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RENORMALIZATION OF THE TWO-DIMENSIONAL
LOTKA–VOLTERRA MODEL

BY J. THEODORE COX1 AND EDWIN A. PERKINS2

Syracuse University and University of British Columbia

We show that renormalized two-dimensional Lotka–Volterra models near
criticality converge to a super-Brownian motion. This is used to establish
long-term survival of a rare type for a range of parameter values near the
voter model.

1. Introduction. We consider here the two-dimensional version of a spa-
tially explicit, stochastic Lotka–Volterra model for competition introduced by
Neuhauser and Pacala in [7]. The idea there was to formulate and study a model
for use in plant ecology which was based on individual, stochastic short range
interactions between plants. Most classical competition models are “mean field”
differential equations models, and do not take into account the spatial locations
of individual plants or individual dynamical effects. Neuhauser and Pacala proved
that their model differs in interesting ways from the classical differential equations
models. We refer the reader to [7] for a discussion of the biological significance of
their findings.

In our previous papers [2] and [3] we studied this model in dimensions d ≥ 3.
In [2] we proved that suitably rescaled nearly critical sequences of these processes
converge to super-Brownian motion. In [3] we used this convergence and a renor-
malization argument to prove that survival and/or coexistence hold for certain para-
meter regions. In fact, these results were proved for a more general class of models
we called voter model perturbations.

Our goal here is to extend this work to the more biologically relevant case d = 2,
the critical dimension. The fact that the two-dimensional random walk is recurrent
requires that we use a different mass normalization than in the d ≥ 3 case, and
this complicates the analysis considerably. We believe that appropriate versions of
our main results, Theorems 1.2 and 1.3 below, hold for the general voter model
perturbations of [2], but in order to keep the presentation as simple as possible, we
will consider only the Lotka–Volterra models which we now define.
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The state space for our process is {0,1}Z
d
, where Z

d is the d-dimensional in-
teger lattice. For ξ ∈ {0,1}Z

d
, we interpret ξ(x) = i to mean there is a plant of

type i at site x ∈ Z
d , i = 0,1, and we will sometimes identify ξ with the set

{x ∈ Z
d : ξ(x) = 1}. The parameters for our process are two nonnegative numbers

α0, α1, and a probability mass function p : Zd → [0,1] which satisfies p(0) = 0,
p is symmetric with covariance matrix σ 2I , and the kernel p(x, y) = p(y − x) is
irreducible.

Define the local densities fi = fi(ξ) = (fi(x, ξ), x ∈ Z
d),

fi(x, ξ) = ∑
y

p(y − x)1{ξ(y) = i}, i = 0,1, x ∈ Z
d, ξ ∈ {0,1}Z

d

,(1.1)

and the Lotka–Volterra rate function c(x, ξ) by

c(x, ξ) =
{

f1(f0 + α0f1), if ξ(x) = 0,
f0(f1 + α1f0), if ξ(x) = 1.

(1.2)

The Lotka–Volterra process ξt is the unique {0,1}Z
d
-valued Feller process with

rate function c(x, ξ), meaning that the generator of ξt is the closure of the opera-
tor �:

�φ(ξ) = ∑
x

c(x, ξ)
(
φ(ξx) − φ(ξ)

)

on the set of functions φ : {0,1}Z
d → R depending on only finitely many coordi-

nates (see, e.g., Remark 2.5 of [3]). Here ξx(y) = ξ(y) for y �= x and ξx(x) =
1 − ξ(x).

One can interpret the rate function in the following way. A plant of type i at
site x in configuration ξ dies at rate fi + αif1−i and is immediately replaced by
a plant of type ξ(y), where y is chosen with probability p(y − x). The death rate
incorporates both interspecific and intraspecfic effects. The parameter αi measures
the competitive effect of the neighboring type 1 − i plants on type i, while we set
the self-competition parameter equal to one.

Since f0 + f1 = 1, c(x, ξ) can also be written in the form

c(x, ξ) =
{

f1 + (α0 − 1)f 2
1 , if ξ(x) = 0,

f0 + (α1 − 1)f 2
0 , if ξ(x) = 1.

(1.3)

Setting α0 = α1 = 1 results in the well-known voter model (see Chapter 4 of
[6]). In [1] an invariance principle was proved for the voter model. Namely, ap-
propriately rescaled voter models converge to super-Brownian motion. The above
form for c(x, ξ) suggests the possibility of a similar result holding for the Lotka–
Volterra model for parameters αi sufficiently close to one. This is the case, as was
proved in [2] for high dimensions, d ≥ 3. We briefly recall the main result of that
paper.
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We define a sequence of rescaled Lotka–Volterra models as follows. Consider a
sequence {αN

i :N ∈ N} of αi values for i = 1,2 and let ξt = ξ
(N)
t denote the Lotka–

Volterra model with αi = αN
i . For N = 1,2, . . . , let SN = Z

d/
√

N and define the
kernels pN : SN → [0,1] by

pN(x) = p
(
x
√

N
)
, x ∈ SN.(1.4)

For ξ ∈ {0,1}SN , the rescaled densities f N
i = f N

i (ξ) = (f N
i (x, ξ), x ∈ SN), are

given by

f N
i (x, ξ) = ∑

y∈SN

pN(y − x)1{ξ(y) = i}, i = 0,1.(1.5)

Then ξN
t (x) = ξ

(N)
Nt (x

√
N),x ∈ SN , is the unique Feller process taking values in

{0,1}SN with rate function

cN(x, ξ) =
{

N
(
f N

1 + (αN
0 − 1)(f N

1 )2)
, if ξ(x) = 0,

N
(
f N

0 + (αN
1 − 1)(f N

0 )2)
, if ξ(x) = 1.

(1.6)

Given a sequence N ′ = N ′(N), we define the measure-valued processes XN
t by

XN
t = 1

N ′
∑

x∈SN

ξN
t (x)δx,(1.7)

where δx is the unit point mass at x. That is, we place an atom of size 1/N ′ at
each site x with ξN

t (x) = 1. (We will see below that the appropriate choice for
N ′ is dimension dependent.) If

∑
x ξN

0 (x) < ∞, then for each t ≥ 0, XN
t ∈ Mf =

Mf (Rd), the space of finite Borel measures on R
d , which we endow with the

topology of weak convergence. Let D([0,∞),Mf ) be the Skorokhod space of
cadlag Mf -valued paths, and let �X,C be the space of continuous Mf -valued
paths with the topology of uniform convergence on compacts. In either case,
Xt will denote the coordinate function, Xt(ω) = ω(t). Integration of a function
φ with respect to a measure μ will be denoted by μ(φ). Also, we will use 1 to
denote the function identically one on R

d .
We make the following assumptions about the initial states ξN

0 :

(a)
∑

x∈SN

ξN
0 (x) < ∞,

(1.8)
(b) XN

0 → X0 in Mf (Rd) as N → ∞.

Our basic assumption concerning the rates αN
i is, for i = 0,1,

θN
i ≡ N ′(αN

i − 1) → θi ∈ R as N → ∞.(1.9)

In some places we only require that

θ̄ = 1 ∨ sup{|θN
i | : i = 0,1,N = 1,2, . . .} < ∞.(1.10)
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Let PN be the law of XN· on D([0,∞),Mf ) and for X0 ∈ Mf , let P
γ,θ,σ 2

X0
be

the law of super-Brownian motion with branching rate γ , drift θ and diffusion
coefficient σ 2 on �X,C (and on D([0,∞),Mf )). (See Section 3 below for a char-

acterization of P
γ,θ,σ 2

X0
.)

In [2] it was shown that, for dimension d ≥ 3 and with N ′ ≡ N , PN ⇒ P
γ,θ,σ 2

X0
as N → ∞ for certain parameters γ and θ , where ⇒ denotes weak convergence on
D([0,∞),Mf ). To define these parameters, we introduce random walk systems
{Bx

t , t ≥ 0, x ∈ Z
d} and {B̂x

t , t ≥ 0, x ∈ Z
d}. The walks Bx

t and B̂x
t are rate one

walks with step distribution p(·) and Bx
0 = B̂x

0 = x. The system {Bx
t , t ≥ 0, x ∈

Z
d} is a system of independent random walks. The system {B̂x

t , t ≥ 0, x ∈ Z
d} is a

system of coalescing random walks, meaning that the walks move independently
of one another until they meet, at which time they coalesce and move together.
We define the collision times τ(x, y) = inf{t ≥ 0 :Bx

t = B
y
t } and τ̂ (x, y) = inf{t ≥

0 : B̂x
t = B̂

y
t }, and the constants

γe = ∑
e

p(e)P
(
τ̂ (0, e) = ∞)

,

γ0 = ∑
e,e′

p(e)p(e′)P
(
τ̂ (0, e) = τ̂ (0, e′) = ∞)

,

γ1 = ∑
e,e′

p(e)p(e′)P
(
τ̂ (0, e) = τ̂ (0, e′) = ∞, τ̂ (e, e′) < ∞)

.

In [2] we proved the following.

THEOREM 1.1. Assume N ′ ≡ N and d ≥ 3, and (1.8) and (1.9) hold. Then

PN ⇒ P
2γe,θ,σ 2

X0
as N → ∞,

where θ = θ0γ0 − θ1γ1.

The strategy used for the proof of Theorem 1.1 in [2] was the following. First,
derive a semimartingale representation for XN· . Second, obtain L2 bounds on
XN

t (1), which, along with the semimartingale representation, lead to a proof of
tightness of the laws PN . Finally, show that any limiting martingale problem for
XN· takes the form of the martingale problem characterizing super-Brownian mo-
tion. Unfortunately, there are significant difficulties implementing this approach
when d = 2.

For the two-dimensional voter model, the appropriate mass renormalization fac-
tor is N ′ = N/(logN) (see Theorem 1.2 in [1]). The normalization N ′ ≡ N leads
only to deterministic heat flow in the limit, as in [9]. Adopting this N ′, the first
problem we encounter is that the estimates in [1] no longer imply even L1 bound-
edness of XN

t (1), let alone L2 boundedness. This means that even tightness is
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a more complicated issue than it was before. The method used for d ≥ 3 in [2]
depended on the fact that over short time scales ε the Lotka–Volterra dynamics
are quite close to voter dynamics, as the rates of the “perturbation terms” are of
smaller order. By conditioning back time ε, we allow the quadratic terms in the
drift to relax to voter model equilibria values, and this produces the constants in
the limiting super-Brownian motion. We needed to choose ε = ε(N) → 0 so that
the Lotka–Volterra process is still well approximated by the voter dynamics, but
slow enough so that the system has a chance to relax. Here, however, our errors
in the voter model approximation to the Lotka–Volterra model are multiplied by
a factor of logN . This effectively puts an upper bound on ε so that the voter ap-
proximation over time ε is good enough. At this point we must verify that this still
gives the system enough time to relax to its equilibrium values. The factor of logN

also makes our total mass bounds problematic. Again, the key is the above voter
comparison, as once we pass to the voter model over short time intervals, the voter
model clustering in d = 2 effectively absorbs this factor, providing ε is enough
time for the system to cluster.

Another new issue for d = 2 is that even to define the parameters of our limiting
super-Brownian motion some new two-dimensional random walk estimates are
required (see, e.g., Lemma 2.5 and Proposition 2.1 below).

To state our results, we introduce the two-dimensional potential kernel a(x),

a(x) =
∫ ∞

0
[P(B0

t = 0) − P(Bx
t = 0)]dt.(1.11)

Note that a(x) ≥ 0 since symmetry of p(·) implies P(B0
t = 0) ≥ P(Bx

t = 0). We
may now define

γ ∗ = 2πσ 2
∫ ∞

0

∑
x,y,e,e′∈Z2

p(e)p(e′)

× P
(
τ(0, e) ∧ τ(0, e′) > τ(e, e′) ∈ du,

(1.12)
B0

u = x,Be
u = y

)
× a(y − x).

The fact that γ ∗ is finite is contained in Proposition 2.1, proved in Section 2.
Our two-dimensional Lotka–Volterra invariance principle is the following:

THEOREM 1.2. Assume d = 2, N ′ = N/(logN), and (1.8) and (1.9) hold.
Then

PN ⇒ P
4πσ 2,θ,σ 2

X0
as N → ∞,

where θ = γ ∗(θ0 − θ1).



752 J. T. COX AND E. A. PERKINS

Theorem 1.1 was used in [3] to prove, for dimensions d ≥ 3, that survival holds
for a region of parameter values α = (α0, α1) near (1,1). If P α denotes the depen-
dence of the Lotka–Volterra model on α, survival for parameter values α means
that

P α(|ξt | > 0 for all t > 0 | |ξ0| = 1) > 0,

where |ξ | = ∑
x ξ(x). A similar result holds here. Let S be the set of all (α0, α1) for

which survival occurs. For 0 < η < 1, define Sη to be the set of all (α0, α1) �= (1,1)

such that

α1 − 1 <

{
(1 − η)(α0 − 1), if α0 ≥ 1,
(1 + η)(α0 − 1), if α0 < 1.

THEOREM 1.3. For 0 < η < 1, there exists r(η) > 0 such that survival holds
for all (α0, α1) ∈ Sη such that 1 − r(η) < α0 and α1 < 1 + r(η).

If S̃η = {(α0, α1) ∈ Sη : 1 − r(η) < α0 and α1 < 1 + r(η)}, Theorem 1.3 shows
survival holds on the region S̃ = ⋃

0<η<1 S̃η illustrated in Figure 1.
Theorem 1.3 follows from Theorem 1.2 by a cavalier interchange of limits.

Long-term survival for the limiting super-Brownian motion in Theorem 1.2 occurs
iff θ > 0, that is, θ0 > θ1. Interchanging limits as N → ∞ and t → ∞ leads to sur-
vival of the original particle system for α0 > α1 and α near (1,1). The monotonic-
ity of the Lotka–Volterra models (increasing in α0 and decreasing in α1) estab-
lished in Section 1 of [3] [see (1.3) of that work] allows one to infer survival for
larger values of α0 and smaller values of α1 as stated in Theorem 1.3.

The above interchange of limits argument is carried out for d ≥ 3 in Theorem 1
of [3], where now θ > 0 in Theorem 1.1 leads to survival for |α0 − 1| < r(η)

FIG. 1. Survival region of Theorem 1.3.
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satisfying

α1 − 1 <

{
(m0 + η)(α0 − 1), if α0 < 1,
(m0 − η)(α0 − 1), if α0 ≥ 1,

(1.13)

where m0 = γ1/γ0 < 1. In the proof of Theorem 1.3 the interchange of limits is jus-
tified by a comparison with super-critical oriented percolation as in [3]. To obtain
suitable independence in our percolation events, we must study the Lotka–Volterra
model with 0 boundary conditions outside a large box and show the effect of these
boundary conditions is small on an appropriate space–time region (Lemma 9.1).
This argument is now more involved than the corresponding one in [3] due to the
different mass normalization and the fact that the conditioning technique used in
the convergence theorem must be adapted to handle this new type of bound.

Note that in Theorem 1.3 survival fails at the point α = (1,1) itself. We conjec-
ture that Theorem 1.3 is sharp in the following sense:

CONJECTURE. There is a continuous curve α1 = g(α0), tangent to α1 = α0
at (1,1), so that survival fails above the curve for α0 close to 1.

The corresponding conjecture has been proved for d ≥ 3 to the left of (1,1)

with the slope m0 in place of 1, but in fact is false to the right of (1,1) (with slope
m0) in this higher dimensional setting. The exact state of affairs will appear in a
forthcoming article with Rick Durrett.

We say coexistence holds for the Lotka–Volterra model if there is a stationary
distribution under which there are both 0’s and 1’s (necessarily infinitely many of
each) a.s. For d ≥ 3, it follows from (1.13) and symmetry that survival of 0’s will
occur if

α1 − 1 > (m0 + η)−1(α0 − 1), α0 < 1 and close to 1.(1.14)

We have restricted α0 < 1 so that the regions in (1.13) and (1.14) intersect in a local
nonempty wedge to the left of (1,1) containing a local piece of the diagonal α1 =
α0 (see Figure 3 in [3]). The survival of both types for parameter values in this local
wedge easily leads to coexistence in this local wedge for d ≥ 3 (see Theorem 4
of [3]). The wedge is nonempty because m0 < 1. For d = 2 in Theorem 1.3, we are
in the critical case m0 = 1, and the above proof of coexistence just fails. Neuhauser
and Pacala have conjectured coexistence holds along the diagonal α0 = α1 for
α0 < 1 (see Conjecture 1 of [7]) and proved it for small α0 (see Theorem 1 of [7]).
Theorem 4 in [3] confirms this for d ≥ 3 for α0 close to 1, but Theorem 1.3 and
the above Conjecture suggest that for d = 2 their conjecture is quite delicate near
α0 = 1. One approach to establishing coexistence near α0 = 1 would be to derive
second order (concave up) asymptotics for the survival region near (1,1) and so
deduce survival in an open thorn with tip at (1,1) with slope 1.

Section 2 gives an alternative description of γ ∗ and proves it is finite (Propo-
sition 2.1). The martingale problems for both the approximating Lotka–Volterra
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processes and limiting super-Brownian motion are provided in Section 3. In Sec-
tion 4 we state the key bounds, including L1 and L2 bounds on the total mass
(Proposition 4.3), a mean measure bound (Proposition 4.4), and asymptotics for
the increasing processes arising in the martingale problem for XN· obtained in
Section 3 (Proposition 4.7). We then show how Theorem 1.2 follows from these
estimates. Section 5 contains mass and mean measure bounds for the voter and
biased voter models. Both upper and lower biased voter models are used because
they are simpler to handle than the Lotka–Volterra model, and bound it above and
below, respectively. The voter model estimates are obtained by direct duality cal-
culations, and the biased voter bounds are then obtained by conditioning back over
short time intervals, arguing that the voter dynamics are close over such intervals.
In Section 6 the above bounds and techniques are used to prove Propositions 4.3–
4.5. The proof of Proposition 4.7, which is more delicate as the demands on our
ε relaxation time are more severe, is split over Sections 7 and 8. Finally, the proof
of Theorem 1.3 is given in Section 9.

NOTE. Henceforth, we will assume that d = 2 and N ′ = N/(logN).

2. Characterization of γ ∗. Recall the independent system of random walks
{Bx

t , x ∈ Z
2} and the coalescing random walk system {B̂x

t , x ∈ Z
2} from Section 1,

and also the collision times τ(x, y) and τ̂ (x, y). For e, e′ ∈ Z
2, define the event

�T (e, e′) = {τ̂ (e, e′) < T , τ̂ (0, e) ∧ τ̂ (0, e′) > T }, and let

qT = ∑
e,e′∈Z2

p(e)p(e′)P (�T (e, e′)).(2.1)

We will need the following characterization of γ ∗ defined in (1.12).

PROPOSITION 2.1.

γ ∗ = lim
T →∞(logT )qT < ∞.(2.2)

Before beginning the proof of Proposition 2.1, we assemble some facts about
two-dimensional random walk. Let τx = inf{t ≥ 0 :B0

t = x}, and write P x to indi-
cate the law of the walk Bx· . Let P̃ (·) = ∑

e∈Z2 p(e)P e(·), and define

H(t) = P̃ (τ0 > t).(2.3)

Let |x| be the Euclidean norm of x ∈ R
2.

PROPOSITION 2.2.

lim
t→∞H(t) log t = 2πσ 2.(2.4)

P x(τ0 > t)

H(t)
≤ 2a(x) for all x ∈ Z

2, t > 0.(2.5)
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lim
t→∞

P x(τ0 > t)

H(t)
= a(x) for all x ∈ Z

2.(2.6)

a(x)/|x|, x �= 0 is bounded.(2.7)

REMARK 2.3. The trivial bound (2.7) is derived below. In fact, it is not hard
to show a(x)/ log |x| → 1/πσ 2 as |x| → ∞. If

∑
e |e|rp(e) < ∞ for some r > 2,

this limit is a simple consequence of the far more precise P12.3 in [10].

PROOF OF PROPOSITION 2.2. The limit (2.4) is well known, for example,
see Lemma A.3 in [1] for a proof. Now let Yn,n = 0,1,2, . . . , be a random walk
with step distribution p(·), and let σx = inf{n ≥ 1 :Yn = x}. We will abuse notation
slightly and also let P x denote the law of the walk starting at Y0 = x. We note that
a(x) defined in (1.11) is also given by

∑∞
n=0[P 0(Yn = 0) − P 0(Yn = x)].

