u 	→ uα−k is decreasing and the integral on the right is less than or
equal to vα−k

∫∞
v βe−βu du = vα−ke−βv . Therefore,∫ ∞

v
uαe−βu du ≤

k∑
j=0

α!β−(j+1)

(α − j)! vα−j e−βv, k ≥ max{0, α}.

Using this estimate in (A.1) implies that, for every x > 0,

N(0) ≤
∫ ∞

1/x

(
k∑

j=0

α!β−(j+1)

(α − j)! vα−j e−βv

)
v−α−2eβv dv

=
k∑

j=0

α!β−(j+1)

(α − j)!
∫ ∞

1/x
v−j−2 dv < ∞,

which completes the proof of (4.2). Since S(0+) = −∞ and N(0) < ∞, the left
boundary at 0 is an entrance-not-exit boundary.

For the proof of (4.3), notice that change of variable by u = 1/y gives for every
z > 0 that ∫ ∞

z
S(dy) =

∫ 1/z

0
u−α−2eβu du ≥

∫ 1/z

0
u−α−2 du

=
{−(α + 1)−1zα+1, α + 1 < 0,

∞, α + 1 ≥ 0.

If α + 1 ≥ 0, then clearly �(∞) = ∫∞
x

∫∞
z S(dy)M(dz) = ∞ for every x > 0. If

α + 1 < 0, then for every x > 0 we also have

�(∞) =
∫ ∞
x

∫ ∞
z

S(dy)M(dz) ≥
∫ ∞
x

−(α + 1)−1zα+1M(dz)

= −(α + 1)−1c2

∫ ∞
x

zα+1z−α−2e−β/z dz = c4

∫ ∞
x

z−1e−β/z dz
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≥ c4e
−β/x

∫ ∞
x

z−1 dz = ∞,

and the first equality in (4.3) is proved. Similarly, changing variable by v = 1/y

gives ∫ ∞
z

M(dy) =
∫ 1/z

0
vαe−βv dv ≥ e−β/z

∫ 1/z

0
vα dv

=
{

(α + 1)−1zα+1e−β/z, α + 1 > 0,

∞, α + 1 ≤ 0.

If α + 1 ≤ 0, then clearly N(∞) = ∫∞
x

∫∞
z M(dy)S(dz) = ∞ for every x > 0. If

α + 1 > 0, then for every x > 0 we also have

N(∞) =
∫ ∞
x

∫ ∞
z

M(dy)S(dz) ≥
∫ ∞
x

(α + 1)−1zα+1e−β/zS(dz)

= c1

∫ ∞
x

(α + 1)−1zα+1e−β/zzαeβ/z dz = c5

∫ ∞
x

z2α+1 dz

= c6z
2(α+1)|z=∞

z=x = ∞,

which completes the proof of (4.3). Because �(∞) = N(∞) = ∞, the right
boundary at ∞ is a natural boundary.

A.2. Continuity of φ �→ (Hrw)(φ) at φ = 0. We shall prove the second
equality in (4.14), namely, (Hrw)(0) = limφ↘0 liml↘0(Hl,rw)(φ) ≡
limφ↘0(Hrw)(φ), which implies along with the first equality in (4.14) that
φ 	→ (Hrw)(φ) is continuous at φ = 0. For every 0 < h < r ,

(Hrw)(0) = E0
0

[∫ τh

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

+
∫ τr

τh

e−(λ+λ0)t
(
g + λ0(Kw)

)
(Y

�0
t ) dt

]

= E0
0

[∫ τh

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

+ e−(λ+λ0)τh(Hrw)(Y�0
τh

)

]
= E0

0

[∫ τh

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
+ (Hrw)(h)E0

0e
−(λ+λ0)τh

= E0
0

[∫ τh

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
+ (Hrw)(h)

ψ(0)

ψ(h)

h↘0−→ 0 + lim
h↘0

(Hrw)(h) · 1,
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where the second equality follows from the strong Markov property of Y�0 ap-
plied at the F-stopping time τh = inf{t ≥ 0;Y�0

t = h}, and the fourth equality
from (4.8). As h ↘ 0, P0

0-a.s. τh ↘ 0 since 0 is an entrance-not-exit boundary,
and the integral and its expectation in the last equation vanish by the bounded
convergence theorem. Moreover, since ψ(0) ≡ ψ(0+) > 0 by (4.4), we have
limh↘0 ψ(0)/ψ(h) = 1. Therefore, limh↘0(Hrw)(h) must exist, and taking limits
of both sides in the last displayed equation completes the proof.

A.3. Calculation of (Hl,rw)(·) in (4.15). Let us denote the function on the
right-hand side of (4.15) by Ĥw(φ), l ≤ φ ≤ r . It can be rewritten in the more
familiar form

Ĥw(φ) =
∫ r

l
Gl,r (φ, z)

(
g + λ0(Kw)

)
(z) dz, l ≤ φ ≤ r,

by means of the Green function

Gl,r(φ, z) = ψl(φ ∧ z)ηr(φ ∨ z)

σ 2(z)Wl,r (z)
, l ≤ φ, z ≤ r,

for the second order ODE

[A0 − (λ + λ0)]H(φ) = −(g + λ0(Kw)
)
(φ),(A.2)

l < φ < r, with boundary conditions H(l+) = H(r−) = 0.

Therefore, the continuous function Ĥw(φ), l ≤ φ ≤ r , is twice continuously dif-
ferentiable on (l, r) and solves the boundary value problem in (A.2). If τl,r �
τ[0,l] ∧ τ[r,∞), Itô’s rule gives

e−(λ+λ0)τl,r Ĥw(Y�0
τl,r

) − Ĥw(�0)

=
∫ τl,r

0
e−(λ+λ0)t [A0 − (λ + λ0)]Ĥw(Y

�0
t ) dt

+
∫ τl,r

0
e−(λ+λ0)tσ (Y

�0
t )Ĥw′(Y�0

t ) dXt

= −
∫ τl,r

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

+
∫ τl,r

0
e−(λ+λ0)tσ (Y

�0
t )Ĥw′(Y�0

t ) dXt ,

where Pφ
0 a.s. Ĥw(Y

�0
τl,r ) = 0, since Ĥw(l) = Ĥw(r) = 0 and the first exit time

τl,r of the regular diffusion Y� from the closed bounded interval [l, r] � [0,∞) is
always Pφ

0 a.s. finite. Moreover, the stochastic integral with respect to the (P0,F)-
Wiener process X on the right-hand side has zero expectation because the deriva-
tive Ĥw′(φ), given by

ψ ′
l (φ)

∫ r

φ

2ηr(z)

σ 2(z)Wl,r (z)

(
g + λ0(Kw)

)
(z) dz
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+ η′
r (φ)

∫ φ

l

2ψl(z)

σ 2(z)Wl,r (z)

(
g + λ0(Kw)

)
(z) dz,

of Ĥw(φ), is bounded on φ ∈ [l, r]. Therefore, taking expectations of both sides
gives

Ĥw(φ) = Eφ
0

[∫ τl,r

0
e−(λ+λ0)t

(
g + λ0(Kw)

)
(Y

�0
t ) dt

]
≡ (Hrw)(φ),

l ≤ φ ≤ r.
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