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A Skew Item Response Model

Jorge L. Bazán∗, Márcia D. Branco †, and Heleno Bolfarine‡

Abstract. We introduce a new skew-probit link for item response theory (IRT)
by considering an accumulated skew-normal distribution. The model extends the
symmetric probit-normal IRT model by considering a new item (or skewness) pa-
rameter for the item characteristic curve. A special interpretation is given for this
parameter, and a latent linear structure is indicated for the model when an aug-
mented likelihood is considered. Bayesian MCMC inference approach is developed
and an efficiency study in the estimation of the model parameters is undertaken
for a data set from (Tanner 1996, pg. 190) by using the notion of effective sam-
ple size (ESS) as defined in Kass et al. (1998) and the sample size per second
(ESS/s) as considered in Sahu (2002) The methodology is illustrated using a data
set corresponding to a Mathematical Test applied in Peruvian schools for which
a sensitivity analysis of the chosen priors is conducted and also a comparison
with seven parametric IRT models is conducted. The main conclusion is that the
skew-probit item response model seems to provide the best fit.

Keywords: link skew-probit, item response theory, Bayesian estimation, probit-
normal model, skew-normal distribution

1 Introduction

Item Response Theory (IRT) is concerned with modeling the relationship between

multivariate responses and the abilities (or hypothesized traits) of n individuals that

are submitted to a test with k items. The model involves latent variables that ex-

plains the abilities of the individuals and a set of parameters associated with the

items under consideration. Although IRT models can be used in more general con-

texts (van der Linden and Hambleton 1997), in this paper we are interested in modeling

dichotomous item responses by modeling the probability of correct response, namely,

pij , as pij = F (mij), where F is called the item characteristic curve (ICC). Moreover,

mij = ajui− bj, i = 1, .., n, j = 1, ..., k, where aj and bj are parameters associated with

the items (denominated discrimination and difficulty parameters, respectively), and ui

is the value of the latent variable Ui (or parameter) associated with the individual abil-

ity i. In the context of generalized linear models F−1(.) is called the link function.

Two special cases follow by considering that F (.) = Φ(.), or F (.) = L(.), where Φ(.)
is the cumulative distribution function (cdf) of the standard normal distribution and

L(.) is the cdf of the standard logistic distribution. Such models are usually called the

probit IRT model or ogive normal model (Albert 1992; Albert and Ghosh 2000) and

logit IRT-model (see Birnbaum 1968), respectively. A special feature of both models is
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the symmetric nature of the probit and logit link functions and the corresponding ICCs.

However, as emphasized in Chen et al. (1999), symmetric links do not always provide

good fits for some data sets. This is specially true, when the probability of a given

binary response approaches zero at a different rate than it approaches one. Misspecifi-

cation of the link function can yield substantial bias in the mean response estimates (see

Czado and Santner 1992). Samejima (1997) also indicated the necessity of departures

from normal assumptions in developing psychometric theories and methodologies. As

a follow-up, Samejima (2000) proposed a family of models, called the logistic positive

exponent family, which provides asymmetric ICCs and includes the logistic model as

a special case. It is also pointed out in that paper that asymmetric ICCs are more

appropriate for modeling human item response behavior. A variety of skew links have

been proposed for the binary regression models, but hardly one has been used in IRT

models. One example of a skew link is the generalized logit link considered in Prentice

(1976) that was used by Samejima (2000) to propose the logistic positive exponent

model, where the ICC curve is given by F (.) =  L(.)εj , with  L(.) as defined above and

εj > 0 is the skewness parameter associated with the j-th item. However, it is not

of our knowledge any applications or Bayesian estimation methodologies developed for

this model. In fact, a recent review paper by Rupp et al. (2004) reports no Bayesian

skew modelling to IRT models.

Moreover, as Garćıa-Pérez (1999) points out, works on IRT models have almost

exclusively been focused on the development and comparison of parameter estimation

techniques and the study of the effects of the characteristics of the data sets (sample

size, test length, distribution of the true abilities) and violations of model assumptions

(excluding the mathematical form of the ICC) on the capability of available algorithms

to recover the generating parameters. No one seems to have questioned if the math-

ematical form of the ICC can be derived from psychological theory of performance in

objective testing as opposed to adopting a convenient function that the data are forced

fitting to it.

We propose here an asymmetric link function by using the skew-normal distribution

(Azzalini 1985) and consequently a new ICC. Azzalini (2005) and Genton (2004) present

recent reviews on the most recent and important results related to skew-normal models.

In spite of that, this new ICC is not derived from psychological theory motivation, the

ICC that we will consider is a generalization of the probit ICC, by introducing a skewness

parameter associated to the item that can be interpreted as penalization parameter and

can play an important role in testing. It defines, what we call a skew-probit ICC and it

includes the probit link as special case. This more general model is flexible enough to

allow using symmetric (probit) and asymmetric (skew-probit) ICCs for the nk items.

The skew link proposed in this paper use the skew-normal family of distributions.

The approach is characterized by: a) probabilities are defined by considering the cdf

evaluated at a linear predictor; b) the asymmetry parameter is associated with the dis-

tribution defining the cdf and is independent of the linear predictor and c) a latent linear

structure is not necessary for model formulation. The skew-probit link in Chen et al.

(1999) also follow properties (a) and (b) above, but no (c). Their propose are based on
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a latent linear structure, and is a special case of a more general formulation based in

the class of the scale mixtures of elliptical distributions.

The asymmetric probit link proposed in Chen et al. (1999) is obtained, using auxil-

iary latent variables by considering

yi =

{
1, zi > 0

0, zi ≤ 0,

where

zi = ηi + λvi + wi,

with vi independent of wi and vi ∼ HN(0, 1) and wi ∼ N(0, 1). Consequently,

pi =

∫ ∞

0

Φ(ηi + λvi)g(vi)dvi.

where Φ(.) denote the cdf of a standard normal distribution and g(.) is the probability

density function (pdf) given by g(x) = 2√
2π

e−
x2

2 , x > 0, corresponding to the half

normal distribution. The second expression corresponds to the stochastic representation

of the skew-normal distribution given in Chen et al. (1999) and Branco and Dey (2002),

and it is a necessary condition in the formulation of the model.

