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This work considers a server that processes J classes using the general-
ized processor sharing discipline with base weight vector α = (α1, . . . , αJ )

and redistribution weight vector β = (β1, . . . , βJ ). The invariant manifold
M of the so-called fluid limit associated with this model is shown to have
the form M = {x ∈ RJ+ :xj = 0 for j ∈ S}, where S is the set of strictly sub-
critical classes, which is identified explicitly in terms of the vectors α and β

and the long-run average work arrival rates γj of each class j . In addition,
under general assumptions, it is shown that when the heavy traffic condi-
tion

∑J
j=1 γj = ∑J

j=1 αj holds, the functional central limit of the scaled
unfinished work process is a reflected diffusion process that lies in M. The
reflected diffusion limit is characterized by the so-called extended Skorokhod
map and may fail to be a semimartingale. This generalizes earlier results
obtained for the simpler, balanced case where γj = αj for j = 1, . . . , J , in

which case M = RJ+ and there is no state-space collapse. Standard techniques
for obtaining diffusion approximations cannot be applied in the unbalanced
case due to the particular structure of the GPS model. Along the way, this
work also establishes a comparison principle for solutions to the extended
Skorokhod map associated with this model, which may be of independent
interest.

1. Introduction.

1.1. Background and motivation. Generalized Processor Sharing (GPS) is a
scheduling discipline that is used to share a single processing or transmission re-
source among traffic from several sources. Given a single server that can process
one unit of work per unit of time, and that is being shared by J (1 < J < ∞)

sources or, equivalently, classes, the information needed to implement the GPS
policy is contained in the weight vector α = (α1, . . . , αJ ). When all classes have a
backlog of work, class j is allotted a fraction αj of the total capacity of the server.
When some classes achieve no backlog by using less than their allotted capacity,
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the remaining service capacity of the server is split among the other classes in pro-
portion to their αi’s. A slight generalization of this model was considered in [17]
and will be considered in this paper as well. A more precise description of that
model is given here in Section 2. More background on GPS is available in [17]
and the references cited there.

In [17] fluid and heavy traffic diffusion limits were obtained for the GPS
model. The diffusion limits were obtained for the special “balanced case” in heavy
traffic—that is, under the assumption that for every i ∈ {1, . . . , J }, αi is equal to
the long-run average arrival rate γi of work brought in by class i customers. In this
paper we consider diffusion limits under heavy traffic in the possibly “unbalanced
case”—in which we only assume the overall condition

∑J
i=1 αi = 1 = ∑J

i=1 γi ,
without imposing any conditions on the relation between the arrival rates and
weights for each class. The main appeal of the unbalanced case is the allowance
of some degree of priority: classes with αi > γi can be seen as receiving relatively
higher priority than classes with αi < γi . An extreme example of this (allowed in
this paper but excluded from the heavy traffic limit in [17]) is αi = 0, where class
i is served only when some other class has no backlog. The advantage of GPS
with 0 < αi < γi is that, while class i receives relatively lower priority, it cannot
be completely starved, in the sense that it always receives service with rate at least
αi . For example, as considered in [1], a “next-generation” Internet handling both
real-time traffic that requires a high quality of service and best-effort traffic that
has less stringent delay requirements can be modeled as a GPS system where the
weight for the real-time traffic exceeds its long-run average work arrival rate, while
the opposite holds for best-effort traffic.

1.2. Relation to prior work. In addition to the practical motivation given
above, the unbalanced case is also interesting because, as elaborated below, new
methods need to be developed for its analysis. There are currently two main ap-
proaches to establishing diffusion approximations for multiclass queueing net-
works: (i) the continuous mapping approach, which is applicable when the so-
called Skorokhod map (SM), which maps the netput process to the correspond-
ing unfinished work process, is well defined and continuous on all càdlàg paths
(see, e.g., [4, 5, 20] and references therein), and (ii) the general procedure outlined
in the papers [2] and [21], which is applicable when the directions of constraint
(or, equivalently, directions of reflection) satisfy the so-called completely-S con-
dition. Both these methods lead to diffusion approximations that are semimartin-
gales. The present setting does not fall under either category. Indeed, neither is
the GPS SM well defined for all continuous trajectories (as can be inferred from
Lemma 2.4(i), Theorem 3.6 and Theorem 3.8 of [16]), nor do the GPS directions
satisfy the completely-S condition [as can be deduced from the relation (3.1) of
this paper]. In addition, the GPS diffusion limit is not in general a semimartingale.

In the balanced GPS case, this problem was circumvented in [17] by the use
of the so-called extended Skorokhod map (ESM). The ESM is a generalization
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of the SM that allows for constraining terms that are of unbounded variation and
therefore enables the pathwise construction of reflected diffusions that are not nec-
essarily semimartingales [16]. The unfinished work process in the GPS model can
be expressed as the image of the corresponding netput process under the associ-
ated GPS ESM (see Theorem 4.3 and Lemma 4.4 of [17]). Moreover, as shown in
Theorem 3.6 of [16], the GPS ESM, in contrast to the GPS SM, is well defined
and Lipschitz continuous on all càdlàg paths. In the balanced case, the fluid limit
of the netput process is identically zero and, thus, a continuous mapping approach
using the ESM, instead of the SM, can be applied to obtain diffusion approxima-
tions for the balanced GPS model (see the proof of Theorem 4.14 in [17] and also
Section 5.1).

The situation in the unbalanced case is considerably more complicated because
the fluid limit of the netput process is nonzero. As a result, characterization of
the diffusion approximation in this case requires a better understanding of the cu-
mulative idleness processes associated with each class. A similar generalization
was considered in the context of open single-class queueing networks in [4]. The
analysis in [4] hinged on certain properties of the SP associated with the queue-
ing network studied in [4], including an explicit decomposition of the constraining
term of the SP and continuity of the mapping that takes the netput process to the
cumulative idleness process. As discussed in Sections 4.2 and 5.1, these properties
are not satisfied in the GPS model and have consequences for both the fluid and
diffusion analysis. Thus, new techniques need to be developed for the analysis of
the unbalanced case.

1.3. Main results and outline of paper. The first step toward establishing a dif-
fusion limit is typically the characterization of the long-time behavior of the fluid
limit (see, e.g., [2] or [4]). In Section 4.2 we explicitly identify the invariant mani-
fold for the fluid limit of the GPS model. The “standard definition” of an invariant
manifold given, for example, in [2] (see also Definition 5.2 in [13]) is restricted
to subcritical fluid limits. Our definition is slightly more general in that it also ap-
plies to supercritical fluid limits, in which case M provides information on how
the fluid limit trajectories escape to infinity (see Remark 4.7 for further discussion
of this issue). In the subcritical case, our invariant manifold can equivalently be
described as the set of invariant points for the fluid limit, which coincides with the
standard definition. Specifically, we show that M = {x ∈ RJ+ :xi = 0 for i ∈ S},
where S ⊆ {1, . . . , J } is the set of classes for which the long-run average work
arrival rate γi is strictly less than the available long-run average service rate (af-
ter reallocation of service by the GPS discipline), which we refer to as the set
of strictly subcritical classes. Although it is intuitively clear that if γi < αi , then
i ∈ S, there may also exist i ∈ S for which γi > αi—we provide a simple, ex-
plicit characterization of the set S. In the balanced case, this identification is trivial
(there are no strictly subcritical classes), while in the unbalanced case, as men-
tioned above, the identification of S is slightly more involved in the GPS model
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due to the lack of an a priori representation of the constraining process in the SP
decomposition, in terms of the individual cumulative idleness processes. However,
we show that, when restricted to the fluid limit trajectories, it is possible to identify
a certain unique decomposition of the constraining term into component processes
[see Lemma 3.1 and Lemma 4.4(i)]. As shown in Theorem 4.6, this turns out to
be the correct decomposition for the identification of the strictly subcritical classes
and the invariant manifold M (see also Remark 4.5).

If the convergence of the fluid limit to M is sufficiently fast, one expects that M
would also precisely characterize the state-space collapse that occurs in the heavy
traffic limit. Indeed, the next main step involves proving that the strictly subcriti-
cal classes vanish in the diffusion limit, and then characterizing the behavior of the
remaining, critical, classes. The lack of a simple representation for the individual
cumulative idleness processes (in contrast to the networks considered in [4]) once
again complicates this analysis. Nevertheless, we overcome this difficulty using
two key ideas—namely, a comparison principle for the GPS ESM (Theorem 3.2),
which may be of independent interest, and the introduction of the so-called re-
duced SP (see Theorem 5.6). This culminates in our heavy traffic limit theorem
(Theorem 5.7), which is the main result of this paper. The philosophy behind our
diffusion approximation is explained in greater detail in Section 5.1. We believe
that our general approach is likely to be more broadly applicable to other mod-
els that do not satisfy the so-called completely-S condition such as, for example,
networks of stations using the GPS discipline [9] or other disciplines that involve
a “complete sharing” of service between classes (such as, e.g., commonly used
work-conserving round-robin disciplines).

This paper is organized as follows. In the remainder of this section we describe
our notational conventions. Section 2 contains a detailed description of the GPS
discipline, a characterization of the unfinished work process, and definitions of
the SP and ESP, culminating in a representation of the unfinished work process
in terms of an SP. The fluid limit of the unbalanced GPS model is investigated
and a simple characterization of the fluid limit is obtained in Section 4. Finally,
Section 5 contains the statement and proof of the heavy traffic limit theorem for
the unbalanced GPS model. The proofs of the results in Sections 4 and 5 rely on
some basic properties of the GPS SP that are presented in Section 3.

1.4. Notation. We now collect together some of the notational conventions
used in this paper. The set of nonnegative reals, nonnegative integers and positive
integers are denoted by R+, Z+ and N, respectively. Given a, b ∈ R, a ∧ b de-
notes the minimum of a and b and a ∨ b denotes the maximum of a and b. Vector
inequalities are to be interpreted componentwise. The standard orthonormal ba-
sis in RJ is represented by {ei, i = 1, . . . , J }, and the J -dimensional nonnegative
orthant RJ+ is equal to {x ∈ RJ :x ≥ 0}. Let I denote the set {1, . . . , J }. Given
E ⊂ RJ , D([0,∞) :E) represents the space of E-valued right continuous func-
tions with left limits and Dc([0,∞);RJ ) represents the subspace of piecewise
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constant functions with a finite number of jumps. Unless indicated otherwise, we
will assume that D([0,∞) :E) and Dc([0,∞);RJ ) are equipped with the topol-
ogy of uniform convergence on compact sets (frequently abbreviated to u.o.c.). For
f ∈ D([0,∞) :E), as usual, f (t−) = lims↑t f (s). For t ∈ [0,∞), |f |(t) denotes
the total variation of f on [0, t] with respect to the Euclidean norm | · | on RJ .
The composition of two functions f and g is as usual denoted by f ◦ g. The iden-
tity function ι : [0,∞) → [0,∞) is such that ι(t) = t for all t ∈ [0,∞). Given a
set A ⊂ RJ , 1{A} represents the indicator function of the set A, which is defined
on RJ and is equal to 1 on A and is 0 elsewhere. In addition, co[A] denotes the
closure of the convex hull of A, cone[A] is the cone generated by A and A◦ is the
interior of A. Given a matrix D, we use D′ to denote its transpose. If Xn,n ∈ N,
and X are processes with sample paths in D([0,∞) :E), we write Xn ⇒ X to
denote weak convergence of the measures induced by Xn on D([0,∞) :E) to the
measure induced by X.

2. Model description. In this section we provide a detailed description of
the GPS discipline, introduce our assumptions on the workload arrival process,
characterize the unfinished work process, and define the Skorokhod and extended
Skorokhod problems.

2.1. The GPS discipline. We consider a single server queueing system with
J customer classes, where 1 < J < ∞. Each customer arriving into the system
brings in a certain amount of work that is measured in terms of the amount of
time required to process it using the server’s total processing capacity, which is
assumed without loss of generality to be 1. The server processes the incoming
work using the GPS scheduling discipline, which is described below. The work of
class i customers is stored in the class i buffer, which is assumed to have infinite
capacity. For i ∈ I and t ∈ [0,∞), Ui(t) is defined to be the amount of work of
class i that is in the system at time t .

