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ONE-DIMENSIONAL STEPPING STONE MODELS, SARDINE
GENETICS AND BROWNIAN LOCAL TIME

BY RICHARD DURRETT AND MATEO RESTREPO

Cornell University

Consider a one-dimensional stepping stone model with colonies of size
M and per-generation migration probability ν, or a voter model on Z in which
interactions occur over a distance of order K . Sample one individual at the
origin and one at L. We show that if Mν/L and L/K2 converge to positive
finite limits, then the genealogy of the sample converges to a pair of Brown-
ian motions that coalesce after the local time of their difference exceeds an
independent exponentially distributed random variable. The computation of
the distribution of the coalescence time leads to a one-dimensional parabolic
differential equation with an interesting boundary condition at 0.

1. Introduction. Cox and Durrett [6] and Zähle, Cox and Durrett [15] have
recently studied the two-dimensional stepping stone model. Space is represented
as a torus �(L) = (Z modL)2. To avoid a factor of 2 and to make the dynamics
easier to describe, we suppose that at each point x ∈ �(L) there is a colony of M

haploid individuals labeled 1,2, . . . ,M . Each individual in the system is replaced
at rate 1. With probability 1 − ν it is replaced by a copy of an individual chosen
from the same colony. If the individual is in colony x, then with probability ν

it is replaced by a copy of one chosen from nearby colony y �= x with probabil-
ity q(y − x) where the difference is computed componentwise modulo L, and the
representative of the equivalence class chosen from (−L/2,L/2]2. Here q(z) is an
irreducible probability on Z

2 with q(0,0) = 0, finite range and the same symme-
try as Z

2: q(x1, x2) = q(−x1,−x2) and q(x1, x2) = q(x2, x1). These assumptions
imply that jumps according to q have mean 0 and covariance σ 2I .

When M = 1 the stepping stone model reduces to the voter model, but being
able to consider colony size M > 1 enriches the behavior of the model. As in the
voter model, we can define a genealogical process for each individual that traces
the source of its genetic material backward in time. For one individual this is a
random walk that moves to a randomly chosen individual in the same colony with
probability 1 − ν and otherwise jumps to a new colony chosen according to q . The
genealogies of two individuals are random walks that coalesce with probability
1/M on each jump when they land in the same colony. We will call q the dispersal
distribution since it is the jump distribution for the genealogical process. If the
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migration rate times the colony size, Mν, is large enough, then the population
behaves as a homogeneously mixing unit. Let t0 be the coalescing time of two
lineages and let π denote that the two individuals are chosen at random from the
population. Cox and Durrett [6] have shown

THEOREM 1. If L → ∞ and (2πσ 2)Mν/ logL → α ∈ (0,∞], then

Pπ

(
2t0 >

1 + α

α
ML2t

)
→ e−t .

In genetics terms, the system behaves as a homogeneously mixing population of
“effective” size ML2(1+α)/α. As α → ∞ this converges to the actual population
size, indicating that the critical size of Mν for interesting behavior is O(logL).
One finds more interesting behavior when individuals are sampled from a Lβ ×Lβ

square of colonies, but those results are not relevant here, so we refer the reader to
Cox and Durrett [6] and Zähle, Cox and Durrett [15] for details.

Here, we will be interested in investigating similar questions for the one-
dimensional stepping stone model. Although we live in a two-dimensional world,
this case is relevant for applications. Many species, such as sea lions and abalone,
live along a coastline that is essentially one-dimensional. For example, Bowen
and Grant [5] have studied sardines at five different sites in the Indian and Pacific
oceans. Wilkins and Wakeley’s [14] analysis of this data using the one-dimensional
stepping stone model was the inspiration for this study.

Although the most natural setting to pursue our results would be a one-
dimensional interval or a ring of colonies, we will, for technical reasons, study the
stepping stone model on Z. The setup is the same as that of Cox and Durrett [6] de-
scribed above. There are M haploid individuals per colony and nearest-neighbor
migration occurs with probability ν. We sample one individual from the colony
at 0, and another from the colony at L. If M = 1, then the two lineages will co-
alesce the first time they enter the same colony. Our first question is how large
should Mν need to be for the system to have more interesting behavior? Since mi-
gration occurs with probability ν, it takes time O(L2/ν) for the difference in the
locations of the two lineages to change by O(L). In this time the difference will
visit a given value between 0 and L an average of L/ν times, so if we want the
probability of coalescence to be positive but not certain, this should be O(M).

THEOREM 2. Consider a one-dimensional stepping stone model with M hap-
loid individuals per colony and nearest-neighbor migration with probability ν.
Sample one individual from the colony at 0, and another from the colony at L. If
L → ∞ and Mν/L → α ∈ (0,∞), then 2t0/(L

2/ν) converges in distribution to
�−1

0 (αξ), where �t (0) is the local time at 0 for a standard Brownian motion start-
ing at 1, and ξ is independent with a mean 1 exponential distribution.
Note that as α → 0 the limit becomes the hitting time of 0 and that as α → ∞ the
limit → ∞.
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We are, of course, not the first to have considered this problem. Writing things
in our notation, Maruyama [12] considered a ring of L colonies with M diploid
individuals per colony. He did not formulate his result as a limit theorem, but by
filling in a few details in the Appendix, we can use his computations to show that
if Mν/L → α,

E0
(
exp

(−λt0/(L
2/ν)

)) → (
1 + 4α

√
λ
)−1

.(1)

It would be interesting to derive this formula using a generalization of Theorem 2
to the circle, and computations for the local time at 0 of a Brownian motion on the
circle.

Wilkins and Wakeley [14] modeled space as {0,1/L,2/L, . . . ,1} with one in-
dividual per site, and used a dispersal distribution that is a normal distribution with
a small variance σ 2 with reflecting boundary conditions on the ends. They ana-
lyzed the system by simulation and numerical solution of differential equations for
various combinations of L and σ 2. Here we will consider the corresponding prob-
lem on Z, sample one individual from 0 and one from L, and suppose dispersal
distance is of order K . If the dispersal is nearest neighbor, the two lineages cannot
cross each other without coalescing. To see how large K has to be for the system
to have interesting behavior, we note that it takes roughly L2/K2 jumps to move
distance L, and at this point the difference between the two locations will have
visited a typical value between 0 and L about L/K2 times. If we take K = c

√
L,

then the expected number of visits to 0 converges to a positive finite limit, and the
probability of coalescence is positive but not certain.

To state the result and to write its proof, it is convenient to introduce another pa-
rameter N and let K = N1/2 and L = O(N). We make the following assumptions
about the dispersal distribution qN :

1. symmetry: qN(z) = qN(−z),
2. the variance

∑
z∈Z z2qN(z) = σ 2

NN with σN → σ ∈ (0,∞),
3. there is an h > 0, independent of N , so that qN(z) ≥ h/

√
N for |z| ≤ N1/2,

4. exponential tails: qN(z) ≤ C exp(−c|z|/√N).