In this paper, we adopt the Bayesian view. Our point is made since several re-

searchers demonstrated that accurate estimation of the item parameters in small sam-

ples can only be accomplished through a Bayesian approach (see, for example,

Swaminathan et al. 2003. Given the peculiarities of IRT models, maximum likelihood

totally relies on large sample theory, which even for a large number of examinees, is com-

plicated by the presence of incidental parameters. Researches using such an approach

typically do separate estimation for item and ability parameters. However, there is no

way to jointly evaluate estimates precision (Patz and Junker 1999). Such problems do

not occur with the Bayesian approach in which, for a large number of examinees, the

prior distribution has little effect on the posterior distribution (Sinharay and Johnson

2003). Computation is developed by using the MCMC methodology and the WinBUGS

software, which can be used for simulating from the posterior distributions of item

parameters and latent variables. Bayesian model fitting is also implemented for the

logistic positive exponent model proposed by Samejima (1997) and Samejima (2000) for

the data set under study, which seems to be a first attempt in that direction.

In Section 2 we introduce the skew-probit IRT model by considering a skew-probit

item characteristic curve. In Section 3, we present Bayesian estimation based in a

data augmentation approach and prior specification for the MCMC implementation.

In Section 4 we present a study on the estimation efficiency of item parameters in the

skew-probit IRT model. Two examples are given in Section 5, including a sensitivity

analysis to prior choice for the item parameters, illustrating the usefulness of the ap-

proach in comparison with others parametric IRT models. Our analysis also includes the

logistic positive exponent model (Samejima 1997, 2000). To choose the model that fits

the data better, we consider the deviance information criterion (DIC) as presented in
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Spiegelhalter et al. (2002). Finally, we discuss possible extensions of the model proposed

in the sense of the type of asymmetry considered.

2 The skew-probit IRT model

2.1 The skew-normal distribution

As considered in Azzalini (1985), a random variable Z follows a standard skew-normal

distribution if its probability density function (pdf) is given by

φSN (z; λ) = 2Φ(z)Φ(λz).

where φ(.) and Φ(.) denote, respectively, the standard normal pdf and cumulative dis-

tribution function (cdf). We use the notation Z ∼ SN(λ). The parameter λ controls

skewness, which is positive when λ > 0 and negative when λ < 0. The standard normal

distribution is recovered with λ = 0. Some important properties of the skew-normal

distribution are given in the Appendix A0. The skew-normal cumulative distribution

function is denoted by ΦSN(z; λ) and is obtained explicitly next.

Proposition 1. The cumulative distribution of Z ∼ SN(λ) is given by

ΦSN (z; λ) = 2Φ2

((
z
0

)
;
(

0

0

)
,
(

1 −δ
−δ 1

))
, (1)

where Φ2(.) denotes the cumulative distribution function(cdf) of the bivariate standard

normal distribution with correlation coefficient −δ, which, to simplify notation, we de-

note by Φ2((z, 0)T ,−δ).

Proof. It follows directly of the fact that the standard bivariate normal distribution with

correlation ρ evaluated at the point (h, k) can be written as (Parrish and Bargmann

1981) Φ2(h, k; ρ) =
∫ h

−∞ φ(w)Φ
(

k−ρw√
1−ρ2

)
dw.

This result indicates that the skew-normal distribution evaluated at a point z can also

be obtained by considering the bivariate standard normal distribution with correlation

−δ evaluated at the point (z, 0). This is important because there are several efficient

algorithms for computing integrals related to the bivariate normal distribution (see Genz

1992, 1993). Another algorithm to compute the cdf of the skew-normal distribution is

based on the use of Owens function (see Azzalini 1985; Dalla-Valle 2004) and is available

for R and Matlab programs. More generally, a random variable X follows a skew-normal

distribution with location parameter µ and scale parameter σ2, if the density function

of X is given by

fX(x) = φSN ( x ; µ, σ2, λ) =
2

σ
φ1

(
x− µ

σ

)
Φ1

(
λ

x − µ

σ

)
, (2)
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with the notation X ∼ SN(µ, σ2, λ) used in this paper. If λ = 0, the density of X in

(2) reduces to the density of the N(µ, σ2).

Remark 1. By applying the properties of the skew-normal distribution and using variable

transformation it follows that, if Z ∼ SN(µ, σ, λ), then Z∗ = aZ + b ∼ SN(aµ +

b, a2σ2, sign(a)λ), with sign(.) as defined before.

2.2 The model

Formally, the skew-probit IRT model is defined by considering that

Yij |ui, aj , bj , λj ∼ Bern(pij)

pij = ΦSN (mij ; λj)

mij = ajui − bj , (3)

where Bern denotes the Bernoulli distribution, i = 1, . . . , n, and j = 1, . . . , k. Moreover,

the skew-probit IRT model satisfies the latent conditional independence principle, which

considers that for the i-th examinee, Yij are conditionally independent given Ui, j =

1, . . . , k. It is also considered that responses from different examinees are independent.

In the following, we use the notation a = (a1, . . . , ak)T , b = (b1, . . . , bk)T , λ =

(λ1, . . . , λk)T , y = (y11, . . . , ykn)T . Let Dobs = y to denote the observed data, so that

the likelihood function for the skew-probit IRT model is given by

L(u, a,b, λ|Dobs) =

n∏

i=i

k∏

j=1

[ΦSN (mij ; λj)]yij [1− ΦSN (mij ; λj)]1−yij . (4)

Using the representation of the skew-normal distribution, given in Proposition 1, we

can write

L(u, a,b, λ|Dobs) =

n∏

i=i

k∏

j=1

[
2Φ2

[
(mij , 0)T ;−δj

]]yij
[
1−2Φ2

[
(mij , 0)T ;−δj

]]1−yij

. (5)

The skew-probit IRT model involves a total of n+3k unknown parameters being thus

overparameterized. Moreover, for a fixed number of items, item parameters are consid-

ered structural parameters and the latent variables (abilities) are incidental parameters,

that is, their number increases as the sample size n increases. The model is also uniden-

tifiable, since it is preserved under a special class of transformations of the parameters

(see Albert 1992). Such aspects make it a temerity using maximum likelihood estima-

tion in IRT models. One way to contour such difficulties is to impose restrictions on

the item parameters and abilities as considered, and obtain the marginal likelihood to

analyze item parameters estimation, for example, in Bock and Aitkin (1981). Another
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way follows by specifying a distribution for the latent variables. As frequently consid-

ered in the literature (see, for example, Patz and Junker 1999), we take Ui ∼ N(0, 1),

i = 1, . . . , n. This assumption establishes that it is believed that the latent variables are

well behaved and that the abilities are a random sample from this distribution and, ad-

ditionally, this establishes a metric for the abilities estimates. Hence, the model defined

by (4) or (5) also can be denominated skew-probit normal IRT model and includes the

called probit-normal IRT model (Albert 1992; Albert and Ghosh 2000) as a particular

case (λ = 0).