We now describe the GPS discipline. For E ⊆ I, we define αE
i to be the fraction

of the capacity of the server that is given to class i when the set of empty buffers is
equal to E. We assume that the processor is work conserving, so that

∑
i /∈E αE

i = 1
when E �= I. In this paper we focus on the case when the fractions αE

i are deter-
mined in the following manner by two weight vectors α ∈ [0,1]J and β ∈ (0,1]J
that satisfy

∑
i∈I αi = ∑

i∈I βi = 1. Given the weight vectors, for E = ∅ (i.e.,
when no queue is empty), we define α∅

i

.= αi , and for E ⊆ I, we let

αE
i

.=
⎧⎪⎨⎪⎩αi + βi∑

j /∈E βj

(∑
j∈E

αj

)
, for i /∈ E,

0, otherwise.

For all E ⊂ I, αE
i ≥ αi for i ∈ I \E and

∑
i /∈E αE

i = ∑
i∈I αi = 1. Thus, αi repre-

sents the minimum guaranteed rate assigned to class i. Any excess capacity is split
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among the remaining classes in proportion to the corresponding components of the
vector β . The vectors α and β will be referred to as the basic and redistribution
weight vectors, respectively. The condition βi > 0 for each i ∈ I is required to en-
sure that the processor is work conserving. On the other hand, we allow αi = 0 for
some i ∈ I. This represents the case when the ith class is of relatively low priority
and only receives service when one of the high priority classes (with αj > 0) does
not require all of its assigned capacity. More discussion on the relation between
GPS and priority is contained in [17] (page 104).

2.2. Characterization of the unfinished work process. In this section we first
introduce the primitive cumulative work arrival process associated with the GPS
model and then present a characterization of the unfinished work process.

We assume that all processes are measurable functions defined on the probabil-
ity space (�,F ,P ). Let H be the D([0,∞) : RJ+)-valued process such that Hi(t)

represents the cumulative work brought into the system by class i in the interval
[0, t]. We suppose that the cumulative work arrival process H and initial conditions
satisfy the following properties:

ASSUMPTION 2.1.

1. U(0) ∈ RJ+.
2. H ∈ D([0,∞) : RJ+) is nondecreasing and piecewise constant with H(0) = 0.
3. H has a finite number of jump points in every finite interval, almost surely.

Under this assumption, it was shown in Lemma 2.2 of [17] that the set of
equations (2.1) below uniquely characterizes the set of processes (U, IE,E ⊆ I),
where, for E ⊆ I, IE(t) denotes the amount of time in [0, t] that the set of empty
buffers is equal to E. For i ∈ I,

Ui(t) = Ui(0) + Hi(t) − ∑
E⊂I : i /∈E

αE
i IE(t) and

IE(t) =
∫ t

0
1{E(s)=E} ds for E ⊆ I, where(2.1)

E(s)
.= {i ∈ I :Ui(s) = 0}.

The busy time process Ti defined by

Ti
.= ∑

E⊂I:i /∈E

αE
i IE,(2.2)

represents the cumulative amount of service given to class i. Note that in the defi-
nition and characterization of the unfinished work process, no assumption is made
as to how the service allocated to a class is divided among the customers present
in that class.
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The ultimate assumptions that we require on the primitive processes are quite
weak: H must satisfy a functional strong law of large numbers (see Assump-
tion 4.1) and a functional central limit theorem (see Assumption 5.1). The sim-
plest concrete example where this happens is when the J component processes of
H form compound renewal processes (see, e.g., [19], Lemma 2).

2.3. Definition of the Skorokhod and extended Skorokhod problems. The GPS
model for α = β with stochastic fluid inputs was analyzed in [7]. It was shown
there that the mapping taking the so-called netput process to the unfinished work
can be represented in terms of a Skorokhod problem. Below, in Lemma 2.5, we
recall the similar representation that was derived in [17] for the unfinished work
process U associated with the slight generalization of the GPS model described in
Section 2.1. First, we need to recall the definitions of the Skorokhod and extended
Skorokhod problems associated with the GPS model.

Roughly speaking, given the closure G of a domain in RJ , a set of allowable
directions of constraint d(x) associated with each point x ∈ ∂G and a path ψ , the
solution to the associated Skorokhod problem defines a constrained version ϕ of
ψ that is restricted to lie in G by a constraint mechanism ϕ −ψ that is of bounded
variation and acts in the direction of one of the vectors in d(ϕ(s)) using the “least
effort” required to keep ϕ in G. The solution to the extended Skorokhod problem
is a generalization of the Skorokhod problem introduced in [16], which relaxes the
bounded variation requirement on the constraint mechanism.

The domain of the GPS Skorokhod and extended Skorokhod problems is G =
RJ+ and the directions of constraint (sometimes also referred to as directions of
reflection) are characterized in the following manner by the redistribution weight
vector β ∈ (0,1)J , which satisfies

∑
i∈I βi = 1. Let dJ+1

.= ∑
i∈I ei/

√
J and de-

fine

di
.= ei − ∑

j∈I\{i}

βjej

1 − βi

for i ∈ I.(2.3)

The set of allowable directions of constraint at any point x on the boundary ∂G is
then given by

d(x)
.=

{ ∑
i∈I (x)

aidi :ai ≥ 0 for i ∈ I (x)

}
,(2.4)

where, for x ∈ RJ+, we define

I (x)
.=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{i ∈ I :xi = 0}, if

∑
j∈I

xj > 0,

I ∪ {J + 1}, if
∑
j∈I

xj = 0.
(2.5)
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The set of directions of constraint on the boundary ∂G of the domain describes
how service is reallocated when one or more classes have no backlog. Since this
reallocation is determined solely by the redistribution weight vector β , the de-
scription of the GPS Skorokhod problem only depends on β (and not on the basic
weight vector α). Thus, even though our model is more general than the one con-
sidered in [7, 8, 16], the results from [8, 16] can still be applied here. For more
intuition on the relation between the directions of constraint and the reallocation
mechanism of the GPS discipline, the reader is referred to [7, 17].

We now provide the rigorous definition of the GPS Skorokhod problem. Let
d1(x)

.= d(x) ∩ {x ∈ RJ : |x| = 1} and recall that for η ∈ D([0,∞) : RJ ), |η|(T )

denotes the total variation of η on [0, T ] with respect to the Euclidean norm on RJ .

DEFINITION 2.2 (Skorokhod problem). Let ψ ∈ D([0,∞) : RJ ) with ψ(0) ∈
RJ+ be given. Then (ϕ, η) solves the GPS Skorokhod problem (SP) for ψ if ϕ(0) =
ψ(0), and if for all t ∈ [0,∞), the following five properties hold:

1. ϕ(t) = ψ(t) + η(t).
2. ϕ(t) ∈ RJ+.
3. |η|(t) < ∞.
4. |η|(t) = ∫

[0,t] I{
ϕ(s)∈∂RJ+

} d|η|(s).
5. There exists a measurable γ : [0,∞) → RJ such that γ (t) ∈ d1(ϕ(t)) (d|η|-

almost everywhere), and

η(t) =
∫
[0,t]

γ (s) d|η|(s).

Note that ϕ is constrained to remain within RJ+, and that η changes only when
ϕ is on the boundary ∂RJ+, in which case the change points in one of the directions
in d(ϕ). If (ϕ,ϕ − ψ) solve the SP for ψ , then we denote ϕ = �(ψ), and refer to
� as the GPS Skorokhod map (SM).

The values of ψ ∈ D([0,∞) : RJ ) for which there exists ϕ ∈ D([0,∞) : RJ+)

such that ϕ = �(ψ), is called the domain dom(�) of the SM �. Theorems 1.3,
3.6 and 3.8 of [16], together, show that the domain dom(�) is a strict subset of
D([0,∞) : RJ ) that does not include certain paths of unbounded variation. Since
diffusion paths are almost surely of unbounded variation, the SM is thus inade-
quate for constructing reflected diffusions associated with the GPS model. This
necessitates the introduction of the so-called extended Skorokhod map, first intro-
duced in [16]. Recall that, for A ⊂ RJ , co[A] represents the closure of the convex
hull of the set A.

DEFINITION 2.3 (Extended Skorokhod problem). Let ψ ∈ D([0,∞) : RJ )

with ψ(0) ∈ RJ+ be given. Then (ϕ, η) solves the GPS extended Skorokhod prob-
lem (ESP) for ψ if ϕ(0) = ψ(0), and if for all t ∈ [0,∞):
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1. ϕ(t) = ψ(t) + η(t).
2. ϕ(t) ∈ RJ+.
3. For every s ∈ [0, t],

η(t) − η(s) ∈ co

[ ⋃
u∈(s,t]

d(ϕ(u))

]
.(2.6)

4.

η(t) − η(t−) ∈ co[d(ϕ(t))].
Theorem 3.6 of [16] shows that there exists a unique solution to the GPS ESP

for all ψ ∈ D([0,∞) : RJ ). Analogous to the GPS SM, if (ϕ,ϕ − ψ) solve the
GPS ESP for ψ , then we denote ϕ = ��(ψ), and refer to �� as the GPS extended
Skorokhod map (ESM).

REMARK 2.4. Lipschitz continuity of the GPS SM and GPS ESM (with re-
spect to the u.o.c. topology) on D([0,∞) : RJ ) was established in Theorem 3.8
of [8] and Theorem 3.6 of [16], respectively. In particular, these results imply that
solutions to the GPS SM and ESM are unique. Moreover, Theorem 1.3 of [16]
shows that �(ψ) = ��(ψ) for every ψ ∈ dom(�).

In order to state the Skorokhod representation for the unfinished work process,
define

Xi(t)
.= Ui(0) + Hi(t) − αit(2.7)

and

Yi(t)
.= αit − Ti(t),(2.8)

where, as in (2.2), recall that

Ti(t) = ∑
E⊂I:i /∈E

αE
i IE(t).

Note that, by (2.1), we have U = X + Y .
The following result is Lemma 3.4 of [17].

LEMMA 2.5. Let X be as defined in (2.7) and let � be the GPS SM associated
with the weight vector β ∈ (0,1]J . If (U, IE,E ⊆ I) satisfy (2.1), then U = �(X).

3. Some properties of the GPS Skorokhod map. In this section we collect
properties of the GPS directions of constraint that are used for both determining
the long-time behavior of the fluid limit in Section 4, as well as for identifying
the diffusion limit in Section 5. A characterization of the geometry of the GPS
directions of constraint is provided in Section 3.1, and a comparison principle is
established in Section 3.2.
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3.1. Geometry of the directions of constraint. The main reason that the GPS
SM is not defined on all continuous functions is because the directions of con-
straint di, i ∈ I, are not linearly independent (see Lemma 5.3 for one important
ramification of this property and [16] for further discussion of this issue). Indeed,
the directions of constraint satisfy

J∑
k=1

βk(1 − βk)dk = 0,(3.1)

which is easily verified by direct substitution. Nevertheless, as shown in Lem-
ma 3.1, the GPS directions of constraint do exhibit a reasonable degree of regu-
larity. This lemma is used to enable a simple description of the action of the SM
on affine trajectories in Lemma 4.4, and is also used in Theorem 5.6 to establish a
certain reduced representation for the GPS SM.

LEMMA 3.1 (Geometry of the GPS directions of constraint). For every j ∈ I,
the vectors {d1, . . . , dJ } \ {dj } span the hyperplane H

.= {x ∈ RJ : 〈x, dJ+1〉 = 0}.
Moreover, the following two properties hold:

(i) H = ⋃J
j=1 Cj , where Cj

.= {∑J
k=1,k �=j θkdk : θk ≥ 0} for j ∈ I.