By P11.5 in [10], P 0(σx < σ0) = 1/2a(x). Since the sequence of states visited
by the walk B0

t is equal in law to the sequence visited by the walk Yn (with Y0 = 0),
it follows that P̃ (τx < τ0) = 1/2a(x). By the strong Markov property,

H(t) ≥ ∑
e∈Z2

p(e)P e(τx < τ0 and τ0 > t)

≥ ∑
e∈Z2

p(e)P e(τx < τ0)P
x(τ0 > t),

and (2.5) follows.
For (2.6), we recall the (discrete time) result T16.1 of [10],

lim
n→∞

P x(σ0 > n)

P 0(σ0 > n)
= a(x).(2.8)

A standard result (see the local limit theorem P7.9 of [10]) is

(logn)P 0(σ0 > n) → 2πσ 2 as n → ∞.(2.9)

In view of (2.4), H(t)/P 0(σ0 > t) → 1 as t → ∞, and therefore, in order to prove
(2.6), it suffices to show that

lim
t→∞

P x(τ0 > t)

P x(σ0 > t)
= 1.(2.10)

To do this, let S(t), t ≥ 0, be a rate one Poisson process, independent of the
walk Yn. Then YS(·) is a realization of B0· . By a standard large deviations esti-
mate, there is a constant C > 0 such that eCtP (S(t) /∈ [t/2,2t]) → 0 as t → ∞.
Consequently,

P x(τ0 > t)

= o(e−Ct ) + ∑
k∈[t/2,2t]

e−t t k

k! P x(σ0 > k)

≤ o(e−Ct ) + P x(σ0 > t/2)
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as t → ∞, and similarly,

P x(τ0 > t) ≥ (
1 − o(e−Ct )

)
P x(σ0 > 2t).

These inequalities, together with (2.8) and (2.9), imply (2.10).
Finally, let ψ(θ) be the characteristic function of Y1, ψ(θ) = ∑

x eix·θp(x),
θ ∈ R

2. Then (see equation (12.3) in [10])

a(x) = (2π)−2
∫
[−π,π ]2

1 − eix·θ

1 − ψ(θ)
dθ.

Since |1 − eix·θ | ≤ |x||θ | and |θ |/|1 − ψ(θ)| is integrable over [−π,π ]2 (see the
paragraph after (12.3) in [10]), (2.7) holds. �

The next result is a general inequality which we will apply to bound the proba-
bility that walks starting from 0, e, e′ avoid each other for at least time T .

LEMMA 2.4. Let X,Y be nonnegative random variables. For any constant
c > 0, E(XY ∧ c) ≤ √

cE(X + Y).

PROOF. For any a > 0,

E(XY ∧ c) = E(XY ∧ c;Y ≤ a) + E(XY ∧ c;Y > a)

≤ aE(X) + cP (Y > a)

≤ aE(X) + cE(Y )/a.

Now let a = √
c. �

LEMMA 2.5. For distinct sites 0, e1, e2, let τ = τ(0, e1)∧ τ(0, e2)∧ τ(e1, e2).
Then for T > 0,

P(τ > T ) ≤ (2H(2T ))3/2(
a(e1) + a(e2)

)√
a(e1 − e2).

PROOF. Define

χT = P(τ > T | B0
s ,0 ≤ s ≤ T )

and

χi
T = P

(
τ(0, ei) > T | B0

s ,0 ≤ s ≤ T
)
, i = 1,2.

Note that (2.5) implies that, for i = 1,2, E(χi
T ) ≤ 2a(ei)H(2T ) [since B0

t − B
ei
t

is a rate-two random walk with step distribution p(·)]. By independence,

P
(
τ(0, e1) > T , τ(0, e2) > T | B0

s , s ≤ T
) = χ1

T χ2
T ,

and also

P
(
τ(e1, e2) > T | B0

s , s ≤ T
) = P

(
τ(e1, e2) > T

) ≤ 2a(e1 − e2)H(2T ).
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Consequently, since each χi
T ≤ 1,

χT ≤ χ1
T χ2

T ∧ 2a(e1 − e2)H(2T ).

We may now apply Lemma 2.4 to complete the proof. �

PROOF OF PROPOSITION 2.1. Since �T (e, e′) ⊂ {τ̂ (0, e) > T }, summation
over e′ gives qT ≤ ∑

e∈Z2 p(e)P (τ̂ (0, e) > T ) = ∑
e∈Z2 p(e)P (τ(0, e) > T ) =

H(2T ). It follows from (2.4) that qT (logT ) is bounded as T → ∞.
By the Markov property,

qT =
∫ T

0

∑
x,y,e,e′∈Z2

p(e)p(e′)P
(
τ̂ (0, e) ∧ τ̂ (0, e′) > τ̂ (e, e′) ∈ du,

B̂0
u = x, B̂e

u = y
)

(2.11)

× P
(
τ̂ (x, y) > T − u

)
.

Below we will use the fact that this expression is unchanged if we replace the
coalescing walks and corresponding hitting times B̂ and τ̂ with the independent
walks B and τ . Since

(logT )P
(
τ(x, y) > T − u

) → 2πσ 2a(x − y) as T → ∞ for fixed u,

by (2.4) and (2.6), it follows from Fatou that lim infT →∞ qT (logT ) ≥ γ ∗, and
therefore, γ ∗ is finite.

The next step is to apply Lemma 2.5 and see that we may restrict the integral in
(2.11) to u < T/2. By Lemma 2.5,

logT
∑

e,e′∈Z2

p(e)p(e′)P
(
τ(0, e) ∧ τ(0, e′) ∧ τ(e, e′) > T/2

)

≤ (logT )(2H(T ))3/2
∑

e,e′∈Z2

p(e)p(e′)
(
a(e) + a(e′)

)√
a(e − e′).

By (2.7), the sum above is finite, and so by (2.4), the right-hand side above tends
to 0 as T → ∞.

Now for u ≤ T/2, (2.4) and (2.6) imply

(logT )P
(
τ(x, y) > T − u

) → 2πσ 2a(x − y) as T → ∞,

and (2.5) implies

(logT )P
(
τ(x, y) > T − u

) ≤ 2a(x − y)(logT )H(T /2).

The right-hand side above is no larger than a fixed multiple of a(x − y) by (2.4).
Since we have already established the integral defining γ ∗ is finite, we may apply
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the dominated convergence theorem to conclude that

logT

∫ T/2

0

∑
x,y,e,e′∈Z2

p(e)p(e′)P
(
τ(0, e) ∧ τ(0, e′) > τ(e, e′) ∈ du,

B0
u = x,Be

u = y
)

(2.12)

× P
(
τ(x, y) > T − u

) → γ ∗,
which completes the proof of Proposition 2.1. �

3. Semimartingale decompositions. Let ξN
t be the rescaled Lotka–Volterra

model as defined in Section 1. Following [2], we introduce the following notation.
If

ψ ∈ Cb(SN), φ = φs(x), φ̇s(x) ≡ ∂

∂s
φ(s, x) ∈ Cb([0, T ] × SN),

and s ≤ T , define

AN(ψ)(x) = ∑
y∈SN

NpN(y − x)
(
ψ(y) − ψ(x)

)
,(3.1)

D
N,1
t (φ) =

∫ t

0
XN

s (ANφs + φ̇s) ds,(3.2)

D
N,2
t (φ) = N(α0 − 1)

N ′
∫ t

0

∑
x∈SN

φs(x)1{ξN
s (x) = 0}(f N

1 (x, ξN
s ))2 ds,(3.3)

D
N,3
t (φ) = N(α1 − 1)

N ′
∫ t

0

∑
x∈SN

φs(x)1{ξN
s (x) = 1}(f N

0 (x, ξN
s ))2 ds,(3.4)

〈MN(φ)〉1,t = N

(N ′)2

∫ t

0

∑
x∈SN

φ2
s (x)

(3.5)
× ∑

y∈SN

pN(y − x)
(
ξN
s (y) − ξN

s (x)
)2

ds,

〈MN(φ)〉2,t = 1

(N ′)2

∫ t

0

∑
x∈SN

φ2
s (x)

× [(αN
0 − 1)1{ξN

s (x) = 0}(f N
1 (x, ξN

s ))2(3.6)

+ (αN
1 − 1)1{ξN

s (x) = 1}(f N
0 (x, ξN

s ))2]ds.

Note that 〈MN(φ)〉2,t may be negative. If X· is a process, let (F X
t , t ≥ 0) be the

right-continuous filtration generated by X·.
The following result is Proposition 2.3 of [2], which was stated in the case

N ′ ≡ N . Only trivial modifications of the proof of that result are necessary to
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prove the following for general, and hence, our choice of, N ′. Recall that XN· is as
in (1.7).

PROPOSITION 3.1. For φ, φ̇ ∈ Cb([0, T ] × SN) and t ∈ [0, T ],
XN

t (φt ) = XN
0 (φ0) + DN

t (φ) + MN
t (φ),(3.7)

where

DN
t (φ) = D

N,1
t (φ) + D

N,2
t (φ) − D

N,3
t (φ)(3.8)

and MN
t (φ) is an (F XN

t ) square-integrable martingale with predictable square
function

〈MN(φ)〉t = 〈MN(φ)〉1,t + 〈MN(φ)〉2,t .(3.9)

Having described our approximating martingale problems, it is a good time to
recall the target martingale problem. Let C∞

b (Rd) denote the space of bounded in-
finitely differentiable functions on R

d with uniformly bounded partial derivatives.
An adapted a.s.-continuous Mf (Rd)-valued process Xt, t ≥ 0, on a complete fil-
tered probability space (�,F ,Ft , P ) is said to be a super-Brownian motion with
branching rate γ ≥ 0, drift θ ∈ R and diffusion coefficient σ 2 > 0 starting at
X0 ∈ Mf (Rd) iff it solves the following martingale problem:

(MP) For all φ ∈ C∞
b (Rd),

Mt(φ) = Xt(φ) − X0(φ) −
∫ t

0
Xs

(
σ 2�φ

2

)
ds − θ

∫ t

0
Xs(φ)ds(3.10)

is a continuous (F X
t )-martingale, with M0(φ) = 0 and predictable square function

〈M(φ)〉t =
∫ t

0
Xs(γ φ2) ds.(3.11)

The existence and uniqueness in law of a solution to this martingale problem is
well known (see, e.g., Theorem II.5.1 and Remark II.5.13 of [8]). Recall from

Section 1 that P
γ,θ,σ 2

X0
denotes the law of the solution on �X,C (and also on

D([0,∞),Mf )).

4. Convergence to super-Brownian motion. The goal of this section is to
outline the proofs of the following two key results. Recall that if S is a metric
space and {QN } is a sequence of probabilities on D([0,∞), S), then {QN } is
C-tight iff it is tight and every limit point is supported by C([0,∞), S).

PROPOSITION 4.1. The family of laws {PN,N ∈ N} is C-tight.
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PROPOSITION 4.2. If P̂ is any weak limit point of the sequence PN , then
P̂ = P 4πσ 2,θ,σ 2

.

Clearly, Theorem 1.2 follows from these propositions. We say “outline” because
we will state the key technical ingredients as Propositions 4.3–4.7 below, and as-
suming their validity, derive Propositions 4.1 and 4.2. Propositions 4.3–4.7 will
then be established in Sections 6–8.

Proposition 4.3 gives “total mass” bounds and will be used to prove that, for
φ ∈ C

1,3
b (R+ ×R

3), each of the families XN· (φ), DN,i· (φ), MN· (φ) and 〈MN(φ)〉·,
N = 1,2, . . . , is C-tight (see Proposition 4.11 below). Propositions 4.4 and 4.5
provide “spatial mass” bounds which are used to prove the required compact con-
tainment condition (Proposition 4.12 below). Proposition 4.7 will be used to iden-
tify the weak limit points of the PN .

Let

g(s) = C4.1s
−1/3eC4.1s,(4.1)

where C4.1 is a positive constant which will be chosen in Section 6.

PROPOSITION 4.3. (a) For T > 0, there is a constant C4.2(T ) such that, for
all N ∈ N,

sup
t≤T

E(XN
t (1)) ≤ C4.2(T )XN

0 (1),(4.2)

E

(
sup
t≤T

XN
t (1)2

)
≤ C4.2(T )

(
XN

0 (1)2 + XN
0 (1)

)
.(4.3)

(b) For all s > 0 and N ∈ N,

(logN)E(XN
s (f N

0 (·, ξN
s ))) ≤ g(s)XN

0 (1),(4.4)

(logN)E(XN
s (1)XN

s (f N
0 (·, ξN

s ))) ≤ g(s)
(
XN

0 (1)2 + XN
0 (1)

)
.(4.5)

To state the next bounds, we need some additional notation. For D ⊂ R
2 and

φ :D → R, define

|φ|Lip = sup
{ |φ(x) − φ(y)|

|x − y| :x �= y ∈ D

}
and

(4.6)
‖φ‖Lip = |φ|Lip + ‖φ‖∞.

Let A∗
N(ψ) = (N + θ̄ logN)AN

N
(ψ), with semigroup P

N,∗
t .

PROPOSITION 4.4. For p ≥ 3, there is a C4.7(p) such that, for any t ≥ 0 and
φ : R2 → R

+,

E(XN
t (φ)) ≤ e(logN)1−p

eC4.7tXN
0 (P

N,∗
t φ)

(4.7)
+ C4.7e

C4.7t‖φ‖Lip(logN)(1−p)/2XN
0 (1).
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PROPOSITION 4.5. For p ≥ 3, there is a constant C4.8(p) such that, for all
φ : R2 → R+, if ε = (logN)−p , then

E(XN
ε (logNφf N

0 (·, ξN
ε ))) ≤ C4.8X

N
0 (1)‖φ‖Lip(logN)(1−p)/2

(4.8)
+ C4.8X

N
0 (φ).

REMARK 4.6. It will be immediate from the proofs that the constants in
Propositions 4.3, 4.4 and 4.5 will depend only on the kernel p(·) and θ̄ (as well as
the choice of parameter p in the latter two). This will be convenient in Section 9.

PROPOSITION 4.7. Let supK,T indicate a supremum over all XN
0 ∈ Mf (SN),

φ : R2 → R and t ≥ 0 satisfying XN
0 (1) ≤ K , ‖φ‖Lip ≤ K and t ≤ T . Then for

every K,T > 0 and 0 < p < 2:

(a) limN→∞ supK,T E(| ∫ t
0 (XN

s (logNφ2f N
0 (·, ξN

s )) − 2πσ 2XN
s (φ2)) ds|p) =

0;
(b) for i = 2,3, limN→∞ supK,T E(|DN,i

t (φ) − ∫ t
0 θi−2γ

∗XN
s (φ)ds|p) = 0.

Assuming the validity of these results, we can now prove tightness for the se-
quence of laws {PN :N = 1,2, . . .}.

The first step is to obtain more precise information on the terms in the decom-
position of XN

t (φ) given in Proposition 3.1. Lemma 4.8 below bounds the terms
in the increasing process 〈MN(φ)〉t and some of the terms in the drift DN

t (φ).

LEMMA 4.8. There is a constant C4.9 such that if φ : [0, T ] × SN → R is a
bounded measurable function, then for 0 ≤ t ≤ T :

(a) 〈MN(φ)〉2,t = ∫ t
0 mN

2,s(φ) ds where

|mN
2,s(φ)| ≤ C4.9

‖φs‖2∞
(N ′)2 XN

s (1), 0 ≤ s ≤ t.(4.9)

(b)

〈MN(φ)〉1,t = 2
∫ t

0
XN

s (logNφ2
s f

N
0 (ξN

s )) ds +
∫ t

0
mN

1,s(φs) ds,(4.10)

where

|mN
1,s(φ)| ≤ C4.9 logN√

N
‖φs‖2

LipX
N
s (1), 0 ≤ s ≤ t.(4.11)

(c) For i = 2,3, D
N,i
t (φ) = ∫ t

0 dN,i
s (φ) ds, where

|dN,i
s (φ)| ≤ C4.9‖φs‖∞XN

s (logNf N
0 (ξN

s )), 0 ≤ s ≤ t.



762 J. T. COX AND E. A. PERKINS

PROOF. (a) From (3.6) and (1.10) we have

|mN
2,s(φ)| ≤ ‖φs‖2∞

(N ′)2

∑
x

2θ̄

N ′ ξ
N
s (x) = 2θ̄

‖φs‖2∞
(N ′)2 XN

s (1).

(b) Use (ξN
s (y) − ξN

s (x))2 = ξN
s (x)(1 − ξN

s (y)) + ξN
s (y)(1 − ξN

s (x)) in (3.5)
to conclude that

〈MN(φ)〉1,t =
∫ t

0

2 logN

N ′
∑
x

φ2
s (x)ξN

s (x)
∑
y

pN(y − x)
(
1 − ξN

s (y)
)
ds

+
∫ t

0

logN

N ′
∑
x

∑
y

(
φs(x)2 − φs(y)2)

× pN(x − y)ξN
s (y)

(
1 − ξN

s (x)
)
ds.

This is the required expression, where

|mN
1,s(φ)| =

∣∣∣∣∣ logN

N ′
∑
x

∑
y

(
φs(x) + φs(y)

)(
φs(x) − φs(y)

)

× pN(x − y)ξN
s (y)

(
1 − ξN

s (x)
)∣∣∣∣∣

≤ (logN)2‖φs‖∞|φs |Lip
1

N ′
∑
y

ξN
s (y)

∑
x

|y − x|pN(y − x)

≤ C4.9‖φs‖2
LipX

N
s (1)

logN√
N

,

since
∑

x |x|pN(x) ≤
√

2σ 2/N .
(c) Use (3.3) or (3.4), and (1.10) to see that, for i = 2 or 3,

|dN,i
s (φ)| ≤ θ̄ logN‖φs‖∞

1

N ′
∑
x

∑
y

ξN
s (x)

(
1 − ξN

s (y)
)
pN(y − x)

= θ̄ logN‖φs‖∞XN
s (f N

0 (ξN
s )). �

REMARK 4.9. Inequalities (4.9) and (4.11) imply, in conjunction with (4.2),
that for T > 0, there is a constant C4.12(T ) such that if φs ≡ ψ , then for 0 ≤ s ≤
T ,

E(|mN
1,s | + |mN

2,s |) ≤ C4.12(T )‖ψ‖2
Lip(logN/N1/2)XN

0 (1).(4.12)

LEMMA 4.10. For T > 0, there is a constant C4.13(T ) so that, for
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all 0 ≤ s ≤ t ≤ T ,

E

([∫ t

s
XN

r (logNf N
0 (ξN

r )) dr

]2)
(4.13)

≤ C4.13(T )(t − s)4/3(
XN

0 (1)2 + XN
0 (1)

)
.

PROOF. Using the Markov property, and then (4.4) and (4.5), the left-hand
side above is

2E

(∫ t

s

∫ t

r
XN

r (logNf N
0 (ξN

r ))XN
r ′ (logNf N

0 (ξN
r ′ )) dr ′ dr

)

≤ 2
∫ t

s

∫ t

r
E

(
XN

r (logNf N
0 (ξN

r ))g(r ′ − r)XN
r (1)

)
dr ′ dr

≤ 2
∫ t

s

∫ t

r
g(r)g(r ′ − r) dr ′ dr

(
XN

0 (1)2 + XN
0 (1)

)
.

After plugging in the explicit form of g given in (4.1), a little integration
yields (4.13). �

PROPOSITION 4.11. For each φ ∈ C
1,3
b (R+ × R

3), each of the families
{XN· (φ·),N ∈ N}, {DN,i· (φ),N ∈ N}, i = 1,2,3, {〈MN(φ)〉·,N ∈ N}, and
{MN· (φ),N ∈ N} is C-tight in D([0,∞),R).

PROOF. Fix T > 0, and φ as above, and recall the decomposition of XN
t (φt )

in Proposition 3.1. Lemmas 4.8(c) and 4.10, and assumption (1.8) imply there is
constant CT such that, for i = 2,3, 0 ≤ s ≤ t ≤ T ,

E
((

D
N,i
t (φ) − DN,i

s (φ)
)2) ≤ CT ‖φ‖2∞(t − s)4/3.

C-tightness of {DN,i· (φ) :N ∈ N} (i = 2,3) is now standard (see, e.g., Theo-
rem 3.8.8 and Proposition 3.10.3 of [4]).

Tightness of {〈MN(φ)〉· :N ∈ N} follows by similar reasoning using Lem-
mas 4.8(a), (b) and 4.10, as well as Proposition 4.3(a). C-tightness of the remaining
terms now follows just as in the argument for d ≥ 3 in Proposition 3.7 of [2]. In
particular, the hypothesis that φ ∈ C

1,3
b is used to prove C-tightness of {DN,1· (φ)}

as in Proposition 3.7 of [2]. �

We come now to the compact containment condition. Let

B(x,n) = {y ∈ R
2 : |y − x| ≤ n}.

PROPOSITION 4.12. For all ε > 0, there is an n ∈ N, so that

sup
N

P

(
sup

t≤ε−1
XN

t (B(0, n)c) > ε

)
< ε.



764 J. T. COX AND E. A. PERKINS

PROOF. Choose a sequence h = {hn}, hn : R2 → [0,1], with uniformly (in n)
bounded continuous partial derivatives of order 3 or less, such that

1(|x| > n + 1) ≤ hn(x) ≤ 1(|x| > n).

Note that Ch ≡ supn(‖hn‖Lip + ‖�hn‖∞) < ∞. By the semimartingale decompo-
sition in Proposition 3.1,

sup
t≤T

XN
t (hn) ≤ XN

0 (hn) +
3∑

i=1

sup
t≤T

|DN,i
t (hn)| + sup

t≤T

|MN
t (hn)|.(4.14)

Our task is to show that the expected value of the right-hand side above tends to 0
as N,n → ∞.