2.3 The skew-probit item characteristic curve

The skew-probit item characteristic curve (ICC) is given by

pij = P [Yi = 1 | ui, aj , bj , λj ] = ΦSN [mij ; λj ] = 2Φ2

[
(mij , 0)T ;−δj

]
, (6)

where pij is the conditional probability of a correct response for item j given the latent

variable ui corresponding to the i-th examinee, δj =
λj

(1+λ2
j
)1/2 and mij = ajui − bj , i =

1, . . . , n, and j = 1, . . . , k.

In the above expression, the probability pij is expressed as a function of the quantity

ui and the parameters ηj = (aj , bj)T and λj , which are parameters associated with the

item j. Note that, for λj = 0 expression (5) reduces to pij = Φ(mij), as considered in

the probit model (Albert 1992).

Motivated by considering the shape of the ICCs for different values of λ (see Figure

1), λ can be interpreted as a penalization parameter. Hence, when an item has associated

λ > 0, we say that the probability of correct response is penalized for low values of the

latent variable U . A fixed and positive change on the latent variable implies positive

but smaller (bigger) changes in the probability of success for lower (higher) values of

the latent variable U . On the other hand, when an item has associated λ < 0, we

say that the item is penalized for high values of the latent variable U . In this case, a

positive and fixed change of the latent variable U results in positive but smaller (bigger)

changes in the probability of success for higher (lower) values of the latent variable. The

interpretation is the same when the parameter δ is used.

Note also that

h(u)
.
=

dpij

dui
= aj

dΦ(ajui − bj ; λ)

dui
= ajφ(ajui − bj ; λ),

which corresponds to the pdf of the skew-normal distribution evaluated at ajui − bj

multiplied by aj . Hence, as |λ| (or |δ|) grows, asymmetry in the IRT model also grows,

so that λ can also be considered as an asymmetry parameter. In the case of a = 1 and

b = 0 we obtain that h(U) ∼ SN(λ), that is, the standard skew-normal distribution.

Note also that when λ = 0, the estimation of a and b is the same as in the probit-normal

model. Moreover, when λ 6= 0, the interpretation of a and b is the same as in the probit

IRT model. As a consequence of the properties of the skew-normal cdf, it can be verified
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that the ICC is a monotone increasing function of the quantity ui which is considered

as a latent variable. This means that the skew-probit IRT model is an unidimensional

monotone latent variable model (Junker and Ellis 1997).

2.4 Data augmentation approach

Our approach is motivated by the method of Albert and Chib (1993), where the under-

lying latent variable follows a normal distribution. Here, the underlying latent variable

follows a standard skew-normal distribution (Azzalini 1985). The next result is an

extension of a result in Albert (1992) for the probit IRT model.

Proposition 2. The skew-probit IRT model, involving k items and n examinees, as

given in (3) is equivalently defined by considering that

Yij =

{
1, Zij > 0;

0, Zij ≤ 0,
(7)

where Zij ∼ SN(mij , 1,−λj), j = 1, . . . , k and i = 1, . . . , n.

Proof. The proof uses the fact that 1 − ΦSN (z;−λ) = ΦSN(−z; λ) (see Property E in

Azzalini 1985) and is similar to that given in Albert (1992).

Clearly, in the special case where λj = 0, j = 1, . . . , k, the corresponding result in

Albert (1992) for the symmetric probit IRT model follows. The latent variables Zij

are introduced to avoid working with a Bernoulli type likelihoods. Furthermore, notice

that the skewness parameter with the auxiliary latent variable is the opposite of the

skewness parameter of the ICC. In the following, we use the notation z = (z11, . . . , zkn)T

and D1 = (zT ,yT )T . The complete data likelihood function for the skew-probit IRT

model is given by

L(u, a,b, λ|D1) ∝
n∏

i=1

k∏

j=1

φSN (Zij ; mij , 1,−λj)p(yij | zij), (8)

where p(yij | zij) = I(zij > 0)I(yij = 1) + I(zij ≤ 0)I(yij = 0)] is the conditional

likelihood and I is the usual indicator function, j = 1, . . . , k, and i = 1, . . . , n. Note

that, if λj = 0, the likelihood function above is similar to the one given in Albert

(1992). An alternative way of writing the skew-probit IRT model is presented next by

considering the asymmetry parameter δ = (δ1, . . . , δk)T .

Proposition 3. The skew-probit IRT model considered in Proposition 2 can be equiv-

alently defined by considering the auxiliary latent variables

Z∗
ij ∼ N(−δjvij + mij , 1− δ2

j ) and Vij ∼ HN(0, 1),
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j = 1, . . . , k and i = 1, . . . , n. Denoting z∗ = (z∗11, . . . , z
∗
kn)T and v = (v11, . . . , vkn)T ,

the complete data likelihood function corresponding to D2 = (z∗,v,y), is given by

L(u, a,b, δ|D2) ∝
n∏

i=1

k∏

j=1

φ(Z∗
ij ;−δjvij + mij , 1− δ2

j )φ(Vi,j ; 0, 1)I(vij > 0)p(yij | z∗ij),

(9)

where p(yij | z∗ij) = I(z∗ij > 0)I(yij = 1) + I(z∗
ij ≤ 0)I(yij = 0) is the conditional

likelihood and I is the usual indicator function, j = 1, . . . , k and i = 1, . . . , n.

Proof. From Remark 1 in Section 2.1 we have that Zij in Proposition 2 can be ex-

pressed as Zij = mij + eij where eij ∼ SN(0, 1,−λ). Now considering the stochastic

representation given in ? (Property 4 in the Section 2.1) for eij we have that:

Zij = mij − δVij − (1− δ2)1/2Wij

where Vij ∼ HN(0, 1) and Wij ∼ N(0, 1). It then follows from Property 5 in Section

2.1 that Z∗
ij = Zij | vij ∼ N(−δjvij + mij , 1 − δ2

j ). The proof is completed since

p(yij | zij,vij
) is one if Z∗

ij obeys the constraint imposed by the observed value yij , and

vij > 0 is always true.

3 Bayesian estimation

3.1 Priors specification

Prior specification is an important step in Bayesian analysis. It is more important

for small sample sizes where the posterior distribution represents more of a compro-

mise between the observed data and previous personal opinion. For large sample sizes,

it has less importance since the data typically dominates the posterior (information)

distribution.