(ii) Given any w ∈ H , there exists a unique vector θ ∈ RJ+ such that θj = 0 for
at least one j ∈ I and

w =
J∑

j=1

θjdj .(3.2)

In addition, w admits the representation

wj = θj

1 − βj

− βjσ(3.3)

for j ∈ I, where, for any set E such that {k ∈ I : θk > 0} ⊆ E ⊂ I,

0 ≤ σ
.= ∑

k:θk>0

θk

1 − βk

= ∑
k∈E

θk

1 − βk

=
∑

j∈E wj

1 − ∑
j∈E βj

.(3.4)

PROOF. The first statement of the lemma follows from the proof of Lemma 3.1
of [8]. In turn, this statement implies that

⋃J
j=1 Cj ⊆ H and that, given any w ∈

H , there exist θk ∈ R, k ∈ {2, . . . , J }, such that w = ∑J
k=2 θkdk . If θk ≥ 0 for

every k ∈ {2, . . . , J }, then it automatically follows that w ∈ C1. Otherwise, choose
l ∈ {2, . . . , J } such that

l = arg min
k∈{2,...,J }

θk

βk(1 − βk)
,



32 K. RAMANAN AND M. I. REIMAN

define θ1
.= 0 and, using relation (3.1), eliminate dl in the representation of w to

obtain

w =
J∑

k=1,k �=l

(
θk − θl

βk(1 − βk)

βl(1 − βl)

)
dk.

In this case, by the choice of l, θl < 0 and all the coefficients of dk, k �= l, in the
above decomposition are nonnegative. This shows that w ∈ Cl . So, in both cases,
we have shown that w ∈ ⋃J

j=1 Cj . Since this holds for every w ∈ H , we conclude

that H ⊆ ⋃J
j=1 Cj , which, when combined with the reverse inclusion, establishes

property (i).
For property (ii), fix w ∈ H and first observe that the existence of θ ∈ RJ+ sat-

isfying (3.2) follows immediately from property (i). Now suppose that there exist
i, j ∈ I, θ ∈ RJ+ with θi = 0 and θ̃ ∈ RJ+ with θ̃j = 0 such that

w =
J∑

k=1,k �=i

θkdk =
J∑

k=1,k �=j

θ̃kdk.(3.5)

If i = j , then the linear independence of the vectors dk, k ∈ I \ {i} shows that
θ = θ̃ . Now suppose that i �= j . Then, since relation (3.1) implies that

dj = −1

βj (1 − βj )

J∑
k=1,k �=j

βk(1 − βk)dk,

substituting this equality into the first representation for w in (3.5) yields

w =
J∑

k=1,k �=i

θkdk =
J∑

k=1,k /∈{i,j}
θkdk + θjdj

=
J∑

k=1,k /∈{i,j}

[
θk − θj

βk(1 − βk)

βj (1 − βj )

]
dk − θj

βi(1 − βi)

βj (1 − βj )
di.

Comparing the last display with the second representation for w in (3.5), the linear
independence of the vectors dk, k ∈ I \ {j}, implies that

θ̃k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θk − θj

βk(1 − βk)

βj (1 − βj )
, for k ∈ I \ {i, j},

−θj

βi(1 − βi)

βj (1 − βj )
, for k = i.

The fact that θ̃i ≥ 0, θj ≥ 0 and βi(1 − βi)/[βj (1 − βj )] > 0 together imply that
θj = 0, θ̃i = 0 and, hence, that θ̃k = θk for k ∈ I \ {i, j}. This establishes unique-
ness of the vector θ satisfying (3.2).
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To show the last assertion, using the definition of the directions of constraint
and the first property of (ii), we obtain

wj = θj

1 − βj

− βj

∑
k:θk>0

θk

1 − βk

for j ∈ I, which proves (3.3) with σ as defined in the first equality of (3.4). The
second equality follows trivially since θk = 0 for k ∈ E \ {k : θk > 0}. Summing the
last display over all j such that θj > 0, we obtain

∑
j :θj>0

wj =
(

1 − ∑
j :θj>0

βj

)( ∑
k:θk>0

θk

1 − βk

)
,

which proves the third equality in (3.4) when E = {j : θj > 0}. Since (3.3) shows
that for every j with θj = 0, wj = σβj , this now shows that the third equality
in (3.4) holds for any E ⊂ I that contains {j : θj > 0}. �

3.2. A comparison principle. The main result of this section is a comparison
principle for the GPS ESM, which may be of more general interest. Analogous
comparison results for the one-dimensional SM on [0,∞) and the two-sided SM
on [0, a] can be found in [22] and [14], respectively. The statement of the compar-
ison principle involves the projection operator π : RJ → RJ+ associated with the
GPS SP, which is characterized by the property that

π(x) = x if x ∈ RJ+,
(3.6)

π(x) ∈ ∂RJ+ and π(x) − x ∈ d(π(x)) if x /∈ RJ+.

The existence, uniqueness and Lipschitz continuity of the GPS projection operator
was established in Theorem 3.8 of [8]. The comparison principle of Theorem 3.2 is
used in Theorem 4.6 to provide uniform bounds (with respect to initial conditions
in a compact set) on the time at which the fluid limit of the GPS model reaches the
invariant manifold. It is also used in Section 5.2 to establish “state space collapse”
for the diffusion limit (see Theorem 5.6).

THEOREM 3.2 (A comparison principle). Let π be the GPS projection oper-
ator and �� be the GPS ESM. If ν̃ ≤ ν, then

π(ν̃) ≤ π(ν).(3.7)

Moreover, if for ψ̃,ψ ∈ D([0,∞);RJ ), there exists a coordinate-wise non-
decreasing function � with �(0) ≥ 0 such that ψ(t) = ψ̃(t) + �(t) for every
t ∈ [0,∞), then

��(ψ̃)(t) ≤ ��(ψ)(t) for every t ∈ [0,∞).(3.8)
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In the following lemma, we first show how (3.8) can be deduced from (3.7) for
a general class of ESPs.

LEMMA 3.3. Let π be the projection operator associated with an ESP that
has a uniformly continuous ESM defined on D([0,∞);RJ ). Suppose that ν̃ ≤ ν

implies π(ν̃) ≤ π(ν). Then, for ψ̃,ψ ∈ D([0,∞);RJ ) such that there exists a
coordinate-wise nondecreasing function � with �(0) ≥ 0 and ψ(t) = ψ̃(t)+�(t)

for every t ∈ [0,∞), (3.8) holds. Moreover, if the SM is uniformly continuous and
well defined on D([0,∞);RJ ), then (3.8) holds with the ESM replaced by the SM.

PROOF. When ψ̃,ψ ∈ Dc([0,∞);RJ ) (recall that Dc([0,∞);RJ ) is the sub-
space of D([0,∞);RJ ) that has piecewise constant trajectories with a finite
number of jumps), this can be proved using induction. Indeed, if 0 = t0 < t1 <

t2 < tn are the union of the jump points of ψ and ψ̃ , it follows that ��(ψ)(0) =
π(ψ(0)),��(ψ̃)(0) = π(ψ̃(0)) and for k = 1, . . . , n − 1,

��(ψ)(tk+1) = π
(��(ψ)(tk) + ψ(tk+1) − ψ(tk)

)
,

and likewise for ��(ψ̃)(tk+1) (see, e.g., (28) of [6] for this construction for the
SM �—it is easy to see that the same construction also holds for the ESM ��).
Now suppose ��(ψ̃)(tk) ≤ ��(ψ)(tk). By the assumption on �, we have ψ̃(tk+1) −
ψ̃(tk) ≤ ψ(tk+1) − ψ(tk), and thus, (3.7) implies that ��(ψ̃)(tk+1) ≤ ��(ψ)(tk+1).
Since �(0) ≥ 0, (3.7) ensures that ��(ψ̃)(t0) ≤ ��(ψ)(t0) and thus, by induction,
(3.8) holds whenever ψ, ψ̃ ∈ Dc([0,∞);RJ ).

In order to extend the result to general ψ, ψ̃,� in D([0,∞);RJ ) that satisfy
the assumptions of the lemma, we need only use the fact that ψ , ψ̃,� can each be
approximated in the uniform norm by corresponding sequences {ψ(n)}, {ψ̃(n)} and
{�(n)} of piecewise constant trajectories with a finite number of jumps such that
ψ(n) = ψ̃(n) + �(n), where �(n)(0) = 0 and �(n) is coordinate-wise nondecreas-
ing. Indeed, consider the sequence ln

.= {0 = t0 < t1 < · · · < tnkn
, kn ∈ N} of parti-

tions of [0,∞), such that the nth partition contains all points at which ψ or ψ ′ has a
jump of magnitude greater than 1/n and the mesh size maxi=1,...,kn |tni − tni−1| → 0
as n → ∞. Define

f (n)(t) = f (ti−1) for t ∈ [tni−1, t
n
i ), i = 1, . . . , kn,

for f ∈ {ψ, ψ̃,�}. Then for every n ∈ N, f (n) → f u.o.c. for f ∈ {ψ, ψ̃,�} and
ψ(n) = ψ̃(n) + �(n) with �(n)(0) = 0, �(n) ≥ 0 and �(n) coordinate-wise nonde-
creasing. Thus, the inequality (3.8) is satisfied with ψ , ψ̃ replaced by ψ(n) and
ψ̃(n), respectively, for every n ∈ N. Taking limits as n → ∞, the uniform conti-
nuity of �� then ensures that the inequality (3.8) also holds for ψ, ψ̃ . If the SM is
defined and uniformly continuous on D([0,∞);RJ ), then the last statement of
the lemma follows due to exactly the same argument as that used for the ESM.
This completes the proof of the lemma. �
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Before presenting the proof of the theorem, it will be convenient to introduce
the following notation. Recall that the one-dimensional Skorokhod mapping, �1 :
D([0,∞) : R) → D([0,∞) : R), is given explicitly by

�1(f )(t) = f (t) + sup
s∈[0,t]

[−f (s)] ∨ 0.(3.9)

Also, given j ∈ I, define P (j) to be the matrix whose ith column is di for
i �= j , and whose j th column is the unit vector ej . Let Q(j) = I − P (j). Then

it follows immediately from the definition (2.3) of di that Q
(j)
ik ≥ 0 for i, k ∈ I,∑

i∈I Q
(j)
ij = 0 and for every k ∈ I \ {j}, ∑

i∈I Q
(j)
ik = 1. We now claim that

(Q(j))′ is the transition matrix of a transient J -state sub-Markov chain, where
the chain “dies” after entering state j . To see that it is transient, note that for
i �= j, (Q(j))′ij = βj/(1 − βi) > 0 (since, by assumption, minj∈I βj > 0). Thus,

(Q(j))′ is strictly substochastic and, hence, has spectral radius σ(Q(j)) < 1. We
now describe the SP associated with the matrix P (j). Roughly speaking, it has
domain RJ+ and direction of constraint in the relative interior of the ith boundary
face, {x ∈ RJ+ :xj = 0}, given by the ith column of P (j). More precisely, for j ∈ I,
define the set-valued function d(j)(·) on ∂RJ+ as follows:

d(j)(x) =
⎧⎪⎨⎪⎩

d(x), if xj > 0,{
aj ej + ∑

i∈J(x)\{j}
aidi :ai ≥ 0 for i ∈ J(x)

}
, if xj = 0,

where, for x ∈ RJ+, J(x)
.= {i ∈ I : xi = 0}. Also, let d(j)1

(x)
.= d(j)(x) ∩ {v ∈

RJ : |v| = 1}. The SP associated with P (j) is defined as in Definition 2.2, but
with d1(·) replaced by d(j)1

(·). Let �(j) be the corresponding SM, and let π(j)

be the corresponding projection operator, characterized by the relations (3.6), but
with d(·) replaced by d(j)(·). SPs of this kind were introduced in [11], the results
of which show that the properties of P (j) described above guarantee that �(j)

and π(j) are well defined on D([0,∞);RJ ) and RJ , respectively (see also the
discussion in Section 2.3 of [8]).

We now present the proof of Theorem 3.2.