These assumptions contain uniform, bilateral exponential and normal distributions
as special cases. The last condition is strong but is convenient since it allows us to
choose B so that ∑

|z|≥B
√

N logN

qN(z) ≤ N−2.

Since the limit theorem involves times of order N , we can suppose without loss of
generality that

5. qN(z) = 0 for |z| > B
√

N logN,
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since the probability of having a jump larger than B
√

N logN by time N is ≤ 1/N .
The constant B is special and the letter B is reserved for its value. Here and in
what follows, c and C are positive finite constants whose values are unimportant
and will change from line to line, while O(f (N)) indicates a quantity that can be
bounded by Cf (N), with C independent of N .

THEOREM 3. Consider a sequence of voter models on Z with jumps at rate 1,

and dispersal distributions qN , satisfying assumptions 1–5. If the positive numbers
LN have LN/(σN) → x0 ≥ 0, then 2t0/N converges in distribution to �−1

0 (σξ/2),
where �0 is the local time at 0 of a standard Brownian motion started from x0 and
ξ is independent with a mean 1 exponential distribution.
Again, as σ → 0 the limit becomes the hitting time of 0, and as σ → ∞ the limit
→ ∞.

To get a more explicit description of the distribution of the limits in Theorems
2 and 3 we would like to compute

Px

(
�−1

0 (ξ/λ) > t
) = Px

(
λ�0(t) < ξ

) = Ex exp(−λ�0(t)).

Formula 1.3.7 in Borodin and Salaminen’s [4] Handbook of Brownian Motion tells
us that

Ex

(
e−λ�0(t);Wt ∈ dz

)
= 1√

2πt
e−(z−x)2/2t dz(2)

− λ

2
exp

(
(|z| + |x|)λ + λ2t/2

)
Erfc

(
λ2√t√

2
+ |z| + |x|√

2t

)
dz,

where Erfc is the error function, that is, the upper tail of the normal distribution.
Another approach to computing u(t, x) = Ex exp(−λ�0(t)) is to note that for

x �= 0 it satisfies the heat equation

∂u

∂t
= 1

2

∂2u

∂x2 .

To determine the boundary condition at 0, we run Brownian motion until τh =
inf{t : Bt /∈ (−h,h)} and use symmetry u(t, x) = u(t,−x) to conclude that

u(t,0) = E0
(
e−λ�0(τh)u(t − τh,h); τh ≤ t

) + P0(τh > t).

The strong Markov property implies that �0(τh) is exponentially distributed.
Let Dε(τh) be the number of downcrossings of (0, ε) by reflecting Brown-
ian motion before it hits h. Dε(τh) is geometrically distributed with mean h/ε

and limε→0 εDε(t) = �0(t) (see, e.g., page 48 of Itô and McKean [10]), so
E0�0(τh) = h and

E0
(
e−λ�0(τh)) = 1/h

λ + 1/h
= 1

1 + λh
.
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Using the explicit formula in (2) or the fact that u(t, x) satisfies the heat equation
with a bounded boundary condition on [0,∞) × {0} shows u(t, x) is Lipschitz
continuous on [0, T ]×[−K,K]. Since τh has the same distribution as h2τ1, |u(t −
τh,h) − u(t, h)| = O(h2). Using this with P0(τh > t) = o(h), we have

∂u

∂x
(t,0+) = lim

h→0

u(t, h) − u(t,0)

h

= u(t,0) lim
h→0

1 − E0(e
−λ�0(τh))

h
= λu(t,0).

The remainder of the paper is devoted to proofs. Theorem 2 is fairly straightfor-
ward to prove. Let ZN

t be the difference between the colony numbers for the two
lineages, and let YN

m be the embedded jump chain, which jumps when a lineage
changes colonies. YN(L2·)/L converges to a Brownian motion starting from 1.
Using the fact that |B0

t | − �0(t) is a martingale, it is easy to show that if V N
m is

the number of visits to 0 by YN
m then V N(L2·)/L converges to the local time �0.

(Borodin [3] proved this for aperiodic mean 0, finite-variance random walks.) Each
visit to 0 by YN

m brings a probability of coalescence of roughly ν/(ν + 1/N) for
our two lineages, and the result follows from routine calculations. See Section 2
for details.

It is easy to give an intuitive proof of Theorem 3 along similar lines. The dif-
ference in the location between two lineages in the genealogy of voter model is a
continuous-time random walk that jumps at rate 2, so it is enough to consider the
embedded discrete-time jump chain. Let XN

k be a random walk with jump distri-
bution qN . Let 1/2 < a < 1. The number of visits to I = [−Na,Na] by time t ,
divided by 2Na , converges to the local time at 0 of a Brownian motion. If we look
at the chain XN

k only when it is in I , then we get a Markov chain that mixes more
rapidly than its expected time to hit 0, so a result of Aldous and Fill [1] implies that
the hitting time of 0 for the chain viewed on I has approximately an exponential
distribution.

To complete the proof outlined in the previous paragraph, one must prove
that the excursions off of I are sufficiently independent of the behavior in I

so that the exponential waiting time and the local time are asymptotically in-
dependent. We have not been able to formalize this intuition, so we will in-
stead pursue an approach based on the downcrossing definition of local time. Let
T0 = inf{k : |XN

k | < N5/6} and for m ≥ 0 let

Sm = inf{k > Tm : |XN
k | > 2N5/6},

Tm+1 = inf{k > Sm : |XN
k | < |XN

Sm
| − N5/6}.

Visits to 0 can only occur during [Tm,Sm], while most of the time is in the intervals
[Sm,Tm+1]. The definition of Tm+1 is chosen so that the distribution of Tm+1 −
Sm is independent of XN(Sm), and this allows us to get the desired asymptotic
independence.
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Section 3 gives the proof of Theorem 3 modulo three propositions that are
established later. Let MN(n) = sup{m : Sm ≤ n} be the number of cycles com-
pleted by time n. Proposition 1, proved in Section 4, gives the convergence of
MN(Nt)/N1/6 to local time. Proposition 2, proved in Section 5, shows that the
time spent in the intervals [Tm,Sm] is a small fraction of the total time. Propo-
sition 3 gives asymptotics for the probability of hitting 0 before time Sm for the
possible values of XN(Tm), which are ±N5/6 + O(N1/2 logN). Proposition 3 is
the most difficult part of the proof. It relies on estimates for the potential kernel,
which are based on results for the Green’s function, which in turn come from a
local central limit theorem. The technical problem is that all of our estimates must
be uniform in N . These details occupy Sections 6 and 7.

