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Loss Function Based Ranking in Two-Stage,

Hierarchical Models
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Abstract. Performance evaluations of health services providers burgeons. Simi-
larly, analyzing spatially related health information, ranking teachers and schools,
and identification of differentially expressed genes are increasing in prevalence
and importance. Goals include valid and efficient ranking of units for profiling
and league tables, identification of excellent and poor performers, the most dif-
ferentially expressed genes, and determining “exceedances” (how many and which
unit-specific true parameters exceed a threshold). These data and inferential goals
require a hierarchical, Bayesian model that accounts for nesting relations and iden-
tifies both population values and random effects for unit-specific parameters. Fur-
thermore, the Bayesian approach coupled with optimizing a loss function provides
a framework for computing non-standard inferences such as ranks and histograms.

Estimated ranks that minimize Squared Error Loss (SEL) between the true
and estimated ranks have been investigated. The posterior mean ranks minimize
SEL and are “general purpose,” relevant to a broad spectrum of ranking goals.
However, other loss functions and optimizing ranks that are tuned to application-
specific goals require identification and evaluation. For example, when the goal is to
identify the relatively good (e.g., in the upper 10%) or relatively poor performers,
a loss function that penalizes classification errors produces estimates that mini-
mize the error rate. We construct loss functions that address this and other goals,
developing a unified framework that facilitates generating candidate estimates,
comparing approaches and producing data analytic performance summaries. We
compare performance for a fully parametric, hierarchical model with Gaussian
sampling distribution under Gaussian and a mixture of Gaussians prior distribu-
tions. We illustrate approaches via analysis of standardized mortality ratio data
from the United States Renal Data System.

Results show that SEL-optimal ranks perform well over a broad class of loss
functions but can be improved upon when classifying units above or below a per-
centile cut-point. Importantly, even optimal rank estimates can perform poorly in
many real-world settings; therefore, data-analytic performance summaries should
always be reported.
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1 Introduction

Performance evaluation burgeons in many areas including health services

(Goldstein and Spiegelhalter 1996; Christiansen and Morris 1997; Normand et al. 1997;

McClellan and Staiger 1999; Landrum et al. 2000, 2003; Daniels and Normand 2006;

Austin and Tu 2006), drug evaluation (DuMouchel 1999), disease mapping

(Devine and Louis 1994; Devine et al. 1994; Conlon and Louis 1999; Wright et al. 2003;

Diggle et al. 2006), and education (Lockwood et al. 2002; Draper and Gittoes 2004;

McCaffrey et al. 2004; Rubin et al. 2004; Tekwe et al. 2004; Noell and Burns 2006).

Goals of such investigations include valid and efficient estimation of population pa-

rameters such as average performance (over clinics, physicians, health service regions or

other “units of analysis”), estimation of between-unit variation (variance components)

and unit-specific evaluations. The latter includes estimating unit specific performance,

computing the probability that a unit’s true, underlying performance is in a specific

region, ranking units for use in profiling and league tables (Goldstein and Spiegelhalter

1996), identification of excellent and poor performers.

Bayesian models coupled with optimizing a loss function provide a framework for

computing non-standard inferences such as ranks and histograms and producing data-

analytic performance assessments. Inferences depend on the posterior distribution,

and how the posterior is used should depend on inferential goals. Gelman and Price

(1999) showed that no single set of estimates can simultaneously optimize loss func-

tions targeting the unit-specific parameters (e.g, unit-specific means, optimized by the

posterior mean) and those targeting the ranks of these parameters. For example, as

Shen and Louis (1998) and Liu et al. (2004) showed, ranking the unit-specific maxi-

mum likelihood estimates (MLEs) performs poorly as does ranking Z-scores for testing

whether a unit’s mean equals the population mean. In some situations, ranking the

posterior means of unit-specific parameters can perform well, but in general an optimal

approach to estimate ranks is needed.

In the Shen and Louis (1998) approach, SEL operates on the difference between the

estimated and true ranks. But, in many applications interest focuses on identifying the

relatively good (e.g., in the upper 10%) or relatively poor performers, a down/up classi-

fication. For example, quality improvement initiatives should be targeted at health care

providers that have the highest likelihood of being the poorest performers; geography-

specific, environmental assessments should be targeted at the most likely high incidence

locations (Wright et al. 2003); genes with differential expression in the top 1% (say)

should be selected for further study.

We construct new loss functions that focus on down/up classification and derive the

optimizers for a subset of them. We develop connections between the new optimizers

and others in the literature; report performance evaluations among the new ranking

methods and other candidates; identify appropriate uncertainty assessments including

a new performance measure. We evaluate performance for a fully parametric hierar-

chical model with unit-specific Gaussian sampling distributions and assuming either a

Gaussian or a mixture of Gaussians prior. We evaluate performance and robustness

under the prior and loss function that was used to generate the ranks as well as under
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other priors and loss functions. Shen and Louis (1998) showed that when the posterior

distributions are stochastically ordered, maximum likelihood estimate based ranks, pos-

terior mean based ranks, SEL-optimal ranks and those based on most other rank-specific

loss functions are identical. We report performance assessments for the stochastically

ordered case and compare approaches for situations when the posterior distributions

are not stochastically ordered. We illustrate approaches using Standardized Mortality

Ratio (SMR) data from the United States Renal Data System (USRDS).

2 The two-stage, Bayesian hierarchical model

We consider a two-stage model with independent identically distributed (iid) sampling

from a known prior G with density g and possibly different unit-specific sampling dis-

tributions fk:

θ1, . . . , θK iid G(θk), k = 1, . . . , K

Yk | θk ∼ fk(Yk | θk). (1)

From model (1) we can derive the independent (ind) posterior distributions for

Bayesian inferences:

[θk | Yk] ind gk(θk | Yk) =
fk(Yk | θk)g(θk)∫
fk(Yk | u)g(u)du

.

For computing efficiency, we assume that the θs are iid, though model (1) can be

generalized to allow a regression structure in the prior and extended to three stages.

Our theoretical results hold for these more general situations.

2.1 Loss functions and decisions

Let θ = (θ1, . . . , θK) and Y = (Y1, . . . , YK). For a loss function L(θ, a), the optimal

Bayesian a(Y) minimizes the posterior Bayes risk,

RiskG(a(Y),Y) = Eθ|Y[L(θ, a(Y)) | Y],

and thereby the pre-posterior risk

RiskG(a) = EY[RiskG(a(Y),Y)].

Also, for any a(Y) we can compute the frequentist risk:

Risk(θ, a(·)) = E
Y|θ [L(θ, a(Y)) | θ].
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3 Ranking

Laird and Louis (1989) represented the ranks by,

Rk(θ) = rank(θk) =

K∑

j=1

I{θk≥θj}, (3)

with the smallest θ having rank 1 and the largest having rank K. The non-linear form

of (3) implies that, in general, the optimal ranks are neither the ranks of the observed

data nor the ranks of the posterior means of the θs. A loss function is necessary to

formalize developing estimates and related uncertainties.

3.1 Squared-error loss (SEL)

Square error loss (SEL) is the most common loss function used in estimation. It is

optimized by the posterior mean of the target parameter. For example, under the

model (1), with the unit-specific θs as the target, the loss function is L(θ, a) = (θ− a)2

and the optimal estimator is posterior mean (PM) θpm
k = E(θk | Y).

When ranks are the target, producing SEL-optimal ranks by minimizing

L̂ = L̂(Rest, R(θ)) =
1

K

∑

k

(Rest
k −Rk(θ))2 (4)

and setting Rest
k equal to,

R̄k(Y) = Eθ|Y[Rk(θ) | Y] =

K∑

j=1

pr(θk ≥ θj | Y). (5)

The R̄k are shrunk towards the mid-rank (K + 1)/2, and generally are not integers

(Shen and Louis 1998). Optimal integer ranks are reached by

R̂k(Y) = rank(R̄k(Y)). (6)

See Section Appendix A for additional details on producing optimal ranks under weighted

SEL.