In the IRT literature there seems to be consensus with respect to the prior for U, but

different priors have been investigated for the item parameters (see Rupp et al. 2004;

?). Empirical evidence (Patz and Junker 1999, among others) seems to indicate the

presence of posterior correlation between item parameters. However, it seems difficult

to assign dependent priors for those parameters, being a specially hard task thinking

about values for the correlations for such priors, even if a multivariate normal prior is

specified. Hence, we prefer using independent and common priors for a, b and λ and let

such correlations be only data dependent. That is, the prior we consider can be written

as

π(u, a,b, λ) =

n∏

i

φ(ui; 0, 1)

k∏

j

π1(aj)π2(bj)π3(λj). (10)

Although some authors as Albert (1992) and, more recently, Fox and Glas (2001, 2003),

use improper noninformative priors for the parameters a and b of the type π1(aj)π2(bj) =
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I(aj > 0), we prefer using informative priors on the discrimination parameters aj since

the existence of the joint posterior distribution is not guaranteed when an improper

prior is used. Considering the results of Albert and Ghosh (2000) and Ghosh et al.

(2000), the distribution of the discrimination parameter must be proper to guarantee a

proper joint posterior distribution.

Several informative distributions for aj have been proposed in the literature. To men-

tion just a few, a) Bradlow et al. (1999) and Johnson and Albert (1999) use N(µa, σ2
a)

with or without hyper parameters distributions specified to µa and σ2
a, respectively;

b) Kim et al. (1999) and Patz and Junker (1999) use LN(µa, σ
2
a) with or without hy-

per parameters distributions specified for µa and σ2
a, respectively, where LN(.) is

the log-normal distribution and c) Spiegelhalter et al. (1996) and Sahu (2002) use

N(µa, σ2
a)I(0, ) that is the Half-normal distribution with known values for µa and σ2

a

and, finally, d) Swaminathan and Gifford (1985) use IG(m, n), the inverted gamma

distribution with (known) hyperparameters m and n. We consider in this paper the

specifications in b) and c) above since aj > 0 and also for conjugation reasons.

When independent informative priors are considered for the item parameters, it is

usually assigned the N(µb, σ
2
b ) for bj , j = 1, . . . , k. Moreover, in the common situation

where little prior information is available about the difficulty parameter, one can chose

σ2
b to be large. As is mentioned in Albert and Ghosh (2000) and Sahu (2002) in the

probit IRT model, this choice will have a modest effect on the posterior distribution for

non extreme data, and it will result in a proper posterior distribution when extreme

data (all items are correct or all items are incorrect) is observed. Thus, vague priors

can be admissible for the difficulty parameter.

In this paper, we consider µa, µb, σ
2
a, σ2

b , to be known. In more general situations,

the prior structure needs to be enlarged so that hyper prior information can also be

considered for those parameters. Two different parameterizations will be considered,

namely, the lambda parameterization, where a prior distribution is considered for the λj

parameters, and the delta parameterization, where a prior distribution is considered for

δj =
λj

(1+λ2
j )1/2 , j = 1, . . . , k, taking values in the interval [−1, 1]. Since under the delta

parameterization the parametric space is bounded, a natural specification of a vague

prior is to consider that δj ∼ U(−1, 1). It is not difficult to see that it is equivalent

to assuming that λj ∼ T (0, 0.5, 2), where T (µ, σ2, ν) denotes the Student-t distribution

with location µ, scale σ2 and ν degrees of freedom (for details see Branco and Rodriguez,

2005). Other specifications can be considered as a normal distribution restricted to the

interval [−1, 1], given by δj ∼ N(0, 1)I(−1, 1). We consider more convenient to use

proper priors for δ and λ.

3.2 MCMC implementation

Considering the likelihood function in (4) or (5) and the general prior specification

given in (10), we point out that to implement a Bayesian estimation procedure involv-

ing a Bernoulli likelihood can be complicated. Since the integrals involved to obtain the

marginal posterior distributions are difficult to deal with, two approaches based on data
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augmentation were introduced in the Section 2.4. This approach allows us the imple-

mentation of Markov Chain Monte Carlo methods which make it simple to implement

efficient sampling from the marginal posterior distributions.

By considering this latent structure, the full conditionals for the skew-probit IRT

model and the Bayesian inference via MCMC follows without complications, similarly

as reported in Johnson and Albert (1999). Note that some of the full conditionals can

not be directly sampled from, requiring algorithms such as the Metropolis-Hastings

(Chib and Greenberg 1995).

Moreover, to implement the Bayesian approach in WinBUGS considering directly

the likelihood function in (4) it is necessary to have the cdf of the skew-normal distri-

bution, which is not yet implemented in the software. To overcome this difficulty we

can use a second augmented likelihood function that consider extra latent variables by

modifying the latent variable Zij , j = 1, . . . , k, and i = 1, . . . , n.

In the remainder of this paper we develop a computational procedure for the skew-

probit IRT model based in the second augmented likelihood function, given in Proposi-

tion 3. Hierarchically, the full likelihood specification for the delta parameterization is

given as follows:

Z∗
ij |vij , yij , aj , bj , δj ∼ N(ajui − bj − δjvij , 1− δ2

j )I(z∗ij , yij);

Vij ∼ HN(0, 1);

Ui ∼ N(0, 1);

aj ∼ π1(µa, σb);

bj ∼ π2(µb, σ
2
b );

and

δj ∼ π3(.).

For the lambda parameterization it is only necessary to specify a prior distributions

for λj and δj =
λj√
1+λ2

j

.

All of the full conditional distributions for implementing the Gibbs sampler are

straightforward to derive and to sample from (see Bazán et al. 2004b). Moreover, note

that when δj = 0 or λj = 0 , the hierarchical structure of the augmented likelihood

corresponding to the probit-normal model follows by eliminating the second and fifth

lines in the above hierarchy. The program code in Winbugs used in this application is

presented in Appendix A.1.



Bazán, J. L., Branco, M. and Bolfarine, H. 871

4 A study on the efficiency in the estimation of the pa-

rameters of the skew-probit IRT model

In this section we investigate the efficiency in the estimation of the parameters of the

skew-probit IRT model using a data set previously analyzed in the literature. The

aims of the study are a) to evaluate the behavioral of the autocorrelation of the model

parameters when a data augmentation approach is considered, and b) to evaluate the

performance of the delta and lambda parameterizations introduced in the Section 3.2

for the penalization parameter. We consider a data set previous analyzed in (Tanner

1996, pg. 190) which includes k = 6 items and n = 39 examinees.

Typically, in MCMC, the sampled values for initial iterations of the chains are dis-

carded because of their dependence on starting states. In addition, the presence of

autocorrelations within chain values is expected when latent variables are introduced in

the model Chen et al. (2000), being thus important to perform autocorrelation analyzes.