2. Proof of Theorem 2. Let ZN
t be the difference in the colony numbers at

time t . Let YN
m be the discrete-time embedded chain that jumps whenever one

of the two lineages changes colonies, and continues jumping even after the two
lineages have coalesced. YN

m is a simple random walk. Recalling YN
0 = L, we let

WN(t) = YN
[L2t]/L. Since WN converges in distribution to a standard Brownian

motion W(·), C = C([0,∞),R) with the topology of uniform convergence on
compact time intervals is a complete separable metric space, Skorokhod’s theorem
implies that we can assume these processes have been constructed on the same
space so that WN(·) → W(·) almost surely. See, for example, Theorem 3.3 on
page 7 of Billingsley [2].

Let V N
m be the number of visits to 0 by YN

k , k ≤ m. The next result has been
proved for finite-variance random walks by Borodin [3]. To keep this paper self-
contained, we will give a simple proof for the nearest-neighbor case.

LEMMA 1. V N(L2·)/L → �0(·), the local time at 0 for W , almost surely in C.

PROOF. Let AN(t) = V N(L2·)/L. An easy computation for simple random
walk shows that for any stopping time S

Ex |AN(S + t) − AN(S)| ≤ E0|AN(t)| ≤ 1

L

(
1 +

L2t∑
k=1

C/
√

k

)
≤ C

√
t,

so by Aldous’ criterion (see, e.g., Theorem 4.5 on page 320 of Jacod and
Shiryaev [10]) the sequence AN is tight. Let ANk be a convergent subsequence
with limit A. |WNk(t)| − ANk(t) is a martingale. Using the L2 maximal inequality
on the random walk, and the dominated convergence theorem on the increasing
process, both processes converge to their limits in L1. Since conditional expecta-
tion is a contraction in L1, it follows that |W(t)| − A(t) is a martingale. �0(t) is
the increasing process associated with |W(t)|. See, for example, (11.2) on page 84
of Durrett [7]. By the uniqueness of the Doob–Meyer decomposition A(t) = �0(t).
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This shows that there is only one subsequential limit, so the entire sequence con-
verges to �0(t). �

To move this result from YN to ZN , we note that time m in YN corresponds to a
time ∼ m/2ν in ZN , and hence time L2t/2ν in ZN corresponds to a time ∼ L2t in
YN , where as usual aN ∼ bN means aN/bN → 1. Now ZN will have a geometric
number of chances with mean 1/ν for coalescence between jumps of YN so the
probability of no coalescence is

∞∑
j=1

(1 − ν)j−1ν(1 − 1/N)j = ν(1 − 1/N)

1/N + ν(1 − 1/N)
∼ Nν

1 + Nν
.

Recall our assumptions imply Nν → ∞ and hence N → ∞.
When m = L2t , the number of visits to 0 by YN

m will be ∼ L�0(t) and hence the
probability of no coalescence is

=
(

1 − 1

Nν

)L�0(t)

→ e−(1/α)�0(t).

If ξ is a mean 1 exponential, the right-hand side can be written as

P
(
(1/α)�0(t) < ξ

) = P
(
�−1

0 (αξ) > t
)
,

which completes the proof of Theorem 2.

3. Proof of Theorem 3. Here we give the proof, assuming the truth of three
propositions that will be proved in the next three sections. Let XN

k , k ≥ 0, be a
discrete-time random walk with jump distribution qN . To avoid some annoying
little details, it is convenient to suppose that XN

0 = xN ≥ 2N5/6. To extend to the
general case, it is enough to show that starting from x �= 0 the probability of hitting
0 before time S0 defined below tends to 0, but this follows from Lemma 5.

Define two interleaved sequences of stopping times as follows. Let T0 = −1 and
for m ≥ 0 let

Sm = inf{k > Tm : |XN
k | > 2N5/6},

Tm+1 = inf{k > Sm : |XN
k | < |XN

Sm
| − N5/6}.

Sm is the exit time from the larger strip [−2N5/6,2N5/6]. Since

2N5/6 − BN1/2 logN ≤ |XN(Sm)| ≤ 2N5/6 + BN1/2 logN,

Tm is almost the hitting time of the smaller strip [−N5/6,N5/6]. The advantage of
this definition is that the processes {|XN(Sm + k)| − |XN(Sm)|, 0 ≤ k ≤ Tm − Sm}
are identically distributed for m ≥ 0 and independent of F (Sm). Here and in what
follows, we will write XN(Sm) instead of XN

Sm
to avoid double subscripts.
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Let MN(n) = sup{m :Sm ≤ n} be the number of cycles completed by time t

and let LN(n) = |{1 ≤ m ≤ MN(n) :XN(Sm−1)X
N(Sm) < 0}| be the number of

crossings of [−2N1/6,2N1/6] by the random walk. Our first result to be proved
later is:

PROPOSITION 1. Suppose xN/σN → x0. Then

2LN(Nt)/N1/6 ⇒ σ�0(t) and MN(Nt)/2N1/6 ⇒ σ�0(t),

where �0(·) is the local time at 0 of a standard Brownian motion started at x0.

Let J = inf{m :∃k ∈ [Tm,Sm],XN
k = 0}. The fact that one-dimensional finite-

range random walks are recurrent implies J < ∞. By the definitions of Sm and
Tm, t0 ∈ [TJ , SJ ]. Splitting things up according to the value of J ,

∞∑
j=0

P {J = j, Tj > Nt} ≤ P {t0 > Nt} ≤
∞∑

j=0

P {J = j, Sj > Nt}.

We will show that both series converge to the same limit as N → ∞, thereby
proving that P {t0 > Nt} converges to this limit as well. We first truncate the sums
by neglecting the terms having j > N2/9:

N2/9∑
j=0

P {J = j, Tj > Nt} ≤ P {t0 > Nt} ≤
N2/9∑
j=0

P {J = j, Sj > Nt} + εN
1 ,(3)

where, as Lemma 2 will show,

εN
1 ≤

∞∑
j=N2/9

P {J = j} = O(e−cN1/18
).

Defining Aj = T0 + ∑j
m=1(Tm − Sm−1) and Bj = ∑j

m=0(Sm − Tm), we can
write Sj = Aj + Bj . For the reader’s intuition, we note that Tm − Sm−1 is the
hitting time of a half-line, while Sm − Tm is the exit time from a bounded strip.
The first variable has infinite mean and the latter finite variance, so we expect
Aj � Bj for large j .