3.2 Notation

Henceforth, we drop dependency on θ and omit conditioning on Y whenever this does

not cause confusion. For example, Rk stands for Rk(θ) and R̂k stands for R̂k(Y).

Furthermore, use of the ranks facilitates notation in mathematical proofs, but percentiles

Pk = Rk/(K + 1); P̂k = R̂k/(K + 1), etc. (7)

normalize large sample performance and aid in communication. For example,

Lockwood et al. (2002) showed that mean square error (MSE) for percentiles rapidly

converges to a function that does not depend on K; the same normalization strategy

applies in the loss functions below.
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4 Upper 100(1− γ)% loss functions

L̂ (Equation 4) evaluates general performance without specific attention to identifying

the relatively well or poorly performing units. To attend to this goal, for 0 < γ < 1

we investigate loss functions that focus on identifying the upper 100(1 − γ)% of the

units, with loss depending on the correctness of classification and, possibly, a distance

penalty; identification of the lower 100γ% group is similar. For notational convenience,

we assume that γK is an integer, so γ(K + 1) is not an integer and in the following it

is not necessary to distinguish between (>, ≥) or (<, ≤).

4.1 Summed, unit-specific loss functions

For 0 < γ < 1, let

ABk(γ, Pk, P est
k ) = I{Pk>γ, P est

k
<γ} = I{Rk>γ(K+1), Rest

k
<γ(K+1)}, (8)

BAk(γ, Pk, P est
k ) = I{Pk<γ, P est

k
>γ} = I{Rk<γ(K+1), Rest

k
>γ(K+1)}.

ABk and BAk indicate the two possible modes of misclassification. ABk indicates that

the true percentile is above the cutoff, but the estimated percentile is below the cutoff.

Similarly, BAk indicates that the true percentile is below the cutoff while the estimated

percentile is above it.

For p, q, c ≥ 0 define,

L̃(γ, p, q, c) =
1

K

∑

k

{|γ − P est
k |pABk(γ, Pk, P est

k ) + c|P est
k − γ|qBAk(γ, Pk, P est

k )},

L†(γ, p, q, c) =
1

K

∑

k

{|Pk − γ|pABk(γ, Pk, P est
k ) + c|γ − Pk|qBAk(γ, Pk, P est

k )}, (9)

L‡(γ, p, q, c) =
1

K

∑

k

{|Pk − P est
k |pABk(γ, Pk, P est

k ) + c|P est
k − Pk|qBAk(γ, Pk, P est

k )},

L0/1(γ) =

∑
k{ABk(γ, Pk, P est

k ) + BAk(γ, Pk, P est
k )}

K
= 2

∑
k ABk(γ, Pk, P est

k )

K

=
#(misclassifications)

K
= L̃(γ, 0, 0, 1) = L†(γ, 0, 0, 1) = L‡(γ, 0, 0, 1).

The loss functions confer no penalty if the pair of estimated and true unit-specific

percentiles, (P est
k , Pk), are either both above or both below the γ cut point. If they are

on different sides of γ, L̃ penalizes by an amount that depends on the distance of the

estimated percentile from γ, L† by the distance of the true percentile from γ and L‡ by

the distance between the true and estimated percentiles. Parameters p and q adjust the

intensity of the penalties; p 6= q and c 6= 1 allow for different penalties for the two kinds of

misclassification. L0/1(γ) counts the number of discrepancies and is equivalent to setting

p = q = 0, c = 1; we use the relation
∑

k ABk(γ, Pk, P est
k ) =

∑
k BAk(γ, Pk, P est

k ) in its

definition. In practice, L† and  L‡ would be harder to use than L̃ because their penalizing
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quantities depend on unknown Pk. However, inclusion of them in our investigation does

help to calibrate the robustness of other estimators.

Our mathematical analyses apply to the general loss functions (9), but our simula-

tions are conducted for p = q = 2, c = 1. Within this setting, we denote the first three

loss functions in (9) as L̃(γ), L†(γ) and L‡(γ).

We do not investigate the “all or nothing, experiment-wise” loss function with zero

loss, when all units are correctly classified as above γ or below γ, and penalty 1 if

any unit is misclassified. While this loss function is one of the most fundamental and

provides framework in many multiple comparison methods, it does not provide a good

guideline in our ranking problem. Finding the optimal classification is challenging in

computation and there will be many nearly optimal solutions. Furthermore, in the spirit

of computing the false detection rate, loss functions that compute average performance

over units or a subset of units are more appropriate in most applications.

5 Optimizers and other candidate ranks

We find ranks/percentiles that optimize L0/1 and L̃ and study an estimator that per-

forms well for L‡, but is not optimal. First, note that optimizers for the loss functions

in (9) and L̂ are equal when the posterior distributions are stochastically ordered (the

Gk(t | Yk) never cross). So, in this case P̂k, which minimizes L̂ (see equations (4),

(6) and (7)), is optimal for a broad class of loss functions (see Theorem 4). Also, it

is straightforward to show that all rank/percentile estimators operating through the

posterior distribution of the ranks are monotone transform invariant; that is, they are

unchanged by monotone transforms of the target parameter.

5.1 Optimizing L0/1

Theorem 1 L0/1 loss is minimized by

R̃k(γ) = rank{pr(Pk ≥ γ|Y)}, (10)

P̃k(γ) = R̃k(γ)/(K + 1).

These are not unique optimizers.

See Section Appendix B.

5.2 Optimizing L̃

Theorem 2 The P̃k(γ) optimize L̃. In Section Appendix C, we show in detail that

the P̃k(γ) are also optimal for more general loss functions with the distance penalties |γ−
P est

k |p and c|P est
k −γ|q replaced by any nondecreasing functions of |γ−P est

k |. The proof

has three steps: first, classify the units into (above γ)/(below γ) groups; second, inside

each group, rewrite the posterior risk as the inner product of the discrepancy vector
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and the misclassification probability vector; third, repeatedly use the rearrangement

inequality (Hardy et al. 1967) to minimize the inner product.

The Normand et al. (1997) estimate

Normand et al. (1997) proposed using the posterior probability pr(θk > t|Y) and ranks

based on it to compare the performance of medical care providers. The cut point t is

an application-relevant threshold. Using this approach, we define P ∗
k (γ) with properly

chosen cut point t and show that P ∗
k (γ) is essentially identical to P̃k(γ).

Definition of P ∗
k (γ): Let

ḠY(t) =
1

K

K∑

j=1

pr(θj ≤ t|Y), (11)

and define P ∗
k (γ) as the percentiles produced by ranking the pr(θk ≥ Ḡ−1

Y
(γ)|Y). Sec-

tion 6.2 gives a relation among P̄k, P̃k(γ) and P ∗
k . Theorems 5 and 6 show that P̃k(γ)

is asymptotically equivalent to P ∗
k (γ).

By making a direct link to the original θ scale, P ∗
k (γ) is straightforward to explain

and interpret. Furthermore, for a desired accuracy, computing P ∗
k (γ) is substantially

faster than computing P̃k(γ), since the former requires only accurate computation of

individual posterior distributions and of ḠY .

5.3 Optimizing L†

Section Appendix D presents an optimization procedure for the case p = q = 2,−∞ <
c < ∞. However, other than use of brute force (complete enumeration), we have not

found an algorithm for general (p, q, c). As for L0/1, performance depends only on

optimal allocation into the (above γ)/(below γ) groups. Additional criteria are needed

to specify the within-group order.

5.4 Optimizing L‡

We have not found a simple means of optimizing this loss function, but Section Appendix E

develops a helpful relation.