In order to make fair comparisons between efficiency in the estimation of the param-

eters we use the notion of effective sample size (ESS) as defined in Kass et al. (1998)

and the effective sample size per second (ESS/s). Sahu (2002) has used ESS/s to com-

pare two different estimation approaches with the same model and points out that the

ratio EF12 =
ESS/s1

ESS/s2
, can be considered as one measure of efficiency between different

estimation approaches, such that large values of EF12 indicates that estimation is more

efficient under approach 1 than under approach 2. We propose using such index for

comparing the efficiency in estimating different parameters within the same model and

the same parameter in different models.

For each parameter, ESS is defined as the number of MCMC samples drawn, B,

divided by the autocorrelation parameter time, γ = 1 + 2
∑∞

s=1 ρs, where ρs is the

autocorrelation at lag s. In estimating γ, Sahu (2002) recommended using only the

first (largest) autocorrelation estimate (ρ̂1) but we use instead ρ̂s with s = 49, since

it is found that autocorrelation estimates between successive parameter draws become

negligible for lags greater than 50 (see similar result to the two-parameter logistic (2PL)

IRT model in Patz and Junker 1999, pg. 165.

We use this concept in studying efficiency in estimation for the skew-probit and probit

IRT models. This concept can also be used for the comparison of the efficiency in the

estimation of the parameters of the skew-probit IRT model when the delta or lambda

parameterizations introduced in Section 3.2 are considered. Priors aj ∼ N(1, 0.5)I(aj >
0), bj ∼ N(0, 2), and δj ∼ U(−1, 1) [or λj ∼ T (0, 0.5, 2)] are considered in such study.

We consider, as in Spiegelhalter et al. (1996), initial values aj = 1, and bj = 0, j =

1 . . . , k. Initial values for the penalization parameter δj can be randomly generated, but

we prefer using fixed ones, and we propose as initial value, δj = 0 (or λj = 0). Initial

values for the latent variables Ui, Zij and Vij are randomly generated by considering

the corresponding distributions. We work, as in Sahu (2002), with run lengths of 5000

iterations after discarding 1000 initial iterations, so that the effective sample size is

4000.
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Using the efficiency concept defined before on Table 1, Figure 2 depicts the error

bar of the efficiency (EF12) of each parameter for each two of the models considered.

By considering the results on Table 1 and Figure 2, we note that:

• To any parametrization of the skew-probit model, the estimation is more efficient

for the u parameters, followed by the a parameters, which are followed by the b
parameters, and, finally, δ following the λ parameters.

• In the skew-probit model, the delta parameterization is more efficient than the

lambda parameterization, for the estimation of all parameters.

• When a probit IRT model is appropriate for a data set (as is the case with the data

set analyzed) it is noted to exist a reduction in the efficiency of the estimation

of the a, b and u parameters when the skew-probit IRT model is considered,

especially when using the lambda parameterization .

IRT Model Parameter ESS ESS/s

Mean sd Mean sd

skew-probit a 260.7 125.9 3.7 1.8

(delta parametrization) b 157.6 20.9 2.2 0.3

δ 137.3 16.7 1.9 0.2

λ 121.4 13.7 1.7 0.2

u 582.9 165.5 8.2 2.3

Total 425.3 245.6 6.0 3.5

skew-probit a 182.8 93.8 2.3 1.1

(lambda parametrization) b 100.2 9.7 1.2 0.1

δ 76.4 7.6 0.9 0.1

λ 71.1 8.4 0.9 0.1

u 509.4 199.9 6.3 2.5

Total 356.4 254.4 4.4 3.1

probit a 307.9 127.5 9.1 3.7

b 905.2 338.8 26.6 10.0

u 783.5 236.5 23.0 7.0

Total 741.9 287.7 21.8 8.5

Table 1: Performance of the parameter estimation for Tanners data set: mean and

standard deviation (sd) of the estimated ESS, ESS/s, for each type of parameter for

the skew-probit (delta or lambda parameterization) and probit IRT models over all the

corresponding parameters.

Chen et al. (2000) mentioned that when the sample size n is large (n ≥ 50), slow con-

vergence associated with Albert-Chib’s algorithm (data augmentation approach) may
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occur. Slow convergence of the chain corresponding to the penalization parameter is

detected, speciality with the lambda parameterization. Some algorithms to improve con-

vergence of the Gibbs sampler in the second data augmentation approach are suggested

in Chen et al. (2001) and must be explored in future works.

We have found the presence of autocorrelation in the skew-probit model, and hence,

thin values up to 100 are recommended. The impact of the initial parameter vector

and the Markov nature of the algorithm are reduced by having a burn in period and by

thinning the chain.Thinning the chain is typically used to increase the independence of

sequential values. Consequently, some authors as Jackman (2004) consider, with pro-

bit IRT model, a large number of iterations for inference based on the joint posterior

density. The paper recommends running half a million iterations, retaining only every

thousandth iteration so as to produce an approximately independent sequence of sam-

pled values from the joint posterior density. However other authors as Gelman et al.

(1996) consider that thinning is not necessary, that is, the whole sample can be used.

5 Applications

5.1 Application 1: Math Data set

Model checking or assessing the fit of a model implies seeking independent empirical

evidence supporting some model prediction and it is a crucial part in any statistical

analysis. In IRT modeling, model checking is an underdeveloped area and, moreover,

no universal model-checking tools seems to be available in this field, especially from the

classical point of view. This may be due to the complexity of the IRT models, which

does not involve, for example, observed covariates but unobserved latent variables (or

trait).

To compare IRT models including the skew-probit model, we computed the posterior

expected deviance (Dbar), the deviance of the posterior means (Dhat), the effective

number of parameters ρD and the deviance information criterion (DIC), as presented

in Spiegelhalter et al. (2002). Dbar is the posterior mean of the deviance that is defined

as −2log(likelihood), Dhat is a point estimate of the deviance obtained by substituting

posterior means estimates for model parameters, ρD is given by ρD = Dbar − Dhat
and DIC is given by DIC = Dbar + ρD = Dhat + 2ρD. The model with the smallest

DIC is expected to be the model that would best predict a replicated data set of the

same structure as that currently observed. In the presence of auxiliary latent variables

(in a data augmentation scheme) marginal DICs for the observed variables must be

considered since the focus of the analysis is p(y|u, a,b, δ). DIC is a hierarchical modeling

generalization of the AIC (Akaike Information Criterion) that has been proved to work

somewhat efficiently in different complex models. The advantages of the DIC is that it

reduces each model to a single number summary and the models to be compared need

not be nested. Also DIC is readily available within WinBUGS for all models used. For

other proposals see, for example, Sinharay and Johnson (2003) and Sahu (2002).