It is clear that

N2/9∑
j=0

P {J = j,Aj > Nt} ≤
N2/9∑
j=0

P {J = j, Tj > Nt}.(4)

Our next task is to argue that

N2/9∑
j=0

P {J = j, Sj > Nt} ≤
N2/9∑
j=0

P {J = j, Aj > Nt − 2N17/18} + εN
2 ,(5)
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where εN
2 is another small error, this time O(N−1/3). To prove the last inequality

we note that, for any j ≤ N2/9,

{J = j, Sj > Nt} ⊂ {J = j,Aj > Nt − 2N17/18} ∪ {J = j,BN2/9 > 2N17/18}.
In the last equality we should have written the integer part [N2/9], but in what
follows we will ignore these insignificant details. Taking now the union over j ,
(5) will follow from the following proposition.

PROPOSITION 2. For large N , P {BN2/9 > 2N17/18} ≤ CN−1/3.

Combining inequalities (3), (4) and (5), we can restrict ourselves to estimating
probabilities of the form P {J = j,Aj > Ns}. The two events here are almost
independent. Aj is determined by the behavior of increments of the random walk in
the intervals [Sm,Tm+1], while J is determined by the behavior in [Tm,Sm]. There
is some dependence that comes through the value of the starting points XN(Tm),
but because of assumption 5, these are all within distance BN1/2 logN of N5/6

or −N5/6. As the reader can probably guess, the variability in the starting point
makes little difference:

PROPOSITION 3. Suppose |x − N5/6| ≤ BN1/2 logN and let HN
I (x,0) de-

note the probability that the random walk XN started at x hits 0 before leaving the
set I = [−2N5/6,2N5/6]. There is a constant C so that∣∣∣∣N1/6HN

I (x,0) − 1

σ 2

∣∣∣∣ ≤ CN−1/6 logN.

The bound in Proposition 3 is uniform over the possible values of XN(Tm), so
for simplicity we will write cN = 1/σ 2 + O(N−1/6 logN).

LEMMA 2. For every u > 0 and j we have

P {J = j,Aj > u} = cN

N1/6

(
1 − cN

N1/6

)j

P {Aj > u},(6)

and hence
∑∞

j=N2/9 P {J = j} ≤ (1 − cN/N1/6)N
2/9 ≤ exp(−cN1/18).

PROOF. Let Im = 1{t0 ∈ [Tm,Sm]} and let �k = Ak − Ak−1 for k ≥ 0, where
A−1 = 0. Using the strong Markov property, Proposition 3, the fact that �j is
independent of F (Sj−1) and induction, it is easy to see that

P(�0 = v0, I0 = 0,�1 = v1, . . . , Ij−1 = 0,�j = vj , Ij = 1)

= cN

N1/6

(
1 − cN

N1/6

)j j∏
k=0

P(�k = vk).



ONE-DIMENSIONAL STEPPING STONE MODELS 343

Since the �k are independent, the desired result follows by summing over
v0, . . . , vk that sum to more than u. �

The lower bound in (4) and the upper bound in (5) are similar, so it is enough to
investigate the lower bound. Using Lemma 2 on the left-hand side of (4) gives

P {t0 > Nt} ≥
N2/9∑
j=0

cN

N1/6

(
1 − cN

N1/6

)j

P {Aj > Nt}.

Using Proposition 2, we get

P {t0 > Nt} ≥
N2/9∑
j=0

cN

N1/6

(
1 − cN

N1/6

)j

P {Sj > Nt + 2N17/18} + εN
3 ,

where εN
3 is an error of order N−1/3. Recalling the definition of MN , the above is

=
N2/9∑
j=0

cN

N1/6

(
1 − cN

N1/6

)j

P {MN(Nt + 2N17/18) < j}.(7)

Proposition 1 implies that

P
(
MN(Nt + 2N17/18) < sN1/6) → P

(
σ�0(t) < s/2

)
.

Let c0 = 1/σ 2 = limN→∞ cN . The dominated convergence theorem now implies
that (7) converges to ∫ ∞

0
c0e

−c0sP {σ�0(t) < s/2}ds.

Introducing a mean 1 exponential random variable, ξ , independent of L0(t), and
recalling c = 1/σ 2 is 1 over the mean of the exponential, this can be written as

P {σ�0(t) < σ 2ξ/2} = P {�−1
0 (σξ/2) > t},

which is the conclusion of Theorem 3. It remains to prove the three propositions.

4. Proof of Proposition 1. Consider the sequence of random walks XN
k =

xN + ∑k
i=1 ξN

i where for each N , xN ≥ 2N5/6 and the variables ξN
i , i ≥ 1, are

i.i.d. with distribution qN . Define the sequence of stopping times K0 = 0 and for
j ≥ 0

K2j+1 = inf{k > K2j : XN
k < −2N5/6},

(8)
K2j+2 = inf{k > K2j+1 : XN

k > 2N5/6}.
In words, the K2j+1 correspond to times at which the random walk finishes a
down crossing of the interval [−2N5/6,2N5/6] and the K2j+2 correspond to times
at which the random walk finishes an up crossing of the same interval.
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To connect with the definitions given just before Proposition 1 in the previous
section, note that {Sm :m ≥ 0} ⊃ {Kk :k ≥ 0} (it is for this reason that we want
xN ≥ 2N5/6), so we have

LN(n) = sup{j :Kj ≤ n}.
Here and in what follows, even though σN → σ we will drop the subscript N for
simplicity.

LEMMA 3. Suppose that xN/σN → x0, the ξN
i are i.i.d. with E ξN

i = 0,
E(ξN

i )2 = Nσ 2 and E(ξN
i )4 ≤ CN2. Then

2N−1/6LN([Nt]) ⇒ σ�0(t)

as N → ∞, where �0(t) denotes the local time at 0 for a standard Brownian mo-
tion starting from x0.

PROOF. We first rescale the random walks by letting

SN
k = XN

k

Nσ
= 1

σ
√

N

k∑
i=1

ξN
i√
N

.

Let YN(t) = SN[Nt]. Our first task is to argue that it is possible to define the YN ’s
and a Brownian motion B on the same probability space �, so that for each fixed t ,
the events

�N =
{

sup
0≤s≤t

|B(s) − YN(s)| ≤ N−5/24
}

(9)

satisfy P(�N) → 1.
To prove this, we begin by recalling a well-known construction of Skorohod,

see, for example, Section 7.6 in Durrett [7]. Given a Brownian motion B and a
value of N , this procedure constructs a sequence of stopping times T N

k , k ≥ 1, that
satisfy

B(T N
k )

d= SN
k = YN(k/N)

and are such that the increments τN
i = T N

i − T N
i−1 are independent, nonnegative

random variables having mean E τN
i = E(ξN

i /σN)2 = 1/N , and variance

var(τn
i ) ≤ CE(ξN

i /σN)4 ≤ C/N2.

For s ∈ [k/N, (k + 1)/N), we have

|YN(s) − B(s)| = |Yn(k/N) − B(s)| ≤ |B(T N
k ) − B(k/N)| + |B(k/N) − B(s)|.