Let ηN = supn ‖AN(hn) − σ 2�hn/2‖∞. As in Lemma 2.6 of [1], our assump-
tions on {hn} imply that limN→∞ ηN = 0. It is easy to see that

|DN,1
t (hn)| ≤

∫ t

0
XN

s (ηN1 + Chhn−1) ds(4.15)

and

|DN,3
t (hn)| ≤ θ̄

∫ t

0
XN

s (hn logNf N
0 (ξN

s )) ds.(4.16)

The term D
N,2
t (hn) is more complicated:

|DN,2
t (hn)| ≤ θ̄ logN

∫ t

0

1

N ′
∑
x

hn(x)
(
1 − ξN

s (x)
)∑

y

pN(y − x)ξN
s (y) ds

≤ θ̄ logN

∫ t

0

1

N ′
∑
x,y

|hn(x) − hn(y)|pN(y − x)ξN
s (y) ds

+ θ̄ logN

∫ t

0

1

N ′
∑
y

hn(y)ξN
s (y)f N

0 (y, ξN
s ) ds

≤ θ̄ |hn|Lip logN

∫ t

0

1

N ′
∑
x

∑
y

|x − y|pN(y − x)ξN
s (y) ds

+ θ̄

∫ t

0
XN

s (logNhn(y)f N
0 (ξN

s )) ds

≤ θ̄Ch logN

(
2σ 2

N

)1/2 ∫ t

0
XN

s (1) ds

+ θ̄

∫ t

0
XN

s (hn logNf N
0 (ξN

s )) ds,

where we have used the symmetry of pN(·) and the bound
∑

x∈SN
|x|pN(x) ≤

(2σ 2/N)1/2.
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The inequalities above, (4.2) and Burkholder’s inequality show that, with
η′

N(T ) = C4.2(T )(ηN + θ̄Ch logN(2σ 2/N)1/2)T ,

E

(
sup
t≤T

XN
t (hn)

)
≤ XN

0 (hn) + 2(E〈MN(hn)〉T )1/2 + η′
NXN

0 (1)

+ Ch

∫ T

0
E(XN

s (hn−1)) ds(4.17)

+ 2θ̄

∫ T

0
E(XN

s (hn logNf N
0 (ξN

s ))) ds.

[Note limN→∞ η′
N(T ) = 0.]

To estimate the last integral above, we apply Proposition 4.5 with p = 3 and
ε = (logN)−3. By the Markov property and (4.2),

E

(∫ T

0
XN

s (hn logNf N
0 (ξN

s )) ds

)

= E

(∫ ε

0
XN

s (hn logNf N
0 (ξN

s )) ds

)

+ E

(∫ T

ε
E(XN

s (hn logNf N
0 (ξN

s )) | XN
s−ε) ds

)

≤ ε(logN)C4.2(T )XN
0 (1) + C4.8‖hn‖Lip

logN

∫ T

ε
E(XN

s−ε(1)) ds

+ C4.8

∫ T

ε
E(XN

s−ε(hn)) ds.

Using (4.2) again, and letting η′′
N(T ) = C4.2(T )[(logN)−2 +C4.8ChT/ logN ], we

have

E

(∫ T

0
XN

s (hn logNf N
0 (ξN

s )) ds

)
(4.18)

≤ η′′
N(T )XN

0 (1) + C4.8

∫ T

0
E(XN

s (hn)) ds.

[Note limN→∞ η′′
N(T ) = 0.]

Next, by the above inequality, Lemma 4.8 and the bound (4.12),

E(〈MN(hn)〉T )

= E

(∫ T

0
XN

s (2 logNh2
nf

N
0 (ξN

s )) ds +
∫ T

0

(
mN

1,s(hn) + mN
2,s(hn)

)
ds

)

≤ 2η′′
N(T )XN

0 (1) + 2C4.8

∫ T

0
E(XN

s (hn)) ds

+ C4.12(T )‖hn‖2
Lip

logN√
N

T XN
0 (1).
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That is, letting η′′′
N(T ) = 2η′′

N(T ) + C4.12(T )T C2
h logN/

√
N ,

E(〈MN(hn)〉T ) ≤ η′′′
N(T )XN

0 (1) + 2C4.8

∫ T

0
E(XN

s (hn)) ds.(4.19)

[Note limN→∞ η′′′
N = 0.]

An application of Proposition 4.4 with p = 3 implies∫ T

0
E(XN

s (hn−1)) ds ≤ e(logN)−2
∫ T

0
eC4.7sXN

0 (P N,∗
s hn−1) ds

(4.20)
+ eC4.7T (logN)−1ChX

N
0 (1).

Finally, let B
N,∗
t be the continuous time random walk with semigroup P

N,∗
t de-

fined before Proposition 4.4, B
N,∗
0 = 0, and note that

E(|BN,∗
s |2) = 2σ 2s · (1 + θ̄ logN/N) ≤ 4σ 2T

for all 0 ≤ s ≤ T for large N . With this bound, we have

XN
0 (P N,∗

s hn−1) ≤ XN
0

(
B

(
0,

n − 1

2

)c)
+ XN

0 (1)P

(
|BN,∗

s | ≥ n − 1

2

)
(4.21)

≤ XN
0

(
B

(
0,

n − 1

2

)c)
+ XN

0 (1)16σ 2T/(n − 1)2.

By assembling the inequalities (4.17)–(4.21), we have the following: for any
T , ε′ > 0, there is an N0 so that,

for N ≥ N0, n ≥ N0, E

(
sup
t≤T

XN
t (hn)

)
< ε′.

The required compact containment follows. �

PROOF OF PROPOSITION 4.1. The C-tightness of {PN,N ∈ N} is now im-
mediate from Propositions 4.11 and 4.12 above, and Theorem II.4.1 in [8]. �

PROOF OF PROPOSITION 4.2. It is now a simple matter to take a subsequen-
tial limit in the semimartingale decomposition of XN

t (φ) in Proposition 3.1 to show
that any limit point satisfies the martingale problem (3.10) characterizing the law

P
4πσ 2,θ,σ 2

X0
of super-Brownian motion. Let φ ∈ C∞

b (R2). Proposition 4.7(b) im-

plies D
N,2
t (φ)−D

N,3
t (φ) approaches the drift term involving θ in (3.10). Proposi-

tion 4.7(a), Lemma 4.8(a), (b) and Proposition 4.3(a) show that the square function
of the martingale part of XN

t (φ) [given by (3.9)] approaches the square function
of the martingale part of (3.10) with branching rate b = 4πσ 2. The other terms are
handled just as for d ≥ 3 in [2]. We refer the reader to the proof of Proposition 3.2
there. The only difference in this part of the proof is that we will take 1 < p < 2 in
Proposition 4.7, while in [2] p = 2. This leads to only trivial changes. �
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5. Voter, biased voter and Lotka–Volterra bounds. As in [2], we will obtain
bounds on the Lotka–Volterra model by obtaining bounds on the more tractable
biased voter model. In turn, these bounds depend on good voter model bounds.
In this section we will work with voter and biased voter models, which we now
define.

For b, v ≥ 0, the 1-biased voter model ξ̄t is the Feller process taking values in
{0,1}Z

d
, with rate function

c̄(x, ξ) =
{

(v + b)f1(x, ξ), if ξ(x) = 0,
vf0(x, ξ), if ξ(x) = 1,

(5.1)

where fi(x, ξ) is as in (1.1). Similarly, the 0-biased voter model is the Feller
process ξ

t
taking values in {0,1}Z

d
, with rate function

c(x, ξ) =
{

vf1(x, ξ), if ξ(x) = 0,
(v + b)f0(x, ξ), if ξ(x) = 1.

(5.2)

The voter model ξ̂t is the 1-biased voter model with bias b = 0, that is, its rate
function is ĉ(x, η) = vfi(x, ξ) if ξ(x) = 1 − i.

It is simple to check that

ξ(x) = 0 implies c(x, ξ) ≤ ĉ(x, ξ) ≤ c̄(x, ξ)

and

ξ(x) = 1 implies c̄(x, ξ) ≤ ĉ(x, ξ) ≤ c(x, ξ).

Therefore, as in Theorem III.1.5 of [6], assuming ξ
0
= ξ̂0 = ξ̄0,

we may define ξ
t
, ξ̂t and ξ̄t on a common probability space

(5.3)
so that ξ

t
≤ ξ̂t ≤ ξ̄t for all t ≥ 0.

For ξ, ζ ∈ {0,1}Z
2
, ξ ≤ ζ means ξ(x) ≤ ζ(x) for all x ∈ Z

2.
In Section 5.1 we will obtain the required voter model bounds. In Section 5.2

we will use these bounds to obtain good biased voter model bounds.

NOTE. We will assume throughout the rest of this section that (5.3) is in force.

5.1. Voter model estimates. We recall the voter model duality; see, for in-
stance, [5] or [6]. Recall also the system of coalescing random walks {B̂x :x ∈ Z

2}
from Section 1. The basic duality equation for the rate one (v = 1) voter model is
as follows: for finite A ⊂ Z

2,

P
(
ξ̂t (x) = 1 ∀x ∈ A

) = P
(
ξ̂0(B̂

x
t ) = 1 ∀x ∈ A

)
.(5.4)
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Recall P̃ = ∑
e p(e)P e, τx and H(t) from Section 2, and define the mean range

of the random walk B0
t by

R(t) = E

(∑
x

1{B0
s = x for some s ≤ t}

)
.

A last time at 0 decomposition (see, e.g., Lemma A.2 of [1]) yields R(t) = 1 +∫ t
0 H(s) ds, and [via (2.4)] the well-known asymptotic behavior

lim
t→∞

R(t)

t/ log t
= 2πσ 2.(5.5)

Let Pt , t ≥ 0, be the semigroup of a rate 1 random walk with step distribution p(·).
We slightly abuse our earlier notation and for φ : Z2 → R and ξ ∈ {0,1}Z

2
, let

ξ(φ) = ∑
x

φ(x)ξ(x).

LEMMA 5.1. Let ξ̂t denote the rate-v voter model. Then for all bounded
φ :Z2 → R

+ and t ≥ 0,

E(ξ̂t (φ)) = ξ̂0(Pvtφ),(5.6)

E(|ξ̂t |2) ≤ |ξ̂0|2 + 2vt |ξ̂0|,(5.7)

E(ξ̂t (φf0(ξ̂t ))) ≤ (2σ 2vtH(2vt))1/2|φ|Lip|ξ̄0| + H(2vt)ξ̂0(φ),(5.8)

E(|ξ̂t |ξ̂t (f0(ξ̂t ))) ≤ H(2vt)|ξ̂0|2 + R(2vt)|ξ̂0|.(5.9)

REMARK 5.2. For φ = 1, the right-hand side of (5.8) is just H(2vt)|ξ̂0|.

PROOF OF LEMMA 5.1. By scaling, it suffices to consider the case v = 1.
Also, the first two formulas are well known [the latter follows from (5.14) be-
low], so we prove only the last two. By the duality equation (5.4), symmetry and
translation invariance,

E(ξ̂t (φf0(ξ̂t ))) = ∑
x,e

φ(x)p(e)P (B̂x
t ∈ ξ̂0, B̂

x+e
t /∈ ξ̂0)

≤ ∑
x,e,z

ξ̂0(z)φ(x)p(e)P
(
B̂x

t = z, τ̂ (x, x + e) > t
)

= ∑
x,e,z

ξ̂0(z)φ(x)p(e)P
(
B0

t = x − z, τ (0, e) > t
)

= ∑
e,z

ξ̂0(z)p(e)E
(
φ(z + B0

t )1{τ(0, e) > t}).
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For any z, ∑
e

p(e)E
(
φ(z + B0

t )1{τ(0, e) > t})

≤ ∑
e

p(e)E
((|φ|Lip|B0

t | + φ(z)
)
1{τ(0, e) > t})

≤ |φ|Lip

(
E(|B0

t |2)∑
e

p(e)P
(
τ(0, e) > t

))1/2

+ φ(z)
∑
e

p(e)P
(
τ(0, e) > t

)
.

Since E(|B0
t |2) = 2σ 2t , this proves (5.8).

We expand the left-hand side of (5.9) and use duality to obtain

E(|ξ̂t |ξ̂t (f0(ξ̂t ))) = �1 + �2,

where

�1 = ∑
x,y,e

p(e)P
(
B̂

y
t ∈ ξ̂0, B̂

x
t ∈ ξ̂0, B̂

x+e
t /∈ ξ̂0, τ̂ (x, y) > t

)
,(5.10)

�2 = ∑
x,y,e

p(e)P
(
B̂x

t ∈ ξ̂0, B̂
x+e
t /∈ ξ̂0, τ̂ (x, y) ≤ t

)
.(5.11)

Consider �1 first, which we expand in the form∑
x,y,w,z,e

1(y �= x + e)p(e)

× P
(
B̂

y
t = w, B̂x

t = z, B̂x+e
t /∈ ξ̂0, τ̂ (x, y) > t

)
ξ̂0(w)ξ̂0(z).

By replacing the condition B̂x+e
t /∈ ξ̂0 with τ̂ (x, x + e) > t , switching to the inde-

pendent random walk system [dropping the condition that τ̂ (x, y) > t], it follows
that �1 is bounded above by∑

x,y,w,z,e

1(y �= x + e)p(e)P
(
B̂

y
t = w, B̂x

t = z, τ̂ (x, y) > t, τ̂ (x, x + e) > t
)

× ξ̂0(w)ξ̂0(z)

≤ ∑
x,y,w,z,e

1(y �= x + e, y �= x)p(e)P
(
B

y
t = w,Bx

t = z, τ (x, x + e) > t
)

× ξ̂0(w)ξ̂0(z).

Now changing variables, we have

�1 ≤ ∑
x,y,w,z,e

1(y �= 0, y �= e)p(e)P
(
B

y+x
t = w + x,Bx

t = z + x, τ (x, x + e) > t
)

× ξ̂0(w + x)ξ̂0(z + x)
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= ∑
x,y,w,z,e

1(y �= 0, y �= e)p(e)P
(
B

y
t = w,B0

t = z, τ (0, e) > t
)

× ξ̂0(w + x)ξ̂0(z + x)

= ∑
x,y,w,z,e

1(y �= 0, y �= e)p(e)P (B
y
t = w)P

(
B0

t = z, τ (0, e) > t
)

× ξ̂0(w + x)ξ̂0(z + x).

Since P(B
y
t = w) = P(B0

t = w − y), summing in order over y,w,x, z shows that
the last sum above is at most |ξ̂0|2P ∗(τ > 2t). Thus, to prove (5.9), it suffices to
show �2 ≤ R(2t)|ξ̂0|.

In the definition of �2 we drop the restriction B̂x+e
t /∈ ξ̂0 and then sum over e to

obtain

�2 ≤ ∑
x,y,z

P
(
B̂x

t = z, τ̂ (x, y) ≤ t
)
ξ̂0(z)

= ∑
x,y,z

P
(
Bx

t = z + x, τ (x, y + x) ≤ t
)
ξ̂0(z + x)

= ∑
x,y,z

P
(
B0

t = z, τ (0, y) ≤ t
)
ξ̂0(z + x),

where we have again changed variables. If we sum in order over x, z, y, we obtain
�2 ≤ |ξ̂0|R(2t), and we are done. �

5.2. Biased voter model bounds. We first recall the following from Lemma 4.1
of [2]. If ξ̄t is the 1-biased voter model with rate function (5.1), then

E(|ξ̄t |) ≤ ebt |ξ̄0|,(5.12)

E(|ξ̄t |2) ≤ e2bt

(
|ξ̄0|2 + 2v + b

b
(1 − e−bt )|ξ̄0|

)
.(5.13)

Since 1 − e−bt ≤ bt , the last inequality implies

E(|ξ̄t |2) ≤ e2bt (|ξ̄0|2 + (2v + b)t |ξ̄0|).(5.14)

These bounds must be improved. In (6.2) below we will compare the Lotka–
Volterra model ξN

t defined in the Introduction with the biased voter models ξN
t

,

ξ̄N
t on SN . In order to construct the coupling ξN

t
≤ ξN

t ≤ ξ̄N
t , we must assume that

the voting and bias rates vN and bN are

v = vN = N − θ̄ logN and b = bN = 2θ̄ logN.(5.15)

With this coupling, the bounds on XN
t (1) in Section 4 are then consequences of

analogous bounds on X̄N
t (1) = (1/N)

∑
x ξ̄N

t (x)δx . However, for the above rates,
the bound (5.12) implies only that E(X̄N

t (1)) ≤ ebN tXN
0 (1), not that E(X̄N

t (1))
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[and hence, E(XN
t (1))] is bounded in N , a fact we will need. Nevertheless, the

estimates (5.12) and (5.13) are useful over short time periods, and will play an
important role in deriving better bounds.

To state our improved versions of (5.12) and (5.13), we define several constants
and functions depending on b and v. For p ≥ 2, define

κp = κp(b, v) = 3
(
bH(2v/bp) + e2)

and κ = κ3,

A = A(b, v) = bR(2v/b3) + 3e2(1 + 2v/b),
(5.16)

Bp = Bp(b, v) = (
2σ 2vb2−pH(2v/bp)

)1/2

+ bH(2v/bp)
(
2σ 2(1 + v/bp)

)1/2

and

h1(b, v)(t) = e2t−1/3 + κ2e2+2κt ,
(5.17)

h2(b, v)(t) = e2t−1/3(1 + 2v/b) + 5κAe1+3κt .

Also, let Pφ(x) = ∑
y p(y − x)φ(y) and define the operators

Āφ = v(Pφ − φ) and A∗ = (1 + b/v)Ā.(5.18)

Let Ā (resp., A∗) have associated semigroup P̄t , t ≥ 0 (resp., P ∗
t , t ≥ 0).

REMARK 5.3. The constants κp,A,Bp and the functions h1, h2 are used in
many bounds below. These bounds are not sharp, but they are adequate for our
purposes. Note that for the parameters v = vN, b = bN in (5.15), we have [by
(2.4) and (5.5)] κp = O(1), A = O(N/ logN) and Bp = O(N1/2(logN)(1−p)/2)

as N → ∞.

PROPOSITION 5.4. Assume b ≥ 1 and p ≥ 2. For all t ≥ 0,

E(|ξ̄t |) ≤ eb1−p+κpt |ξ̄0|,(5.19)

E(|ξ̄t |2) ≤ e2+2κt |ξ̄0|2 + 4Ae1+3κt |ξ̄0|,(5.20)

bE(ξ̄t (f0(ξ̄t ))) ≤ h1(t)|ξ̄0|,(5.21)

bE(|ξ̄t |ξ̄t (f0(ξ̄t ))) ≤ h1(t)|ξ̄0|2 + h2(t)|ξ̄0|.(5.22)

For all bounded φ : Z2 → [0,∞) and p ≥ 3,

E(ξ̄t (φ)) ≤ eb1−p+(1+κp)t

(5.23)
× (

ξ̄0(P
∗
t (φ)) + [κpb2−p‖φ‖∞ + Bp|φ|Lip]|ξ̄0|).
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To derive these bounds, we first state a special case of Proposition 2.3 of [2].
The biased voter models ξ̄t and ξ

t
are special cases of the general voter model

perturbations introduced in [2]; for ξ̄ , take N = v, β({e}) = bp(e), β(A) = 0
for card(A) �= 1 and δ ≡ 0, while for ξ take N = v, δ({e}) = −bp(e), δ(∅) = b,
δ(A) = 0 for card(A) �= 0 or 1, and β ≡ 0. This notation is only important if you
want to verify that Lemma 5.5 is indeed a special case of Proposition 2.3 of [2].

LEMMA 5.5. Let T > 0 and φ : [0, T ] × Z2 → R, where φ, φ̇ are both
bounded and continuous. Then for 0 ≤ t ≤ T ,

(a)

ξ̄t (φt ) = ξ̄0(φ0) +
∫ t

0
ξ̄s

(
Ā(φs) + φ̇s

)
ds

(5.24)

+ b

∫ t

0

∑
x

φ(s, x)[1 − ξ̄s(x)]f1(x, ξ̄s) ds + M̄t (φ),

where M̄t (φ) is a square-integrable (F
ξ̄
t )-martingale with predictable square

function

〈M̄(φ)〉t = 〈M̄(φ)〉1,t + 〈M̄(φ)〉2,t ,(5.25)

with

〈M̄(φ)〉1,t =
∫ t

0
v

∑
x

φs(x)2[
ξ̄s(x)f0(x, ξ̄s) + (

1 − ξ̄s(x)
)
f1(x, ξ̄s)

]
ds

and

〈M̄(φ)〉2,t =
∫ t

0
b

∑
x

φs(x)2(
1 − ξ̄s(x)

)
f1(x, ξ̄s) ds.

(b)

ξ
t
(φt ) = ξ

0
(φ0) +

∫ t

0
ξ

s

(
Ā(φs) + φ̇s

)
ds

(5.26)

− b

∫ t

0
ξ

s
(φsf0(ξ s

)) ds + Mt(φ),

where Mt(φ) is a square-integrable (F
ξ

t )-martingale with predictable square
function

〈M(φ)〉t = 〈M(φ)〉1,t + 〈M(φ)〉2,t ,(5.27)

with

〈M(φ)〉1,t =
∫ t

0
v

∑
x

φs(x)2[
ξ

s
(x)f N

0 (x, ξ
s
) + (

1 − ξ
s
(x)

)
f1(x, ξ

s
)
]
ds
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and

〈M(φ)〉2,t =
∫ t

0
bξ

s
(φ2

s f0(ξ s
)) ds.