In addition, other important aspects of Bayesian modeling follows by examining the
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sensitivity of inferences to reasonable changes in the prior distribution and the likelihood

(Gelman et al. 1996). This is specially valid when small samples are available.

In order to evaluate the sensitivity of the Bayesian estimation in the skew-probit

IRT model by considering different priors to item parameters suggested in the Section

3.1, we conduct an analysis using a data set with questions from the Mathematical

Test applied in Peruvian schools. Specifically, the data set corresponds to the appli-

cation of 14 items of multiple choice of the Mathematical Test available for download

at http://www.minedu.gob.pe/umc/ applied to 131 students of high social-economical

status.

The Mathematical Test is formed with independent items corresponding to differ-

ent tasks with different definitions. Given the latent ability U , it is considered that

the correct responses to the items are independent. Furthermore, the autocorrelations

within individual responses seem to be low, which provides additional support for the

assumption of local independence.

Motivated by the asymmetric nature of the observed scores Figure (3, we explore the

possibility of using the skew-probit IRT model for the Math Test data. However, it is fair

to point out that, so far, there is no clear indication that asymmetrically distributed

scores should imply in asymmetric ICC curves. It seems to us that even symmetric

models can produce asymmetrically distributed scores, specially when pij is close to

zero (or one) and n is not large. However, as shown in Chen et al. (1999), asymmetric

ICCs seem adequate when the rate at which pij approaches one (zero) is not the same

as it approaches zero (one). Then, it is legitimate to consider a general specification

to pij by considering the skew-probit IRT model and obtain more information on some

items by including the parameter δ, if it is the case, or to obtain the confirmation that

other items are correctly specified with symmetric IRT models as the probit IRT model.

In our point of view, external factors, such as economical status (which seems to be

the case with the Math Test data), may play a role in conjunction with individual trace

(or ability), which is hard to assess.

We present next a study on the fit of the parametric IRT models discussed earlier

with the Math Data. When considering the model pij = F (ajui − bj) with F (.) as

in the probit (P) or logit (L) links we have the two-parameters models. If aj = 1,

j = 1, . . . , n then we have the one-parameter models, and if we write pij = cj + (1 −
cj)F (ajui − bj), where cj , j = 1, . . . , n, is the guessing parameter, then we have three-

parameters models. They are denoted, respectively, by 1P, 1L, 2P, 2L, 3P and 3L,

when it is the case. Moreover, we implement the Bayesian approach for the logistic

positive exponent model proposed by Samejima (2000). This model, which can produce

asymmetric ICCs, is named here generalized logistic model and is denoted by 2GL. To

the best of our knowledge, this seems the first attempt in fitting this model to a data

set.

In order to develop a sensitivity study for the IRT models listed above we chose to

work with the skewness parameter δ (δ parameterization) because it offers the same

interpretation as the parameter λ in a reduced scale and also is more efficient as showed
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in Section 4. We use two different combinations of prior distributions for the item

parameters as suggested in Section 3.1. Hence, we have the following prior specifications:

Prior A: aj ∼ N(1, 0.5)I(aj > 0), bj ∼ N(0, 2), δj ∼ U(−1, 1).

Prior B: aj ∼ N(1, 0.5)I(aj > 0), bj ∼ N(0, 2), δj ∼ N(0, 1)I(−1, 1) .

Prior C: aj ∼ LN(0, 0.5), bj ∼ N(0, 2), δj ∼ U(−1, 1).

Prior D: aj ∼ LN(0, 0.5), bj ∼ N(0, 2), δj ∼ N(0, 1)I(−1, 1) .

Following suggestions in Sahu (2002), prior A was used with models 1P, 1L, 2P, 2L and

2GL. In addition, we consider cj ∼ Beta(12.5, 37.5), where Beta(r, s), denotes the beta

distribution with parameters r and s, which leads to more precise prior information, and

hence the marginal densities of the parameters cj become more peaked and concentrated

around the prior mean r/(r +s) = 0.25 that corresponds to the quantity 1
4 in a multiple

choice type test with 4 alternatives. It serves as a very good guess to the cj parameters

and leads to greater efficiency than that with other elections of the hyperparameters r
and s Sahu (2002).

With model 2GL we consider ej independent and ej ∼ N(0, 1)I(ej > 0). Also, for the

sake of making comparisons, priors A and C are used with model 2P and the estimation

is implemented by using an augmented likelihood, which is denoted by 2Pa. The skew-

probit model is also implemented using the augmented likelihood. As remarked in

Section 4, a large number of iterations must be generated with the skew-probit model

due to the presence of high autocorrelations for some parameters so that the MCMC

procedure becomes slow. For inference purposes and comparisons of all proposed models,

we generated 202000 iterations and discard the 2000 initial ones. Using a thin of 100,

an effective size of 2000 was considered. Estimates of model parameters are computed

from these iterations. Several criteria computed using the CODA package, including

the ones proposed by Geweke (1992) were used to evaluate convergence.

DIC values shown in Table 2 to the eight parametric IRT models in analysis seem to

indicate that the skew-probit model (model (8)), improve any proposed model including

the corresponding symmetric ones (1P, 1L, 2P,2L, 3P, 3L) and also the GL model (

models (1) to (7)) for any of the prior distributions considered. Hence, we expect that

ICC estimates are more precise with the asymmetric probit models, especially when the

pij ’s are close to one (or zero). Note also that the best fit follows with priors A and C,

which assign the uniform prior to δ. Moreover, for the probit IRT model (model (4)),

we observed that the MCMC approach based in the augmented likelihood took less time

than the MCMC approach using the original likelihood (A similar result is observed in

Sahu (2002), with model 3P). Therefore, for the SP IRT models we do not implement

the MCMC approach using the original likelihood. Note that time of convergence with

the skew-probit IRT model is about four times slower than that with the probit IRT

model. However, the probit IRT model presents slower convergence than the logistic

positive exponent model proposed by Samejima (1997, 2000), but both seem to converge

faster than the 3L model, as implemented here. Note that ρD is negative for the SP

model. It can happen when the likelihood function is not log concave, which seems to

be the case here.
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Models Type Time Parameters Dbar Dhat ρD DIC

Symmetric (1) 1L 53 145 1467 1372 94.46 1561

(2) 1P 42 145 1460 1340 120.3 1581

(3) 2L 78 159 1461 1378 82.74 1544

(4) 2P 71 159 1447 1359 88.41 1536

2Pa A prior 26 159 1447 1359 88.32 1535

2Pa C prior 27 159 1447 1356 91.65 1539

(5) 3P 87 173 1443 1356 87.8 1531

(6) 3L 148 173 1464 1384 80.08 1544

Asymmetric (7) 2GL 115 173 1465 1426 38.28 1503

(8) SP prior A 110 173 1328 1365 -37.3 1290

SP prior B 105 173 1346 1364 -17.78 1328

SP prior C 104 173 1335 1361 -26.16 1308

SP prior D 98 173 1353 1359 -6.527 1346
Time in seconds to run 2000 iterations in a Pentium IV with 1800 MHZ and 256 Ram.