We now fix t , and argue that there are sets �1
N with P(�1

N) → 1 on which

|T N
k − k/N | < N−11/24 for all k ≤ Nt.(10)
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Kolmogorov’s L2 maximal inequality (see, e.g., (4.3) in Chapter 4 of Durrett [8])
applied to the martingale T N

k − k/N gives

P

(
sup
k≤Nt

∣∣∣∣T N
k − k

N

∣∣∣∣ ≥ N−11/24
)

≤ N11/12Ntvar(τN
i ) ≤ CtN−1/12.

By Lévy’s result on the modulus of continuity for Brownian motion we can find
sets �2

N, with P(�2
N) → 1 and such that, on �2

N , x, y ≤ t and |x − y| ≤ N−11/24

imply (see, e.g., (4.10) in Chapter 7 of Durrett [8]),

|B(x) − B(y)| ≤ 10
(|x − y| log(|x − y|−1)

)1/2 ≤ (1/2)|x − y|5/11,

the last inequality holding for large N since 5/11 < 1/2. On �1
N ∩ �2

N we have
for s ∈ [k/N, (k + 1)/N)

|YN(s) − B(s)| ≤
∣∣∣∣B(T N

k ) − B

(
k

N

)∣∣∣∣ +
∣∣∣∣B

(
k

N

)
− B(s)

∣∣∣∣
≤ 1

2

(
N−(11/24)(5/11) + N−5/11) ≤ N−5/24,

which proves (10).
Having established (10), the rest of the proof of Lemma 3 is straightforward.

Let aN = (1/σ)2N−1/6 and bN = (1/σ)N−5/24. Using definitions similar to the
Kj in (8), we can define L−

N(t) and L+
N(t) to be the number of times the Brownian

motion Bs , 0 ≤ s ≤ t , has crossed the strips [−aN + bN, aN − bN ] and [−aN −
bN, aN + bN ], respectively. On the events �N we have

L+
N(t) ≤ LN(Nt) ≤ L−

N(t).

On the other hand, a classical result obtained by Lévy on the convergence of down-
crossings to local time (see Itô and McKean [9], page 48) implies that, as N → ∞,

(aN + bN)L+
N(t) → �0(t), (aN − bN)L−

N(t) → �0(t).

To check the constant, recall that one multiplies the number of downcrossings by
the width of the strip, but here we count up- and downcrossings. This completes
the proof of Lemma 3. �

To prove the convergence result for MN given in Proposition 1, we let

�(n) = |{1 ≤ m ≤ n :XN(Sm−1)X
N(Sm) < 0}|

and note that LN
n = �(MN

n ). Let γm = 1 if XN(Sm−1)X
N(Sm) < 0. We have

−B
√

N logN ≤ |XN(Tm)| − N5/6 ≤ B
√

N logN,

so using the fact that XN
k is a martingale,

P
(
γm = 1|F (Tm)

) = 1/4 + O(N−1/2 logN).(11)
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Let �̄(n) = �(n)−∑n
m=1 P(γm = 1|F (Tm)). �̄(n) is a martingale so the L2 max-

imal inequality and the orthogonality of martingale increments imply

E

(
sup
m≤n

�̄(m)

)2

≤ C

n∑
m=1

E
(
γm − P

(
γm = 1|F (Tm)

))2 ≤ Cn.

Chebyshev’s inequality implies

P

(
sup
m≤n

�̄(m) > n2/3
)

≤ n−1/3.

The last result when combined with (11) implies that with high probability

�(n) = n/4 + O(nN−1/2 logN) + O(n2/3).

We want to conclude from this that

LN
n = �(MN

n ) ∼ MN
n /4.

To deal with the random index, we take n = N1/5 and let R = inf{r :MN(r) ≥
N1/5} to get

P

(
sup

s≤Nt∧R

|LN(s) − MN(s)/4| > 2N2/15
)

≤ N−1/15.

Since P(LN(Nt) ≥ N1/5/5) → 0 by Lemma 3, we must have P(R ≤ Nt) → 0
and the proof of Proposition 1 is complete.

5. Proof of Proposition 2. In this section we will show that for large N ,

P {BN2/9 > 2N17/18} ≤ CN−1/3,

where Bj = ∑j
m=0 Sm − Tm. To do this we will compute the mean and vari-

ance of Bj and then use Chebyshev’s inequality. For this we first need to com-
pute the first two moments of ηm = Sm − Tm. If we assume XN(Tm) = N5/6,
|XN(Sm)| = 2N5/6, and replace our random walk by a Brownian motion Bt with
variance σ 2Nt , this would be easy. B2

t − σ 2Nt and B4
t − 6σ 2NB2

t t + 3σ 4N2t2

are martingales so if B0 = N5/6 and η = inf{Bt /∈ [−2N5/6,2N5/6]}, then using
|Bη| = 2N5/6 we have

4N10/6 − σ 2NEη = N10/6,

16N20/6 − 6σ 2N · 4N10/6Eη + 3σ 4N2Eη2 = N20/6.

To prove this one must use the optional stopping theorem at η ∧ m and then let
m → ∞. The details of using the monotone and dominated convergence theorem
to justify the equalities are left to the reader. Solving gives

Eη = 3N2/3/σ 2,

Eη2 = 19N4/3/σ 4.
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These facts are approximately true for the random walk. We begin with the
martingales. To compare with the previous calculation, recall that for the normal
distribution Eξ4 = 3(Eξ2)2.

LEMMA 4. Suppose Xk = X0 + ξ1 + · · · + ξk where Eξi = 0, Eξ2
i = α,

Eξ3
i = 0 and Eξ4

i = β . Then X2
k − kα and

X4
k − 6αX2

kk + 3α2k2 + (3α2 − β)k

are martingales.

PROOF. The martingale X2
k − kα is well known. See, for example, Exer-

cise 2.6 on page 235 of Durrett [8]. To check the second, expand (Xk + ξk+1)
4

and use Eξk = 0 and Eξ3
k = 0 to conclude

E(X4
k+1|Fk) = X4

k + 6X2
kα + β

and hence

E
(
X4

k+1 − 6X2
k(k + 1)α − β(k + 1)|Fk

) = X4
k − 6X2

kkα − βk.

To get the martingale we want, the X2
k on the left should be X2

k+1. To correct this
we note

E
(−6(X2

k+1 − X2
k)(k + 1)α|Fk

) + 3α2(k + 1)2 + 3α2(k + 1)

= −6α2(k + 1) + 3α2(k + 1)2 + 3α2(k + 1)

= 3α2[(k + 1)2 − (k + 1)] = 3α2k2 + 3α2k.