5.5 Other ranking estimators

Traditional rank estimators include ranks based on maximum likelihood estimates, those

based on posterior means of the θs and those based on hypothesis testing statistics (Z-

scores, P-values). MLE-based ranks are monotone transform invariant, but the others

are not. As shown in Liu et al. (2004), MLE-based ranks will tend to give units with

relatively large variances extreme ranks, while hypothesis testing statistics based ranks
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will tend to place units with relatively small variances at the extremes. Though not

an optimal solution to this problem, modified hypothesis testing statistics moderate

this shortcoming by reducing the ratio of the variances (Tusher et al. 2001; Efron et al.

2001).

A two stage ranking estimator

Ranking estimator P̃k(γ) optimize the (above γ)/(below γ) misclassification loss L0/1

and P̂k optimize the L̂, which penalizes on the distance |P est
k − Pk|. A convex combi-

nation loss function, L̂w
0/1(γ) = (1− w)L0/1(γ) + wL̂, (0 ≤ w ≤ 1), thus addresses both

inferential goals, as L‡ similarly does, and motivates
ˆ̃Pk(γ), a two stage hybrid ranking

estimator.

Definition of ˆ̃
Pk(γ): Use P̃k(γ) to classify into (above γ)/(below γ) percentile

groups. Then, within each percentile group order the estimates by P̂k.

Theorem 3 ˆ̃Pk(γ) minimizes L0/1 and conditional on this (above γ)/(below γ) classi-

fication, produces optimal SEL estimates within the two groups.

See Section Appendix F.

Furthermore, it is straightforward to show that for L̂w
0/1(γ) there exists a w∗ > 0

such that for all w ≤ w∗,
ˆ̃Pk(γ) is optimal and there exists a w∗ < 1 such that for all

w ≥ w∗, P̂k is optimal.

6 Relations among estimators

In this section we develop relations among estimators using ranks or percentiles depend-

ing on the context for convenience.

6.1 A general relation

Let ν = [γK] and define

R+
k (ν) =

K(K + 1)

2(K − ν + 1)
pr(Rk ≥ ν).

Then the ranked R+
k (ν) equal the ranked pr(Rk ≥ ν) and so each generates the

R̃k(γ). Note that
K(K+1)

2(K−ν+1) is a constant used to standardize R+
k (ν) such that:

∑

k

K(K + 1)

2(K − ν + 1)
pr(Rk ≥ ν) =

∑

k

R+
k (ν) =

K(K + 1)

2
=

∑

k

Rk.
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Theorem 4 Rk is a linear combination of the R+
k (ν) with respect to ν and so for any

convex loss function the Rk outperform the R+
k (ν) for at least one value of ν = 1, . . . , K.

For SEL, Rk dominates for all ν. As shown in Section Appendix A, the R̂k = rank(Rk)

also dominate rank(R+
k (ν)) = R̃k(γ) for all ν.

See Section Appendix G.

6.2 Relating P̂k, P̃k(γ) and P ∗
k

From (3), (5) and (11), we have that,

ḠY(θk) = E[Rk|θk]/K,

R̄k = E[Rk] = KE[ḠY(θk)] = E{E[Rk|θk]}.

The R∗
k(γ) are generated by ranking the pr(θk ≥ Ḡ−1

Y
(γ)), which is equivalent to ranking

pr(ḠY(θk) ≥ γ). By the foregoing, it is equivalent to ranking the pr(E[Rk|θk] ≥ γK),

which is similar to pr(Rk ≥ γK), the generator of P̃k(γ). The R̂k are produced by

ranking the R̄k which is the same as ranking the expectation of the random variables

used to produce the R∗
k or R̃k(γ).

6.3 Approximate equivalence of P̃k(γ) and P ∗
k

Theorem 5 Assume that θk
iid∼ G, Yk|θk

ind∼ f(Yk | θk) and that the posterior cumula-

tive distribution function (cdf) of each θk is continuous and differentiable at G−1(γ). If

Gk(·|Y) has a universally bounded second moment, then for K →∞, P ∗
k (γ) is equiva-

lent to P̃k(γ).

See Section Appendix H.

Theorem 6 Assume that θk
iid∼ G, Yk|θk

ind∼ f(Yk | θk, ζk) and that the posterior

cumulative distribution function (cdf) of each θk is continuous and differentiable at

G−1(γ). Furthermore, assume that the empirical distribution function (edf) of the ζk

converges to a probability distribution. If Gk(·|Y, ζ) has a universally bounded second

moment, then for K →∞, P ∗
k (γ) is equivalent to P̃k(γ).

Proof: Regard ζk as part of the observed data and use Y ′
k = (Yk, ζk) in Theorem 5.

Theorems 5 and 6 imply that P ∗
k (γ) is asymptotically optimal for L̃ and provides a

loss function basis for the Normand et al. (1997) estimates.

6.4 A unifying score function

We provide a unified approach to loss function based ranking. To this end, we define

a non-negative, nondecreasing scoring function S(P ) : (0, 1) → [0, 1]. The function
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can be regarded as the scores (reward) a unit would get if its percentile was P . It

relates percentiles, P , to “consequences” S(P ). These relations can help in eliciting

an application-relevant loss function and in interpreting loss-function based percentiles.

We use SEL for S(P ) to produce percentiles and ranks, specifically:

Ls = L(Sest, S(P (θ))) =
1

K

∑

k

(Sest
k − S(Pk(θ)))2. (12)

The optimal Sest satisfy Sest
k = E[S(Pk)|Y] and we use the ranks and percentiles based

on them.

When S(P ) = aP + b, a > 0, i.e. the reward is linear in the estimated percentile, we

have L̂s = a2L̂ and so P̂k is associated with linear rewards. When S(P ) = I{P>γK}, i.e.,

the reward only depends on whether the percentile of a unit is beyond the threshold γ,

there is no constraint on the rankings of units inside each of the (above γ)/(below γ)

groups. With this setting, there exist many optimizers and P̃k(γ) is one of them.

For the two stage ranking estimator
ˆ̃Pk(γ), let S(P ) = aP + I{P>γ}, and so Sest

k =

aP̄k + pr(Pk > γ). When a is sufficiently close to zero,
ˆ̃Pk(γ) is optimal. More S(P )

are given in Section Appendix I.

7 Performance evaluations and comparisons

7.1 Posterior and pre-posterior performance evaluations

In a Bayesian model, an estimator’s performance can be evaluated by using the posterior

distribution (data analytic evaluations) and by using the marginal distribution of the

data (pre-posterior evaluations). For example, preposterior SEL performance is the sum

of expected posterior variance plus expected squared posterior bias.

We provide evaluations relative to the loss function used to produce the estimate

and other potentially relevant loss functions. For example, performance with respect

to SEL should be computed for the SEL optimizer and for other estimators. These

comparisons help to determine the efficiency of an estimator that optimizes one loss

function when evaluated for other loss functions. Procedures that are robust to the

choice of loss functions will be attractive in applications.

7.2 The (above γ)/(below γ) operating characteristic

For (above γ)/(below γ) classification, plots of the posterior probability of exceeding γ
versus estimated percentiles are informative (see Figure 4). Such plots can be summa-

rized by the a posteriori operating characteristic (OC). For any percentiling method,

define,

OC(γ) = pr(Pk < γ|P est
k > γ,Y) + pr(Pk > γ|P est

k < γ,Y) (13)

= pr(Pk > γ|P est
k < γ,Y)/γ =

Eθ|YL0/1(γ)

2γ(1− γ)
,
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with the last equality following from identity
∑

k BAk(γ, Pk, P est
k ) =

∑
k ABk(γ, Pk, P est

k ).

OC(γ) is the sum of two misclassification probabilities and so is optimized by P̃k(γ). It is

normalized so that if the data provide no information on the θk, then for all γ, OC(γ) ≡
1. Evaluating performance using only one of the probabilities, e.g., pr(Pk > γ|P est

k <
γ,Y) is analogous to computing the false discovery rate (Benjamini and Hochberg 1995;

Storey 2002, 2003).

7.3 Unit-specific performance

For loss functions that sum over unit-specific components, performance can also be

evaluated for individual units and, in a frequentist evaluation, for individual θ vectors.