PROOF OF THEOREM 3.2. In order to prove the first property, fix ν̃, ν ∈ RJ

such that ν̃ ≤ ν and define κ̃ = π(ν̃) and κ = π(ν). Then the definitions of π and
the GPS directions of constraint show that∑

i∈I

ν̃i ≤ 0 �⇒ −ν̃ ∈ d(0) �⇒ π(ν̃) = 0.(3.10)

Since π(ν) ≥ 0, this proves the result when
∑

i∈I ν̃i ≤ 0. We shall consider two
cases with

∑
i∈I ν̃i > 0.

Case 1.
∑

i∈I ν̃i > 0 and there exists j ∈ I such that κ̃j > 0 and κj > 0.
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In this case, we first claim that π(ν) = π(j)(ν). Indeed, this is a direct conse-
quence of the definition and uniqueness of the projection operators π and π(j),
and the fact that κj > 0 implies d(j)(κ) = d(κ). Since κ̃j > 0, the same argument
also shows that π(ν̃) = π(j)(ν̃). From the definition of the SP and the projection
operator, it is easy see that �(j)(νι) = π(j)(ν)ι. Moreover, the comparison prin-
ciple proved in Theorem 4.1 of [18] guarantees that �(j)(ν̃ι)(t) ≤ �(j)(νι)(t) for
t ∈ [0,∞), and so, substituting t = 1, we obtain the inequality π(j)(ν̃) ≤ π(j)(ν).
Thus, π(ν̃) = π(j)(ν̃) ≤ π(j)(ν) = π(ν), and so the theorem is true in this case.

Case 2.
∑

i∈I ν̃i > 0 and {j ∈ I :κj = 0} = {j ∈ I : κ̃j > 0}.
We shall argue by contradiction to show that this case cannot occur when ν̃ ≤ ν.

For ν ∈ RJ , let E(ν)
.= {j ∈ I :κj = 0}. Note that the first condition of Case 2

implies that −ν̃ /∈ d(0) and, hence, κ̃ �= 0 or, equivalently, E(ν̃) �= I. Next, suppose
E(ν) = I. Then we have κ = 0 and so, by the definition of π ,

∑
i∈I νi ≤ 0. When

combined with the ordering ν̃ ≤ ν, this contradicts the first assumption of the case.
Now consider the remaining possibility when E(ν) ⊂ I and E(ν̃) ⊂ I. Then, by the
definition of π and Lemma 3.1, w .= κ −ν ∈ d(κ) = cone[dj , j ∈ E(ν)] ⊆ H . This
means, in particular, that if θ ∈ RJ+1 is the unique vector in (3.2), then θJ+1 = 0
and {j : θj > 0} ⊆ E(ν). Thus, using (3.2)–(3.4) and the fact that νj = −wj for
j ∈ E(ν), we observe that

∑
j∈E(ν)

νj = − ∑
j∈E(ν)

wj = −
(

1 − ∑
j∈E(ν)

βj

)
σ ≤ 0.(3.11)

Since E(ν̃) �= I, an analogous argument also shows that
∑

j∈E(ν̃) ν̃j ≤ 0. Moreover
(3.11), along with the fact that ν̃ ≤ ν, implies that∑

j∈E(ν)

ν̃j ≤ ∑
j∈E(ν)

νj ≤ 0.

On the other hand, since E c(ν) = E(ν̃) due to the second condition of Case 2, we
also have ∑

j∈Ec(ν)

ν̃j = ∑
j∈E(ν̃)

ν̃j ≤ 0.

Together, the last two relations imply that
∑

j∈I ν̃j ≤ 0, which contradicts the first
assumption of the case. This completes the proof of (3.7).

Since the GPS ESM is Lipschitz continuous, the second assertion of the theorem
follows from the first due to Lemma 3.3. �

4. Long-time behavior of the fluid limit. In this section we consider a se-
quence of GPS systems with an associated sequence {Hn} of cumulative work
arrival processes defined on (�,F ,P ) that satisfy Assumption 2.1. Let Un and
T n be the associated unfinished work and busy time processes uniquely character-
ized by equations (2.1) and (2.2). We also consider the associated sequences {Xn}
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and {Yn}, where Xn and Yn are defined by the relations (2.7) and (2.8), respec-
tively, with Ui(0), Hi and Ti replaced by Un

i (0), Hn
i and T n

i , respectively. Assume
F is complete with respect to P and for n ∈ N, let {F n

t } be complete filtrations
such that Hn is adapted to {F n

t }.
In Section 4.1 we state the characterization of the fluid limit of the sequence

of unfinished work processes that was obtained in [17]. In Section 4.2 we iden-
tify the invariant manifold for the fluid limit—this constitutes the first step toward
establishing the heavy-traffic diffusion approximation in Section 5.

4.1. Characterization of the fluid limit of the unfinished work process. Given
a sequence {f n} ⊂ D([0,∞) : RJ ), we define the associated fluid scaled sequence
{f n} ⊂ D([0,∞) : RJ ) by

f
n
(t)

.= f n(nt)

n
for t ∈ [0,∞).(4.1)

From Definition 2.2 and the fact that the GPS SM � is Lipschitz continuous on
its domain (see Remark 2.4), it is easy to verify that � is nonanticipatory in the
sense that �(X)(t) depends only on {X(s), s ≤ t}. Since Hn, and therefore Xn, is
adapted to the filtration {F n

t } and since Un is right continuous and Un = �(Xn)

by Lemma 3.4 of [17], this implies that Un is progressively measurable with re-
spect to the filtration {F n

t } (see Proposition 1.13 of [12]). We now assume that the
primitive processes satisfy a functional strong law of large numbers. Recall that
the abbreviation u.o.c. represents uniform convergence on compact time intervals.

ASSUMPTION 4.1.

1. There exists ū ∈ RJ+ such that a.s.

lim
n→∞

Un(0)

n
= ū.

2. For each n ∈ N, there exists γ n ∈ RJ+ such that a.s.

lim
m→∞

Hn(mt)

m
= γ nt,

where the convergence is u.o.c.
3. There exists γ ∈ RJ+ such that

lim
n→∞γ n = γ.

Recall that ι : R+ → R+ is the identity map. Define

ν
.= γ − α,(4.2)

and note that for j ∈ I, −νj represents the amount of nominal service capacity
allocated to class j that is in excess of its mean arrival rate. Also, let

�X .= ū + νι, �U .= �(�X), �Y .= �U − �X(4.3)
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and

�T .= αι − �Y = γ ι + ū − �U.(4.4)

The following result was established in [17].

THEOREM 4.2 (Fluid limits for the GPS model). Suppose Assumptions 2.1
and 4.1 hold, and let �U and �Y be given by (4.3). Then P a.s., as n → ∞, �Un → �U ,
�Yn → �Y and �T n → �T u.o.c. Moreover, if

∑J
i=1 γi = 1 and ū = 0, then �U = 0 and

�T = γ ι.

PROOF. The first statement is Theorem 4.3 of [17]. The condition
∑J

i=1 γi = 1
implies that

∑J
i=1 νi = 0 and, thus, the second statement follows from Lemma

4.4(2) of [17]. �

REMARK 4.3. In Theorem 4.2 the fluid limit of the unfinished work is repre-
sented in terms of the GPS SP: �U = �(�X). As shown in [7], it is also possible to
equivalently represent the fluid limit as the unique solution to a system of coupled
differential equations. While the latter may in some sense provide a more intu-
itive description of the fluid limit, it does not extend to more general continuous
inputs, as is required for the heavy traffic analysis. In contrast, the use of the GPS
SP (ESP) provides a unified framework in which to study the pre-limit, fluid limit
and diffusion limit. It is therefore natural and more convenient to work throughout
with the SP formulation. Indeed, this level of abstraction allows one to better un-
derstand the connection between the nature of reallocation of service (as embodied
in the directions of constraint) and the continuity and monotonicity properties of
the map that are used in establishing the limit theorems. As a result, we expect
that this approach may be more readily generalizable to other situations, including
those in which a simple differential equation characterization of the fluid limit is
not available.

4.2. The invariant manifold of the fluid limit. The goal of this section is to
identify the so-called invariant manifold of the fluid limit. We first consider the
task of identifying the set of strictly subcritical classes, namely, the sources whose
long-run average arrival rate γj is strictly less than the long-run average service
rate available to them (after redistribution of service by the GPS discipline) for
all sufficiently large t . For SPs associated with other queueing networks that have
been studied in the literature (see, e.g., [4] or [21]), the linear independence of the
associated constraint directions helps simplify this task. For example, in the study
of open single-class queueing networks in [4], the associated unfinished work U∗
is represented as the image of the corresponding netput process X∗ under the as-
sociated SM �∗: U∗ = �∗(X∗) = X∗ + Y ∗, where Y ∗ now admits the decompo-
sition Y ∗ = Dξ∗, where D = (I − P ′) is a nonsingular matrix, I is the identity
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matrix, P is the so-called routing matrix of the network, the ith column of D rep-
resents the direction of constraint associated with the face {xi = 0}, and ξ∗ is the
component-wise nondecreasing process that characterizes the cumulative idle time
or excess capacity at each station (note that, somewhat unfortunately, the term ξ∗
here is denoted by the letter Y in [4]). The fluid limit ξ̄∗ of the vector of cumula-
tive idleness admits the explicit expression ξ̄∗ = D−1�Y ∗, where �Y ∗ = �U∗ − �X∗,
with �U∗ = �∗(�X∗) being a continuous functional of �X∗ that is identically zero un-
der the overall heavy traffic condition (the bar quantities here all refer to the fluid
limits of the original quantities). In this case, the set of strictly subcritical classes
is precisely the set of classes j for which θ∗

j

.= dξ̄∗
j /dt is strictly positive for all

sufficiently large t . Since θ∗
j can be explicitly recovered from �X∗, which is itself

known explicitly in terms of the primitives, this simplifies the determination of the
strictly subcritical classes.

In contrast, as shown in (3.1), the GPS directions of constraint are linearly de-
pendent and, thus, such a simple linear algebraic relation between the netput and
the cumulative idle time processes no longer holds in general. Nevertheless, using
the geometric properties established in Lemma 3.1, we show below in Lemma 4.4
that an analogous decomposition into component processes is possible for fluid
trajectories. However, it is important to note that this decomposition does not hold
for arbitrary trajectories (see Lemma 5.3), thus necessitating a more careful analy-
sis of the diffusion limit (see Section 5.1).

LEMMA 4.4 (A representation lemma). Given ū ∈ RJ+ and ν ∈ RJ , there ex-
ists ε > 0 and χ ∈ RJ such that

�(ū + νι)(t) = ū + χt for t ∈ [0, ε).

Moreover, the following two properties are satisfied:

(i) There exists a unique vector θ ∈ RJ+1+ that satisfies

χ = ν +
J+1∑
k=1

θkdk(4.5)

and

I �= {k ∈ I : θk > 0} ⊆ {k ∈ I : ūk = χk = 0}.(4.6)

Moreover, θJ+1 > 0 if and only if ū = χ = 0 and
∑J

j=1 νj < 0.

(ii) If ū = 0, then χ = π(ν), ε can be chosen to be ∞ and [∑J
j=1 χj ] =

[∑J
j=1 νj ] ∨ 0.

(iii) If
∑J

j=1 νj ≥ 0, then

0 ≤ ∑
k:θk>0

θk

1 − βk

= −∑
k:θk>0 νk

1 − ∑
k:θk>0 βk

(4.7)
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and, for every j ∈ I,

νj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− θj

1 − βj

+ βj

( −∑
k:θk>0 νk

1 − ∑
k:θk>0 βk

)
, if θj > 0,

χj + βj

( −∑
k:θk>0 νk

1 − ∑
k:θk>0 βk

)
, if θj = 0.

(4.8)

PROOF. Fix ν ∈ RJ and let E
.= {k ∈ I : ūk = χk = 0}. The existence of χ ∈

RJ and ε > 0 results from the fact that images of affine trajectories under the GPS
SM are piecewise affine (which was proved in Lemma 4.4 of [17]). Next, note
that for all t ∈ (0, ε), the definition of the GPS SP [in particular, the relation (2.4)
and properties 4 and 5 of Definition 2.2] implies that χ is the unique vector that
satisfies

χ − ν = 1

t
[�(ū + νι)(t) − ū − νt] ∈

⎧⎪⎪⎨⎪⎪⎩
cone[dj , j ∈ E ],

if E �= I,

cone[dj , j ∈ I, dJ+1],
if E = I.