Adding the last two equations gives the desired result. �

In our case α = σ 2N and β ≤ CN2. Letting Gm−1 = F (Tm) and using
the optional stopping theorem on our first martingale with |XN(Tm)| ≥ N5/6 −
BN1/2 logN and |XN(Sm)| ≤ 2N5/6 + BN1/2 logN , we have

σ 2NE(ηm|Gm−1) ≤ (2N5/6 + BN1/2 logN)2 − (N5/6 − BN1/2 logN)2

= 3N10/6 + O(N8/6 logN),

and it follows that if C1 > (3/σ 2), then for large N

E(ηm|Gm−1) ≤ C1N
2/3.(12)

From the second martingale we get

E
(
XN(Sm)4 − 6αXN(Sm)2ηm + 3α2η2

m + (3α2 − β)ηm|Gm−1
) = E(XN(Tm)4).

Rearranging and using XN(Sm)4 ≥ XN(Tm)4 gives

3α2E(η2
m|Gm−1) ≤ E

(
6αXN(Sm)2ηm − (3α2 − β)ηm|Gm−1

)
.
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Using |XN(Tm)| ≤ N5/6 + BN1/2 logN and |XN(Sm)| ≤ 2N5/6 + BN1/2 logN

with (12), α = σ 2N and β ≤ CN2, gives

3σ 4N2E(η2
m|Gm−1) ≤ [6(σ 2N)(2N5/6 + BN1/2 logN)2 + CN2] · C1N

2/3.

The first term in the square brackets is of order N · N10/6 � N2. It follows that if
C2 > 8C1/σ

2, then for large N

E(η2
m|Gm−1) ≤ C2N

4/3.(13)

To estimate the size of Bj , recall Gm−1 = F (Tm) for m ≥ 0 and write

Bj =
j∑

m=0

E(ηm|Gm−1) +
j∑

m=0

ηm − E(ηm|Gm−1).

By (12), if j ≤ N2/9, then the first sum∑
1

≤ (j + 1)C1N
2/3 ≤ 2C1N

8/9.

To bound the second sum, we use the orthogonality of martingale increments and
(13) to conclude

E

(∑
2

)2

=
j∑

m=0

E
(
ηm − E(ηm|Gm−1)

)2 ≤ (j + 1)C2N
4/3.

When j ≤ N2/9, the right-hand side is ≤ 2C2N
14/9:

P

(∑
2

≥ N17/18

)
≤ 2C2N

14/9N−17/9 = C2N
−1/3.

Combining the bounds on
∑

1 and
∑

2 gives the conclusion of Proposition 2.

6. Proof of Proposition 3. Recall that the recurrent potential kernel is defined
by

a(x, y) =
∞∑

n=0

(
pn(x, y) − pn(y, y)

)
,

where pn is the n-step transition probability of the random walk. To see the reason
for this definition, note that

∑
x

p(z, x)a(x, y) =
∞∑

n=0

(
pn+1(z, y) − pn(y, y)

) = a(z, y), z �= y,

(14) ∑
x

p(y, x)a(x, y) =
∞∑

n=0

(
pn+1(y, y) − pn(y, y)

) = −1,

so a is the analogue of the Green’s function for recurrent random walks. The key
to the proof of Proposition 3 is the following result whose proof is given in the
next section. Let δ(x, y) = 1 if x = y and 0 otherwise.
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PROPOSITION 4. Assume a sequence of random walks satisfies assumptions
1–5 of Section 1. There is a constant C independent of N such that, for all x, their
recurrent potential kernels satisfy∣∣∣∣aN(x, y) −

(
−1 + δ(x, y) − |x − y|

σ 2N

)∣∣∣∣ ≤ C√
N

.

This estimate is only useful for |x| � √
N . Our interest in this result is that it

gives the following estimate on the Green’s function GN
I (x, y), which is defined

to be the expected number of visits to y starting at x before leaving the set I . If we
let τI be the exit time from I , then in symbols,

GN
I (x, y) =

∞∑
k=0

Px{XN
k = y, k < τI }.

We will be interested in the case I = [−M,M] with M = 2N5/6.

PROPOSITION 5. There is a C independent of N such that for all x and y∣∣∣∣GN
I (x, y) −

(
δ(x, y) + M

σ 2N

[
−|x − y|

M
+

(
1 − xy

M2

)])∣∣∣∣ ≤ CN−1/3 logN.

REMARK. To see that the formula in square brackets is reasonable, note that
it vanishes when x = M or x = −M and for fixed y is linear for x ∈ [−M,y] and
x ∈ [y,M].

PROOF OF PROPOSITION 5. The first step is to note that (14) implies
aN(Xn, y) + ∑n−1

m=0 δ(Xm,y) is a martingale, so

GN
I (x, y) = Ex[aN(x, y) − aN(XτI

, y)].(15)

From (15) we have, for each fixed N , and x, y ∈ [−M,M]:
GN

I (x, y) = aN(x, y) − P x{XN
τI

> M}Ex[a(XN
τI

, y)|XN
τI

> M]
(16)

− P x{XN
τI

< −M}Ex[a(XN
τI

, y)|XN
τI

< −M].
Using now that 0 ≤ XN

τI
− M ≤ BN1/2 logN when XN

τI
> M , the corresponding

inequality for exiting at −M , and the fact that the random walk is a martingale, we
have

x ≤ Px{XN
τI

> M}(M + B
√

N logN
) + (1 − Px{XN

τI
> M})(−M),

x ≥ Px{XN
τI

> M}M + (1 − Px{XN
τI

> M})(−M − B
√

N logN
)
.

Using these equations we have

M + x

2M + B
√

N logN
≤ Px{XN

τI
> M} ≤ M + x + B

√
N logN

2M + B
√

N logN
,
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and it follows that

Px{XN
τI

> M} = M + x

2M
+ O

(√
N logN/M

)
.

Subtracting from 1,

Px{XN
τI

< −M} = M − x

2M
+ O

(√
N logN/M

)
.

Using the last two formulas and Proposition 4 in (16),

GN
I (x, y) = −1 + δ(x, y) − |x − y|

σ 2N
+ O

(
1/

√
N

)

+
(

M + x

2M
+ O

(√
N logN/M

))(
1 + M − y

σ 2N
+ O

(
logN/

√
N

))

+
(

M − x

2M
+ O

(√
N logN/M

))(
1 + M + y

σ 2N
+ O

(
logN/

√
N

))
.

The worst error term is O(
√

N logN/M) = O(N−1/3 logN). Ignoring the error
terms, the sum of the second and third lines is

1 + M

σ 2N
− yx

Mσ 2N
.

Adding this to the first line completes the proof. �

PROOF OF PROPOSITION 3. When M = 2N5/6, Proposition 5 gives

GN
I (0,0) = 1 + M

σ 2N
+ O(N−1/3 logN) = 1 + O(N−1/6),

and if x = N5/6 + O(N1/2 logN),

GN
I (x,0) = −N5/6 + O(N1/2 logN)

σ 2N
+ 2N5/6

σ 2N
+ O(N−1/3 logN)

= 1

σ 2N1/6 + O(N−1/3 logN).