Table 2: Results comparing the skew-probit with other parametric IRT models using

DIC

We also obtained the quantity reported in the MC error column in Table 3 is an

estimate of the Monte Carlo standard error of the mean ( σ√
n

), where the batch means

method outlined in Roberts (1996) is used to estimate σ. Coefficients of variation

index of the MC errors associated with the posterior means of the 14 δs was obtained.

The corresponding values were 15.70, 15.88, 19.62 and 19.30 for A, B, C and D priors,

respectively. By considering this coefficient, priors A and B showed to be more precise in

estimating δ. Hence, the truncated normal prior for the a parameters seems to be more

precise than the log-normal prior. In summary, prior A seems to present a better fit to

the data set under consideration and also more precise parameter estimates. Estimates

of item discrimination and difficulty parameters for the probit and skew-probit IRT

models using prior A are presented in Figure 4. The two types of parameters are

equally interpretable under both models: item 11 is the most discriminating while Item

9 is the least; also, item 11 is the easiest while item 12 is the most difficult. Note

that the skew-probit IRT model offers the same general conclusions about difficulty and

discrimination parameters as the probit IRT model.

Figure 5 depicts differences between probit and skew probit IRT models, which are

expected when asymmetry parameter estimates are different from zero. This is the

case for items 11 and 4, which present penalty parameter estimates (δ or λ) large and

negative (negative asymmetry on the item characteristic function), while discrimination

and difficulty estimates differ in the two models. In the special case of items 11 and 4,

the difference between models as consequence of the asymmetry parameter affects the

difficulty parameter. The other items present penalty parameter estimates around zero

indicating that a probit IRT model is adequate for explaining their behavior.

In addition, we explore the situation when a less informative prior distribution is
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Prior A Prior B Prior C Prior D

mean MC error mean MC error mean MC error mean MC error

δ1 -0.05 0.016 -0.04 0.013 -0.04 0.018 -0.05 0.012

δ2 -0.04 0.015 -0.05 0.015 -0.03 0.016 -0.03 0.011

δ3 0.01 0.012 0.02 0.013 0.00 0.016 -0.01 0.013

δ4 -0.12 0.017 -0.10 0.019 -0.13 0.018 -0.11 0.019

δ5 -0.02 0.015 -0.06 0.014 -0.06 0.014 -0.03 0.014

δ6 0.02 0.014 0.01 0.012 0.01 0.011 0.00 0.012

δ7 -0.15 0.019 -0.07 0.013 -0.15 0.013 -0.12 0.015

δ8 -0.08 0.014 -0.08 0.017 -0.07 0.018 -0.09 0.013

δ9 -0.03 0.015 -0.04 0.014 -0.01 0.011 -0.02 0.010

δ10 -0.01 0.017 -0.04 0.011 -0.06 0.016 -0.04 0.012

δ11 -0.31 0.020 -0.32 0.018 -0.29 0.022 -0.31 0.018

δ12 0.01 0.012 0.01 0.014 0.01 0.012 0.01 0.014

δ13 -0.01 0.014 -0.04 0.013 -0.03 0.016 -0.03 0.014

δ14 -0.09 0.018 -0.07 0.013 -0.07 0.014 -0.07 0.012

Table 3: Estimates to the posterior means and MC errors for δ (item) parameters under

the four prior scenarios in the skew-probit IRT model

considered for the difficulty parameters by considering prior E: aj ∼ N(1, 0.5)I(aj > 0),

bj ∼ N(0, 10000), δj ∼ U(−1, 1). In this case, the observed DIC was 1261 but the

observed variability coefficient index for the the MC error was 16.67. On a preliminary

analysis, ?, using prior scenarios A and E specified for parameters a and b in the probit

IRT model, indicated that the probit IRT model is insensitive to the prior specification.

This result is not observed for the skew-probit IRT model, which is sensitive to the

specification of more diffuse priors to b. It was also noted that with priors A and E,

estimates for parameters a and b present somewhat strong correlations, but, estimates

for δ (or λ) under the two priors are much less correlated. Moreover, estimates for δ (or

λ) seem to depend more closely on the prior considered.

6 Application 2: Weight Data set

In this application we report results of a study involving a data set with 2141 female

teens and 15 items. The data set corresponds to a weight’s perception scale applied in

an epidemiological study about dietary disturbances in Metropolitan Lima (Per) (see

Mart́inez et al. 2003). We use the same final priors considered in the Math Data set.

It takes Winbugs about 157 seconds to run 1000 iterations in an Pentium IV with 1800

MHZ and 256 memory Ram. As with the Math Data set, we implement the probit and

skew-probit IRT models by considering the same A (final) priors. For inference purposes

and comparisons of all proposed models, we generated 22000 iterations, discarding the

2000 initial ones. Using a thin of 10, an effective size of 2000 was considered. Estimates
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of model parameters are computed from these iterations. Several criteria computed

using the CODA package, including the ones proposed in Geweke (1992) were used to

evaluate convergence.

The DIC values for the PN and SPN are 31028.8 and 28315.5, respectively, indicating

the skew-probit IRT model as the model presenting the best fit. Hence, we expect that

ICC estimates are more precise with the asymmetric probit models. The values of ρD

are 1689.46 and 2322.430, respectively, for the PN and SPN models. We found that

only the item 7 has a significant asymmetry (Figure 6). Also, for this item, clearly the

ICCs for the probit and skew-probit models are different. Figure 7 depicts the ICCs

considering the PN and SPN models to these items, clearly showing differences among

them.

7 Final discussion

The type of asymmetry considered in this paper is associated with the probabilities

pij and not with the latent variable because we are motivated to assume that some

probabilities of correct response to several individuals in different items don’t show

symmetry around 0.5, independently of the distributional shape of the trait.