If we set φ ≡ 1 in Lemma 5.5 and do a bit of stochastic calculus, we see that

|ξ̄t | − |ξ̄0| − b

∫ t

0
ξ̄s(f0(ξ̄s)) ds(5.28)

and

|ξ̄t |2 − |ξ̄0|2 − (2v + b)

∫ t

0
ξ̄s(f0(ξ̄s)) ds − 2b

∫ t

0
|ξ̄s |ξ̄s(f0(ξ̄s)) ds(5.29)

are (F
ξ̄
t )-martingales.

In the proof of Proposition 5.4 we will need a few properties of the func-
tion ξ(f0(ξ)) which will be important to “transfer” the voter model bounds of
Lemma 5.1 to the biased voter model.

LEMMA 5.6. Assume ξ, η ∈ {0,1}Z
d

satisfy ξ ≤ η.
(a) If |η| < ∞, then

|η(f0(η)) − ξ(f0(ξ))| ≤ |η| − |ξ |(5.30)

and ∣∣|η|η(f0(η)) − |ξ |ξ(f0(ξ))
∣∣ ≤ |η|2 − |ξ |2.(5.31)

(b) If φ : Z2 → R
+ is bounded, then∑

x

|η(x)f0(x, η) − ξ(x)f0(x, ξ)|φ(x) ≤ (η − ξ)(φ + Pφ),(5.32)

∑
x

|η(x)f0(x, η)2 − ξ(x)f0(x, ξ)2|φ(x) ≤ (η − ξ)(φ + 2Pφ)(5.33)

and ∑
x

∣∣(1 − η(x)
)
f1(x, η)2 − (

1 − ξ(x)
)
f1(x, ξ)2∣∣φ(x)

(5.34)
≤ (η − ξ)(φ + 2Pφ).

PROOF. (a) The first step is

η(f0(η)) − ξ(f0(ξ))

= ∑
x

(
η(x) − ξ(x)

)
f0(x, η) + ∑

x

ξ(x)
(
f0(x, η) − f0(x, ξ)

)
.
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Since f0(x, η) − f0(x, ξ) = f1(x, ξ) − f1(x, η), and p(·) is symmetric,∑
x

ξ(x)
(
f0(x, η) − f0(x, ξ)

) = ∑
x

ξ(x)
(
f1(x, ξ) − f1(x, η)

)

= ∑
x,y

ξ(x)p(y − x)
(
ξ(y) − η(y)

)

= ∑
y

(
ξ(y) − η(y)

)
f1(y, ξ).

Thus,

η(f0(η)) − ξ(f0(ξ)) = ∑
x

(
η(x) − ξ(x)

)(
f0(x, η) − f1(x, ξ)

)
.(5.35)

Since |f0(x, η) − f1(x, ξ)| ≤ 1, (5.30) is an immediate consequence of (5.35).
It follows from (5.30) that |ξ | − ξ(f0(ξ)) ≤ |η| − η(f0(η)). Multiplying the left-
hand side of this equality by |ξ | and the right-hand side by |η|, we obtain [note that
|ξ | − ξ(f0(ξ)) ≥ 0]

|ξ |2 − |ξ |ξ(f0(ξ)) ≤ |η|2 − |η|η(f0(η)),

or |η|η(f0(η)) − |ξ |ξ(f0(ξ)) ≤ |η|2 − |ξ |2. Since (5.30) also implies that |ξ | +
ξ(f0(ξ)) ≤ |η|+η(f0(η)), multiplying the left-hand side by |ξ | and the right-hand
side by |η| yields the inequality |η|η(f0(η)) − |ξ |ξ(f0(ξ)) ≥ −(|η|2 − |ξ |2).

(b) These are similar so we only prove (5.34). The left-hand side is bounded
above by∑

x

[(
1 − η(x)

)(
f1(x, η)2 − f1(x, ξ)2)

φ(x) + f1(x, ξ)2(
η(x) − ξ(x)

)
φ(x)

]

≤ ∑
x

(
1 − η(x)

)
2
(
f1(x, η) − f1(x, ξ)

)
φ(x) + (

η(x) − ξ(x)
)
φ(x)

≤ 2
∑
x

∑
y

p(y − x)φ(x)
(
η(y) − ξ(y)

) + (η − ξ)(φ),

which equals the right-hand side of (5.34). �

PROOF OF (5.19) AND (5.23). Let φ be as in Lemma 5.5 and rewrite the
second integral in (5.24) in the form

b

∫ t

0

∑
x,y

(
φ(s, x) − φ(s, y)

)
p(y − x)[1 − ξ̄s(x)]ξ̄s(y) ds

+ b

∫ t

0

∑
y

φ(s, y)ξ̄s(y)f0(y, ξ̄s) ds

= b

v

∫ t

0
ξ̄s(Āφs) ds +

∫ t

0
ξ̄s(bφsf0(ξ̄s)) ds.
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We have used the fact
∑

x,y(φ(s, x)−φ(s, y))p(x − y)ξ̄s(x)ξ̄s(y) = 0 by symme-
try. Therefore, (5.24) becomes

ξ̄t (φt ) = ξ̄0(φ0) +
∫ t

0
ξ̄s(A

∗φs + φ̇s) ds

(5.36)

+
∫ t

0
ξ̄s(φsbf0(ξ̄s)) ds + M̄t (φ).

Fix c ≥ 0, t > 0 and φ : Z2 → R
+, and set φs = e−csP ∗

t−sφ. Then (5.36) implies

E(ξ̄t (φ))e−ct = ξ̄0(P
∗
t φ) +

∫ t

0
E(ξ̄s(bP ∗

t−sφf0(ξ̄s)))e
−cs ds

(5.37)

−
∫ t

0
E(ξ̄s(cP

∗
t−sφ))e−cs ds.

This implies

ξ̄0(P
∗
t φ) ≤ E(ξ̄t (φ)) ≤ ebt ξ̄0(P

∗
t φ),(5.38)

where we have set c = 0 for the first inequality and c = b for the second.
We now work at upgrading the second inequality in (5.38) to (5.19) by estimat-

ing the first integral in (5.37) via a comparison with the voter model. Put ε = b−p

and assume φ ≥ 0. It follows from the coupling (5.3) and the inequalities (5.32),
(5.6) and (5.12) that

E
(|ξ̄ε(bφf0(ξ̄ε)) − ξ̂ε(bφf0(ξ̂ε))|)

(5.39)
≤ 2b‖φ‖∞E(|ξ̄ε| − |ξ̂ε|) ≤ 2b(ebε − 1)‖φ‖∞|ξ̄0|.

In view of this bound, b ≥ 1, and the voter model estimate (5.8), we have

E(ξ̄ε(bφf0(ξ̄ε))) ≤ 2eb2ε‖φ‖∞|ξ̄0|
(5.40)

+ b(2σ 2vεH(2vε))1/2|φ|Lip|ξ̄0| + bH(2vε)ξ̄0(φ).

We have used the elementary inequality eu − 1 ≤ eu for 0 ≤ u ≤ 1 above (and will
make use of it again without comment). The Markov property now implies, for
s ≥ ε, that

E(ξ̄s(bφf0(ξ̄s)) | Fs−ε)

≤ (
2eb2ε‖φ‖∞ + b(2σ 2vεH(2vε))1/2|φ|Lip

)|ξ̄s−ε|(5.41)

+ bH(2vε)ξ̄s−ε(φ).

We can now derive (5.19). Taking expectations in (5.41) for the function φ = 1,
we obtain, for s ≥ ε,

E(ξ̄s(bf0(ξ̄s))) ≤ κpE(|ξ̄s−ε|).(5.42)
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Using this inequality in (5.36), we get, for t ≥ ε,

E(|ξ̄t |) ≤ E(|ξ̄ε|) + κp

∫ t

ε
E(|ξ̄s−ε|) ds ≤ ebε|ξ̄0| + κp

∫ t

0
E(|ξ̄s |) ds,

where (5.38) is used in the second inequality. This bound also holds for t ≤ ε, and
hence, (5.19) follows by Gronwall’s inequality.

To prove (5.23), we will take expectations in (5.41), with φ replaced by P ∗
t−sφ,

and substitute this in (5.37). However, we must first alter the last term of (5.41).
For bounded ψ : Z2 → R

+, (5.38) implies that

|E(ξ̄ε(ψ)) − ξ̄0(ψ)| ≤ (ebε − 1)ξ̄0(P
∗
ε ψ) + |ξ̄0(P

∗
ε ψ) − ξ̄0(ψ)|.

Since |P ∗
ε ψ(x) − ψ(x)| ≤ |ψ |LipE(|B0

vε(1+b/v)|) ≤ |ψ |Lip(2σ 2ε(v + b))1/2,

|E(ξ̄ε(ψ)) − ξ̄0(ψ)| ≤ (
ebε‖ψ‖∞ + (

2σ 2ε(v + b)
)1/2|ψ |Lip

)|ξ̄0|.
Consequently, by the Markov property, for s ≥ ε,

E(ξ̄s−ε(ψ)) ≤ E(ξ̄s(ψ)) + (
ebε‖ψ‖∞ + (

2σ 2ε(v + b)
)1/2|ψ |Lip

)
E(|ξ̄s−ε|).

Using this inequality in (5.41), with ψ = P ∗
t−sφ replacing φ, we have for s ≥ ε

E(ξ̄s(bP ∗
t−sφf0(ξ̄s)))

(5.43)
≤ (κpb2ε‖φ‖∞ + Bp|φ|Lip)E(|ξ̄s−ε|) + κpE(ξ̄s(P

∗
t−sφ)).

Plugging this into (5.37) with c = 1+κp , and using (5.38) for s ≤ ε, and (5.19),
we obtain

E(ξ̄t (φ))e−ct ≤ ξ̄0(P
∗
t φ) +

∫ ε

0
bebs ξ̄0(P

∗
s P ∗

t−sφ)e−cs ds

+
∫ t

ε
(κpb2ε‖φ‖∞ + Bp|φ|Lip)E(|ξ̄s−ε|)e−cs ds

+ κp

∫ t

ε
E(ξ̄s(P

∗
t−sφ))e−cs ds − c

∫ t

ε
E(ξ̄s(P

∗
t−sφ))e−cs ds

≤ ξ̄0(P
∗
t φ)(1 + ebε − 1)

+ (κpb2ε‖φ‖∞ + Bp|φ|Lip)

∫ t

0
ebε+κps−(1+κp)s |ξ̄0|ds,

that is,

E(ξ̄t (φ)) ≤ ebε+(1+κp)t (ξ̄0(P
∗
t (φ)) + (κpb2ε‖φ‖∞ + Bp|φ|Lip)|ξ̄0|).

This proves (5.23). �
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PROOF OF (5.20). By (5.29),

E(|ξ̄t |2) = |ξ̄0|2 + (2v + b)

∫ t

0
E(ξ̄s(f0(ξ̄s))) ds

(5.44)

+ 2b

∫ t

0
E(|ξ̄s |ξ̄s(f0(ξ̄s))) ds.

The first integral in (5.44) is easy to handle. By (5.28) and (5.19),

(2v + b)

∫ t

0
E(ξ̄s(f0(ξ̄s))) ds = (2v + b)

E(|ξ̄t |) − |ξ̄0|
b

(5.45)

≤
(

1 + 2v

b

)
e1+κt |ξ̄0| ≤ Ae1+κt |ξ̄0|.

We continue to write ε = b−p , but now set p = 3. Since the integrand of the second
integral in (5.44) is bounded by E(|ξ̄s |2), (5.14) implies

2b

∫ ε

0
E(|ξ̄s |ξ̄s(f0(ξ̄s))) ds ≤ 2b

∫ ε

0
e2bs(|ξ̄0|2 + (2v + b)s|ξ̄0|)ds

≤ (e2bε − 1)
(|ξ̄0|2 + (2v + b)ε|ξ̄0|)(5.46)

≤ (e2 − 1)|ξ̄0|2 + A|ξ̄0|.
For the integral over [ε, t], we use (5.31) and the voter model estimate (5.9),

E(|ξ̄ε|ξ̄ε(f0(ξ̄ε))) ≤ E(|ξ̂ε|ξ̂ε(f0(ξ̂ε))) + E(|ξ̄ε|2 − |ξ̂ε|2)
≤ H(2vε)|ξ̄0|2 + R(2vε)|ξ̄0| + E(|ξ̄ε|2) − |ξ̄0|2

since E(|ξ̂ε|2) ≥ |ξ̂0|2 (|ξ̂t |2 is a submartingale). The bound (5.14) now implies

bE(|ξ̄ε|ξ̄ε(f0(ξ̄ε))) ≤ κ|ξ̄0|2 + A|ξ̄0|.(5.47)

Consequently, by the Markov property and (5.19),

2b

∫ t

ε
E(|ξ̄s |ξ̄s(f0(ξ̄s))) ds ≤ 2κ

∫ t

ε
E(|ξ̄s−ε|2) ds + 2A

∫ t

ε
E(|ξ̄s−ε|) ds

(5.48)

≤ 2κ

∫ t

ε
E(|ξ̄s−ε|2) ds + 2Ae1+κt |ξ̄0|.

Combining this with (5.46) gives

2b

∫ t

0
E(|ξ̄s |ξ̄s(f0(ξ̄s))) ds

(5.49)

≤ (e2 − 1)|ξ̄0|2 + (A + 2Ae1+κt )|ξ̄0| + 2κ

∫ t

0
E(|ξ̄s |2) ds.

In view of (5.44), (5.45) and (5.49),

E(|ξ̄t |2) ≤ e2|ξ̄0|2 + 4Ae1+κt |ξ̄0| + 2κ

∫ t

0
E(|ξ̄s |2) ds(5.50)
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for all t ≥ 0. It follows from Gronwall’s inequality that

E(|ξ̄t |2) ≤ {e2|ξ̄0|2 + 4Ae1+κt |ξ̄0|}e2κt . �

PROOF OF (5.21). First suppose t ≤ ε = b−3. Then b ≤ t−1/3 and bt ≤ 1, and
using (5.12),

bE(ξ̄t (f0(ξ̄t ))) ≤ bE(|ξ̄t |) ≤ et−1/3|ξ̄0|.(5.51)

For t ≥ ε, it follows from (5.42) and (5.19) that

bE(ξ̄t (f0(ξ̄t ))) ≤ κE(|ξ̄t−ε|) ≤ κe1+κt |ξ0|.(5.52)

The inequalities (5.51) and (5.52) imply (5.21). �

PROOF OF (5.22). For t ≤ ε = b−3, we may apply the second moment esti-
mate (5.14) to obtain

E(|ξ̄t |ξ̄t (f0(ξ̄t ))) ≤ E(|ξ̄ε|2) ≤ e2bε(|ξ̄0|2 + ε(2v + b)|ξ̄0|).(5.53)

Arguing as before leads to

bE(|ξ̄t |ξ̄t (f0(ξ̄t ))) ≤ e2t−1/3(|ξ̄0|2 + (1 + 2v/b)|ξ̄0|).(5.54)

For t ≥ ε, we apply the Markov property, (5.47) and the submartingale property
of |ξ̄t |2 and |ξ̄t | to obtain

bE(|ξ̄t |ξ̄t (f0(ξ̄t ))) ≤ κE(|ξ̄t |2) + AE(|ξ̄t |).
After using the bounds (5.19) and (5.20) for E(|ξ̄t |) and E(|ξ̄t |2), respectively, and
rearranging, we arrive at inequality (5.22). �

We need only a few bounds for the 0-biased voter model ξ
t
. Using (5.26) di-

rectly with φs = ecsP̄t−sφ [recall (5.18)] for bounded φ : Z2 → R
+ and c ≥ 0, we

get the analogue of (5.37),

E(ξ
t
(φ))ect = ξ

0
(P̄tφ) −

∫ t

0
E(ξ

s
(bP̄t−sφf0(ξ s

)))ecs ds

(5.55)

+
∫ t

0
E(ξ

s
(cP̄t−sφ))ecs ds.

Setting φ = 1 gives

E(|ξ
t
|)ect = |ξ

0
| − b

∫ t

0
E(ξ

s
(f0(ξ s

)))ecs ds + c

∫ t

0
E(|ξ

s
|)ecs ds.(5.56)

By setting c = b above, we get the simple bound

E(|ξ
t
|) ≥ e−bt |ξ

0
|,(5.57)
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which implies

E(|ξ
t
|2) ≥ e−2bt |ξ

0
|2.(5.58)

Since |ξ
t
| ≤ |ξ̄t |, the above and (5.14) therefore imply

∣∣E(|ξ
t
|2) − |ξ

0
|2∣∣ ≤ (e2bt − 1)|ξ

0
|2 + e2bt (2v + b)t |ξ

0
|.(5.59)

The next step is to improve the bound (5.57).

LEMMA 5.7. Assume b ≥ 1. Then for all t ≥ 0,

E(|ξ
t
|) ≥ exp(−b−2 − κeb−2

t)|ξ
0
|.(5.60)

PROOF. With ε = b−3, by the coupling ξ
ε
≤ ξ̂ε in (5.3) and the bounds (5.30),

(5.6), Remark 5.2 and (5.57), we get

bE(ξ
ε
(f0(ξε

))) ≤ (
bH(2vε) + b2ε

)|ξ
0
| ≤ κ|ξ

0
|.(5.61)

For t ≥ ε, (5.56) implies

E(|ξ
t
|)ect = ecεE(|ξ

ε
|) +

∫ t

ε
E

(
cecs |ξ

s
| − becsξ

s
(f0(ξ s

))
)
ds.

By (5.57), (5.61) and the Markov property,

E(|ξ
t
|)ect ≥ e(c−b)ε|ξ

0
| +

∫ t

ε
E(ce−bε|ξ

s−ε
| − κ|ξ

s−ε
|)ecs ds,

and hence,

E(|ξ
t
|) ≥ e−bεe−ct |ξ̄0| + e−c(t−ε)

∫ t−ε

0
(ce−bε − κ)E|ξ

s
|ecs ds.

Put c = κebε to obtain (5.60). �

We conclude this section with two final inequalities which are useful for small
t ≥ 0. The first one follows easily from (5.12) and (5.57), the second from (5.14)
and (5.58). For ξ

0
= ξ̄0 = ξ0,

0 ≤ E(|ξ̄t |) − E(|ξ
t
|) ≤ 2(ebt − 1)|ξ0|,(5.62)

0 ≤ E(|ξ̄t |2) − E(|ξ
t
|2) ≤ 2(e2bt − 1)|ξ0|2 + e2bt (2v + b)t |ξ0|.(5.63)
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6. Proofs of Propositions 4.3–4.5. Return now to the rescaled regime of the
Section 1 and let ξN

t ∈ {0,1}SN be the rescaled Lotka–Volterra model with rate

function cN(x, ξ) given by (1.6), where (1.9) continues to hold. Let ξ̄t ∈ {0,1}Z
2

be the 1-biased voter model and ξ
t
∈ {0,1}Z

2
the 0-biased voter model with

rates v = vN = N − θ̄ logN and b = bN = 2θ̄ logN given in (5.15), and set
ξ̄N
t (x) = ξ̄t (x

√
N) and ξN

t
(x) = ξ

t
(x

√
N) for x ∈ SN . Thus, ξ̄N

t ∈ {0,1}SN has
rate function

c̄N (x, ξ) =
{

(vN + bN)f N
1 (x, ξ), if ξ(x) = 0,

vNf N
0 (x, ξ), if ξ(x) = 1,

and ξN
t

∈ {0,1}SN has rate function

cN(x, ξ) =
{

vNf N
1 (x, ξ), if ξ(x) = 0,

(vN + bN)f N
0 (x, ξ), if ξ(x) = 1.

We assume that N is large enough (N ≥ N0) so that vN > 0 and bN > 1.
It is easy to check that cN(x, ξ) ≤ cN(x, ξ) ≤ c̄N (x, ξ) if ξ(x) = 0 and

cN(x, ξ) ≥ cN(x, ξ) ≥ c̄N (x, ξ) if ξ(x) = 1. Thus, as in (5.3), assuming ξN
0

=
ξN

0 = ξ̄N
0 , we may construct the three processes on one probability space so that

ξN
t

≤ ξN
t ≤ ξ̄N

t for all t ≥ 0.(6.1)

Letting X̄N
t = 1

N ′
∑

x∈SN
ξ̄N
t (x)δx and XN

t = 1
N ′

∑
x∈SN

ξN
t

(x)δx , it follows that

XN
0 = XN

0 = X̄N
0 and

XN
t ≤ XN

t ≤ X̄N
t for all t ≥ 0.(6.2)

We begin with bounds for the 1-biased voter model. Proposition 5.4 and Re-
mark 5.3 imply that there are constants C6.3 and C4.1 such that if g is as in (4.1),
then for all N ≥ N0, t ≥ 0,

E(X̄N
t (1)) ≤ C6.3e

C6.3t X̄N
0 (1),(6.3)

E(X̄N
t (1)2) ≤ C6.3e

C6.3t
(
X̄N

0 (1)2 + X̄N
0 (1)

)
(6.4)

and

(logN)E(X̄N
t (f N

0 (·, ξ̄N
t ))) ≤ g(t)X̄N

0 (1),(6.5)

(logN)E(X̄N
t (1)X̄N

t (f N
0 (·, ξ̄N

t ))) ≤ g(t)
(
X̄N

0 (1)2 + X̄N
0 (1)

)
.(6.6)

We also need the following comparison result, which follows from the coupling
(6.1), inequality (5.19) and Lemma 5.7, our choice of vN and bN , and Remark 5.3.
There is a constant C6.7 such that

E(X̄N
t (1)) − E(XN

t (1))
(6.7)

≤ C6.7[(logN)−2 + t]XN
0 (1), 0 ≤ t ≤ 1.
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Since the coupling (6.2) does not allow us to compare XN
t (f0(ξ

N
t )) and

X̄N
t (f0(ξ̄

N
t )), we need the following. Recall that h1, h2 are defined in (5.17).