These evaluations are in Section 9.3.

8 Simulation scenarios

We evaluate pre-posterior performance for the Gaussian sampling distribution with

K = 200 using 2000 simulation replications. We compute pr(Rk = ` | Y) using an

independent sample Monte Carlo with 2000 draws. All simulations are for loss functions

with p = q = 2 and c = 1.

8.1 The Gaussian-Gaussian model

We evaluate estimators for the Gaussian/Gaussian, two-stage model with a Gaussian

prior and Gaussian sampling distributions and allow for varying unit-specific variances.

Without loss of generality we assume that the prior mean is µ = 0 and the prior variance

is τ2 = 1. Specifically,

θk iid N(0, 1),

Yk |θk ∼ N(θk, σ2
k).

This derives:

θk | Yk ind N
(
θpm

k , (1−Bk)σ2
k

)
,

where θpm
k = (1−Bk)Yk and Bk = σ2

k/(σ2
k + 1). When unit-specific variances (σ2

k ≡ σ2)

are all equal, the posterior distributions are stochastically ordered and all ranking meth-

ods we investigate are identical. Evaluation for this case provides a baseline performance

with respect to the set of loss functions. In practice, the {σ2
k}’s can vary substantially

and we evaluate this situation using two departures from the σ2
k ≡ σ2 case. In each

case, the equal variance scenario is produced by rls = 1:

log uniform: Ordered, geometric sequences of the {σ2
k} with ratio of the largest σ2

to the smallest rls = σ2
K/σ2

1 and geometric mean gmv = GM(σ2
1 , . . . , σ2

K).

two clusters: The first half of the σ2
k ≡ (rls)−

1
2 ; for the second half, σ2

k ≡ (rls)
1
2 .

Here, rls = σ2
K/σ2

1 and gmv = 1.
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In both cases the variance sequence is monotone in k, but simulation results would be

the same if the indices were permuted. These variance sequences — constant, uniform

in the log scale, clustered at the extremes of the range — triangulate possible patterns,

though specific applications can, of course, have their unique features.

8.2 A Mixture prior

This prior is a mixture of two Gaussian distributions with the mixture constrained to

have mean 0 and variance 1:

θk
iid∼ (1− ε)N

(
−ε∆

A
,

1

A2

)
+ εN

(
(1− ε)∆

A
,

ξ2

A2

)

where

A2 = A2(ε, ∆, ξ) = (1− ε) + εξ2 + ε(1− ε)∆2.

We present results for ε = 0.1, ∆ = 3.40, ξ2 = .25, γ = 0.9 and compute the preposterior

risk for estimators that are computed from the posterior produced by this mixture and

for estimators that are based on a standard, Gaussian prior.

9 Simulation results

9.1 SEL for P̂k and estimated θ-based percentiles

Table 1 documents SEL (L̂) performance for P̂k, the optimal estimator, for percentiled

Yk (the MLE), percentiled θpm
k and percentiled exp

{
θpm

k +
(1−Bk)σ2

k

2

}
(the posterior

mean of eθk).

The posterior mean of eθk is presented to assess performance for a monotone, non-linear

transform of the target parameters. For rls = 1, the posterior distributions are stochas-

tically ordered and the four sets of percentiles are identical, as is their performance. As

rls increases, performance of Yk-derived percentiles degrades, those based on the θpm
k

are quite competitive with P̂k but performance for percentiles based on the posterior

mean of eθk rapidly degrades. Results show that though the posterior mean can per-

form well for some models and target parameters, in general it is not competitive with

rank-based approaches.

9.2 Comparisons among loss function-based estimates

Table 2 reports results for P̂k, P̃k(γ) and
ˆ̃Pk(γ) under four loss functions and for the

“log-uniform” variance pattern. For the “two-clusters” pattern, differences between

estimators are modified relative to those for the log-uniform pattern, but preference

relations are unchanged. For example, the L̂ risks are generally smaller for the “two-

clusters” variance pattern than for the “log-uniform” pattern, but the reverse is true

for L̃.
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percentiles based on

rls P̂k θpm
k exp

{
θpm

k +
(1−Bk)σ2

k

2

}
Yk

1 516 516 516 516

25 517 517 534 582

100 522 525 547 644

Table 1: Simulated preposterior SEL (10000L̂) for gmv = 1.

When rls = 1, P̃k(γ) ≡ P̂k ≡ ˆ̃Pk(γ) and so differences in the SEL results in the first

and seventh rows quantify residual simulation variation and Monte Carlo uncertainty

in computing the probabilities used in equation (1) to produce the P̃k(γ). Results for

other values of rls show that under L̂, P̂k outperforms P̃k(γ) and
ˆ̃Pk(γ) as must be the

case, since P̂k is optimal under SEL. Similarly, P̃k(γ) optimizes L0/1 and L̃, and for

rls 6= 1 outperforms competitors. Though
ˆ̃Pk(γ) optimizes L̂w

0/1(γ) (see Section 5.4) for

sufficiently small w, it performs relatively poorly for the seemingly related L‡; P̃k(γ)

appears to dominate and P̂k performs well. The poor performance of
ˆ̃Pk(γ) shows

that unit-specific combining of a misclassification penalty with squared-error loss is

fundamentally different from using them in an overall convex combination.

Similar relations among the estimators hold for the two component Gaussian mix-

ture prior and for a “frequentist scenario” with a fixed set of parameters and repeated

sampling only from the Gaussian sampling distribution conditional on these parameters.

Results in Table 2 are based on gmv = 1. Relations among the estimators for other

values of gmv are similar, but a look at extreme gmv is instructive. Results (not shown)

indicate that for rls = 1, the risk associated with L0/1 is of the form a(gmv)γ(1 − γ),

where a(gmv) is a constant depending only on the value of gmv. By identity (13), this

implies that the expectation of OC(γ) is approximately constant. When gmv = 0, the

data are fully informative, Yk ≡ θk and all risks are 0. When σ2
k → ∞, gmv = ∞ and

the Yk provide no information on the θs nor on Pk. Table 3 displays the preposterior

risk for this no information case, with values providing an upper bound for results in

Table 2.

Under L0/1 P̃k(γ) is the optimal and the difference between P̂k and P̃k(γ) depends

on the magnitude of rls. That P̃k(γ) is only moderately better than P̂k under L̃ is due

in part to our having considered only the case p = q = 2, c = 1, which makes L̃ very

similar to L̂. For larger p and q there would be a more substantial difference.

Figures 1-3 are based on the Gaussian-Gaussian model. Figure 1 displays the depen-

dence of risk on gmv for the exchangeable model (rls = 1). As expected, risk increases
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L0/1 L̂ L̃ L‡

γ rls P̂k P̃k(γ) P̂k P̃k(γ) ˆ̃Pk(γ) P̂k P̃k(γ) ˆ̃Pk(γ) P̂k P̃k(γ) ˆ̃Pk(γ)

0.5 1 2508 2511 517 518 517 104 105 104 336 337 336
0.5 25 2506 2508 519 524 519 98 96 98 340 335 340
0.5 100 2503 2503 521 530 521 93 90 93 342 334 342
0.6 100 2432 2422 522 537 523 91 87 91 324 316 327
0.8 25 1740 1717 517 558 517 67 59 67 175 170 181
0.8 100 1742 1689 523 595 523 71 57 71 178 170 189
0.9 1 1059 1058 515 520 515 30 30 30 73 73 73
0.9 25 1060 1032 518 609 519 37 29 37 75 72 81
0.9 100 1048 1005 523 673 523 43 29 42 77 70 86

0.8 1 1469 1471 565 567 565 54 54 54 150 150 150
0.8 25 1524 1494 566 606 567 59 51 59 161 158 168
0.9 1 782 782 565 575 565 14 14 14 42 42 42
0.9 25 823 783 564 699 564 23 14 23 51 48 58

0.8 1 1473 1470 565 566 565 54 54 54 150 150 150
0.8 25 1496 1493 567 615 567 58 52 59 159 158 168
0.9 1 782 782 565 570 565 14 14 14 42 42 42
0.9 25 788 783 565 664 564 22 14 23 50 45 58

Table 2: Simulated preposterior risk for gmv = 1. All values are 10000×(Loss). The

first block is for the Gaussian-Gaussian model; the second for the Gaussian mixture

prior assuming the mixture; the third for the Gaussian mixture prior, but with analysis

based on a single Gaussian prior.