(4.9)

This immediately ensures the existence of a vector θ ∈ RJ+1+ that satisfies (4.5)
and (4.6). To show uniqueness of θ , first taking inner products of (4.5) with dJ+1
shows that

〈χ,dJ+1〉 = 〈ν, dJ+1〉 + θJ+1.(4.10)

If E �= I, then (4.9) and Lemma 3.1 show that χ − ν ∈ H , and so θJ+1 = 0
by (4.10). On the other hand, if E = I, then (4.10) uniquely determines θJ+1,
θJ+1 > 0 if and only if

∑
j∈I νj < 0 and χ − ν − θJ+1dJ+1 ∈ H . The last two

statements, when combined with Lemma 3.1(ii), establish uniqueness of the rep-
resentation (4.5) and the condition on θJ+1, thus proving property (i).

Now suppose that ū = 0. Then a simple consequence of the definition (3.6) of
the GPS projection is that π(ν)ι solves the SP for νι. Therefore, by uniqueness of
solutions to the GPS SP, χ = π(ν) ∈ RJ+ and ε can be chosen to be ∞. The second
relation in property (ii) can be deduced in a straightforward manner from the fact
that χ = π(ν) ∈ RJ+ and the last statement of property (i). The latter also shows
that when

∑J
j=1 νj ≥ 0, θJ+1 = 0 and w

.= χ − ν ∈ H . When combined with (3.3)
and (3.4) of Lemma 3.1, elementary algebra immediately yields property (iii). �

Recall from (4.2) that ν = γ − α. When
∑

j∈I νj < 0, it is intuitively clear
that all classes will be strictly subcritical. The interesting case is thus when∑

j∈I νj ≥ 0. Suppose, in addition, that ū = 0, and note that by Lemma 4.4(ii),

in this case χ = π(ν) ∈ RJ+. Let θ ∈ RJ+1+ be the unique vector in the representa-
tion (4.5) for χ = π(ν). With reference to the discussion prior to Lemma 4.4, it is
natural to introduce the following definition:

S0(ν)
.= {j ∈ I : θj > 0}.(4.11)
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REMARK 4.5. We now present an alternative characterization of S0(ν) that
may appear more intuitive to some readers. When

∑
j∈I νj ≥ 0, we claim that the

set S0(ν) defined in (4.11) also admits the following alternative characterization:
S0(ν) is the unique set S that satisfies∑

j∈S

(αj − γj ) > 0(4.12)

and

γj < αj + βj

1 − ∑
k∈S βk

∑
k∈S

(αk − γk) if and only if j ∈ S.(4.13)

Since the strictly subcritical classes receive no extra capacity from the other
classes, a necessary condition for the set S to be strictly subcritical is that the sum
of the nominal capacities available to all classes in S is strictly larger than the sum
of the mean arrival rates of classes in S—this leads to the first condition (4.12).
Moreover, it is precisely this excess that is redistributed to the remaining classes,
with class j receiving a fraction proportional to βj , for j /∈ S. This leads naturally
to the “only if” part of the condition (4.13), which simply states that for any class
that is not strictly subcritical, the total (reallocated) service capacity available to it
is no greater than its mean (long-run) arrival rate. The “if” part of (4.13) is not as
straightforward to justify a priori. Nevertheless, as shown below, it turns out to be
the correct additional condition that uniquely characterizes S0(ν).

To see that (4.12) and (4.13) uniquely characterize S0(ν), let S be any set satis-
fying (4.12) and (4.13). Since

∑
j∈I νj = ∑

j∈I(γj − αj ) ≥ 0, the relation (4.12)
ensures that S �= I and thus the relation (4.13) is well defined. Now, the two con-
ditions above are equivalent to the relations

rS
.= −∑

j∈S νj

1 − ∑
j∈S βj

> 0(4.14)

and
νj

βj

< rS iff j ∈ S.(4.15)

We now show that uniqueness of the set S is essentially equivalent to uniqueness
of the representation (4.5). Suppose that we are given a set S �= I satisfying (4.14)
and (4.15). Define

θ̃j
.= −(1 − βj )νj + βj (1 − βj )rS for j ∈ S.

Then elementary algebra shows that (4.14) and (4.15) imply that θ̃j > 0 for j ∈ S,
and that κ̃

.= ν + ∑
j∈S θ̃kdk satisfies κ̃ = π(ν). However, uniqueness of π dictates

that κ̃ = κ . Uniqueness of the representation (4.5) then shows that θ̃ = θ , with θ

as in (4.11), and hence that S = S0(ν).
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Now, let the sources be ordered so that
ν1

β1
≥ ν2

β2
≥ · · · ≥ νJ

βJ

.(4.16)

It then follows immediately from Remark 4.5—in particular, relation (4.15)—that
when

∑
j∈I νj ≥ 0 either S0(ν) = ∅ or S0(ν) has the form {j∗, . . . , J } for some

j∗ ∈ I. Given ν ∈ RJ , we now define the set of strictly subcritical classes to be

S(ν) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I, if

∑
j∈I

νj < 0,

S0(ν), if
∑
j∈I

νj ≥ 0,
(4.17)

and let M(ν) be defined as follows:

M(ν)
.= {x ∈ RJ+ :xi = 0 for every i ∈ S(ν)}.(4.18)

Note that M(ν) = {0} is 0-dimensional if
∑

j∈I νj < 0 and M(ν) = RJ+ is
J -dimensional if

∑
j∈I νj ≥ 0 and minj νj ≥ 0. The next result shows that M(ν)

acts as an invariant manifold for the fluid limit.

THEOREM 4.6 (Invariant manifold for the fluid limit). Given ν ∈ RJ and ū ∈
RJ+, let κ

.= π(ν), �U .= �(ū + νι), and let S(ν) and M(ν) be defined as in (4.17)
and (4.18), respectively. Then the following properties are satisfied:

(i) If ū ∈ M(ν), then �U(t) = ū + κt ∈ M(ν) for all t ∈ (0,∞).
(ii) Given any compact set G ⊂ RJ+, there exists T = T (G) < ∞ such that for

every ū ∈ G, �U(t) ∈ M(ν) for all t ≥ T .
(iii) There exists ū ∈ M(ν) such that �Ui(t) > 0 for every t ∈ (0,∞) and i ∈

I \ S(ν).
(iv) When

∑
j∈I νj ≤ 0, M(ν) admits the equivalent representation

M(ν) = {ū ∈ RJ+ :�(ū + νι)(t) = ū for all t ∈ [0,∞)}.(4.19)

(v) Furthermore, if
∑

j∈I νj = 0 and minj∈I νj < 0, then there exists j∗ ∈ I
such that

νj

βj

= ν1

β1
for j < j∗ and S(ν) =

{
j ∈ I :

νj

βj

<
ν1

β1

}
.(4.20)

Also,

νj = −βj (
∑

j∈S(ν) νj )

1 − ∑
k∈S(ν) βk

for j /∈ S(ν).(4.21)

PROOF. Fix ν ∈ RJ . When
∑

i∈I νi < 0, S(ν) = I, M(ν) = {0} and so the
first two statements of the theorem follow directly from Lemma 4.4 of [17] (also
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see the results of [3]), and the third statement holds trivially. For the case when∑
i∈I νi ≥ 0 and mini∈I νi ≥ 0, the first two statements of the theorem are a trivial

consequence of the fact that M(ν) = RJ+ and the third statement is satisfied by any
ū with ūi > 0 for all i ∈ I, since for such ū, �(ū + νι) = ū + νι.

Therefore, for the rest of the proof of properties (i)–(iii), we shall assume that∑
i∈I νi ≥ 0 and mini∈I νi < 0, in which case S(ν) = S0(ν). We start by proving

property (ii). Given any compact set G ⊂ RJ+, let ū∗ ∈ RJ+ be such that for every
i ∈ I, ū∗

i = maxū∈G ūi and let �U∗ .= �(ū∗ + νι). The comparison principle in
Theorem 3.2 then guarantees that for any ū ∈ G, �Ui(t) ≤ �U∗

i (t) for every i ∈ I,
where �U = �(ū + νι). Thus, in order to establish (ii), it suffices to show that there
exists a finite T < ∞ such that �U∗

j (t) = 0 for every j ∈ S0(ν) and t ≥ T . By the
monotonicity property of the GPS SM established in Lemma 4.4 of [17], we know
that

{i ∈ I : �U∗
i (t) = 0} ⊆ {i ∈ I : �U∗

i (t + s) = 0} for all s, t > 0.(4.22)

As a result, there must exist E ⊆ I and T < ∞ such that

E = {j ∈ I : �U∗
j (t) = 0} for all t ≥ T .(4.23)

Since �U∗
i is piecewise affine, this implies that the slope of �U∗(t) for all t > T is

well defined and equal to χ , where χ satisfies χj = 0 for j ∈ E and χj ≥ 0 for
j /∈ E . On the other hand, by uniqueness of the SM, it is easy to see that, for s ≥ 0,

�U∗(T + s) = �(ū∗ + νι)(T + s) = �(�U∗(T ) + νι)(s) = �U∗(T ) + χs.(4.24)

From the definition of the SP, the last equality implies that for every s ≥ 0,

(χ − ν) ∈ d
(�U∗(T ) + χs

) = cone[di, i ∈ E ] ⊆ d(χ).

Since χ ∈ RJ+, by uniqueness of the projection π , this show that χ = κ
.= π(ν).

The definition (4.11) of S0(ν) and relation (4.6) of Lemma 4.4 then shows that
S0(ν) ⊆ E , which completes the proof of property (ii).

The definition of S0(ν) implies that κ −ν ∈ cone[di : i ∈ S0(ν)] ⊆ cone[di : κi =
0]. If ū ∈ M(ν), then this implies that κ − ν ⊆ cone[di :κi = ūi = 0], and thus, by
(4.5) and (4.6) of Lemma 4.4, �U(t) = �(ū + νι)(t) = ū + κt for all sufficiently
small t (and, in fact, for all t since κ ∈ RJ+). The above argument also shows that
if ū ∈ M(ν) with ūj > 0 for every j /∈ S0(ν), �Uj(t) = ūj + κj t > 0 for all t ≥ 0
and j /∈ S0(ν). This establishes properties (i) and (iii).

Next, note that property (ii) shows that the set of invariant points of the fluid
limit [described precisely by the right-hand side of (4.19)] must be contained in M.
If, in addition,

∑
j∈I νj ≤ 0, then κ = π(ν) = 0. Thus, property (i) shows that

ū ∈ M implies �U(t) = �(ū + νι)(t) = ū for every t ∈ [0,∞), which establishes
the fourth property. In particular, this implies that χ = κ = 0. Relation (4.20) is
then an immediate consequence of relation (4.8) and the fact that 1 /∈ S0(ν) [since
S0(ν) �= I]. In turn, (4.20) implies that νj = βjν1/β1 for j /∈ S0(ν). Summing the
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last equality over j /∈ S0(ν), and using the fact that
∑

k∈I νk = 0 and
∑

k∈I βk = 1,
we obtain ν1/β1 = −∑

k∈S0(ν) νk/(1−∑
k∈S0(ν) βk). When combined, the last two

relations yield (4.21), thus completing the proof of the theorem. �

REMARK 4.7. Although we do not use this later in the paper, it is also possi-
ble to provide a purely dynamical systems characterization of the invariant man-
ifold M(ν) defined in (4.18). Suppose, given ν ∈ RJ , an attractor A(ν) for the
fluid limit is defined to be any cone in RJ+ that satisfies (a) ū ∈ A(ν) implies
�U(t)

.= �(ū + νι)(t) ∈ A(ν) for every t ∈ [0,∞), and (b) ū /∈ A(ν) implies
limt→∞ �U(t) ∈ A(ν). Then it can be shown that the invariant manifold M(ν) is
the intersection of RJ+ with the affine hull of any attractor A(ν) for the fluid limit.
In the subcritical case it is easy to see from Theorem 4.6 that the invariant manifold
M(ν) is the unique attractor. Indeed, as shown in Theorem 4.6(iv), in this case the
invariant manifold M(ν) can equivalently be characterized as the collection of in-
variant points for the fluid limit, which is the “standard” definition of an invariant
manifold given, for example, in [2] and [13]. However, while the standard defini-
tion is limited to the subcritical case, our definition is more general in that it also
applies to the supercritical case, where it provides information on how trajectories
escape to infinity. Indeed, in the supercritical case it is not hard to show that a set
is an attractor if and only if it is a cone contained in M(ν) that contains the ray
{κt, t ≥ 0} and has nonempty interior relative to M(ν). Since we do not use this
property later, we omit a rigorous proof of this statement.