PROPOSITION 6.1. For t ≥ 0,

bE(ξN
t (f0(ξ

N
t ))) ≤ h1(t)|ξN

0 |(6.8)

and

bE(|ξN
t |ξN

t (f0(ξ
N
t ))) ≤ 2

(
h1(t)|ξN

0 |2 + h2(t)|ξN
0 |).(6.9)

PROOF. For t ≤ ε = b−3, bE(ξN
t (f0(ξt ))) ≤ bE(|ξN

t |) ≤ bE(|ξ̄N
t |), so just as

in (5.51) we obtain

bE(ξN
t (f0(ξt ))) ≤ et−1/3|ξN

0 |.(6.10)

To handle t ≥ ε, we compare with the biased voter model using (5.30):

bE(ξN
ε (f0(ξ

N
ε ))) ≤ bE(ξ̄N

ε (f0(ξ̄
N
ε ))) + bE(|ξ̄N

ε | − |ξN
ε |)

≤ b
(
H(2vε) + 2ebε + 2(ebε − 1)

)|ξN
0 |

≤ κ|ξN
0 |,

by (5.40), (5.62) and the coupling (6.1), and the definition of κ . Our standard
argument with the Markov property now gives, for t ≥ ε,

bE(ξN
t (f0(ξ

N
t ))) ≤ κE(|ξN

t−ε|) ≤ κE(|ξ̄N
t |) ≤ κe1+κt |ξN

0 |,
the last by (5.19). This inequality and (6.10) imply (6.8).

Now consider (6.9). For t ≤ ε, (5.14) implies

bE(|ξN
t |ξN

t (f0(ξ
N
t ))) ≤ bE(|ξN

t |2) ≤ bE(|ξ̄N
t |2)

≤ be2bε(|ξN
0 |2 + (2v + b)ε|ξN

0 |)(6.11)

≤ e2t−1/3(|ξN
0 |2 + (1 + 2v/b)|ξN

0 |),
where the last inequality follows as in (5.51). By comparing with the biased voter
model using (5.31),

bE(|ξN
ε |ξN

ε (f0(ξ
N
ε ))) ≤ bE(|ξ̄N

ε |ξ̄N
ε (f0(ξ̄

N
ε ))) + b

(
E(|ξ̄N

ε |2) − E(|ξN
ε |2)).

Consequently, by the above bound, (5.47) and (5.63),

bE(|ξN
ε |ξN

ε (f0(ξ
N
ε ))) ≤ 2(κ|ξN

0 |2 + A|ξN
0 |).

It follows from the Markov property that, for all t ≥ ε,

bE(|ξN
t |ξN

t (f0(ξ
N
t ))) ≤ 2

(
κE(|ξN

t−ε|2) + AE(|ξN
t−ε|)

)
≤ 2

(
κE(|ξ̄N

t |2) + AE(|ξ̄N
t |)).
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We have used (5.28) and (5.29) in the last inequality. Using (5.19) and (5.20) in
the above, and also recalling (6.11), we get (6.9), as required. �

PROOF OF PROPOSITION 4.3. Part (a) follows from the coupling (6.2), the
fact that X̄N

t (1)2 is a submartingale [see (5.29)], the strong L2 inequality for non-
negative submartingales, and the bounds (6.3) and (6.4). Part (b) follows directly
from the previous Proposition and Remark 5.3. �

Proposition 4.4 is a direct consequence of the coupling (6.2) and the following
biased voter model bound. Recall the notation introduced in (4.6).

PROPOSITION 6.2. For p ≥ 3, there is a constant C6.12(p) such that, for any
t ≥ 0 and ψ : R2 → R

+,

E(X̄N
t (ψ)) ≤ e(logN)1−p

eC6.12t X̄N
0 (P

N,∗
t ψ)

(6.12)
+ C6.12e

C6.12t‖ψ‖Lip(logN)(1−p)/2X̄N
0 (1).

PROOF. Fix N , and recall that in this section ξ̄t ∈ {0,1}Z
2

is the biased voter
model with rates v = N − θ̄ logN and b = 2θ̄ logN , and that ξ̄N

t (x) = ξt (x
√

N),
x ∈ SN . Define φ : Z2 → R

+ by φ(x) = ψ(x/
√

N). Then ‖φ‖∞ = ‖ψ‖∞,
|φ|Lip = N−1/2|ψ |Lip, P ∗

t φ(x) = P
N,∗
t ψ(x/

√
N) [P ∗

t is defined after (5.18)] and
ξ̄N
t (ψ) = ξ̄t (φ). Applying (5.23),

E(ξ̄N
t (ψ)) ≤ eb1−p+(1+κp)t (ξ̄N

0 (P
N,∗
t ψ)

+ [κpb2−p‖ψ‖∞ + BpN−1/2|ψ |Lip]|ξ̄N
0 |).

Since p ≥ 3, it follows from Remark 5.3 that κpb2−p + BpN−1/2 =
O((logN)(1−p)/2) as N → ∞, and thus, (6.12) holds because θ̄ ≥ 1 implies
b ≥ logN . �

PROOF OF PROPOSITION 4.5. Let ε = b−p . By (5.32),

E(XN
ε (bφf0(ξ

N
ε )))

(6.13)
≤ E(X̄N

ε (bφf0(ξ̄
N
ε ))) + 2b‖φ‖∞

(
E

(
X̄N

ε (1) − XN
ε (1)

))
.

Now applying (5.40) and (5.62), we find that

E(XN
ε (bφf0(ξ

N
ε ))) ≤ (6eb2−p‖φ‖∞ + BpN−1/2|φ|Lip)X

N
0 (1) + κpXN

0 (φ).

Using our standard asymptotics for Bp and κp , we obtain (4.8). �
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7. Proof of Proposition 4.7—Part I. For φ : R2 → R, ζ ∈ {0,1}SN and
X(φ) = (1/N ′)∑

x φ(x)ζ(x), define

�
N,+
1 (φ, ζ ) = X(logNφ2f N

0 (·, ζ )),

�
N,+
2 (φ, ζ ) = 1

N ′
∑
x

(
1 − ζ(x)

)
φ(x) logNf N

1 (x, ζ )2,

�
N,+
3 (φ, ζ ) = X(logNφf N

0 (·, ζ )2)

and

�N
j (φ, ζ ) = �

N,+
j (φ, ζ ) − γjX(φ), j = 1,2,3,

where γ1 = 2πσ 2 and γ2 = γ3 = γ ∗. An easy calculation using (4.3) and
(1.9) shows that to prove Proposition 4.7 it suffices to prove the following: for
0 < p < 2, there exists ηN = ηN(p) ↓ 0 as N → ∞ such that, for all K,T > 0,
there exists C(p,K,T ) such that, for all t ≤ T , φ : R2 → [0,∞) and ξN

0 such that

‖φ‖Lip ∨ XN
0 (1) ≤ K,(7.1)

we have

E

(∣∣∣∣
∫ t

0
�N

j (φ, ξN
s ) ds

∣∣∣∣
p)

≤ ηNC(p,K,T ), j = 1,2,3.(7.2)

We will do this by following the general strategy we have already used, comparing
the Lotka–Volterra with the voter model over short time periods and estimating
the difference via comparisons with the biased voter model. We must be more
careful than before because we need more precise estimates than, say, the ones in
Proposition 4.3.

Define the sequences

εN = (log logN)−1, tN = εN

logN
,

(7.3)
KN = (logN)1/2, δN = KNtN .

We assume that N is large enough so that εN ∨ tN ∨ δN ≤ 1 and δN ≤ (logN)−1/2.
Note that δN/εN → 0 as N → ∞. We assume the Lotka–Volterra model on SN ,
ξN· , and the 1-biased voter model ξ̄N· on SN are as in the previous section.

This section is devoted to proving the following two results.

PROPOSITION 7.1. There is a constant C7.4(K) and sequence η7.4(N) ↓ 0 so
that, for all φ satisfying (7.1) and j = 1,2,3,

|E(�N
j (φ, ξN

tN
))| ≤ C7.4(K)

×
(
η7.4(N)

(
XN

0 (1) + XN
0 (1)2)

(7.4)

+ ε−1
N

∫ ∫
1
(|w − z| ≤ √

δN

)
dXN

0 (w)dXN
0 (z)

)
.
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PROPOSITION 7.2. There is a constant C7.5 such that, for all 0 ≤ t ≤ T ,

E

(∫ ∫
1
(|x − y| ≤ √

δN

)
dXN

t (x) dXN
t (y)

)

≤ C7.5e
C7.5T

(
XN

0 (1) + XN
0 (1)2)

(7.5)

×
[

δN

δN + t
(1 + t2/3) + δN t−1/3 log

(
1 + t

δN

)]
.

We divide our work into four parts. In the first we collect together various random
walk estimates that we will need. In the second we will establish Proposition 7.5,
the voter model version of Proposition 7.1. In the third part we prove Proposi-
tion 7.1 by comparison with the voter model, and in the fourth we prove a biased
voter model analogue of Proposition 7.2, which implies Proposition 7.2. The key
inequality (7.2) is then proved in Section 8, completing the proof of Proposi-
tion 4.7.

7.1. Random walk estimates. Recall from Section 1 that B0
t is a rate 1 contin-

uous time random walk with step distribution p(·), starting at 0.

LEMMA 7.3. (a) There is a constant C7.6, depending on p(·), such that

sup
x∈Z2

P(B0
t = x) ≤ C7.6(t + 1)−1 for all t ≥ 0(7.6)

and

sup
t≥0

P(B0
t = x) ≤ C7.6(|x|2 + 1)−1 for all x ∈ Z

2.(7.7)

(b) If zT ∈ Z
2 and tT > 0 satisfy

lim
T →∞

zT√
T

= z and lim
T →∞

tT

T
= s > 0,(7.8)

then

lim
T →∞T P (B0

tT
= zT ) = e−|z|2/2σ 2s

2πσ 2s
.(7.9)

(c) For each K > 0, there is a constant C7.10(K) > 0 so that

lim inf
T →∞ inf

|x|≤K
√

T

T P (B0
T = x) ≥ C7.10(K).(7.10)

REMARK 7.4. If p(·) is a kernel on Z
d (any d) satisfying the conditions of

Section 1 and also
∑

x |x|dp(x) < ∞, then part (a) and it’s proof go through, where
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|x|2 may now be replaced with |x|d in (7.7).

PROOF OF LEMMA 7.3. The first inequality is standard for discrete time
walks; see (A.7) in [1] for the simple adaptation to continuous time. For the sec-
ond, let Yn be the discrete time random walk with step distribution p(·) introduced
in Section 2. Then P7.10 in [10] implies there is a constant C7.6 such that

sup
n≥0

P 0(Yn = x) ≤ C7.6(|x|2 + 1)−1 for all x ∈ Z
2.

Since P(B0
t = x) = ∑∞

n=0 e−t tnP (Yn = x)/n!, (7.7) follows immediately.
For ε > 0, let Y ε

n , n = 0,1,2, . . ., be the discrete time random walk with step
distribution pε(x) = P(Bε = x). Applying the discrete time local central limit
theorem (P7.10 in [10]) to this random walk, we can conclude that if (7.8) holds,
assuming that tT ∈ εZ

+ for all T , then (7.9) must hold (note the step variance of
Y ε is σ 2ε). The fact that p(·) is symmetric implies that P(B0

t = 0) is decreasing
in t , and therefore, the Markov property implies that

P(B0
nε = x)pε(0) ≤ P(B0

u = x) ≤ P(B0
(n+1)ε = x)

pε(0)

for u ∈ [nε, (n + 1)ε].
This inequality and an argument by contradiction shows that (7.8) implies (7.9)
without the restriction tT ∈ εZ

+.
For the walk Yn, let cn(K) = inf|x|≤K

√
n nP 0(Yn = x). Then P7.10 of [10] im-

plies that lim infn→∞ cn(K) > 0 for every K > 0. Let S(t), t ≥ 0, be a rate one
Poisson process. For all |x| ≤ K

√
t ,

tP (B0
t = x) ≥ ∑

|t−n|<t/2

tP
(
S(t) = n

)
inf

|y|≤K
√

2n

P (Yn = y)

≥ P
(|S(t) − t | < t/2

)
(2/3) inf

n>t/2
cn

(
K

√
2
)
.

This is enough to prove (7.10). �

7.2. Voter model estimates. Let εN, tN ,KN, δN be as in (7.3). For N fixed, let
ξ̂t be the rate vN = N − θ̄ logN voter model on Z

2 with rates as in (5.1) for b = 0
and v = vN . Define ξ̂N

t (x) = ξ̂t (x
√

N),x ∈ SN , the rate vN voter model on SN .
We introduce some rather trivial notation which will be used frequently:

m(1) = 2 and m(2) = m(3) = 1.(7.11)

Our goal here is to prove the following analogue of Proposition 7.1 for ξ̂N
t .
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PROPOSITION 7.5. There is a constant C7.12 and a sequence η7.12(N) ↓ 0 so
that, for j = 1,2,3, if φ : R2 → R, then

|E(�N
j (φ, ξ̂N

tN
))|

≤ η7.12(N)
(
X̂N

0 (1) + X̂N
0 (1)2)‖φ‖m(j)

Lip(7.12)

+ C7.12‖φ‖m(j)∞
εN

∫ ∫
1
(|w − z| ≤ √

δN

)
dX̂N

0 (w)dX̂N
0 (z).

To prepare for the proof of this result, we introduce rescaled versions of the
independent and coalescing random walks systems {Bx

t } and {B̂x
t } introduced in

Section 1 as follows: for x, y ∈ SN ,

B
N,x
t = Bx

√
N

vN t /
√

N, B̂
N,x
t = B̂x

√
N

vN t /
√

N,(7.13)

and

τN(x, y) = τ
(√

Nx,
√

Ny
)
/vN, τ̂N(x, y) = τ̂

(√
Nx,

√
Ny

)
/vN .

We will need the following estimate.

LEMMA 7.6. There is a constant C7.14 such that

logN

N ′
∑
x,e

pN(e)P
(
ξ̂N

0 (B
N,x
tN

) = ξ̂N
0 (B

N,x+e
tN

) = 1, τN(x, x + e) > tN
)

(7.14)
≤ C7.14ε

−1
N

∫ ∫
1
(|w − z| ≤ √

δN

)
dX̂N

0 (w)dX̂N
0 (z)

+ C7.14
X̂N

0 (1)2

KNεN

.

REMARK 7.7. In Section 5.1, working with the (unscaled) voter model, we
estimated quantities like the left-hand side above by, in effect, dropping the condi-
tion ξ̂N

0 (B
N,x+e
tN

) = 1. The bound this produces is too crude for our current needs.

PROOF. By translation invariance and symmetry, the left-hand side of (7.14)
is

(N ′)−2
∑
w,z

ξ̂N
0 (w)ξ̂N

0 (z)
∑
e

pN(e)

×
[∑

x

NP
(
B

N,0
tN

= w − x,B
N,e
tN

= z − x, τN(0, e) > tN
)]

(7.15)
= (N ′)−2

∑
w,z

ξ̂N
0 (w)ξ̂N

0 (z)
∑
e

pN(e)NP (B
N,e
2tN

= z − w,τ
N,e
0 > 2tN )

≡ �N
d + �N

c ,
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where τ
N,e
0 = inf{s :BN,e

s = 0}, and �N
d , respectively, �N

c , denotes the contri-
bution to (7.15) from w,z satisfying |w − z| ≤ √

KNtN , respectively, |w − z| >√
KNtN . Define P̃ N by

P̃ N (
(BN· , τN

0 ) ∈ ·) = ∑
e

pN(e)P
(
(BN,e· , τ

N,e
0 ) ∈ ·),

and note that

ẼN(|BN
s |2) = ∑

e∈SN

pN(e)E(|e + BN,0
s |2)

= ∑
e∈SN

pN(e)
(|e|2 + E(2〈e,BN,0

s 〉 + |BN,0
s |2)) = 2σ 2(N−1 + s).

For �N
d , use (7.6) and the Markov property at time tN to see that

NP̃ N(BN
2tN

= z − w,τN
0 > 2tN )

≤ NẼ
(
1(τN

0 > tN)(ω)P
(
B

N,0
tN

= z − w − BN
tN

(ω)
))

≤ NP̃ (τN
0 > tN)C7.6(vN tN)−1

≤ C7.6
N

vN

H(vNtN)/tN .

In view of (2.4), there is a constant C7.16 such that

�N
d ≤ C7.16ε

−1
N

∫ ∫
1
(|w − z| ≤ √

KNtN
)
dX̂N

0 (w)dX̂N
0 (z).(7.16)

To bound �N
c , let η̂N = e−√

logN and use the Markov property at time η̂N tN
and the bounds in Lemma 7.3(a) [recall (7.13)] to see that, for |w − z| > √

KNtN ,

P̃ N(BN
2tN

= w − z, τN
0 > 2tN )

≤ ẼN

(
1
(
τN

0 > η̂NtN, |BN
η̂N tN

| >
√

KNtN

2

))
sup
x′

P
(
B

N,0
(2−η̂N )tN

= x′)

+ ẼN

(
1
(
τN

0 > η̂NtN, |BN
η̂N tN

| ≤
√

KNtN

2

)

× P
(
B

N,0
(2−η̂N )tN

= w − z − BN
η̂N tN

))

≤ 4
ẼN(|BN

η̂N tN
|2)

KNtN

C7.6

vN(2 − η̂N )tN
+ 4H(vN η̂N tN)

C7.6

NKNtN
.

Using ẼN(|BN
η̂N tN

|2) = 2σ 2(η̂N tN + N−1) and H(v) ∼ c/ logN as v → ∞ [i.e.,
(2.4)], and then plugging in the value of these constants, one shows that each of
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the last two terms above is O((N(logN)KNtN)−1) as N → ∞. Hence, there is a
constant C7.17 so that

�N
c ≤ C7.17X̂

N
0 (1)2

εNKN.
(7.17)

Put (7.17) and (7.16) into (7.15) to get the required bound. �

PROOF OF PROPOSITION 7.5. Fix φ : R2 → R such that ‖φ‖Lip < ∞, and
let e, f denote independent random variables with law pN(·). The structure of the
proof is as follows. We will use duality to decompose each E(�

N,+
j ) into a sum

of simpler terms [defined below in (7.20)–(7.22)],

E(�
N,+
1 (φ, ξ̂N

tN
)) = �

1,N
1 − �

2,N
1 ,

E(�
N,+
2 (φ, ξ̂N

tN
)) = �

1,N
2 − �

2,N
2 + �

3,N
2 ,(7.18)

E(�
N,+
3 (φ, ξ̂N

tN
)) = �

1,N
3 − �

2,N
3 + �

3,N
3 .

We will show that there is a sequence η(N) → 0 such that, for j = 1,2,3,

|�1,N
j − γj X̂

N
0 (φ)| ≤ η(N)‖φ‖m(j)

Lip X̂N
0 (1),(7.19)

and that the remaining �
i,N
j are bounded above by terms of the form given in

the right-hand side of (7.12). This will prove (7.12). Note that it is (7.19) which
identifies the parameters of the limiting super-Brownian motion of Theorem 1.2.