L0/1 L̂ L‡ L̃ and L†

γ 200γ(1− γ) 1667 3333γ(1− γ) 3333γ(1− γ)[γ3 + (1− γ)3]

0.5 5000 1667 833 208

0.6 4800 1667 800 224

0.8 3200 1667 533 277

0.9 1800 1667 300 219

Table 3: Preposterior risk for rls = 1 when gmv =∞. All values are 10000×Risk.
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with gmv. For rls = 1, expected unit-specific loss equals the overall average risk and

so the box plots summarize the sampling distribution of unit-specific risk.
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Figure 1: Unit-specific, L̂ and L‡ risk classified by gmv for K = 200, γ = 0.8.

9.3 Unit-specific performance

When rls = 1, pre-posterior risk is the same for all units. However, when rls > 1, the σ2
k

form a geometric sequence and preposterior risk depends on the unit. We study this non-

exchangeable situation by simulation. Figure 2 displays loess smoothed performance of

P̂k, P̃k(γ) and
ˆ̃Pk(γ) for L0/1, L̂ and L‡ as a function of unit-specific variance for

gmv = 1 and 3, rls = 100 and γ = 0.8. Results for L̂ (gmv = 3) and L0/1 (gmv = 1)

are intuitive in that risk increases with increasing unit-specific variance. However, in

the displays for L0/1 (gmv = 3) and for L‡, for all estimators the risk increases and then

decreases as a function of σ2
k. For gmv and rls sufficiently large, similar patterns hold

for other γ-values with the presence and location of a downturn depending on | γ−0.5 |.
These apparent anomalies are explained as follows. If γ is near 1 (or equivalently,

near 0) and if the σ2
k differ sufficiently (rls >> 1), estimates for the high variance

units perform better than for those with mid-level variance. This relation is due to

the improved classification of high-variance units into (above γ)/(below γ) groups, with

substantial shrinkage of the percentile estimates towards 0.5 . For example, with γ = 0.8,

a priori 80% of the percentiles should be below 0.8. Estimated percentiles for the high

variance units are essentially guaranteed to be below 0.8 and so the classification error

for the large-variance units converges to 0.20 as rls→∞. Generally, low variance units

have small misclassification probabilities, but percentiles for units with intermediate

variances are not shrunken sufficiently toward 0.5 to produce a low L0/1.
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9.4 Classification performance

As shown in the foregoing tables and by Liu et al. (2004) and Lockwood et al. (2002),

even the optimal ranks and percentiles can perform poorly unless the data are very

informative. Figure 3 displays average posterior classification probabilities as a function

of the optimally estimated percentile for gmv = 0.33, 1, 10, 100 and γ = 0.6, 0.8, 0.9,

when rls = 1. The pattern shown by the three panels should hold for other γ choices and

we use the γ = 0.8 panel as the typical example for further comments. Discrimination

improves with decreasing gmv, but even when gmv = 0.33 (the σk are 1/3 of the prior

variance), the model-based, posterior probability of Pk > 0.8 is only 0.42 for a unit with

P̃k(0.8) = 0.8. For this probability to exceed 0.95 (i.e., to be reasonably certain that

Pk > 0.80) requires that P̃k(0.8) > 0.97. It can be shown that as gmv → ∞ the plots

converge to a horizontal line at (1 − γ) and that as gmv → 0 the plots converge to a

step function that jumps from 0 to 1 at γ.

9.5 The Poisson-Gamma model

We conducted investigations analogous to the all of the foregoing for the Poisson sam-

pling distribution with a Gamma prior, with constant or unequal variances (e.g., ex-

pected values) for the unit-specific MLEs. Results are qualitatively and quantitatively

very similar to those we report for the Gaussian sampling distribution.

10 Analysis of USRDS standardized mortality ratios

The United States Renal Data System (USRDS) uses provider specific, standardized

mortality ratios (SMRs) as a quality indicator for its nearly 4000 dialysis centers

(Lacson et al. 2001; End-Stage Renal Disease (ESRD) Network 2000) and

(United States Renal Data System (USRDS) 2005). Under the Poisson likelihood (last

line of model (14)), with Yk the observed and mk the expected deaths computed from a

case-mix adjustment (Wolfe et al. 1992), the MLE is ρ̂k = Yk/mk, with variance ρk/mk.

For the “typical” dialysis center ρk ≈ 1 and the mk control the variance of the MLEs.

The observed mks range from around 0 to greater than 100. The ratio of the largest

mk to the smallest mk, which is analogous to the rls in the foregoing simulations, is

around 258,000.

In this “profiling” application, the loss function should reflect the end use of the ranks

or percentiles. For example, suppose that the following monetary reward (increased

reimbursement) and penalty (increased scrutiny) system is in place:

• A provider either does or does not receive the reward depending on whether its

percentile is or is not beyond (for SMRs, below) a γ threshold.

• Providers that do get rewards receive varying amounts depending on their position

among those receiving rewards.

• Providers not receiving rewards undergo increased scrutiny from an oversight com-
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mittee.

• The distance from the threshold γ is used to monetize rewards or intensify scrutiny.

Loss function L̃ embodies this system with the values of p, q and c controlling the

award/penalty differences within the (above γ)/(below γ) groups. If rewarded providers

all get the same amount, then L0/1(γ) can be used. Alternatively, rewards and scrutiny

can depend on the posterior probability of exceeding or falling below γ, with both P̃k(γ)

and P ∗
k (γ) optimizing the evaluation.

Liu et al. (2004) analyzed 1998 data and Lin et al. (2004) extended these analyses

to 1998− 2001 for 3173 centers with complete data using an autoregressive model. We

illustrate the new loss functions and performance measures using 1998 data and the

model,

ξ
iid∼ N(0, 10), λ = τ−2 iid∼ Gamma(0.05, 0.2) (14)

[θ1, . . . , θK | ξ, τ ]
iid∼ N(ξ, τ2), θk = log(ρk)

[Yk | mk, ρk] ∼ Poisson(mkρk).

For these data, Ḡ−1
K (0.8) = 0.18 (ρ = 1.20). Table 4 gives the posterior risks. For all

loss functions investigated, the MLE based rank has the poorest performance; methods

based on the posterior distributions generally perform well. As Theorem 6 indicates,

P̃k(γ) and P ∗
k (γ) have almost identical risk.

Figure 4 displays pr(θk > 0.18 | Y) with X-axis percentiles determined separately

by the three percentiling methods. As shown by Theorem 6, the P ∗
k (0.8) and P̃k(0.8)

curves are monotone and approximately equal; the P̂k curve is not monotone, but is

close to the other curves. The OC(0.8) value for P ∗
k (γ) and P̃k(0.8) is 0.64 (the optimal

classification produces an error rate that is 64% of that for the no information case)

and for P̂k is 0.65, showing that for γ = 0.8, using P̂k to classify is nearly fully efficient.

Figure 4 also shows that for centers classified in the top 10%, the probability that they

are truly in the top 20% (γ = 0.8) can be as low as 0.45. Lin et al. (2004) showed that,

by using data from 1998-2001, this probability increases to 0.57. Evaluators should take

this relatively poor classification performance into account by tempering rewards and

scrutiny.