5. Diffusion approximations for the unbalanced GPS model. For simplic-
ity, we assume throughout this section that the classes are numbered so as to satisfy
the ordering (4.16). As in the previous section, we consider a sequence of networks
with associated processes Hn,n ∈ N, that satisfy Assumptions 2.1 and 4.1. Recall
the defining equations for the fluid limit processes �U , �X, �Y and �T given in (4.3)
and (4.4), and consider the associated diffusion scaled processes defined by

Ĥ n .= √
n[ �Hn − γ nι], Ûn .= √

n[�Un − �U ],
X̂n .= √

n[�Xn − �X], Ŷ n .= √
n[�Yn − �Y ],(5.1)

T̂ n .= √
n[�T n − �T ].

To prove the heavy traffic limit theorem for the unfinished work process, we first
assume that the primitive sequence {Hn} satisfies, in addition, a functional central
limit theorem. Let γ ∈ RJ+ be the vector in Assumption 4.1(3) and let ν

.= γ − α.

ASSUMPTION 5.1.

1. There exists a random variable û ∈ M(ν) such that P a.s.,

lim
n→∞

Un(0)√
n

= û.
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2. As n → ∞,

Ĥ n ⇒ B,

where B is a driftless J -dimensional Brownian motion with covariance matrix
MH .

3. There exists ĉ ∈ RJ such that

lim
n→∞

√
n(γ n − γ ) = ĉ.

We will also assume the heavy traffic condition

J∑
i=1

γi = 1.(5.2)

REMARK 5.2. (a) Note that Assumption 5.1(3) implies, in particular, that
γ n → γ as n → ∞.

(b) By the Skorokhod representation theorem (see, e.g., Theorem 1.8 of [10]),
there exists a probability space (�̃, F̃ , P̃ ), on which are defined D([0,∞) : RJ )-

valued random variables H̃ n, n ∈ N, and B̃ such that H̃ n d= H̃ n, B̃
d= B and H̃ n →

B a.s. uniformly on compact sets (u.o.c.). By an abuse of notation, we simply take
Assumption 5.2(2) to mean that H̃ n → B a.s. u.o.c. Of course, what we ultimately
prove is weak convergence and not a.s. convergence, and this is reflected in the
theorem statements.

In the next section we summarize our approach to the GPS diffusion limit, and
discuss its connection with related work. This section can be safely skipped with-
out loss of continuity.

5.1. General approach to the unbalanced GPS diffusion limit. The fluid limit
result summarized in Theorem 4.2 shows that under the heavy traffic condi-
tion (5.2), �U = 0. By (5.1), (2.5) and basic homogeneity properties of the SP, it
then follows that

Ûn = √
n�Un = �

(√
n�Xn) = ��(√

n�Xn)
,

where �� is the GPS ESM and the last equality follows by Remark 2.4. If
√

n�Xn

could be shown to converge to a limit X̂, then, since the GPS ESM is Lipschitz con-
tinuous, the continuous mapping theorem would immediately yield convergence of
Ûn to ��(X̂). Combining (2.7) with Assumption 5.1, it is not hard to see that

√
n�Xn

converges if and only if γ = α. This explains why the standard continuous map-
ping approach works only in the balanced case (see [17]). Indeed, in the (truly)
unbalanced case,

√
n�Xn certainly diverges because the long-run average arrival

rate γj for at least one critical class must be strictly greater than its nominal ca-
pacity. This class becomes critical (in the fluid limit) only because it receives extra
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service capacity from the strictly subcritical classes. Thus, the methods of [17],
which carried out an analysis of the balanced GPS model, are not sufficient to
analyze the more general, unbalanced case considered here.

A similar generalization was considered in the context of single-class queueing
networks. Specifically, the diffusion analysis in [19] [where each station was as-
sumed to be in heavy traffic—see condition (24) therein] was extended in [4] to
the unbalanced case. As mentioned in Section 4.2, the unfinished work U∗ for the
model in [4] is represented, as in this paper, in the form U∗ = X∗ + Y ∗, where
X∗ is the associated netput process, but where Y ∗ now admits the decomposition
Y ∗ = Dξ∗ for a nonsingular matrix D and ξ∗ is the component-wise nondecreas-
ing process that characterizes the cumulative idle time or excess capacity at each
station. The ith column of D in [4] is analogous to the direction of constraint di

in this paper, and the mapping from X∗ to U∗ corresponds to the SM �∗ consid-
ered here. The diffusion analysis in [4] strongly uses (i) the explicit representation
Y ∗ = Dξ∗ = ∑J

i=1 ξ∗
i di (see the block decompositions in the statement of The-

orem 6.1 of [4]), as well as (ii) the continuity of the mapping that takes X∗ to
ξ∗, which is referred to there as the regulator mapping (see (3.3D)–(3.3E) and the
discussions following (4.25) and (4.29) in [4]).

On the other hand, no such explicit representation is available for the GPS SP—
in fact, the directions of constraint are linearly dependent, as shown in (3.1). Never-
theless, as shown in Lemma 4.4, an analogous decomposition holds when the GPS
SM acts on affine trajectories. Indeed, suppose ψ is an affine trajectory, say, of the
form ū+ νι for some ū ∈ RJ+ and ν ∈ RJ , and φ = �(ψ), where � is the GPS SM.
Since φ is piecewise affine (i.e., with a finite number of changes of slope), from
Lemma 4.4 and the property (4.24) of the SP one can infer that there exist unique
measurable functions θ : [0,∞) → RJ+1+ with the property that for a.e. s ∈ [0,∞),

φ̇(s) = ψ̇(s) +
J+1∑
j=1

θj (s)dj ,

where, for j ∈ I,

{j : θj (s) > 0} ⊆ {j :φj (s) = 0}(5.3)

and θJ+1(s) > 0 implies φ(s) = 0. Another application of the property (4.24)
shows in fact that this also holds for piecewise affine ψ . Let ξ(t) = ∫ t

0 θ(s) ds

for t ∈ [0,∞), and let � be the mapping defined on piecewise affine, continuous
functions that takes ψ to the corresponding ξ . In view of the methods used in [4]
discussed above, it is natural to ask whether � can be extended to define a con-
tinuous mapping on the space of all continuous functions. The following lemma
answers this question in the negative—in fact, it shows that there is no canonical
way to extend the definition of � to all continuous trajectories. This constitutes a
structural difference between the GPS SP and other SPs considered in the literature
in the context of queueing networks.
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LEMMA 5.3. The mapping � cannot be extended to define a continuous map-
ping on the space of all continuous functions.

PROOF. Let � be the 2-dimensional GPS SM, with directions of constraint
d1 = (1,−1), d2 = (−1,1) and d3 = (1,1)/

√
2. If there exists a continuous exten-

sion of � to all continuous trajectories, then by the Cauchy property, for any pair
of sequences of piecewise affine continuous functions {ψ(1,n)}n∈N and {ψ(2,n)}n∈N

such that ψ(1,n)−ψ(2,n) → 0, we must have �(ψ(1,n))−�(ψ(2,n)) → 0. We show
that this is not the case by constructing a counterexample. Define ψ(1,n) ≡ 0, let
ψ(2,n)(0) = 0, and let

ψ̇(2,n) .=

⎧⎪⎪⎨⎪⎪⎩
(

2n

n
d1

)
, if t ∈ [

2(m − 1)2−n, (2m − 1)2−n
)
,(

2n

n
d2

)
, if t ∈ [

(2m − 1)2−n, (2m)2−n
)

for m = 1, . . . ,2n−1. Then it is easy to see that

sup
s∈[0,1]

∣∣ψ(1,n)(s) − ψ(2,n)(s)
∣∣ = sup

s∈[0,1]
∣∣ψ(2,n)(s)

∣∣ ≤ √
2/n,

and thus, ψ(1,n) − ψ(2,n) → 0. On the other hand, if ξ (1,n) .= �(ψ(1,n)) and
ξ (2,n) .= �(ψ(2,n)), it is easily verified that ξ (1,n) ≡ 0, while ξ

(2,n)
i (1) = 2n−1/n

for i = 1,2 and ξ
(2,n)
3 (1) = 0. This implies that

lim
n→∞

∣∣ξ (2,n)(1) − ξ (1,n)(1)
∣∣ → ∞,

which completes the proof. �

The aim of the above discussion was to explain why the analysis of the un-
balanced GPS model does not fall into any of the previously existing frameworks
for establishing diffusion approximations of queueing networks. We now briefly
describe the approach taken in this paper to establishing diffusion limits, which
entails first showing that there is state-space collapse, in the sense that the strictly
sub-critical classes vanish in the diffusion limit, and then using this information to
provide a nice characterization of the behavior of the remaining, critical classes.
Lemma 5.3 suggests that it would be preferable to work, as far as possible, in the
pre-limit since the GPS mapping is better behaved on the pre-limit than on the limit
functions. Thus, we first introduce a modified work arrival process in Section 5.2
and identify the diffusion limit of the unfinished work associated with this work
arrival process. The modified work arrival process is second-order equivalent to
the original one in the sense that their diffusion limits coincide (see Theorem 5.4).
However, as shown in Lemma 5.5, the advantage of working with the modified
arrival process is that the state-space collapse takes place in the pre-limit itself.
This facilitates a simple characterization of the critical classes in terms of a certain
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reduced map, which is introduced in Section 5.3. The reduced map can be char-
acterized as a GPS SM on a lower-dimensional space (associated with the critical
classes) with appropriately modified weights and is thus continuous. These results
are finally combined with the comparison principle of Section 3.2 in order to es-
tablish state-space collapse and obtain an explicit characterization of the diffusion
limit in Section 5.4. The diffusion limit identifies precisely how the covariance
structure of the unfinished work of the critical classes is influenced by the variance
of the cumulative work arrival processes of the strictly subcritical classes.

5.2. A modified work arrival process. In this section we introduce a sequence
of modified cumulative work arrival processes {Hn, n ∈ N} obtained by smoothing
the sequence of class j arrival process {Hn

j ,n ∈ N} for j ∈ S(ν). In Theorem 5.4
below, we show that {Hn, n ∈ N} is equal to {Hn,n ∈ N} up to second order in the
sense that their diffusion limits coincide. This is convenient because, as shown in
the next section, the limit of the sequence of unfinished work processes associated
with the modified arrival processes can be obtained by applying Theorem 5.6.

A rigorous definition of the sequence {Hn, n ∈ N} is given below. Let {εn, n ∈
N} be a sequence of positive numbers such that

lim
n→∞ εn = 0 and lim

n→∞
√

nεn = ∞.(5.4)

For n ∈ N, define

γ̃ n
j

.=
{

γ n
j + εn, for j ∈ S(ν),

γ n
j , for j ∈ I \ S(ν)

(5.5)

and ν̃n .= γ̃ n − α. For j /∈ S(ν), let Hn
j = Hn

j and for j ∈ S(ν), let Hn
j be the

departure process from a queue that is initially empty, has cumulative work arrival
process Hn

j and a deterministic service rate of γ̃ n
j . In other words, we can write

Hn
j =

{
Hn

j − �1(H
n
j − γ̃ n

j ι), for j ∈ S(ν),
Hn

j , for j /∈ S(ν),(5.6)

where �1 is the one-dimensional SM defined in (3.9). It should be noted that Hn
j

does not satisfy Assumption 2.1(2). Nonetheless, it plays an essential role in prov-
ing our heavy traffic limit theorem. Let the corresponding fluid scaled and diffusion
scaled processes �Hn and Ĥn be defined as in (4.1) and (5.1), respectively, with H

replaced by H . The following theorem states a second-order equivalence result
between the sequences {Hn} and {Hn}.