The �
i,N
j are given by

�
1,N
1 = 1

N ′
∑
x

φ(x)2 logNP
(
ξ̂N

0 (B̂
N,x
tN

) = 1, τ̂N(x, x + e) > tN
)
,

�
2,N
1 = 1

N ′
∑
x

φ(x)2 logNP
(
ξ̂N

0 (B̂
N,x
tN

) = ξ̂N
0 (B̂

N,x+e
tN

) = 1,(7.20)

τ̂ N (x, x + e) > tN
)
,

�
1,N
2 = 1

N ′
∑
x

φ(x) logNP
(
ξ̂N

0 (B̂
N,x+e
tN

) = 1,

τ̂N (x, x + e) ∧ τ̂ N (x, x + f ) > tN,

τ̂N(x + e, x + f ) ≤ tN
)
,

�
2,N
2 = 1

N ′
∑
x

φ(x) logNP
(
ξ̂N

0 (B̂
N,x
tN

) = ξ̂N
0 (B̂

N,x+e
tN

) = 1,

τ̂N (x, x + e) ∧ τ̂ N (x, x + f ) > tN,(7.21)

τ̂ N (x + e, x + f ) ≤ tN
)
,
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�
3,N
2 = 1

N ′
∑
x

φ(x) logNP
(
ξN

0 (B̂
N,x
tN

) = 0,

ξ̂N
0 (B̂

N,x+e
tN

) = ξ̂N
0 (B̂

N,x+f
tN

) = 1,

τ̂N (x, x + e) ∧ τ̂ N (x, x + f )

∧τ̂ N (x + e, x + f ) > tN
)

and

�
1,N
3 = 1

N ′
∑
x

φ(x) logNP
(
ξ̂N

0 (B̂
N,x
tN

) = 1,

τ̂N (x, x + e) ∧ τ̂ N (x, x + f ) > tN,

τ̂N(x + e, x + f ) ≤ tN
)
,

�
2,N
3 = �

2,N
2 ,(7.22)

�
3,N
3 = 1

N ′
∑
x

φ(x) logNP
(
ξ̂N

0 (B̂
N,x
tN

) = 1,

ξ̂N
0 (B̂

N,x+e
tN

) = ξ̂N
0 (B̂

N,x+f
tN

) = 0,

τ̂N (x, x + e) ∧ τ̂ N (x, x + f )

∧τ̂ N (x + e, x + f ) > tN
)
.

Although the expressions for the �
i,N
j are lengthy, verification of (7.18) is

a straightforward application of duality. We will prove the decomposition for
E(�

N,+
3 (φ, ξ̂N

tN
)), the others are proved similarly.

Using duality,

E(�
N,+
3 (φ, ξ̂N

tN
))

= 1

N ′
∑
x

φ(x) logNP
(
ξ̂N
tN

(x) = 1, ξ̂N
tN

(x + e) = ξ̂N
tN

(x + f ) = 0
)

= 1

N ′
∑
x

φ(x) logNP
(
ξ̂N

0 (B̂
N,x
tN

) = 1, ξ̂N
0 (B̂

N,x+e
tN

) = ξ̂N
0 (B̂

N,x+f
tN

) = 0,

τ̂N (x, x + e) ∧ τ̂ N (x, x + f ) > tN
)
.

The possibility τ̂ N (x + e, x + f ) > tN gives rise to �
3,N
3 . For the complement,

letting EN = {τ̂ N (x, x + e) ∧ τ̂ N (x, x + f ) > tN, τ̂N(x + e, x + f ) ≤ tN },
{ξ̂N

0 (B̂
N,x
tN

) = 1, ξ̂N
0 (B̂

N,x+e
tN

) = ξ̂N
0 (B̂

N,x+f
tN

) = 0,EN }
= {ξ̂N

0 (B̂
N,x
tN

) = 1,EN } \ {ξ̂N
0 (B̂

N,x
tN

) = ξ̂N
0 (B̂

N,x+e
tN

) = 1,EN }.
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Taking expectations, this gives the terms �
1,N
3 and �

2,N
3 , proving the decomposi-

tion for E(�
N,+
3 ) in (7.18).

Before tackling (7.19), let us dispense with the error terms �
i,N
j , i �= 1. By

Lemma 7.6, we see, that for j = 1,2,3,

�
2,N
j ≤ C7.14‖φ‖m(j)∞

[
ε−1
N

∫ ∫
1
(|w − z| ≤ √

δN

)
dX̂N

0 (w)dX̂N
0 (z)

(7.23)

+ (KNεN)−1X̂N
0 (1)2

]
.

Next, consider �
3,N
2 , and recall that τN(x, y) = τ(x

√
N,y

√
N)/vN . This term is

no larger than

‖φ‖∞
N ′

∑
x

logNP
(
ξ̂N

0 (B̂
N,x+e
tN

) = 1,

τ̂N (x, x + e) ∧ τ̂ N (x, x + f ) ∧ τ̂ N (x + e, x + f ) > tN
)

= ‖φ‖∞
N ′

∑
w

ξ̂N
0 (w) logN

∑
x

P
(
B

N,e
tN

= w − x,

τN(0, e) ∧ τN(0, f ) ∧ τN(e, f ) > tN
)

= ‖φ‖∞X̂N
0 (1) logNP

(
τN(0, e) ∧ τN(0, f ) ∧ τN(e, f ) > tN

)
.

Note that τN(e, f ) > tN implies e �= f , and also that τN(x, y) > tN is equiva-
lent to τ(

√
N,x

√
Ny) > vNtN . Therefore, by Lemma 2.5, (2.7) and (2.4), we may

conclude that, for a constant C7.24 depending on p(·),
�

3,N
2 ≤ C7.24‖φ‖∞X̂N

0 (1)(logN)−1/2.(7.24)

Virtually the same reasoning gives

�
3,N
3 ≤ C7.24‖φ‖∞X̂N

0 (1)(logN)−1/2.(7.25)

On account of (7.23), (7.24) and (7.25), the proof of Proposition 7.5 will be com-
plete once we establish (7.19).

Consider first the j = 2 case of (7.19). Then

|�1,N
2 − γ ∗X̂N

0 (φ)|

=
∣∣∣∣∣ 1

N ′
∑
w

ξ̂N
0 (w)

∑
x

φ(x) logNP
(
B̂

N,e
tN

= w − x,

τ̂N(0, e) ∧ τ̂ N (0, f ) > tN,

τ̂N(e, f ) ≤ tN
) − γ ∗X̂N

0 (φ)

∣∣∣∣∣
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=
∣∣∣∣∣ 1

N ′
∑
w

ξ̂N
0 (w)

(
logNE

(
φ(w − B̂

N,e
tN

)

× 1
(
τ̂ N (0, e) ∧ τ̂ N (0, f ) > tN,

τ̂N(e, f ) ≤ tN
) − γ ∗φ(w)

))∣∣∣∣∣.
Recalling the notation qT from (2.1), and using Cauchy–Schwarz in the second
inequality below, we see that the above implies

|�1,N
2 − γ ∗X̂N

0 (φ)|

≤ 1

N ′
∑
w

ξ̂N
0 (w) logN

× E
(|φ(w − B̂

N,e
tN

) − φ(w)|1(
τ̂ N (0, e) ∧ τ̂ N (0, f ) > tN,

τ̂N(e, f ) ≤ tN
))

+
∣∣∣∣∣ 1

N ′
∑
w

ξ̂N
0 (w)φ(w)

(
(logN)qvN tN − γ ∗)∣∣∣∣∣

≤ X̂N
0 (1) logNE(|φ|2Lip|BN,e

tN
|2)1/2q

1/2
vN tN

+ ‖φ‖∞X̂N
0 (1)|(logN)qvN tN − γ ∗|

≤ |φ|LipX̂
N
0 (1) logN

(
2σ 2(N−1 + tN )H(2vN tN)

)1/2

+ ‖φ‖∞X̂N
0 (1)|(logN)qvN tN − γ ∗|.

Thus, by (2.4) and Proposition 2.1,

|�1,N
2 − γ ∗X̂N

0 (φ)| ≤ η7.26(N)‖φ‖LipX̂
N
0 (1),(7.26)

where η7.26(N) → 0 as N → ∞. Virtually the same argument gives the same
bound for |�1,N

3 − γ ∗X̂N
0 (φ)|.

Finally, arguing as we did for �
1,N
2 , we have

|�1,N
1 − 2πσ 2X̂N

0 (φ2)|

=
∣∣∣∣∣ 1

N ′
∑
w

ξ̂N
0 (w)

[
logNE

(
φ2(w − B

N,0
tN

)1
(
τN(0, e) > tN

)) − 2πσ 2φ2(w)
]∣∣∣∣∣

≤ 1

N ′
∑
w

ξ̂N
0 (w)

[
logNE

(∣∣φ2(w − B
N,0
tN

) − φ2(w)
∣∣1(

τN(0, e) > tN
))]

+ 1

N ′
∑
w

ξ̂N
0 (w)φ2(w)

∣∣ logNP
(
τN(0, e) > tN

) − 2πσ 2∣∣
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≤ X̂N
0 (1)

(
logNE((2‖φ‖∞|φ|Lip|BN,0

tN
|)2)1/2H(2vN tN)1/2

+ ‖φ‖2∞|(logN)H(2vN tN) − 2πσ 2|).
Again, since E(|BN,0

tN
|2) ≤ 2σ 2tN , (2.4) implies that

|�1,N
1 − 2πσ 2X̂N

0 (φ2)| ≤ η7.27(N)X̂N
0 (1)‖φ‖2

Lip,(7.27)

where η7.27(N) → 0 as N → ∞. The required result, (7.19), has been proved
thanks to (7.26), its analogue for j = 3, and (7.27). This completes the proof of
Proposition 7.5. �

The next result will allow us to deduce Proposition 7.1 from Proposition 7.5.

LEMMA 7.8. There is a constant C7.28 so that, for j = 1,2,3, φ : R2 → R,
and all 0 ≤ t ≤ 1,

|E(�
N,+
j (φ, ξN

t )) − E(�
N,+
j (φ, ξ̂N

t ))|
(7.28)

≤ C7.28‖φ‖m(j)∞ [(logN)−1 + t logN ]XN
0 (1),

where m(j) is as in (7.11).

PROOF. The proofs are quite similar, so we only consider j = 2. If ξ, η ∈
{0,1}SN satisfy ξ ≤ η, then (5.34) with φ = δx implies∣∣(1 − η(x)

)
f N

1 (x, η)2 − (
1 − ξ(x)

)
f N

1 (x, ξ)2∣∣
≤ η(x) − ξ(x) + 2[f N

1 (x, η) − f N
1 (x, ξ)].

If we apply the above with η = ξ̄N
t and ξ = ξN

t , we get

|E(�
N,+
2 (φ, ξ̄N

t )) − E(�
N,+
2 (φ, ξN

t ))|

≤ 1

N ′

∣∣∣∣∣E
[∑

x

[(
1 − ξ̄N

t (x)
)
f N

1 (x, ξ̄N
t )2

− (
1 − ξN

t (x)
)
f N

1 (x, ξN
t )2]

logNφ(x)

]∣∣∣∣∣
≤ ‖φ‖∞ logNE

[
1

N ′
∑
x

ξ̄N
t (x) − ξN

t (x) + 2
(
f N

1 (x, ξ̄N
t ) − f N

1 (x, ξN
t )

)]

≤ 3‖φ‖∞ logN [E(X̄N
t (1)) − E(XN

t (1))]
≤ 3‖φ‖∞C6.7[(logN)−1 + t logN ]XN

0 (1) for 0 ≤ t ≤ 1,

applying the bound (6.7) in the last inequality above. This argument gives the
same bound for |E(�

N,+
2 (φ, ξ̄N

t )) − E(�
N,+
2 (φ, ξ̂N

t ))|, and (7.28) follows by the
triangle inequality. �
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7.3. Proof of Proposition 7.1. Let m(j) be as in (7.11). By writing φ =
φ+ − φ− if m(j) = 1, we may assume φm(j) ≥ 0. Combine Proposition 7.5 and
Lemma 7.8 to conclude that

|E(�N
j (φ, ξN

tN
))| ≤ η7.12(N)

(
XN

0 (1) + XN
0 (1)2)‖φ‖m(j)

Lip

+ C7.12‖φ‖m(j)∞
εN

∫ ∫
1
(|w − z| ≤ √

δN

)
dXN

0 (w)dXN
0 (z)

+ C7.28‖φ‖m(j)∞ [(logN)−1 + tN logN ]XN
0 (1),

+ γj

∣∣E(
XN

tN

(
φm(j)) − X̂N

tN

(
φm(j)))∣∣.

By our coupling and (6.7),∣∣E(
XN

tN

(
φm(j)) − X̂N

tN

(
φm(j)))∣∣ ≤ E

(
X̄N

tN

(
φm(j)) − XN

tN

(
φm(j)))

≤ ‖φ‖m(j)∞ E
(
X̄N

tN
(1) − XN

tN
(1)

)
≤ C6.7‖φ‖m(j)∞ [(logN)−2 + tN ]XN

0 (1).

If we insert the above into the previous inequality we obtain the required upper
bound (7.4).

7.4. Proof of Proposition 7.2. We will work with the biased voter model and
prove an analogous result for it. Namely, there is constant C7.5 such that

E

(∫ ∫
1
(|x − y| ≤ √

δN

)
dX̄N

t (x) dX̄N
t (y)

)

≤ C7.5e
C7.5t

(
X̄N

0 (1)2 + X̄N
0 (1)

)
(7.29)

×
[

δN

δN + t
(1 + t2/3) + δN t−1/3 log

(
1 + t

δN

)]
.

Since ξN
t ≤ ξ̄N

t , (7.29) would imply (7.5).
To prove (7.29), we need two estimates which are simple consequences of

Proposition 7.3. We express these estimates in terms of the random walk BN,∗·
which takes steps according to pN(·) at rate vN +bN = N + θ̄ logN and has semi-
group P

N,∗
t , introduced just before Proposition 4.4.

COROLLARY 7.9. (a) For all x ∈ SN and t ≥ 0,

P(B
N,∗
t = x) ≤ C7.6

1 + Nt
.(7.30)

(b) Assume δ′
N ↓ 0 and Nδ′

N → ∞. For each K > 0, there is a constant
C7.31(K) > 0 so that

inf
N≥1,w∈SN ,|w|≤K

√
δ′
N

Nδ′
NP (B

N,∗
2δ′

N
= w) ≥ C7.31(K).(7.31)
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PROOF. Inequality (7.30) is a direct consequence of (7.6). The inequality
(7.31) is a direct consequence of (7.9) and the fact that P(B0

t = x) > 0 for all
x ∈ Z

2, t > 0. �

For x,w ∈ SN , let p
N,w
t (x) = NP(B

N,∗
t = x − w) and pN

t (x) = p
N,0
t (x).

For fixed ε, t > 0, let φz
s (x) = p

N,z
ε+t−s(x). If M̄ is as in Lemma 5.5 and

φ : R+ × SN → R, let φN(s, x) = φ(s, x/
√

N),x ∈ Z
2, and M̄N

t (φ) =
(N ′)−1M̄t (φN). By (5.36) and integration by parts,

X̄N
t (pN,z

ε )2 = X̄N
0 (p

N,z
ε+t )

2 + 2
∫ t

0
X̄N

s−(φz
s ) dM̄N

s (φz)

+ 2
∫ t

0
X̄N

s (p
N,z
ε+t−s)X̄

N
s (p

N,z
ε+t−sbNf N

0 (·, ξ̄N
s )) ds

+ [M̄N(φz)]t .
Then E([M̄n(φz)]t ) = N ′−2E(〈M̄(φz)N 〉t ) and so we may take means and use
Lemma 5.5(a) to conclude

E(X̄N
t (pN,z

ε )2)

≤ X̄N
0 (p

N,z
ε+t )

2 + 2E

(∫ t

0
X̄N

s (p
N,z
ε+t−s)X̄

N
s (p

N,z
ε+t−sbNf N

0 (ξ̄N
s )) ds

)
(7.32)

+ E

(∫ t

0
C7.32

logN

N ′
∑
x

p
N,z
ε+t−s(x)2[

ξ̄N
s (x)f N

0 (x, ξ̄N
s )

+ (
1 − ξ̄N

s (x)
)
f N

1 (x, ξ̄N
s )

]
ds

)
.

Sum over z, multiply by ε/N , and use 1
N

∑
z pN,z

s (x)pN,z
s (y) = pN

2s(y − x) to see
that

E

(∫ ∫
εpN

2ε(y − x)dX̄N
t (x) dX̄N

t (y)

)

≤
∫ ∫

εpN
2(ε+t)(y − x)dXN

0 (x) dXN
0 (y)

+ 2E

(∫ t

0

∫ ∫
εpN

2(ε+t−s)(y − x)bNf N
0 (y, ξ̄N

s ) dX̄N
s (x) dX̄N

s (y) ds

)

+ C7.32

∫ t

0
εpN

2(ε+t−s)(0)E

(
logN

N ′
∑
x

[
ξ̄N
s (x)f N

0 (x, ξ̄N
s )

+ (
1 − ξ̄N

s (x)
)
f N

1 (x, ξ̄N
s )

])
ds
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≤ C7.6εN

1 + 2N(ε + t)
XN

0 (1)2

+
∫ t

0

2C7.6εN

1 + 2N(ε + t − s)
E(X̄N

s (1)bNX̄N
s (f N

0 (ξ̄N
s ))) ds

+ 2C7.32C7.6

∫ t

0

εN

1 + 2N(ε + t − s)
E(logNX̄N

s (f N
0 (ξ̄N

s ))) ds,

where we have used (7.30) in the last line. Next use the mass bounds (6.5) and
(6.6) and the definition of g in (4.1) to bound the sum of the last two integrals by

CeC4.1t
∫ t

0

ε

ε + t − s
s−1/3 ds [XN

0 (1)2 + XN
0 (1)].

Consequently, there is a constant C7.33 such that, for 0 ≤ t ≤ T ,

E

(∫ ∫
εpN

2ε(y − x)dX̄N
t (x) dX̄N

t (y)

)

≤ C7.33e
C7.33T [XN

0 (1)2 + XN
0 (1)]

(
ε

ε + t
+

∫ t

0

ε

ε + t − s
s−1/3 ds

)
(7.33)

≤ C7.33e
C7.33T [XN

0 (1)2 + XN
0 (1)]

(
ε

ε + t
(1 + 3t2/3)

+ 2εt−1/3 log(1 + t/ε)

)

(split the integral at t/2). Now set ε = δN and note that the above upper bound is
the right-hand side of (7.29). The left-hand side of (7.33) is bounded below by

E

(∫ ∫
δNp2δN

(y − x)1
(|y − x| ≤ √

δN

)
dX̄N

t (x) dX̄N
t (y)

)

≥ C7.31(1)E
(
1
(|y − x| ≤ √

δN

)
dX̄N

t (x) dX̄N
t (y)

)
,

where C7.31(1) > 0 by (7.31). Combine this with (7.33) to complete the proof of
(7.29), and hence, Proposition 7.2.

8. Proof of Proposition 4.7—Part II. We will make frequent use of the fol-
lowing elementary estimate. If φ : Rd → R such that ‖φ‖∞ ≤ K , then there is a
constant C8.1 = C8.1(K) such that, for j = 1,2,3 and s > 0,

|�N
j (φ, ξN

s )| ≤ C8.1(K)[XN
s (logNf N

0 (·, ξN
s )) + XN

s (1)].(8.1)

Now let J ≥ 1, T N
J = inf{s :XN

s (1) ≥ J }, t ≤ T , 1 < p < 2, and recall the
sequences defined in (7.3). Assume also that ‖φ‖Lip ∨ XN

0 (1) ≤ K . We first show
there is a constant C8.2(T ,K,p) such that, for j = 1,2,3,

E

(∣∣∣∣
∫ t

0
1(s ≥ T N

J + tN )�N
j (φ, ξN

s ) ds

∣∣∣∣
p)

≤ C8.2(T ,K,p)

J 2−p
.(8.2)
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By Hölder’s inequality, the left-hand side is at most

P(T N
J ≤ t)(2−p)/2E

((∫ t

0
�N

j (φ, ξN
s ) ds

)2)p/2

≤ 2p/2P

(
sup
s≤t

XN
s (1) > J

)(2−p)/2

×
[
E

(∫ t

0
�N

j (φ, ξN
s1

) ds1

∫ t

s1

�N
j (φ, ξN

s2
) ds2

)]p/2

≤ 2p/2C
p
8.1

E(sups≤t X
N
s (1)2)(2−p)/2

J 2−p

×
[
E

(∫ t

0

(
XN

s1
(logNf N

0 (ξN
s1

)) + XN
s1

(1)
)
ds1

×
∫ t

s1

EXN
s1

(
XN

s2−s1
(logNf N

0 (ξN
s2−s1)) + XN

s2−s1
(1)

)
ds2

)]p/2

≤ C(T ,K,p)

J 2−p

[
E

(∫ T

0

(
XN

s1
(logNf N

0 (ξN
s1

)) + XN
s1

(1)
)

×
∫ T

s1

[(
g(s2 − s1) + 1

)
XN

s1
(1)

]
ds2 ds1

)]p/2

for a constant C(T ,K,p). In the next to last line we used (8.1) and in the last line
we used (4.2), (4.3) and (4.4). After simplification and applying (4.5) and (4.3),
we have that the last line above is at most

C ′(T ,K,p)

J 2−p
E

(∫ T

0
g(s1)

(
XN

0 (1)2 + XN
0 (1)

)
ds1

)p/2

for a constant C′(T ,K,p). This proves (8.2).
We can now use L2 estimates. Let

E

([∫ t

0
1(s ≤ T N

J + tN )�N
j (φ, ξN

s ) ds

]2)
= I1(N,J, t) + I2(N,J, t),(8.3)

where

I1(N,J, t) = 2E

(∫ t

0
1(s1 ≤ T N

J + tn)�
N
j (φ, ξN

s1
)

×
∫ t∧(s1+tN )

s1

1(s2 ≤ T N
J + tN )�N

j (φ, ξN
s2

) ds1 ds2

)

I2(N,J, t) = 2E

(∫ t

0
1(s1 ≤ T N

J + tn)�
N
j (φ, ξN

s1
)

×
∫ t

s1

1(s1 + tN ≤ s2 ≤ T N
J + tN )�N

j (φ, ξN
s2

) ds2 ds1

)
.
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By (8.1), the Markov property and (4.2) and (4.4), it follows that I1(N,J, t) is at
most

2C2
8.1(K)E

(∫ T

0
[XN

s1
(logNf N

0 (ξN
s1

)) + XN
s1

(1)]

×
∫ s1+tN

s1

EXN
s1

(XN
s2−s1

(logNf N
0 (ξN

s2−s1
)) + XN

s2−s1
(1)) ds2 ds1

)

≤ 2C2
8.1E

(∫ T

0
[XN

s1
(logNf N

0 (ξN
s1

)) + XN
s1

(1)]

×
∫ s1+tN

s1

(
g(s2 − s1) + C4.2(T )

)
XN

s1
(1) ds2 ds1

)
.