Figure 5 displays the relation between P̃k(0.8) and P̂k for 50 dialysis centers spaced

uniformly according to P̃k(0.8). Since P̃k(0.8) is based on the pr(Pk > .8|Y) calculated

from MCMC samples, ties appear when this probability is close to zero. Among 3173

dialysis centers, 249 centers have the exceeding probability 0 and all are estimated

with percentile 125/3174=0.039. Though P̂k is highly efficient, some percentiles are

substantially different from the optimal. As further evidence of this discrepancy, of the

635 dialysis centers classified by P̃k(0.8) in the top 20%, 39 are not so classified by P̂k

with most of these near the γ = 0.8 threshold. Estimated percentiles are very similar

for centers classified in the top 10%.
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P̂ PM
k P̂ MLE

k P̂k P̃k(γ)
ˆ̃Pk(γ) P ∗

k (γ)

L̂ 741 872 740 769 741 769

L̃ 108 164 107 100 107 100

L† 97 130 96 102 102 102

L‡ 281 401 279 275 285 276

L0/1 2001 2062 2006 1992 1991 1995

Table 4: Posterior, loss function risk for different ranking methods using the USRDS

1998 data. All values are 10000×(Loss). P̂ PM
k and P̂ MLE

k are percentiles based on the

θpm
k and the Yk respectively.

11 Discussion

Effective ranking or percentiling should be based on a loss function computed from

the estimated and true ranks, or be asymptotically equivalent to such loss function

based estimates. Doing so produces optimal or near optimal performance and ensures

desirable properties such as monotone transform invariance. In general, percentiles

based on MLEs or on posterior means of the target parameter can perform poorly.

Similarly, hypothesis test-based percentiles perform poorly.

Our performance evaluations are primarily for the fully parametric model with a

Gaussian sampling distribution, though we do investigate departures from the Gaussian

prior. Simulations for the Poisson/Gamma model produce relative performance very

similar to those for the Gaussian. The P̂k that optimize L̂ (SEL) are “general pur-

pose” with no explicit attention to optimize the (above γ)/(below γ) classification. The

optimal (above γ)/(below γ) ranks are asymptotically equivalent to the “exceedance

probability” procedure proposed in Normand et al. (1997). This near-equivalence pro-

vides insight into goals and a route to efficient computation.

We report loss function comparisons and plots based on unit-specific performance.

These can be augmented by bivariate and multivariate summaries of properties, for

example pair-wise posterior distributions or pair-wise operating characteristics.

When posterior distributions are not stochastically ordered and the choice of ranking

methods does matter, our simulations show that though P̃k(γ) and
ˆ̃Pk(γ) are optimal

for their respective loss functions and outperform P̂k, P̂k performs well for a broad range

of γ values. And, P̃k(γ) can have poor SEL performance. However, for some scenarios

the relative benefit of using an optimal procedure is considerable and so a choice of

estimator should be guided by goals.

Performance evaluations for three-level models with a hyper-prior and robust analy-

ses based on the non-parametric maximum likelihood prior or a fully Bayesian nonpara-

metric prior (Paddock et al. 2006) showed that SEL-optimal ranks perform well over a

wide range of prior specifications.

Other loss functions and estimates can be considered. Weighted combinations of

several loss functions can be used to broaden the class of loss functions. If an application-
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relevant loss function cannot be optimized, our evaluations provide a framework to

compare candidate estimators. Our scoring function approach can help practitioners

elicit a meaningful loss function with an intuitive interpretation.

Though there are a wide variety of candidate loss functions and, thereby, candidate

estimated percentiles, our investigations show that in most applications one can choose

between P̂k and P ∗
k (γ) (equivalently, P̃k(γ)). The P̂k are for general purpose and are

recommended in situations where the full spectrum of percentiles is important, for

identifying units as low, medium or high performers. This is the case in educational

assessments. Schools and school districts want to track their performance over time

irrespective of whether they are low, high or in the middle. The P ∗
k (γ) focus on a specific

(above γ)/(below γ) cut point and are recommended in situations where identifying one

extreme is the dominant goal. Selection of the most differentially expressed genes, with

γ selected to deliver a manageable number for further analysis, is a prime example.

Whatever percentiling method is used, plots such as Figure 4 can be constructed

with those percentiles on the X-axis. In general, the plot will not be monotone unless

the P ∗
k (γ) are used, but use of the P̂k produces a nearly monotone plot and very good

OC(γ) performance. Therefore, unless there is a compelling reason to optimize relative

to a specific (above γ)/(below γ) cut point, the P̂k are preferred.

Importantly, as do Liu et al. (2004) and Lockwood et al. (2002), we show that unless

data are highly informative, even the optimal estimates can perform poorly. It is thus

very important to select proper estimates for as good as possible inference, especially

when performance differences between estimators are large. Data analytic performance

summaries such as SEL, OC(γ) and plots like Figures 3 and 4 should accompany any

analysis.

Appendix

Appendix A Optimizing weighted squared error loss (WSEL)

Theorem 7 Under weighted squared error loss:

∑

k

ωk

(
Rest

k −Rk

)2
, (15)

the optimal rank estimates are

Rk = E(Rk|Y) =
∑

j

pr(θk ≥ θj |Y).
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(We drop conditioning on Y)

E
∑

k

ωk

(
Rest

k −Rk

)2
=

∑

k

ωkE
(
Rest

k −Rk + Rk −Rk

)2

=
∑

k

ωkE
[
(Rest

k −Rk)2 + (Rk −Rk)2
]

≥
∑

k

ωkE(Rk −Rk)2

Thus, the Rk are optimal.

When all wk ≡ w,

R̂k = rank of (Rk)

optimizes (15) subject to the Rest
k exhausting the integers (1, . . . , K). To see this, if

0 ≤ E(Ri) = mi ≤ E(Rj) = mj , ri < rj , then

E(Ri − ri)
2 + E(Rj − rj)2 = Var(Ri) + Var(Rj) + (mi − ri)

2 + (mj − rj)2

< Var(Ri) + Var(Rj) + (mi − rj)2 + (mj − ri)
2

= E(Ri − rj)2 + E(Rj − ri)
2

and the R̂k are optimal.

For general wk there is no closed form solution, but a sorting-based algorithm based

on,

ωi(mi − ri)
2 + ωj(mj − rj)2 < ωi(mi − rj)2 + ωj(mj − ri)

2, if rj > ri

⇐⇒ (rj − ri)((1−
ωj

ωi
)(ri + rj − 2mj) + 2(mj −mi)) > 0, if rj > ri

⇐⇒ (1− ωj

ωi
)(ri + rj − 2mj) + 2(mj −mi) > 0, if rj > ri. (16)

guides the optimization. By the above inequality, reversing any two estimated ranks

that do not align with R̄k results in a smaller squared error.

Theorem 8 Start from any initial ranks and implement the recursion: If inequal-

ity (16) is satisfied, switch the position of unit i and unit j, i, j = 1, ...K. The unique

fixed point will minimize weighted squared error loss (15).

Since each switch will decrease the expected loss and there are at most n! possible

values of the expected loss, a fixed point will be reached. At the fixed point, no (i, j)

pair produces inequality (16) and so gives the SEL minimum.

In the standard sorting problem, the quantities to sort do not depend on the current

positions of the units, while the quantity in (16) does. For this reason, the convergence

of the algorithm can be very slow. After units i and j are compared and ordered, if unit i
is compared to some other unit k and a switch happens, then unit i should be compared

to unit j again and so this pairwise-switch optimization algorithm is computationally

impractical.
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Appendix B Optimizing L0/1

Proof of Theorem 1 Rewrite the loss function as a function of the number of units

that not classified in the top (1 − γ)K, but that should have been. Then, L0/1 =
1
K (K − |A ∩ T |), where A is the set of indices of the observations classified in the top

and T is the true set of indices for which rank(θk) > (1− γ)K. We need to maximize

the expected number of correctly classified coordinates:

E|A ∩ T | = E
∑

I(k ∈ A ∩ T )

= E
∑

k∈A

I(k ∈ T ) =
∑

k∈A

pr(Pk > γ|Y).