THEOREM 5.4 (Properties of the modified arrival sequence). Suppose As-
sumptions 4.1 and 5.1 are satisfied. Then the sequence {Hn} satisfies the following
properties:

1. Hn
j (t) − Hn

j (s) ≤ γ̃ n
j (t − s) for any 0 ≤ s ≤ t and every j ∈ S(ν).
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2. �Hnm → γ nι u.o.c. as m → ∞, where �Hnm
(t)

.= Hn(mt)
m

.
3. Ĥn ⇒ B as n → ∞.

PROOF. From (5.6) and the explicit expression (3.9) for the one-dimensional
SM we see that for t ∈ [0,∞) and j ∈ S(ν),

Hn
j (t) = γ̃ n

j t − sup
s∈[0,t]

[γ̃ n
j s − Hn

j (s)] ∨ 0,(5.7)

from which the first property immediately follows. Next, note that by (5.6), the
definitions (5.5) of γ̃ and (5.1) of Ĥ n, and elementary scaling properties of the
one-dimensional SM, we have

�Hn
j

m = �Hn
j

m − �1( �Hn
j

m − γ n
j ι − εnι) and Ĥn

j = Ĥ n
j − �1

(
Ĥ n

j − √
nεnι

)
.

Taking limits as m → ∞ in the first equation above and using the first limit in
(5.4), along with Assumption 4.1(2), the fact that �1 is continuous and �1(0) = 0,
we obtain the second property of the theorem.

By Peterson’s “crushing lemma” ([15], Lemma 2), �1(Ĥ
n
j − √

nεnι) → 0. [Al-
though Peterson assumes that εn ≥ ε > 0, his proof goes through with εn → 0
if

√
nεn → ∞. Also, Peterson assumes mutually independent i.i.d. sequences

of interarrival and service times, but his proof goes through under our Assump-
tion 5.1(2).] The third property is then an immediate consequence of Assump-
tion 5.1(2) and Remark 5.2. �

For n ∈ N, define

Un
j (0) =

{
0, if j ∈ S(ν),
Un

j (0), if j /∈ S(ν)

and let Xn .= Un(0) + Hn − αι. Moreover, let Un .= �(Xn).
The next lemma identifies the property that makes the unfinished work associ-

ated with the modified arrival sequence {Hn, n ∈ N} easier to analyze than that
associated with the original arrival sequence {Hn,n ∈ N}. Indeed, it establishes
state-space collapse for the pre-limit sequence of unfinished work processes asso-
ciated with the sequence of modified arrival processes.

LEMMA 5.5. Suppose Assumptions 4.1, 5.1 and the overall heavy traffic con-
dition (5.2) are satisfied. Then for every ω ∈ �, there exists N = N(ω) < ∞ such
that, for every n ≥ N(ω), Un(t)(ω) ∈ M(ν) for all t ∈ [0,∞).

PROOF. Fix ω ∈ � and drop the explicit dependence on ω. Recall that
ν̃n = γ̃ n − α, and define �̃n .= �(Un(0) + ν̃nι) and �n .= �(Un(0) + νι). Then
Theorem 5.4(1) along with the comparison principle of Theorem 3.2 shows that
Un(t) ≤ �̃n(t) for t ∈ [0,∞). Thus, to prove the lemma, it suffices to demonstrate
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the existence of N < ∞ such that, for n ≥ N , �̃n(t) ∈ M(ν) for every t ∈ [0,∞).
By Lemma 4.4, there exist δn > 0 and χn, χ̃n ∈ RJ such that, for t ∈ [0, δn),

�̃n(t) = Un(0) + χ̃nt and �n(t) = Un(0) + χnt.

In addition, for every n ∈ N, since Un(0) ∈ M(ν), Theorem 4.6 shows that
χn = κ = π(ν). Moreover, for n ∈ N, let θ̃ n ∈ RJ+1+ be the unique vector in the
representation (4.5) for χ̃n and let θ ∈ RJ+1+ be the corresponding unique vector
in the representation (4.5) for κ . Lipschitz continuity of the GPS SM � and the
convergence ν̃n → ν for n → ∞, which is guaranteed by Assumption 4.1(3) and
the first relation in (5.4), imply χ̃n → κ as n → ∞. The uniqueness of the rep-
resentation (4.5) then dictates that θ̃n → θ as n → ∞. Thus, there exists N < ∞
such that, for every n ≥ N ,

S0(ν) = {j ∈ I : θj > 0} ⊆ {j ∈ I : θ̃ n
j > 0} ⊆ {j ∈ I :Un

j (0) = χ̃n
j = 0},

where the first equality follows from definition (4.11) and the last inclusion is a
result of relation (4.6) of Lemma 4.4. This implies that χ̃n

j = 0 for j ∈ S0(ν) =
S(ν), so that �̃n

j (t) ∈ M(ν) for t ∈ [0, δ̃n). By the monotonicity property of the
GPS SM, which was proved in Lemma 4.4 of [17] and is spelled out in (4.22)
here, it then follows that �̃n

j (t) ∈ M(ν) for every t ∈ [0,∞), which completes the
proof of the theorem. �

5.3. A reduced representation for the SM. We assume throughout this section
that S is a subset of I, S �= I. The application of the main result, Theorem 5.6,
of this section will be to the case when S = S(ν) is the set of strictly subcritical
classes associated with some ν such that

∑J
j=1 νj = 0. However, the results of

this section are valid for an arbitrary set S ⊂ I. In order to formulate our reduced
representation for the SM, we need the following notation. Let K

.= I \ S and
K

.= |K| ≥ 1. Given a weight vector β ∈ (0,1)J (with
∑J

i=1 βi = 1), let βK =
(βK

k , k ∈ K) be the K-dimensional vector defined by

βK
i

.= βi∑
k∈K βk

for i ∈ K.(5.8)

Also, for i ∈ K , let eK
i be the K-dimensional unit vector associated with the ith

coordinate, which has 1 at the ith coordinate and 0 for all other coordinates in K .
Since K �= ∅ and β ∈ (0,1)J , it follows that

∑
k∈K βk > 0. Hence, βK is well de-

fined, βK ∈ (0,1)K and
∑

k∈K βK
k = 1, which shows that βK is a K- dimensional

weight vector. We now define the GPS SP associated with the weight vector βK .
First, let the directions of constraint {dK

i , i ∈ K, dK
K+1} be defined in terms of the

K-dimensional weight vector βK in the same way that the directions of constraint
{di, i ∈ I, dJ+1} were defined in terms of the J -dimensional weight vector β in
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(2.3): more precisely, let dK
K+1

.= ∑
i∈K eK

i /
√

K and

dK
i

.= eK
i − ∑

k∈K\{i}

βK
k eK

k

1 − βK
i

for i ∈ K.(5.9)

Recalling definition (5.8), for i ∈ K , we can then write

(dK
i )j

.=
⎧⎨⎩

1, if j = i,
−βj∑

k∈K βk − βi

, if j ∈ K \ {i}.(5.10)

Define

�K .= {(xi, i ∈ K) :xi ∈ R for i ∈ K},

�K+
.= {(xi, i ∈ K) :xi ≥ 0 for i ∈ K}

and, analogously to the definition given in (2.4), let

dK(x)
.=

{ ∑
i∈IK (x)

aid
K
i :ai ≥ 0 for i ∈ IK(x)

}
,

where, for x ∈ �K+ , IK(x) is defined as in (2.5), but with I replaced by K and
J by K . Similarly, let the “K-reduced” GPS SP be as described in Definition 2.2,
but with RJ , RJ+ and d(·) replaced by �K , �K+ and dK(·), respectively. Finally,
let �K be the associated SM, and note that it is well defined for the same reasons
given in Remark 2.4. We now establish a correspondence between the original GPS
SM and the K-reduced SM.

THEOREM 5.6. Given a weight vector β ∈ (0,1)J , let � be the associated
GPS ESM, let ψ ∈ D([0,∞);RJ ), let ϕ = ��(ψ) and for t ∈ [0,∞), let E(t)

.=
{i ∈ I :ϕi(t) = 0}. Moreover, suppose there exist 0 ≤ T0 < T < ∞ and S � I such
that S ⊆ E(t) for every t ∈ [T0, T ). Then, if K

.= I \ S, the vector-valued process
ϕK .= {ϕi, i ∈ K} satisfies

ϕK(t) = ��K(ψK)(t) for t ∈ [T0, T ),

where ��K is the K-reduced GPS ESM defined above and ψK .= {ψK
i , i ∈ K} is

given by

ψK
i

.= ψi + βK
i

(∑
j∈S

ψj

)
for i ∈ K.(5.11)

Finally, if ψ ∈ dom(�), then ϕK = �K(ψK).
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PROOF. Since K �= ∅, βK and ��K are well defined. The theorem follows
trivially if K = I. Thus, throughout the proof, we assume that K ⊂ I or, equiv-
alently, that S �= ∅. Since �� is single-valued on its domain (see Remark 2.4), if
ϕ = ��(ψ), then ϕ̃ = ��(ψ̃) for t ∈ [0,∞), where

ϕ̃(t)
.= ϕ(T0 + t) and ψ̃(t)

.= ψ(T0 + t) − ψ(T0) + ϕ(T0).

Thus, we can also assume without loss of generality that T0 = 0.
For every t ∈ [0, T ), ϕ(t) ∈ RJ+ and, thus, ϕK(t) ∈ �K+ . Define η

.= ϕ − ψ and
ηK .= ϕK − ψK . It remains to show that in the interval [0, T ), (ϕK , ηK) satisfy
properties 3 and 4 of Definition 2.3 for the GPS ESP on �K+ (corresponding to the
weights βK ). First, note that for i ∈ K and t ∈ [0, T ),

ηK
i (t) = ηi(t) − βK

i

(∑
k∈S

ψk(t)

)
(5.12)

= ηi(t) + βK
i

(∑
k∈S

ηk(t)

)
,

where the second equality follows from the fact that ϕk(t) = 0 for k ∈ S and ϕ =
ψ + η.

Now, fix 0 ≤ s < t < T . In analogy with the hyperplane H defined in
Lemma 3.1, let HK .= {x ∈ �K : ∑

i∈K xi = 0}. Recall that for every x ∈
RJ+ \ {0}, d(x) ⊂ H ⊂ d(0) = {x ∈ RJ : ∑J

i=1 xi ≥ 0} and, likewise, for every
x ∈ �K+ \ {0K}, dK(x) ⊂ HK ⊂ dK(0K) = {x ∈ �K : ∑

i∈K xi ≥ 0}. Also, note
that for any u ∈ [0, T ], ∑

i∈K ϕK
i (u) = ∑

i∈I ϕi(u) since ϕi(u) = 0 for i ∈ S,
and also that (5.11) implies

∑
i∈K ψK

i (u) = ∑
i∈I ψi(u). The last two statements

along with the fact that (ϕ, η) satisfy property 3 shows that∑
i∈K

(
ηK

i (t) − ηK
i (s)

) = ∑
i∈I

(
ηi(t) − ηi(s)

) ≥ 0,(5.13)

with the inequality being replaced by an equality if, for every u ∈ (s, t], ϕ(u) �= 0.
This shows, in particular, that ηK(t) − ηK(s) ∈ dK(0K) and ηK(t) − ηK(s) ∈
HK if, for every u ∈ (s, t], ϕ(u) �= 0. Thus, this proves property 3 in the case
when either ϕ(u) = 0 for some u ∈ (s, t] or when ϕ(u) �= 0 for every u ∈ (s, t], but
co[⋃u∈(s,t] dK(ϕK(u))] = HK .