In view of the definition of g(s), (4.3) and (4.5), it follows that there is a constant
C8.4(K,T ) such that

I1(N,J,T ) ≤ C8.4(K,T )t
2/3
N .(8.4)

Turning to I2(N,J,T ), we may use Proposition 7.1 and (8.1) to see that, for
s1 + tN ≤ s2,∣∣E(

1(s1 ≤ T N
J )1(s2 ≤ T N

J + tN )�N
j (φ, ξN

s1
)�N

j (φ, ξN
s2

)
)∣∣

≤ E
(
1(s1 < T N

J )1(s2 ≤ T N
J + tN )|�N

j (φ, ξN
s1

)||EXN
s2−tN

(�N
j (φ, ξN

tN
))|)

≤ C8.1(K)

× E

(
1(s1 < T N

J )[XN
s1

(logNf N
0 (ξN

s1
)) + XN

s1
(1)]

× C7.4

[
η7.4(N)

(
XN

s2−tN
(1)2 + XN

s2−tN
(1)

)
+ (εN)−1

×
∫ ∫

1
(|w − z| ≤ √

δN

)
dXN

s2−tN
(z) dXN

s2−tN
(w)

])
.

Since 1{T N
J < s1 < T N

J + tN }1{s1 + tN < s2 < T N
J + tN } = 0, this implies that

I2(N,J, t)

≤ 2C8.1(K)

×
∫ T

0
E

[
1(s1 < T N

J )[XN
s1

(logNf N
0 (ξN

s1
)) + XN

s1
(1)]

× C7.4

(
η7.4(N)EXN

s1

(∫ T −s1

0

(
XN

s2
(1)2 + XN

s2
(1)

)
ds2

)

+ (εN)−1
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× EXN
s1

(∫ T −s1

0

∫ ∫
1
(|w − z| ≤ √

δN

)
dXN

s2
(z) dXN

s2
(w)ds2

))]
ds1.

Apply (4.3) and Proposition 7.2 to see that there is a constant C(T ,K) such that
I2(N,J,T ) is bounded above by

C(T ,K)

∫ T

0
E

(
1(s1 < T N

J )[XN
s1

(logNf N
0 (ξN

s1
)) + XN

s1
(1)]

×
{
η7.4(N)

(
XN

s1
(1)2 + XN

s1
(1)

)
+ ε−1

N C7.5
(
XN

s1
(1)2 + XN

s1
(1)

)
×

[∫ T −s1

0

(
δN

δN + s2
(1 + s

2/3
2 )

+ δNs
−1/3
2 log

(
1 + s2

δN

))
ds2

]})
ds1

≤ C(T ,K)(J 2 + J )

×
∫ T

0
E

(
XN

s1
(logNf N

0 (ξN
s1

)) + XN
s1

(1)
)

×
{
η7.4(N)

+ (δN/εN)

∫ T −s1

0

(
1 + T 2/3

δN + s2
+ s

−1/3
2 log

(
1 + T

δN

))
ds2

}
ds1.

By using (4.2) and (4.4) and evaluating the remaining deterministic integrals, we
see that there is a constant C8.5(K,T ) such that

I2(N,J,T ) ≤ C8.5(K,T )(J 2 + J )η8.5(N),(8.5)

where η8.5(N) = δN

εN
log(1 + T

δN
) + η7.4(N) → 0 as N → ∞ [recall (7.3)].

By standard inequalities,

E

(∣∣∣∣
∫ t

0
�N

j (φ, s, ξN) ds

∣∣∣∣
p)

≤
(
E

(∣∣∣∣
∫ t

0
�N

j (φ, s, ξN) ds

∣∣∣∣
2))p/2

≤ (
I1(N,T ,K)1/2 + I2(N,T ,K)1/2)p

.

We now choose J = JN → ∞ such that J 2
Nη8.5(N) → 0 as N → ∞. Then (7.2)

follows from (8.2), (8.3), (8.4), (8.5) and the last inequality. As was noted at the
beginning of Section 7, Proposition 4.7 is then immediate.

9. Proof of Theorem 1.3. The proof of survival in [3] was given for general
voter model perturbations assuming d ≥ 3 and N ′ ≡ N . Here we are concerned
only with Lotka–Volterra models, but are working in dimension d = 2 with mass
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normalization N ′ = N/ logN . In this section we will state and prove analogues of
Lemma 3.2 and Proposition 4.2 of [3]. Given these results, the argument in Sec-
tion 5 of [3] applies without further change to complete the proof of Theorem 1.3.
We will content ourselves with proving survival only, and not derive a lower bound
on the probability of survival as given in Corollary 3 in [3].

For any K > 2, L > 1 and N ∈ N, define I = [−L,L]2, I1 = (2L,0) + I ,
I−1 = (−2L,0) + I , I ′ = (−KL,KL)2, and I ′

N = (−KL
√

N,KL
√

N)2. For

ξ̃0 ∈ {0,1}Z
2
, supported on I ′

N , let {ξ̃t (x) :x ∈ Z
2, t ≥ 0} be the Lotka–Volterra

model where all sites x /∈ I ′
N are set to 0 for all time. We may construct ξ· and

ξ̃· as the solutions of a stochastic differential equation as in [3] [see (SDE)(I′) in
Proposition 2.1 of that paper] so that if |ξ0| < ∞ and ξ̃0 ≤ ξ0, which we will as-
sume throughout, then ξ̃t ≤ ξt for all t ≥ 0. For x ∈ SN , let ξ̃N

t (x) = ξ̃Nt (x
√

N),
X̃N

t = 1
N ′

∑
x∈SN

ξ̃N
t (x)δx , and ξN· , XN· be as usual. Note that ξ̃N· and X̃N· are

supported on I ′.
The main technical step in the proof of Theorem 1.3 is the following version of

Lemma 3.2 of [3]. Among our standing assumptions (1.8)–(1.10), it only requires
(1.8)(a) and (1.10). Let ‖ · ‖ be the sup norm on R

2. Recalling the independent
random walk family Bx

t introduced just before Theorem 1.1, we define here

β
N,x
t = B

x
√

N
tN , x ∈ SN.(9.1)

Also define

δ′
N = θ̄ logN

N
,(9.2)

from the following:

LEMMA 9.1. There exists a nondecreasing C9.3 : R+ → R+, depending only
on θ̄ and p(·), such that, for any N ∈ N, t ≥ 0, K > 2, L > 1, if XN

0 = X̃N
0 is

supported by I , then

E
(
XN

t (1) − X̃N
t (1)

)
(9.3)

≤ C9.3(t)X
N
0 (1)

[
KL

logN
+ P

(
sup

u≤t (1+δ′
N)

‖βN,0
u ‖ > (K − 2)L

)]
.

Given this bound, the next step is the following analogue of Proposition 4.2 in
[3]. Recall the definition of Sη before Theorem 1.3. For α = (α0, α1), let ‖α‖1 =
|α0 − 1| + |α1 − 1|, and for K ≥ 1, let γK = 6−4(2K+1)2

.

PROPOSITION 9.2. Assume 0 < η < 1. There are L,K,J ∈ N, T ≥ 1 and
r ∈ (0, e−4) depending on η such that if

α ∈ Sη, ‖α‖1 < r and N = N(α) =
⌊(

log(1/‖α‖1)

‖α‖1

)1/2⌋2
,(9.4)
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then XN
0 (I ) = XN

0 (1) ≥ J implies

P α(
X̃N

T (I1) ∧ X̃N
T (I−1) ≥ J

) ≥ 1 − γK.(9.5)

Inequality (9.5) is just what is needed to show that the Lotka–Volterra process
“dominates” a super-critical oriented percolation, and hence, survives. The details
of this argument are spelled out in Section 5 of [3], and apply without change
to the current setting. Therefore, to prove Theorem 1.3, it suffices now to prove
Lemma 9.1 and Proposition 9.2. We will start with the proof of the second result,
assuming the validity of the first one. Our argument closely follows the proofs of
Proposition 4.2 and Theorem 8.3 in [3].

PROOF OF PROPOSITION 9.2. We now choose certain constants which de-
pend only on η > 0 and p(·). Let c = c(σ ) ≥ 1 be large enough so that

exp(−c2K2/17σ 2) < γK/4 for all K ≥ 1.(9.6)

As in Lemma 4.3 of [3], we may choose T = T (η) > 2 and L = c
√

T ∈ N such that
if Xt is super-Brownian motion with branching rate 2γe, diffusion rate σ 2 and drift
d0 ∈ [ηγ ∗/24, γ ∗] [recall γ ∗ from (1.12)], then there is a constant C9.7 = C9.7(η)

such that

P
(
XT (I1) ∧ XT (I−1) ≤ 3X0(I )

) ≤ C9.7/X0(I ).(9.7)

Next, let K > 4 + 4σ
c

be large enough so that

8C9.3(T )e−c2K2/16σ 2
< e−c2K2/17σ 2

,(9.8)

and let J ∈ N be large enough so that

C9.7/J < e−c2K2/17σ 2
.(9.9)

By monotonicity of X̃N (Proposition 2.1 (b)(ii) of [3]), we may assume
XN

0 (I ) = XN
0 (1) = J . We claim that, with c, T ,L and K defined above, there

exists r ∈ (0, e−4) such that if α ∈ Sη, ‖α‖1 < r , and N = N(α) is defined as in
(9.4), then

P α(
XN

T (I1) ∧ XN
T (I−1) ≤ 3J

) ≤ 2e−c2K2/17σ 2
(9.10)

and

P α(
XN

T (Ij ) − X̃N
T (Ij ) > J

) ≤ e−c2K2/17σ 2
, j = ±1.(9.11)

Given these estimates, it is straightforward using (9.6) to complete the proof of
(9.5).

Before beginning the proofs of (9.10) and (9.11), we note that

α0 − α1 ≥ η

3
‖α‖1 for all α ∈ Sη(9.12)
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and also that for α ∈ Sη and N ′ = N ′(α) = N(α)/ logN(α),

N ′‖α‖1 ∈ [1
8 ,1

]
.(9.13)

These estimates follow from (crude) elementary calculations which we omit.
(9.12) uses η < 1 and (9.13) uses ‖α‖1 < r < e−4.

If (9.10) fails, then we may suppose there exists a sequence αm ∈ Sη and initial
states X

Nm

0 supported on I with X
Nm

0 (I ) = J such that ‖αm‖1 → 0 as m → ∞,
and

P αm(
XNm

T (I1) ∧ XNm

T (I−1) ≤ 3J
)
> 2e−c2K2/17σ 2

for all m.(9.14)

We may assume, by taking an appropriate subsequence, that X
Nm

0 → X0 for some
X0 ∈ Mf supported on I satisfying X0(I ) = J . We may also assume, in view of
(9.13), that N ′

m(αm
0 − 1, αm

1 − 1) → (θ0, θ1) for some (θ0, θ1) ∈ R
2. The inequali-

ties (9.12) and (9.13), and the fact that |α0 − α1| ≤ ‖α‖1 imply that

γ ∗(θ0 − θ1) = lim
m→∞γ ∗N ′

m(αm
0 − αm

1 ) ∈ [ηγ ∗/24, γ ∗].
Now let Xt denote super-Brownian motion with branching rate 2γe, diffusion rate
σ 2 and drift γ ∗(θ0 − θ1). By Theorem 1.2, the fact that XT (∂I1) = 0 a.s., and the
inequalities (9.7) and (9.9), it follows that

lim sup
m→∞

P αNm (
X

Nm

T (I1) ≤ 3J
) ≤ PX0

(
XT (I1) ≤ 3J

)
< C9.7/J ≤ e−c2K2/17σ 2

.

Since the same estimate is valid for I−1, (9.14) cannot hold. This proves (9.10).
Now consider (9.11) for I1. Following the proof of (4.11) in [3] (the odd lower

bound on K is used here), the invariance principle for Brownian motion and a
standard Gaussian estimate imply there exists a sequence εN → 0, depending ulti-
mately on η, σ 2 and θ̄ , such that

P

(
sup

u≤T (1+δ′
N)

‖βN,0
u ‖ > (K − 2)L

)
≤ 8 exp(−c2K2/16σ 2) + εN .

Combining this estimate with (9.3), the coupling ξ̃N
t ≤ ξN

t and Chebyshev’s in-
equality imply

P
(
XN

T (I1) − X̃N
T (I1) > J

)
(9.15)

≤ C9.3(T )XN
0 (I )

[
KL

logN
+ 8e−c2K2/16σ 2 + εN

]/
J.

If (9.11) fails for I1, then we may assume the existence of sequences αNm and
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X
Nm

0 as before, such that, for all m,

P αNm (
X

Nm

T (I1) − X̃
Nm

T (I1) > J
)
> exp(−c2K2/17σ 2).(9.16)

However, the estimate (9.15) implies that [recall XN
0 (I ) = J ]

lim sup
m→∞

P αNm (
X

Nm

T (I1) − X̃
Nm

T (I1) > J
) ≤ 8C9.3(T )e−c2K2/16σ 2

< exp(−c2K2/17σ 2),

by (9.8), and this contradicts (9.16). �

To prove Lemma 9.1, we must also work with the rescaled voter and biased
voter models ξ̂·N , ξ̄N· , X̂N· , X̄N· from Sections 5 and 6 with rates and bias vN

and bN , respectively, as in (5.15), as well as their counterparts with 0 boundary

values off of I ′, ˜̂
ξN· , ˜̄ξN· , ˜̂

XN· and ˜̄XN· . We will assume that ξN
0 = ξ̄N

0 = ξ̂N
0 and

ξ̃N
0 = ˜̄ξN

0 = ˜̂
ξN

0 so that the construction of these particle systems via (SDE)(I′) as
in [3] ensures that

ξ̂N
t ≤ ξ̄N

t , ξN
t ≤ ξ̄N

t for all t ≥ 0,(9.17)

as well as

˜̂
ξN

t ≤ ˜̄ξN
t , ξ̃t

N ≤ ˜̄ξN
t for all t ≥ 0.(9.18)

We use EξN
0 ,ξ̃N

0
to denote expectations for our initial conditions ξ̃N

0 ≤ ξN
0 as above.

PROOF OF LEMMA 9.1. In this proof constants C and functions C(·) will
depend only on θ̄ and p(·), and may change from line to line. The C(T ) will
always be assumed to be an increasing function from R+ to R+. Implicit use of
Remark 4.6 will be made to ensure this from time to time.

Let P̃ N
t denote the semigroup of β

N,0
t , killed when it exits I ′. Arguing just as

in the proof of Lemma 3.2 of [3], we get

X̃N
t (1) = X̃N

0 (P̃ N
t 1) + M̃N

t

+ logNθN
0

∫ t

0

1

N ′
∑
x

P̃ N
t−s1(x)

(
1 − ξ̃N

s (x)
)
f N

1 (x, ξ̃N
s )2 ds(9.19)

− logNθN
1

∫ t

0

1

N ′
∑
x

P̃ N
t−s1(x)ξ̃N

s (x)f N
0 (x, ξ̃N

s )2 ds,

where M̃N
t is a square integrable martingale with mean 0. Since X̃N

0 = XN
0 , we
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may take differences with (3.7) (with φs = 1) to conclude that

E
(
XN

t (1) − X̃N
t (1)

)
= XN

0 (1 − P̃ N
t 1)

+
∫ t

0
E

(
θN

0 logN
1

N ′
∑
x

(
1 − ξN

s (x)
)
f N

1 (x, ξN
s )2(

1 − P̃ N
t−s1(x)

)

− θN
1 logN

1

N ′
∑
x

ξN
s (x)f N

0 (x, ξN
s )2(

1 − P̃ N
t−s1(x)

))
ds

+ θN
0 logN

∫ t

0
E

(
1

N ′
∑
x

P̃ N
t−s1(x)(9.20)

× [(
1 − ξN

s (x)
)
f N

1 (x, ξN
s )2

− (
1 − ξ̃N

s (x)
)
f N

1 (x, ξ̃N
s )2])

ds

− θN
1 logN

∫ t

0
E

(
1

N ′
∑
x

P̃ N
t−s1(x)[ξN

s (x)f N
0 (x, ξN

s )2

− ξ̃N
s (x)f N

0 (x, ξ̃N
s )2]

)
ds.

Choose φK,L : R+ → R+ so that

1(x ≥ KL) ≤ φK,L(x) ≤ 1
(
x ≥ (K − 1)L

)
and |φK,L|Lip ≤ 1.

Then

1 − P̃ N
t−s1(x) ≤ E

(
φK,L

(
sup

u≤t−s
‖x + BN,0

u ‖
))

≡ h̄t−s(x)(9.21)

and

|h̄t−s |Lip ≤ 1, ‖h̄t−s‖Lip ≤ 2.(9.22)

For s ≤ t and ξ̃ ≤ ξ are in {0,1}SN , define

H0(t − s, ξ) = logN

N ′
∑
x

h̄t−s(x)
[(

1 − ξ(x)
)
f N

1 (x, ξ)2 + ξ(x)f N
0 (x, ξ)2]

H1(ξ, ξ̃ ) = logN

N ′
∑
x

|ξ(x)f N
0 (x, ξ)2 − ξ̃ (x)f N

0 (x, ξ̃ )2|

H2(ξ, ξ̃ ) = logN

N ′
∑
x

∣∣(1 − ξ(x)
)
f N

1 (x, ξ)2 − (
1 − ξ̃ (x)

)
f N

1 (x, ξ̃ )2∣∣.



804 J. T. COX AND E. A. PERKINS

From (9.20) and (9.21) we get

E
(
XN

t (1) − X̃N
t (1)

)
≤ XN

0 (1 − P̃ N
t 1)(9.23)

+ θ̄

[∫ t

0
E

(
H0(t − s, ξN

s )
)
ds +

∫ t

0

2∑
i=1

Hi(ξ
N
s , ξ̃N

s ) ds

]
.

Our goal is to show, by estimating each of the above terms, that there are constants
c0(t) and c1 such that

E
(
XN

t (1) − X̃N
t (1)

)
≤ c0(t)X

N
0 (1)

[
KL

logN
+ P

(
sup

u≤t (1+δ′
N)

‖βN,0
u ‖ > (K − 2)L

)]
(9.24)

+ c1

∫ t

0
E

(
XN

s (1) − X̃N
s (1)

)
ds.

Applying Gronwall’s lemma, we obtain (9.3).
Step 1. The first term in (9.23) is simple. Since XN

0 is supported on I =
[−L,L]2,

XN
0 (1 − P̃ N

t 1) ≤ XN
0 (1)P

(
sup
u≤t

‖βN,0
u ‖ ≥ (K − 1)L

)
.(9.25)

Step 2. Let ε = (logN)−p , where p = 18, and consider the H0 term in (9.23).
(The choice p = 18 is used only in the last line of this proof.) We first note
that

N ′

logN
H0(t − s, ξ)

≤ ∑
x

∑
y

[(
1 − ξ(x)

)
ξ(y) + ξ(x)

(
1 − ξ(y)

)]
pN(y − x)h̄t−s(x)

= 2ξ(f N
0 (ξ)h̄t−s)

+ ∑
x

∑
y

[(
1 − ξ(x)

)
ξ(y)pN(x − y)

(
h̄t−s(x) − h̄t−s(y)

)]

≤ 2ξ(f N
0 (ξ)h̄t−s) + √

2σ |ξ |N−1/2,

using (9.22) and the covariance assumption on p to bound
∑

z |z|pN(z) by√
2σN−1/2in the last line. Now we may use the Markov property and the above to
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see that

E

(∫ t

0
H0(t − s, ξN

s ) ds

)

≤ E

(∫ ε

0
H0(t − s, ξN

s ) ds

)

+ E

(∫ t∨ε

ε
2EXN

s−ε
(XN

ε (logNf N
0 (ξN

ε ))h̄t−s) ds

)

+ √
2σ

logN√
N

∫ t∨ε

ε
E(XN

s (1)) ds

≤ 2 logNE
(∫ ε

0
XN

s (1) ds
)

+ 2C4.8

logN
E

(∫ t∨ε

ε
XN

s−ε(1) ds

)

+ 2C4.8E

(∫ t∨ε

ε
XN

s−ε(h̄t−s) ds

)
+ √

2σ
logN√

N

∫ t∨ε

ε
E(XN

s (1)) ds,

where we have used the trivial bound H0(t − s, ξN
s ) ≤ 2 logNXN

s (1), Proposi-
tion 4.5 and (9.22) in the last line. Recall the definition of P

N,∗
t before Proposi-

tion 4.4. Next use (4.2), Proposition 4.4, (9.22) and a bit of arithmetic to bound the
above by

C(t)

[
XN

0 (1)

logN
+

∫ t∨ε

ε
XN

0 (P
N,∗
s−ε h̄t−s) ds

]

for some C(t). In view of (9.1), P
N,∗
t = P N

t(1+δ′
N)

, where P N
t is the semigroup of

β
N,0
t , and we readily see that

P
N,∗
s−ε h̄t−s(x) ≤ P

(
sup

u≤t (1+δ′
N)

‖βN,x
u ‖ > (K − 1)L

)
.