To optimize L0/1, for each θk calculate pr(Pk > γ|Y), rank these probabilities and select

the largest (1−γ)K of them to minimize L0/1, creating the optimal (above γ)/(below γ)

classification. This computation can be time-consuming, but is Monte Carlo imple-

mentable.

The P̃k(γ) optimize L0/1. There are other optimizers because L0/1 requires only the

optimal (above γ)/(below γ) categorization but not the optimal ordering. For example,

permutations of the ranks of units classified in A or permutations of the ranks in AC

yield the same posterior risk for L0/1.

Appendix C Optimizing L̃

Lemma 1 If a1 + a2 ≥ 0 and b1 ≤ b2, then

a1b1 + a2(1− b2) ≤ a1b2 + a2(1− b1).

(a1 + a2)b1 ≤ (a1 + a2)b2 ⇒ a1b1 − a2b2 ≤ a1b2 − a2b1

⇒ a1b1 + a2(1− b2) ≤ a1b2 + a2(1− b1).

Lemma 2 Rearrangement Inequality (Hardy et al. 1967): If a1 ≤ a2 ≤ ... ≤ an and

b1 ≤ b2 ≤ ... ≤ bn, b(1), b(2), ...b(n) is a permutation of b1, b2, ...bn, then

n∑

i=1

aibn+1−i ≤
n∑

i=1

aib(i) ≤
n∑

i=1

aibi.

For n = 2 we use the ranking inequality:

a1b2 + a2b1 ≤ a1b1 + a2b2 ⇔ (a2 − a1)(b2 − b1) ≥ 0.

For n > 2, there exists a minimum and a maximum in all n! combinations of sums

of products. By the result for n = 2, the necessary condition for the sum to reach
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the minimum is that any pair of indices (i1, i2), (ai1, ai2) and (bi1, bi2) must have the

inverse order; to reach the maximum, they must have same order. Therefore, except

in the trivial cases where there are ties inside {ai} or {bi},
∑n

i=1 aibn+1−i is the only

candidate to reach the minimum and
∑n

i=1 aibi is the only candidate to reach the

maximum. Proof of Theorem 2 Denote by R(i) the rank random variables for units

whose ranks are estimated as i. Then,

E(LRest
K

(γ, p, q, c)) =

[γ(K+1)]∑

i=1

|γ(K + 1)− i|ppr(R(i) ≥ γ(K + 1))

+

K∑

i=[γ(K+1)]+1

c|i− γ(K + 1)|q(1− pr(R(i) ≥ γ(K + 1))).

For optimum ranking, the following conditions are necessary:

1. By Lemma 1, for any (i1, i2) satisfying (1 ≤ i1 ≤ [γ(K + 1)], [γ(K + 1)] + 1 ≤ i2 ≤
K), it is required that pr(R(i1) ≥ γ(K + 1)) ≤ pr(R(i2) ≥ γ(K + 1)). To satisfy

this condition, divide the units into two groups by picking the units with largest

(1− γ)K values of pr(Rk ≥ γ(K + 1)) into the (above γ) group.

2. By Lemma 2

(a) For the set {k : Rk = R(i), i = 1, · · · , [γ(K + 1)]}, since |γ(K + 1) − i|p is a

decreasing function of i, we require that pr(R(i1) ≥ γ(K + 1)) ≥ pr(R(i2) ≥
γ(K +1)) if i1 > i2. Therefore, for the units with ranks (1, . . . γK), the ranks

should be determined by ranking the pr(Rk ≥ γ(K + 1)).

(b) For the set {k : Rk = R(i), i = [γ(K + 1)] + 1, · · · , K}, since |i−γ(K + 1)|q is

an increasing function of i, we require that pr(R(i1) ≥ γ(K +1)) ≥ pr(R(i2) ≥
γ(K + 1)) if i1 > i2. Therefore, for the units with ranks (γK + 1, . . . , K),

the ranks should be determined by ranking the pr(Rk ≥ γ(K + 1)).

These conditions imply that the R̃k(γ) (P̃k(γ)) are optimal. By the proof of Lemma 2,

we know that the optimization is not unique, when there are ties in pr(Rk ≥ γ(K + 1)).

Appendix D Optimization procedure for L†

As in the proof of Theorem 2, we begin with a necessary condition for optimization.

Denote by R(i1), R(i2) the rank random variables for units whose ranks are estimated

as i1, i2, where i1 < γ(K + 1), i2 > γ(K + 1). Let,

pr(R(i1) ≥ γ(K + 1)) = p1, pr(R(i2) ≥ γ(K + 1)) = p2.

For the index selection to be optimal,

E[(R(i1) − γ(K + 1))2 |R(i1) ≥ γ(K + 1)]p1 + cE[(R(i2) − γ(K + 1))2 |R(i2) < γ(K + 1)](1 − p2)

≤ cE[(R(i1) − γ(K + 1))2 |R(i1) < γ(K + 1)](1 − p1) + E[(R(i2) − γ(K + 1))2 |R(i2) ≥ γ(K + 1)]p2.



Lin, Louis, Paddock and Ridgeway 937

The following is equivalent to the foregoing:

E[(R(i1) − γ(K + 1))2 |R(i1) ≥ γ(K + 1)]p1 − cE[(R(i1) − γ(K + 1))2 |R(i1) < γ(K + 1)](1 − p1)

≤ E[(R(i2) − γ(K + 1))2 |R(i2) ≥ γ(K + 1)]p2 − cE[(R(i2) − γ(K + 1))2 |R(i2) < γ(K + 1)](1 − p2).

Therefore, with pk = pr(Rk ≥ γ(K + 1)) the optimal ranks split the θs into a lower

fraction and an upper fraction by ranking the quantity,

E[(Rk − γ(K + 1))2|Rk ≥ γ(K + 1)]pk − cE[(Rk − γ(K + 1))2|Rk < γ(K + 1)](1− pk).

This result is useful and different from that of WSEL in Section Appendix A in the sense

that we can now successfully get a quantity depend on unit index k only. However, as

for L0/1 optimization of L† does not induce an optimal ordering in the two groups. A

second stage loss, for example SEL, can be imposed within the two groups.

Appendix E Optimizing L‡

As for optimizing WSEL in Section Appendix A, a pairwise switch algorithm is com-

putationally challenging, since the decision on switching a pair of units depends on

their relative position and on their estimated ranks. Thus, in each iteration all pair-

wise relations have to be checked. We have not identified a general representation

or efficient algorithm for the optimal ranks. However, we have developed the follow-

ing relation between L†, L̃ and L‡. Note that when either ABk(γ, Pk, P est
k ) 6= 0 or

BAk(γ, Pk, P est
k ) 6= 0 it must be the case that either P est

k ≥ γ ≥ Pk or Pk ≥ γ ≥ P est
k .

Equivalently,

|Pk − γ|+ |P est
k − γ| = |Pk − P est

k | or
|Pk − γ|
|Pk − P est

k |
+
|P est

k − γ|
|Pk − P est

k |
= 1.

Now, suppose c > 0, p ≥ 1, q ≥ 1 and let m = max(p, q). Then, using the inequality

21−m ≤ am + (1− a)m ≤ 1 for 0 ≤ a ≤ 1, we have that (L̃ + L†) ≤ L‡ ≤ 2m−1(L̃ + L†).

Specifically, if p = q = 1, L‡ = L̃ + L†; if p = q = 2, then (L̃ + L†) ≤ L‡ ≤ 2(L̃ + L†).

Similarly, when c > 0, p ≤ 1, q ≤ 1, (L̃ + L†) ≥ L‡ ≥ 2m−1(L̃ + L†). Therefore, L̃ and

L† can be used to control L‡.