We now consider the remaining case when ϕ(u) �= 0 for every u ∈ (s, t], and
co[⋃u∈(s,t] dK(ϕK(u))] � HK . By Lemma 3.1, the latter relation implies that
there exists j ∈ K such that, for every u ∈ (s, t], ϕj (u) = ϕK

j (u) > 0. Since (ϕ, η)

satisfy property 3 of the ESM and the vectors di, i ∈ �E .= I \ {j}, are linearly
independent, there exist unique θk ≥ 0, k ∈ �E, such that

η(t) − η(s) = ∑
k∈�E

θkdk(5.14)
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and

θk > 0 �⇒ ϕk(u) = 0 for some u ∈ (s, t].(5.15)

Substituting η(t) − η(s) for w in (3.2)–(3.3), and using the fact that S ⊆ �E, the
relation (5.14) implies that, for i ∈ I,

ηi(t) − ηi(s) = θi

1 − βi

− βi

(∑
j∈�E

θj

1 − βj

)
(5.16)

= θi

1 − βi

− βi

( ∑
j∈�E\S

θj

1 − βj

)
− βi

(∑
j∈S

θj

1 − βj

)
.

Summing over i ∈ S, this yields

∑
i∈S

(
ηi(t) − ηi(s)

) =
(∑

j∈S

θj

1 − βj

)(
1 − ∑

i∈S

βi

)
−

(∑
i∈S

βi

)( ∑
j∈�E\S

θj

1 − βj

)
.

The last two relations can be combined with (5.12) to show that, for i ∈ K ,

ηK
i (t) − ηK

i (s) = θi

1 − βi

− βi

(
1 +

∑
k∈S βk∑
k∈K βk

)( ∑
j∈�E\S

θj

1 − βj

)

= θi

1 − βi

− βK
i

( ∑
j∈�E\S

θj

1 − βj

)
.

Using the definition

θK
i

.= 1 − βK
i

1 − βi

θi for i ∈ K(5.17)

and the fact that �E \ S = �E ∩ K , the last equation can be rewritten as

ηK
i (t) − ηK

i (s) = θK
i

1 − βK
i

− βK
i

( ∑
j∈�E∩K

θK
j

1 − βK
j

)
for i ∈ K.

From the definition of the K-reduced directions of constraint given in (5.9), argu-
ments analogous to those used to obtain (5.14) and the first line of (5.16) can be
used to show that

ηK(t) − ηK(s) = ∑
k∈�E∩K

θK
k dK

k .

That property 3 of the ESP is satisfied can now be inferred from the fact that, for
k ∈ K , (5.17) shows that θK

k > 0 if and only if θk > 0, and (5.15) ensures that
θk > 0 implies ϕk(u) = 0 [equivalently, ϕK

k (u) = 0] for some u ∈ (s, t].
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The fourth property of the ESP can be proved in an analogous fashion, splitting
into the cases when ϕ(t) = 0 and ϕ(t) �= 0 [in which case H �= d(ϕ(t)) and the set
{di : ϕi(t) = 0} is linearly independent]. The argument is exactly analogous to the
proof of property 3 and is thus omitted. Thus, we have shown that ϕK = ��K(ψK).

If ψ ∈ dom(�), then, by Theorem 1.3(2) of [16], η is of bounded variation on
every compact time interval, which in turn implies that ηK is of bounded variation
on every compact time interval. Since (ϕK , ηK) satisfy the K-reduced ESP for
ψK , once again invoking Theorem 1.3(2) of [16], this shows that (ϕK , ηK) in
fact solve the K-reduced SP for ψK , thus establishing the last statement of the
theorem. �

5.4. Heavy traffic approximation for the unfinished work. Fix ν ∈ RJ with∑
j∈I νi = 0 and denote the set of strictly subcritical classes S(ν) simply by S.

Recall that, due to the ordering (4.16), S has the form {j∗, . . . , J } for some j∗ > 1
(with j∗ set to J + 1 if S is empty). Let K = j∗ − 1, so that K is the cardinality of
the set K = I \ S of critical classes. It will be convenient to introduce the linear
“projection” operators L :D([0,∞) : RJ ) → D([0,∞) : RK) and L : RJ → RK

defined by

[Lf ]i = fi + βK
i

(∑
j∈S

fj

)
if i ∈ K,

for f ∈ D([0,∞) : RJ ) and, analogously,

[Lv]i = vi + βK
i

(∑
j∈S

vj

)
if i ∈ K

for v ∈ RJ . (In all cases, the sum over an empty set is taken to be equal to zero.)
Define X̂K .= L(û + B + ĉι), and note that (since û ∈ M)

X̂K
i = ûi + Bi + ĉi ι + βK

i

∑
j∈S

(Bj + ĉj ι).

Moreover, recalling the definition of the K-reduced GPS ESM ��K associated with
the weight vector βK defined in (5.8), let

ÛK .= ��K(X̂K),

and define the J -dimensional process Û
.= (ÛK ,0S), where here 0S is the iden-

tically zero process in the space �S+ = {(xj∗, . . . , xJ ) :x ∈ RJ }. In other words,
let

Ûi
.=

{
ÛK

i , for i ∈ K ,
0, for i ∈ S.

(5.18)

Also, define

T̂
.= û + B − Û + ĉι.

We now state and prove the main result of the paper.
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THEOREM 5.7. Suppose Assumptions 2.1, 4.1, 5.1 and the overall heavy traf-
fic condition (5.2) are satisfied. Then Ûn ⇒ Û and T̂ n ⇒ T̂ .

PROOF. For n ∈ N, define HK,n .= LHn, XKn .= LXn, UK,n .= �K(XKn),
BK .= LB and, likewise, αK .= Lα, νK .= Lν, ĉK .= Lĉ, ūK .= Lū and ûK .= Lû.
Note that, since Assumption 4.1(1) and Assumption 5.1(1) together imply that
ū = 0 and û ∈ M, it follows that ūK = 0 and ûK

i = ûi for i ∈ K . By (4.20)
and (4.21), we know that, for i ∈ K , γi − αi = νi = −βi

∑
j∈S νj/

∑
k∈K βk .

By (5.2),
∑J

j=1 νj = 0. When rearranged, this shows that νK = 0 or, equivalently,

that γ K = αK . Also note that
∑K

i=1 αK
i = 1. Now let �UK,n and �XK,n be the fluid

scaled versions of UK,n and XK,n, as defined in (4.1), and also define �XK .= 0,
ÛK .= 0. Then, by Assumption 4.1(1) and the definition of Un

j (0) given after the
proof of Theorem 5.4, we have

lim
n→∞

�UK,n(0) = L

(
lim

n→∞
�Un(0)

)
≤ L

(
lim

n→∞
Un(0)

n

)
= Lū = ūK = 0.

When combined with Theorem 5.4(2), Assumption 4.1(3), the linearity of the op-
erators L and L and the fact that νK = 0, this shows that �XK,n → �XK ≡ 0 u.o.c.
Since �K is the SM associated with the GPS model with basic and redistribution
vectors αK and βK , Remark 2.4 ensures that it is Lipschitz continuous. Since
�XK,n and �XK are of bounded variation and thus lie in the domain of the SM, this
allows us to conclude that �UK,n → �K( �XK) = 0 .= �UK u.o.c.

Now define X̂K,n, ĤK,n and ÛK,n as in (5.1), with U,X and H replaced
by UK , XK and HK , respectively. The fact that �XK = �UK = 0, the scaling
properties of the SM and the fact that the ESM coincides with the SM on the
domain of the SP (see Remark 2.4) show that ÛK,n = ��K(X̂K,n) and

X̂K,n = LUn(0)√
n

+ L
(
Ĥn + √

n[ν + (γ n − γ )]ι).
Along with Theorem 5.4(3), Assumption 5.1(1) and Assumption 5.1(3), this shows
that X̂K,n → X̂K u.o.c. The fact that ÛK,n = ��K(X̂K,n) and the Lipschitz con-
tinuity of the GPS ESM ��K (which follows from Remark 2.4) then shows that
ÛK,n → ÛK u.o.c. Now fix ω ∈ �. Since Lemma 5.5, along with Theorem 5.6,
shows that there exists N = N(ω) < ∞ such that, for all n ≥ N(ω),

Ûn
i (ω) =

{
0, if i ∈ S,
[�K(X̂K,n(ω))]i = ÛK,n

i (ω), if i ∈ K ,

we conclude that Ûn(ω) → Û (ω) for every ω ∈ �.
Furthermore, since �U = Û ≡ 0 and � is Lipschitz continuous, there exists a

constant C < ∞ such that, for any T < ∞,

sup
t∈[0,T ]

|Ûn(t) − Ûn(t)|



56 K. RAMANAN AND M. I. REIMAN

= √
n sup

t∈[0,T ]
|�Un(t) − �Un(t)|

= √
n sup

t∈[0,T ]
|�(�Xn)(t) − �( �Xn)(t)|

≤ C
√

n sup
t∈[0,T ]

|�Xn(t) − �Xn(t)|

≤ C

∣∣∣∣Un(0)√
n

− Un(0)√
n

∣∣∣∣ + C
√

n sup
t∈[0,T ]

| �Hn(t) − �Hn(t)|

≤ JC max
j∈S

Un
j (0)√

n
+ C sup

t∈[0,T ]
|Ĥ n(t) − Ĥn(t)|.

Taking limits as n → ∞, Assumption 5.1(1) and the fact that û ∈ M show that the
first term in the last line of the display tends to zero, while Assumption 5.1(2) and
Theorem 5.4(3) show that the second term tends to zero. When combined with the
fact that Ûn → Û u.o.c., this shows that Ûn → Û u.o.c., as desired.

Finally, using equations (2.1) and (2.2), for n ∈ N and t ∈ [0,∞), we can write

T n
i (t) = Un

i (0) + Hn
i (t) − Un

i (t).

Using the relation �T = γ ι, which follows from Theorem 3.2, this implies that

�T n
i (t) = Un

i (0)√
n

+ �Hn
i (t) − �Un

i (t) + √
n(γ n

i − γi)t.

By Assumption 5.1 and the diffusion limit for the unfinished work just proved
above, we then have

T̂ n → T̂
.= û + B − Û + ĉι,(5.19)

u.o.c. By Remark 5.2, the pathwise u.o.c. limits must be replaced by weak conver-
gence, and the proof of the theorem is complete. �

REMARK 5.8. It is also possible to introduce additional primitives to describe
the queue length Qn, sojourn time V n and waiting time Wn processes associated
with this model. Indeed, this was done in [17] where, under general assumptions
on the first-order properties of these primitives (see Assumption 4.5 and Condi-
tion 4.8 of [17]), fluid limits for these processes were established (see Theorems
4.7 and 4.11 of [17]). In particular, it was also shown in Lemma 4.13 of [17]
that when the heavy traffic condition

∑J
i=1 γi = 1 holds (and the initial condi-

tions converge in a suitable manner to 0), the fluid limits of all these processes are
identically zero. In addition, under general functional central limit type assump-
tions (see Assumptions 4.12 and 4.16 of [17]), diffusion limits for these processes
were deduced from the corresponding diffusion limits for the unfinished work and
busy time processes. Indeed, it was shown in Theorems 4.18 and 4.19 of [17] that
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the diffusion limit Q̂ for the queue length process satisfies Q̂i = μiÛi for i ∈ I,
where 1/μi corresponds to the long-run average service requirement of a class i

customer, while the diffusion limits V̂ and Ŵ for the sojourn and waiting time
processes, respectively, satisfy V̂i = Ŵi = Ûi/γi for i ∈ I. These diffusion results
were obtained in [17] under the balanced heavy traffic condition γ = α. However,
it can be shown that these results continue to hold even in the unbalanced case con-
sidered in this paper. Indeed, they can be deduced from the results of Theorem 5.7
by following almost verbatim the proofs of Theorems 4.18 and 4.19 in [17], with
the only modification that α be replaced by γ in those proofs. As a consequence,
we omit a detailed exposition of these results.

Acknowledgments. The authors are grateful to comments by the referees that
led to an improvement in the exposition of the paper.
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