Let HN
I (x,0) denote the probability that the random walk XN

k started at x hits 0
before leaving I . Breaking things down according to the hitting time of 0:

GN
I (x,0) = HN

I (x,0)GN
I (0,0)

which gives

HN
I (x,0) = 1

σ 2N1/6 + O(N−1/3 logN),

which is the desired result. �
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LEMMA 5. If 0 < |x| < 2N5/6,

HN
I (x,0) ≤ 2

σ 2N1/6 + CN−1/3 logN.

PROOF. Taking y = 0 in Proposition 5 we see that

GN
I (x,0) ≤ M

σ 2N
+ CN−1/3 logN.

The result now follows from HN
I (x,0) = GN

I (x,0)/GN
I (0,0). �

7. Proof of Proposition 4. The proof relies on a local central limit theorem,
with bounds that take into account the dependence on N . First, we need a few
definitions. Let

ρ�(x) = 1√
2πσ 2�

e−x2/2σ 2�

be the normal density with variance �σ 2. Let pN
k be the distribution of the random

walk at time k when it starts at 0.

PROPOSITION 6 (Local central limit theorem). Given a sequence of random
walks with jump probabilities pN satisfying assumptions 1–5, there is a constant
C, independent of N , such that for all k ≥ 1 and all x we have

|pN
k (x) − ρkN(x)| ≤ C√

Nk3/2
.

The proof of this uses standard techniques but is rather lengthy so we begin by
giving the

PROOF OF PROPOSITION 4. By translation invariance it is enough to compute
aN(x) = aN(0, x). The local central limit theorem shows that, for all N and k ≥ 1,

pN
k (0) − pN

k (x) = ρkN(0) − ρkN(x) + O

(
1√

Nk3/2

)
.

Therefore, after summing over k ≥ 0,

aN(x) =
∞∑

k=0

pk(x) − pk(0)

= −1 + δ(x,0) −
∞∑

k=1

[ρkN(0) − ρkN(x)] + O
(
1/

√
N

)
.
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We will now show that
∑∞

k=1[ρkN(0) − ρkN(x)] = |x|/σ 2N + O(1/
√

N). Let
z = x/

√
σ 2N . Recalling the definition of ρkN ,

∞∑
k=1

[ρkN(0) − ρkN(x)] = 1√
2πσ 2N

∞∑
k=1

1√
k
[1 − e−z2/2k].

Now the function fz(t) = (1 − e−z2/2t )/
√

2t , being a decreasing function divided
by an increasing function, is decreasing in t and therefore

0 ≤ fz(k) −
∫ k+1

k
fz(t) dt ≤ fz(k) − fz(k + 1)

and thus
∑∞

k=1 fz(k) − ∫ ∞
1 fz(t) dt ≤ fz(1) ≤ 1. For the missing first piece of the

integral we note∫ 1

0
fz(t) dt =

∫ 1

0

1√
t
(1 − e−z2/2t ) dt ≤

∫ 1

0

1√
t
dt = 2.

Hence,
∞∑

k=1

[ρkN(0) − ρkN(x)]

= 1√
σ 2N

(∫ ∞
0

1√
2πt

[1 − e−z2/2t ]dt + O(1)

)
.

We have put the
√

2π inside so that the integral is −1 times the recurrent potential
kernel for one-dimensional Brownian motion and hence is equal to |z|. One can
find this fact on page 103 in Durrett [7], or derive it by changing variables t = z2/u

and doing some calculus. In either case the result is

= 1√
N

( |z|
σ

+ O(1)

)
= |x|

σ 2N
+ O

(
1√
N

)
.

Putting everything together we get

aN(x) = −1 + δ(x,0) − |x|
σ 2N

+ O

(
1√
N

)
,

which is the desired result. �

Before entering into the proof of Proposition 6, we begin with an estimate on
φN , the characteristic function of the displacement ξN

1 . This is the only proof that
will require the use of assumption 3.

LEMMA 6. Let L = N1/2. There are constants a, b > 0 so that, for all N and
|θ | ≤ π , we have

|φN(θ)| ≤
{

(1 − bNθ2), |θ | ≤ 4/(2L + 1),
(1 − a), |θ | ∈ (

4/(2L + 1),π
]
.
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Consequently, given any ε ∈ (0, π], there is a c > 0, independent of N , such that
whenever |θ | > ε/

√
N , |φN(θ)| ≤ e−c.

PROOF. We use assumptions 3 to write pN(x) = bN(x) + rN(x) where
bN(x) = h/L for |x| ≤ L, 0 otherwise, and rN(x) = pN(x) − bN(x) ≥ 0. Define
BN = ∑

x bN(x) = (2L + 1)h/L → 2h as L → ∞, and note that
∑

x rN(x) =
1 − BN . To bound φN ,

|φN(θ)| ≤
∞∑

x=−∞
r(x) +

∣∣∣∣∣
L∑

x=−L

b(x)eixθ

∣∣∣∣∣
= (1 − BN) + h

L

∣∣∣∣e
i(L+1)θ − e−iLθ

eiθ − 1

∣∣∣∣(17)

= (1 − BN) + h

L

| sin((2L + 1)θ/2)|
| sin(θ/2)| ,

where in the last step we have multiplied numerator and denominator by e−iθ/2.
Since the last expression is symmetric in θ , we now restrict ourselves to θ ∈ [0, π].

For the next step we need the following inequalities.

LEMMA 7. (i) sin(θ/2) > θ/4 for all θ ≤ π .
(ii) If x > 2, (sin 2)/2 > (sinx)/x.

PROOF. First we observe that cosx is decreasing on [0, π/2) so if x ≤ π/2,
then

sinx

x
= 1

x

∫ x

0
cosy dy ≥ 2

π

∫ π/2

0
cosy dy ≥ 1

2
,

which proves (i). For the second we note that(
sinx

x

)′
= x cosx − sinx

x2 .

On [2, π) the latter is negative since sinx > 0 while cosx < 0 there. Thus
sin 2/2 > sinx/x for all x on this interval. For x ∈ [π,2π) the same inequality
is obvious since sinx < 0. Finally, for x > 2π , sinx/x < 1/x < 1/(2π) < 1/4 <

sin 2/2, where we have used the fact that sin 2 ≈ 0.909 > 1/2. �

Taking x = (2L + 1)θ/2, the inequalities in Lemma 7 imply that for |θ | >

4/(2L + 1)

h

L

sin((2L + 1)θ/2)

sin(θ/2)
<

h

L

(sin 2)(2L + 1)θ/4

θ/4
= BN(sin 2)

so we have
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|φN(θ)| < 1 − (1 − sin 2) · BN,

which gives the conclusion of Lemma 6 on this range of θ .
For θ ≤ 4/(2L + 1), we rewrite the second term on the right-hand side of (17)

as EeiθU where U is uniformly distributed on {−L,−L + 1, . . . ,L} and use (3.7)
on page 101 of Durrett [8] to conclude∣∣∣∣EeiθU −

(
1 − θ2EU2

2

)∣∣∣∣ ≤ θ4

4! EU4.