Appendix F Proof of Theorem 3

Since the (above γ)/(below γ) groups are formed by P̃k(γ),
ˆ̃Pk(γ) minimizes L0/1. For

constrained SEL minimization we prove the more general result that for any (above γ)/(below γ)

categorization, ordering within the groups by P̂k produces the constrained solution. To

see this, without loss of generality, assume that coordinates (1, . . . , γK) are in the (below

γ) group and (γK+1, . . . , K) are in the (above γ) group. Similar to Section Appendix A,

E
∑

k

(
Rest

k −Rk

)2
=

∑

k

V (Rk) +
∑

k

(
Rest

k −Rk

)2
.
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Nothing can be done to reduce the variance terms. The summed squared bias partitions

into,

∑

k

(
Rest

k −Rk

)2
=

γK∑

k=1

(
Rest

k −Rk

)2
+

K∑

k=γK+1

(
Rest

k −Rk

)2

which must be minimized subject to the constraints that (Rest
1 , . . . , Rest

γK) ∈ {1, . . . , γK}
and (Rest

γK+1, . . . , R
est
K ) ∈ {γK + 1, . . . , K}. We deal only with the (below γ) group; the

(above γ) group is handled in the same manner. Without loss of generality assume that

R1 < R2 < . . . < RγK and compare SEL for Rest
k = rank(Rk) = k, k = 1, . . . , γK to

any other assignment. It is straightforward to show that switching any pair that does

not follow the Rk order reduces SEL. Iterating this and noting that the R̂k = rank(Rk)

produces the result.

Appendix G Proof of Theorem 4

Recall that for a positive, discrete random variable the expected value can be computed

as the sum of (1 - cdf) at mass points, where cdf is the cumulative distribution function,

so

Rk =

K∑

ν=1

νpr[Rk = ν] =

K∑

ν=1

pr[Rk ≥ ν] (17)

=

K∑

ν=1

2(K − ν + 1)

K(K + 1)

K(K + 1)

2(K − ν + 1)
pr[Rk ≥ ν]

=

K∑

ν=1

2(K − ν + 1)

K(K + 1)
R+

k (ν) .

Relation (17) can be used to show that when the posterior distributions are stochas-

tically ordered, R̂k ≡ R̃k(γ) because the order of pr[Rk ≥ ν] does not depend on γ and

the Rk inherit their order.

Appendix H Proof of Theorem 5

In this proof we use YK rather than Y to stress that as K goes to infinity, the length

of Y changes. For ḠYK
(t) = 1

K

∑K
k=1 pr(θk ≤ t|YK), we prove: as K → ∞, |pr(Pk ≥

γ|YK) − pr(θk ≥ Ḡ−1
YK

(γ)|YK)| → 0, where Pk is the true percentile of θk, YK is the

vector (Y1, Y2, · · · , YK).

The posterior independence of θk is straightforward. Denote θ = (θ1, · · · , θk, · · · , θK)

and θ
(−k) = (θ1, · · · , θk−1, θk+1, · · · , θK), where θk

ind∼ g(·|Yk) = gk(·). Let θ(γ) = θ(i,K)

be the γth quantile of θ, if i
K ≤ r < i+1

K , where θ(i,K) is the ith largest number of

θ. Respectively, θ
(−k)
(γ) is the γth quantile of θ(−k). We also denoted θ(i−1,K−1) as the

(i− 1)th largest number of θ(−k).
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For the P̃k(γ)’s generator:

pr(Pk ≥ γ|YK) = E[I(θk ≥ θ(γ))|YK)]

= E[I(θk ≥ θ
(−k)
(γ) |YK)] + E[I(θk ≥ θ(γ))− I(θk ≥ θ

(−k)
(γ) )|YK](18)

For the second term in (18)

E[I(θk ≥ θ(γ)) − I(θk ≥ θ
(−k)
(γ)

)|YK] = −pr(θ
(−k)
(γ)

≤ θk < θ(γ)|YK) + pr(θ(γ) ≤ θk < θ
(−k)
(γ)

|YK)

We have the inequality i−1
K−1 < i

K ≤ γ < i+1
K , θ(γ) = θ(i,K) by definition. Consider

the relation between i
K−1 and γ:

• If γ < i
K−1 , then i−1

K−1 < i
K ≤ γ < i

K−1 < i+1
K , θ

(−k)
(γ) = θ(i−1,K−1)

pr(θ(i−1,K−1) ≤ θk < θ(i,K)|YK) = 0 and

pr(θ(i,K) < θk ≤ θ(i−1,K−1)|YK) = 0;

• If i
K−1 ≤ γ, then i−1

K−1 < i
K < i

K−1 ≤ γ < i+1
K , θ

(−k)
(γ) = θ(i,K−1)

pr(θ(i,K−1) < θk ≤ θ(i,K)|YK) = 0 and

pr(θ(i,K) < θk ≤ θ(i−1,K−1)|YK) = 0.

Thus the second term in (18) is zero,

pr(Pk ≥ γ|YK) = E[I(θk ≥ θ
(−k)
(γ)

)|YK] = E[E[I(θk ≥ θ
(−k)
(γ)

)|θ(−k)]|YK] (19)

= E[pr(θk ≥ G−1(γ)|YK) + gk(G−1(γ))(θ
(−k)
(γ)

− G−1(γ)) + op(θ
(−k)
(γ)

− G−1(γ))|YK ]

= pr(θk ≥ G−1(γ)|Yk) + gk(G−1(γ))E[(θ
(−k)
(γ)

− G−1(γ)) + op(θ
(−k)
(γ)

− G−1(γ))|YK ]

In (19), θ
(−k)
(γ) is the γth quantile of non-iid K − 1 samples from K − 1 posterior

distributions. By theorem 5.2.1 of David and Nagaraja (2003) and large sample theorem

of order statistics from iid sampling, we have θ
(−k)
(γ) → G−1(γ) in probability as K goes

to ∞. Since we assume that θk|Yk has a uniformly bounded finite second moment, so

does θ
(−k)
(γ) |YK. Thus E[θ

(−k)
(γ) |YK]→ G−1(γ).

The generator of P ∗
k (γ) is:

pr(θk ≥ Ḡ−1
YK

(γ)|YK) = pr(θk ≥ G−1(γ)|YK) + gk(Ḡ−1(γ))(Ḡ−1
YK

(γ)−G−1(γ))

+o(Ḡ−1
YK

(γ)−G−1(γ))

= pr(θk ≥ G−1(γ)|Yk) + gk(Ḡ−1(γ))(Ḡ−1
YK

(γ)−G−1(γ))

+o(Ḡ−1
YK

(γ)−G−1(γ)) (20)

Since Ḡ−1
YK

(γ)→ G−1(γ), by (19) and (20), |pr(Pk ≥ γ|YK)−pr(θk ≥ Ḡ−1
YK

(γ)|YK)| →
0.
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Appendix I Scoring function

For each function S(P ), there will be an optimal SEL ranking estimator. For instance,

S(P ) = (aP + b) ∗ I{P>γ}, a > 0

indicates that the reward or penalty is the same for all units below the threshold γ; for

units above γ the reward/penalty is linearly related to the rank.

We study the (above γ)/(below γ) classification, but more than two ordinal cat-

egories can be of interest. For example, educational institutions might be classified

into three categories, the poor, the average and the excellent. The following two S(P )

capture this goal. Let J ≥ 3 be the number of ordered categories, then

S(P ) =

J∑

j=1

ajI(P ≤ γj), 0 < γ1 < · · · < γJ , aj ≥ 0

or

S(P ) =

J∑

j=1

ajI(P ≤ γj) + a0P, 0 < γ1 < · · · < γJ , aj ≥ 0.
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Figure 2: Loess smoothed, unit-specific performance of P̂k, P̃k(γ) and
ˆ̃Pk(γ) under L̂,

L‡, and L0/1 as a function of unit-specific variance (σ2
k).
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Figure 3: Average posterior classification probabilities as a function of the optimally

estimated percentiles for rls = 1, γ = (0.6, 0.8, 0.9).
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appear in the lower percentile area.