Now use the fact that XN
0 is supported on I to conclude that

E

(∫ t

0
H0(t − s, ξN

s ) ds

)
(9.26)

≤ C9.26(t)X
N
0 (1)

[
(logN)−1 + P

(
sup

u≤t (1+δ′
N)

‖βN,0
u ‖ > (K − 2)L

)]

for some C9.26(t).
Step 3. Turn next to the Hi terms in (9.23), i = 1,2. With an application of

the Markov property in mind, let us for the moment consider more general initial
conditions than that in the theorem and assume only ξ̃N

0 ≤ ξN
0 are such that |ξN

0 | <
∞ and ξ̃N

0 is supported on I ′. We couple ξ̃N
t ≤ ξN

t and ˜̄ξN

t ≤ ξ̄N
t as described
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above so that (9.17) and (9.18) hold. Let q = 1/6 and for δ > 0, let

I ′(δ) = {w ∈ I ′ :d(w, ∂I ′) ≤ δ},
where d(w, ∂I ′) is the distance from w to the boundary of I ′ in the supremum
norm on R

2. The goal of this step is to prove that there is a constant C9.27 such that

EξN
0 ,ξ̃N

0

( 2∑
i=1

Hi(ξ
N
ε , ξ̃N

ε )

)

(9.27)

≤ C9.27

[
XN

0 (1) − X̃N
0 (1) + XN

0 (1)

logN
+ logNX̃N

0 (I ′(2εq))

]
.

As before, we proceed via comparisons with the biased voter model and voter
model, and hence, need the decomposition

EξN
0 ,ξ̃N

0
(Hi(ξ

N
ε , ξ̃N

ε )) ≤ �1 + �2 + EξN
0 ,ξ̃N

0
(Hi(ξ̂

N
ε ,

˜̂
ξN

ε )),(9.28)

where

�1 = �i
1 = EξN

0 ,ξ̃N
0

(|Hi(ξ
N
ε , ξ̃N

ε ) − Hi(ξ̄
N
ε , ˜̄ξN

ε )|),
�2 = �i

2 = EξN
0 ,ξ̃N

0

(|Hi(ξ̄
N
ε , ˜̄ξN

ε ) − Hi(ξ̂
N
ε ,

˜̂
ξN

ε )|).
After expanding �1 using the definitions of H1 and H2, and rearranging using the
inequality ||a − b| − |c − d|| ≤ |a − c| + |b − d|, we have

�1 ≤ EξN
0 ,ξ̃N

0
(Hi(ξ̄

N
ε , ξN

ε )) + EξN
0 ,ξ̃N

0
(Hi(

˜̄ξN
ε , ξ̃N

ε )).

We estimate these two terms as follows.
By (5.33) and (5.34), we have for i = 1,2,

EξN
0

(Hi(ξ̄
N
ε , ξN

ε )) ≤ 3 logNE
(
X̄N

ε (1) − XN
ε (1)

)
≤ 3C6.7 logN [(logN)−2 + ε]XN

0 (1)(9.29)

≤ C9.29X
N
0 (1)/ logN

for a constant C9.29, where in the next to last line we used the basic coupling
and (6.7).

Again, as in the proof of Lemma 3.2 in [3], and arguing as in (5.36), we may

show that, for some square integrable martingale ˜̄MN
t ,

˜̄XN
t (1) = X̃N

0 (P̃
N,∗
t 1) + ˜̄MN

t +
∫ t

0
2θ̄ logN ˜̄XN

s (P̃
N,∗
t−s 1f N

0 ( ˜̄ξN
s )) ds,

where P̃
N,∗
t = P̃ N

t(1+δ′
N)

and δ′
N is as in (9.2). Take differences with (9.19) and use
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the fact that P̃ N
t 1 isdecreasing in t to see that

E
( ˜̄XN

ε (1) − X̃N
ε (1)

) ≤ X̃N
0

(
P̃ N

ε(1+δ′
N)

1 − P̃ N
ε 1

)
+ 2θ̄ logN

∫ ε

0
E

( ˜̄XN
s (1) + X̃N

s (1)
)
ds

(9.30)
≤ 2θ̄ logN

∫ ε

0
E

( ˜̄XN
s (1) + X̃N

s (1)
)
ds

≤ C(logN)−2XN
0 (1),

where (6.3) and the coupling (9.18) is used in the last line. Now repeat the deriva-
tion of (9.29) to see that, for i = 1,2,

Eξ̃N
0

(Hi(
˜̄ξN
ε , ξ̃N

ε )) ≤ 3C(logN)−1XN
0 (1).(9.31)

We have therefore proved [(9.29) and (9.31)] there is a constant C9.32 such
that

�1 ≤ C9.32(logN)−1XN
0 (1), i = 1,2.(9.32)

Similar reasoning leads to

�2 ≤ C9.33(logN)−1XN
0 (1), i = 1,2.(9.33)

To finish the proof of (9.27), it remains only to prove the voter model inequality

EξN
0 ,ξ̃N

0

( 2∑
i=1

Hi(ξ̂
N
ε ,

˜̂
ξN

ε )

)
≤ C9.34

(
XN

0 (1) − X̃N
0 (1) + X̃N

0 (1)

logN

)
(9.34)

+ 6 logNX̃N
0 (I ′(2εq))

for a constant C9.34. We need an elementary lemma.

LEMMA 9.3. If ξ̃ ≤ ξ ∈ {0,1}SN , H̄1(ξ, ξ̃ ) = logN
N ′

∑
x(ξ(x) − ξ̃ (x))f N

0 (x, ξ)

and H̄2(ξ, ξ̃ ) = logN
N ′

∑
x ξ̃ (x)[f N

0 (x, ξ̃ ) − f N
0 (x, ξ)], then

H1(ξ, ξ̃ ) + H2(ξ, ξ̃ ) ≤ 3
(
H̄1(ξ, ξ̃ ) + H̄2(ξ, ξ̃ )

)
.

PROOF.

H2(ξ, ξ̃ ) ≤ logN

N ′
∑
x

(
1 − ξ(x)

)[f1(x, ξ)2 − f1(x, ξ̃ )2] + (
ξ(x) − ξ̃ (x)

)
f1(x, ξ̃ )2

≤ 2 logN

N ′
∑
x

∑
y

(
1 − ξ(x)

)
pN(y − x)

(
ξ(y) − ξ̃ (y)

)

+ logN

N ′
∑
x

∑
y

(
ξ(x) − ξ̃ (x)

)
pN(y − x)ξ̃ (y)
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= 2H̄1(ξ, ξ̃ ) + logN

N ′
∑
y

ξ̃ (y)
∑
x

pN(y − x)
(
1 − ξ̃ (x) − (

1 − ξ(x)
))

= (2H̄1 + H̄2)(ξ, ξ̃ ).

Simpler reasoning shows that H1(ξ, ξ̃ ) ≤ (H̄1 + 2H̄2)(ξ, ξ̃ ). �

To prove (9.34), we will also need an extension of the voter model duality de-

scribed in Sections 5 and 7. Define the killed walks B̃
N,x
t and ˜̂

B
N,x
t by setting

them equal to the rescaled walks B
N,x
t and B̂

N,x
t of (7.13), but killed (set equal to

a cemetery state �) when they first leave I ′ at time

τ̂N (x, I ′) = inf{t ≥ 0 : B̂N,x
t /∈ I ′}.

We also set

ξ̃N
0 (�) = 0.(9.35)

With this convention, the joint duality we need is as follows: for all ei, fi ∈ {0,1}
and xi, yi ∈ SN ,

PξN
0 ,ξ̃N

0

(
ξ̂N
ε (xi) = ei,

˜̂
ξN

ε (yi) = fi, i = 1, . . . ,M
)

(9.36)
= P

(
ξN

0 (B̂N,xi
ε ) = ei, ξ̃

N
0 (

˜̂
BN,yi

ε ) = fi, i = 1, . . . ,M
)
.

This is readily obtained from the coupling of ξ̂N and ˜̂
ξN through the stochastic

differential equation in Proposition 2.1 of [3]. One can refine the dynamics there
by using appropriately defined uniformly distributed random variables to identify
the “parent” of a 0 or 1, enabling us to define the usual Poisson arrows, which in
turn allow us to define the coalescing dual. If the dual random walk from a site x

leads to a site outside I ′, we know that ξ̃N
ε (x) = 0 by our 0 boundary conditions

and so by freezing the dual random walk at �, we ensure the validity of (9.36)
thanks to (9.35). The details are standard and left for the reader.

As before, e denote a random variable with distribution pN , independent of our
coalescing random walks. Let I ′ − x be the obvious translation of I ′. By (9.36),
we have

EξN
0 ,ξ̃N

0
(H̄2(ξ̂

N
ε ,

˜̂
ξN

ε ))

= logN

N ′
∑
x

P
( ˜̂
ξε(x) = 1,

˜̂
ξε(x + e) = 0, ξ̂ε(x + e) = 1

)

= logN

N ′
∑
x

P
(
ξ̃N

0 (
˜̂
BN,x

ε ) = 1, ξ̃N
0 (

˜̂
BN,x+e

ε ) = 0, ξN
0 (B̂N,x+e

ε ) = 1
)

= logN

N ′
∑
x

[
P

(
ξ̃N

0 (
˜̂
BN,x

ε ) = 1, ξ̃N
0 (B̂N,x+e

ε ) = 0, ξN
0 (B̂N,x+e

ε ) = 1
)
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+ P
(
ξ̃N

0 (
˜̂
BN,x

ε ) = 1, ξ̃N
0 (B̂N,x+e

ε ) = 1, ξ̃N
0 (

˜̂
BN,x+e

ε ) = 0
)]

,

since ξ̃N
0 (B̂N,x+e

ε ) = 0 implies ξ̃N
0 (

˜̂
BN,x+e

ε ) = 0, and ξ̃N
0 (B̂N,x+e

ε ) = 1 implies

ξN
0 (B̂N,x+e

ε ) = 1. Using translation invariance, and the fact that ξ̃N
0 (

˜̂
BN,x

ε ) = 1
and ξ̃N

0 (B̂N,x+e
ε ) = 0 imply B̂N,x· and B̂N,x+e· have not coalesced before ε, the

above is not larger than

logN

N ′
∑
w

(
ξN

0 (w) − ξ̃N
0 (w)

)∑
x

P
(
B̂N,e

ε = w − x, τ̂N(0, e) > ε
)

+ logN

N ′
∑
w

ξ̃N
0 (w)

∑
x

P
(
B̂N,e

ε = w − x, τ̂N(e, I ′ − x) ≤ ε
)

≡ S1 + S2.

Summing over x first, and using (2.4), we conclude that

S1 = logN
(
XN

0 (1) − X̃N
0 (1)

)
H(Nε)

(9.37)
≤ C9.37

(
XN

0 (1) − X̃N
0 (1)

)
for a constant C9.37. In the last, recall from Step 2 that ε = (logN)−18.

For S2, we first separate out the sums (1) w ∈ I ′(2εq) and (2) w ∈ I ′ \ I ′(2εq)

and ‖w − x‖ > εq . Note that d(x, ∂I ′) > εq for the remaining x,w. Therefore,

S2 ≤ logNX̃N
0 (I ′(2εq)) + logNX̃N

0 (1)P (‖B̂N,e
ε ‖ > εq)

+ logN

N ′
∑
w

∑
x

1
(
w ∈ I ′ \ I ′(2εq),‖x − w‖ ≤ εq)

ξ̃N
0 (w)

× P

(
B̂N,e

ε = w − x, sup
u≤ε

‖B̂N,e
u ‖ > εq

)
(9.38)

≤ logNX̃N
0 (I ′(2εq)) + logNX̃N

0 (1)E(‖B̂N,e
ε ‖2)ε−2q

+ logNX̃N
0 (1)P

(
sup
u≤ε

‖B̂N,e
u ‖ > εq

)

≤ logNX̃N
0 (I ′(2εq)) + C9.38 logNX̃N

0 (1)ε1−2q

for a constant C9.38, where we have used Doob’s weak maximal inequality in the
last. Combine (9.37) and (9.38), and use p(1 − 2q) > 2 to derive

EξN
0 ,ξ̃N

0
(H̄2(ξ̂

N
ε ,

˜̂
ξN

ε ))

(9.39)
≤ logNX̃N

0 (I ′(2εq)) + C9.39[(logN)−1X̃N
0 (1) + XN

0 (1) − X̃N
0 (1)]

for a constant C9.39.



810 J. T. COX AND E. A. PERKINS

For H̄1, we have, by similar reasoning,

EξN
0 ,ξ̃N

0
(H̄1(ξ̂

N
ε ,

˜̂
ξN

ε ))

= logN

N ′
∑
x

P
(
ξN

0 (B̂N,x
ε ) = 1, ξ̃N

0 (
˜̂
BN,x

ε ) = 0, ξN
0 (B̂N,x+e

ε ) = 0
)

= logN

N ′
∑
x

[
P

(
ξN

0 (B̂N,x
ε ) = 1, ξ̃N

0 (B̂N,x
ε ) = 0, ξN

0 (B̂N,x+e
ε ) = 0

)

+ P
(
ξ̃N

0 (B̂N,x
ε ) = 1, ξ̃N

0 (
˜̂
BN,x

ε ) = 0, ξN
0 (B̂N,x+e

ε ) = 0
)]

≤ logN

N ′
∑
w

(
ξN

0 (w) − ξ̃N
0 (w)

)∑
x

P
(
B̂N,0

ε = w − x, τ̂N(0, e) > ε
)

+ logN

N ′
∑
w

ξ̃N
0 (w)

∑
x

P
(
B̂N,0

ε = w − x, τ̂N(0, I ′ − x) ≤ ε
)

≡ S′
1 + S′

2.

The S′
i are actually slightly simpler than Si to handle (we have 0 in place of e)

and so, as before, we may bound EξN
0 ,ξ̃N

0
(H̄1(ξ̂

N
ε ,

˜̂
ξN

ε )) by the right-hand side of
(9.39). Combine these two bounds and use Lemma 9.3 to complete the derivation
of (9.34), and hence of (9.27).

After inserting bounds (9.25), (9.26) and (9.27) into (9.23), the Markov property
implies that

E
(
XN

t (1) − X̃N
t (1)

)
≤ XN

0 (1)P

(
sup
u≤t

‖βN,0
u ‖ > (K − 1)L

)

+ θ̄C9.26(t)X
N
0 (1)

×
[
(logN)−1 + P

(
sup

u≤t (1+δ′
N)

‖βN,0
u ‖ > (K − 2)L

)]

+ θ̄E

(∫ ε

0
(H1 + H2)(ξ

N
s , ξ̃N

s ) ds

)

+ θ̄C9.27E

(∫ t∨ε

ε
E

(
XN

s−ε(1) − X̃N
s−ε(1) + XN

s−ε(1)

logN

+ logNX̃N
s−ε(I

′(2εq))

)
ds

)
.
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Thus, in order to prove (9.24), it suffices now to prove the two bounds∫ ε

0
E

(
(H1 + H2)(ξ

N
s , ξ̃N

s )
)
ds + 1

logN

∫ t

0
E(XN

s (1)) ds(9.40)

≤ C9.40(t)

logN
XN

0 (1)

and

logN

∫ t

0
E(X̃N

s (I ′(2εq))) ds ≤ C9.41(t)(KL/ logN)XN
0 (1).(9.41)

The bound (9.40) follows easily from (4.2), the definition of ε and the fact that
Hi(ξ

N
s , ξ̃N

s ) ≤ 2 logNXN
s (1). For (9.41), let Ī ′(ε) = {w :d(w, ∂I ′) ≤ 4εq} and

choose ψε : R2 → [0,1] such that

1I ′(2εq) ≤ ψε ≤ 1Ī ′(ε) and ‖ψε‖Lip ≤ ε−q .

Then, using Proposition 4.4, the left-hand side of (9.41) is bounded above by

logNE

(∫ t

0
XN

s (ψε) ds

)

≤ c(t)

[
ε−q(logN)(3−p)/2XN

0 (1) + logN

∫ t

0
XN

0 (P N,∗
s ψε) ds

]

≤ c(t)

[
(logN)−9/2XN

0 (1) + logN

∫ t

0

∫
P

(
BN,∗,x

s ∈ Ī ′(ε)
)
XN

0 (dx) ds

]
,

for some c(t), where BN,∗,x
s is a random walk starting at x with semigroup P

N,∗
t

as in Proposition 4.4. Use the bound on P(B
N,∗,x
t = w) from (7.30) to see that

logN

∫ t

0

∫
P

(
BN,∗,x

s ∈ Ī ′(ε)
)
XN

0 (dx) ds

≤ cXN
0 (1) logN

∫ t

0

εqNKL

1 + Ns
ds

= cXN
0 (1)KL(logN)1−p/6 log(1 + Nt)

≤ c(t)KLXN
0 (1)(logN)−1.

We have finally used our choice of p = 18. This proves (9.41), and hence, com-
pletes the proof of (9.24). �

Acknowledgment. We thank an anonymous referee for a thorough reading
and many useful suggestions.



812 J. T. COX AND E. A. PERKINS

REFERENCES

[1] COX, J. T., DURRETT, R. and PERKINS, E. A. (2000). Rescaled voter models converge to
super-Brownian motion. Ann. Probab. 28 185–234. MR1756003

[2] COX, J. T. and PERKINS, E. A. (2005). Rescaled Lotka–Volterra models converge to super-
Brownian motion. Ann. Probab. 33 904–947. MR2135308

[3] COX, J. T. and PERKINS, E. A. (2007). Survival and coexistence in stochastic spatial Lotka–
Volterra models. Probab. Theory Related Fields 139 89–142. MR2322693

[4] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes. Characterization and Conver-
gence. Wiley, New York. MR0838085

[5] GRIFFEATH, D. (1978). Additive and Cancellative Interacting Particle Systems. Springer,
Berlin. MR0538077

[6] LIGGETT, T. M. (1985). Interacting Particle Systems. Springer, New York. MR0776231
[7] NEUHAUSER, C. and PACALA, S. W. (1999). An explicitly spatial version of the Lotka–

Volterra model with interspecific competition. Ann. Appl. Probab. 9 1226–1259.
MR1728561

[8] PERKINS, E. (2002). Dawson–Watanabe superprocesses and measure-valued difffusions. École
d’Été de Probabilités de Saint Flour XXIX–1999. Lecture Notes Math. 1781 125–324.
Springer, Berlin. MR1915445

[9] PRESUTTI, E. and SPOHN, H. (1983). Hydrodynamics of the voter model. Ann. Probab. 11
867–875. MR0714951

[10] SPITZER, F. L. (1976). Principles of Random Walk, 2nd ed. Springer, New York. MR0388547

DEPARTMENT OF MATHEMATICS

SYRACUSE UNIVERSITY

SYRACUSE, NEW YORK 13244
USA
E-MAIL: jtcox@syr.edu

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BRITISH COLUMBIA

1984 MATHEMATICS ROAD

VANCOUVER, BRITISH COLUMBIA

CANADA V6T 1Z2
E-MAIL: perkins@math.ubc.ca

http://www.ams.org/mathscinet-getitem?mr=1756003
http://www.ams.org/mathscinet-getitem?mr=2135308
http://www.ams.org/mathscinet-getitem?mr=2322693
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=0538077
http://www.ams.org/mathscinet-getitem?mr=0776231
http://www.ams.org/mathscinet-getitem?mr=1728561
http://www.ams.org/mathscinet-getitem?mr=1915445
http://www.ams.org/mathscinet-getitem?mr=0714951
http://www.ams.org/mathscinet-getitem?mr=0388547
mailto:jtcox@syr.edu
mailto:perkins@math.ubc.ca

	Introduction
	Characterization of gamma*
	Semimartingale decompositions
	Convergence to super-Brownian motion
	Voter, biased voter and Lotka-Volterra bounds
	Voter model estimates
	Biased voter model bounds

	Proofs of Propositions 4.3-4.5
	Proof of Proposition 4.7-Part I
	Random walk estimates
	Voter model estimates
	Proof of Proposition 7.1
	Proof of Proposition 7.2

	Proof of Proposition 4.7-Part II
	Proof of Theorem 1.3
	Acknowledgment
	References
	Author's Addresses