To bound the moments we use

EU2 = 2

2L + 1

L∑
k=1

k2 ≥ 2

2L + 1

∫ L

0
x2 dx = 2L3

3(2L + 1)
,

EU4 ≤
∫ L+1/2

−L−1/2

x4

2L + 1
dx = 2(L + 1/2)5

5(2L + 1)
.

For θ ≤ 4/(2L + 1)

θ2

2
EU2 ≥ θ2 N

6
· 2L

2L + 1
,

θ4

4! EU4 ≤ θ2

4! · 42

(2L + 1)2 · (L + 1/2)4

5

≤ θ2 N

30
(1 + 1/2L)2,

so we have

|EeiθU | ≤ 1 − θ2EU2

2
+ θ4

4! EU4

≤ 1 − θ2 N

6
· 2L

2L + 1
+ θ2 N

30
(1 + 1/2L)2.

Even when L = 1, (1/6) · 2/3 = 1/9 is larger than (1/30) · (3/2)2 = 3/40 and we
have proved Lemma 6. �

PROOF OF PROPOSITION 6. By assumptions 2 and 4, we have that

φN(θ) = 1 − σ 2N

2
θ2 + N2O(|θ |4).(18)

The inversion formula gives

pN
k (x) = 1

2π

∫ π

−π
[φN(θ)]ke−ixθ dθ.

Introducing new variables s = √
Nk · θ and z = x/

√
Nk, the above is
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= 1

2π
√

Nk

∫ √
Nkπ

−√
Nkπ

[
φN

(
s√
Nk

)]k

e−izs ds.

Now, by (18), we can find an ε > 0, independent of N , such that if s ≤ ε
√

Nk, the
following approximation is valid:

[
φN

(
s√
Nk

)]k

= exp
{
k logφN

(
s√
Nk

)}

= exp
{
k

[
−σ 2s2

2k
+ O

(∣∣∣∣ s√
k

∣∣∣∣
4)]}

= exp
{
−σ 2s2

2

}
exp(g(s, k)),

where |g(s, k)| ≤ c|s|4/k, and c is independent of N . By choosing ε smaller if
necessary, we can guarantee that |g(s, k)| ≤ σ 2s2/4.

As observed in Lemma 6, there is a c independent of N such that |φN(θ)| ≤ e−c

for |θ | > ε/
√

N , that is, for |s| > ε
√

k. Using these observations we can rewrite

pN
k (x) = 1

2π
√

Nk

∫
|s|≤ε

√
k
e−izse−σ 2s2/2eg(s,k) ds

+ 1

2π
√

Nk

∫
ε
√

k<|s|<√
Nkπ

[
φN

(
s√
Nk

)]k

e−izs ds.

The second term is ≤ e−ck since the integrand is ≤ e−ck by Lemma 6 and the
interval has length ≤ 2π

√
Nk.

Using |eg(s,k) − 1| < cs4/k if |s| ≤ k1/4 and |eg(s,k) − 1| < exp(σ 2s2/4) if
k1/4 < |s| ≤ ε

√
k, we have

1

2π
√

Nk

∫
|s|≤ε

√
k
e−σ 2s2/2∣∣eg(s,k) − 1

∣∣ds

≤ 1

2π
√

Nk

(∫ k1/4

−k1/4
e−σ 2s2/2cs4/k ds +

∫
|s|≥k1/4

e−σ 2s2/4 ds

)
.

Replacing k1/4 by ∞ in the limits in the first integral, and using s2 ≥ |s|k1/4 in the
second, the above is

≤ 1

2π
√

Nk

(
c

k
+ O(e−ck1/2

)

)
.
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On the other hand, setting z = x/
√

Nk and later s = θ
√

Nk we have

1

2π
√

Nk

∫
|s|≤ε

√
k
e−izse−σ 2s2/2 ds

= 1

2π
√

Nk

∫
|s|≤ε

√
k
e−ixs/

√
Nke−σ 2s2/2 ds

= 1

2π

∫ ∞
−∞

e−ixθ e−σ 2Nkθ2/2 ds

− 1

2π
√

Nk

∫
|s|>ε

√
k
e−izse−σ 2s2/2 ds

= ρNk(x) + O(e−ck),

which proves the result. �

APPENDIX

Maruyama [11] considered a discrete-time Wright–Fisher model with a ring of
2n colonies with N diploid individuals, nearest-neighbor migration with proba-
bility m and mutation rate u per generation. Here, to facilitate comparison with
Maruyama [11] we use his notation. In Section 6 he considered sampling two in-
dividuals, one from the colony at 0 and the other at i, and let fi be the probability
the two were identical by descent. This occurs if there is no mutation before the
coalescence time t0 so

fi = Ei(1 − 2u)t0 .

By writing recursive equations for the fi and then finding all of the eigenvalues
and eigenvectors of an associated matrix, he developed exact but somewhat cum-
bersome formulas for the fi . Writing I0 instead of his T , (6.7) says

f0 = (1 − u)2

(1 − u)2 + 2N/I0
,

where u is the mutation probability per generation,

I0 = π−1
∫ π

0

[1 − m(1 − cos θ)]2

1 − (1 − u)2[1 − m(1 − cos θ)]2 dθ

and m is the migration probability per generation. We are interested in the limiting
behavior as u → 0, so I0 → ∞. Since the contribution to the integral over [ε,π ]
stays bounded, it is enough to investigate the behavior near 0. Since 1 − cos θ ∼
θ2/2 as θ → 0, the denominator should be well approximated by

1 − (1 − 2u)(1 − mθ2) = 2u + mθ2.
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Note that here u and θ are small but m need not be. Changing variables θ =
(2u/m)1/2x, we have

πI0 ∼
∫ ∞

0

1

2u + 2ux2

(
2u

m

)1/2

dx

= 1

(2um)1/2

∫ ∞
0

1

1 + x2 dx

= π/2

(2um)1/2

where to evaluate the integral we have used the definition of the Cauchy distribu-
tion (see, e.g., page 43 of Durrett [8]). Combining our calculations gives

f0 ≈ 1

1 + 4N(2um)1/2 .

Changing notation m = ν, and setting u = λ/2(L2/ν), we have

E0
(
exp

(−λt0/(L
2/ν)

)) = f0 ≈ (
1 + 4

√
λNν/L

)−1
,

from which (1) follows.
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