In the literature, different forms have been considered to specify skewness in IRT

models: a) modifying the distributional shape of the trait u, that is, consider that u
takes an asymmetric distribution function or assuming a nonlinear function in u as, for

example, a power function such as β0 + β1u + β2u
2 + β3u

3 (Fleishman 1978), or b)

considering that F (.) corresponds to an asymmetric distribution function as proposed

by Samejima (1997, 2000). However, the effect of the distributional shape of the trait

u on item parameter estimation is unclear. Kirisci et al. (2001) found that the main

effects of the distribution of U was not significant for all parameters investigated in the

three-parameters logistic model contradicting the results of Ree (1979), Stone (1992)

and Swaminathan and Gifford (1983). They argue that, applied to the case they study,

the effect of non-normality of u in item estimation is minimized for longer tests and

larger samples.

This article presents a new asymmetric IRT model by considering a new asym-

metric ICC when the cumulative distribution of the standard skew-normal distribution

(Azzalini 1985) is considered. As such, it extends the work of Albert (1992) for asym-

metric IRT models, including the symmetric probit-normal model as a special case.

Moreover, a general representations for the likelihood of the data was also provided,

which seems not to be the case with other symmetric models in the literature. We intro-

duced asymmetry in the two-parameter (2P) IRT model and not in the three-parameter

(3P) IRT model, because several generalizations and applications are possible for the 2P

model (see, for example, Bradlow et al. 1999, Béguin and Glas 2001, Fox and Glas 2001,

Linardakis and P. Dellaportas 2002, Fox and Glas 2003, and Jackman 2004). Moreover,

important routines in Bayesian inference are available for the 2P model in the web

(Martin and Quinn 2006; Johnson and Albert 1999; Jackman 2004). However, it seems
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to us that it is possible to extend the results in the paper for the (3P) model and to

a skew-Rasch item response model. Extensions for testlet type models (Bradlow et al.

1999) seem also to be straightforward. We expect that the proposed SP models can be

used also in clinical contexts since probabilities near zero and one are expected in latent

traces that are not cognitive.

Two data augmentation approaches are proposed for implementing Bayesian esti-

mation by using the MCMC methodology in the SP model. When using data augu-

mentation it is likely to have high autocorrelations, which may require large number

of iterations for adequately assessing variability of parameter estimates (sample means,

sample modes, quantiles). This can be achieved by carefully subsampling from the

Markov chains, which also is a useful tool to minimize storage requirements. The no-

tions of effective sample size (ESS), as defined in Kass et al. (1998), and the sample size

per second (ESS/s), as considered in Sahu (2002), are considered in studying estimation

efficiency, specially in the presence of high autocorrelation. As has been demonstrated

by several researches (Swaminathan et al. 2003), accurate estimation of item parame-

ters in small samples, particularly in the two and three parameters models, can only be

adequately accomplished through a Bayesian approach.

Comparisons of symmetric and asymmetric IRT models are presented by using the

deviance information criterion (DIC) described in Spiegelhalter et al. (2002). Finally,

from the point of view of the test designer, the presence of a new item parameters that

can explain the asymmetric behavior of the ICC in terms of variations on the probability

of success for different ability levels can be used on the development of more precise

tests for the estimation of examinees ability.

The skew link proposed in this paper is related with the skewed- probit link proposed

by Chen et al. (1999), where it is considered the skew-normal distribution defined in a

more general context in citetBrancoDey and Sahu et al. (2003). A common aspect of

these two links is that the asymmetry parameter is associated with the distribution

of F (.) and not with the linear predictor. However the formulation of both models is

different, since a latent linear structure is not used in the definition of the link function

proposed, as is the case with the approach in Chen et al. (1999). In addition, the link

function we propose presents a closed form expression for the cumulative distribution

function F (.).

Finally, the results in the Proposition 3 is general and can be extended to mixed

models for binary response (de Boeck and Wilson 2004) by considering mij = x′
ijβ +

t′ijbi where i = 1, . . . , n, denote subjects (level-2 units) and j = 1, . . . , ni, are repeated

observations (level-1 units) nested within each subject, with tij denoting the r × 1

vector of covariates associated with the random effects bi, xij denotes the p× 1 vector

of covariates or fixed effect and β is a vector of regression coefficients. In addition, if

we write the latent stochastic representation of the link function as Zij = mij + eij ,

where eij is a random error, assumed to be distributed according to the skew-normal

distribution with parameters vector θ = (µ, σ2, λ), where µ is the location parameter,

σ2 is the scale parameter and λ is the asymmetry parameter, we obtain a generalized

skew-probit link that has as a particular case the skew-probit link due to Chen et al.
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(1999) when µ = 0 and σ2 = 1+λ2. This extension is discussed in detail in Bazán et al.

(2005).

Appendix

A0: Properties of the standard skew-normal distribution

Considering Z ∼ SN(λ), the following properties are readily established (see Azzalini,

1985 and Henze, 1986):

1. The mean and variance of Z are given, respectively, by

E[Z] =

√
2

π
δ and V ar[Z] = 1− 2

π
δ2.

where δ = λ√
1+λ2

∈ [−1, 1];

2. The skewness and kurtosis indexes of Z are given, respectively, by

γ =

√
2(4− π)

π
√

π
sign(δ)(1− 2

δ2

π
)−3/2 and κ =

8(π − 3)δ4

(π − 2δ2)2
,

implying that −0.9953 < γ < 0, 9953 and 0 < κ < 0.8692, where sign(.) is a sign

function taking value 1 when δ is positive and −1 otherwise;

3. The density of Z is log concave;

4. An important stochastic representation was presented by Henze (1986). Let V ∼
HN(0, 1) and W ∼ N(0, 1) be the standard half normal and the standard normal

distributions, respectively. If V and W are independent random variables, then the

marginal distribution of Z = δV + (1− δ2)1/2W is SN(λ(δ)), with λ = δ
(1−δ2)1/2 .

5. The stochastic representation given in 4. can be rewritten hierarchically by con-

sidering that the distribution of Z|V (Z given V ) is a normal distribution with

mean δv and variance 1−δ2, resulting in the following hierarchical representation:

Z|V ∼ N(δv, 1 − δ2) and V ∼ HN(0, 1), leading to the marginal distribution of

Z given above.

A1: Program

We describe in the sequel a program in Winbugs used to implement the data augumen-

tation approach described in the paper.

model{

for (i in 1:n) { for (j in 1:k) {

m[i,j] <- a[j]*u[i] - b[j]
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muz[i,j]<-m[i,j]-delta[j]*V[i,j]

Zs[i,j] ~ dnorm(muz[i,j],preczs[j])I(lo[y[i,j]+1],up[y[i,j]+1])

V[i,j] ~ dnorm(0,1)I(0,) }

}

#priors for item parameters

for (j in 1:k) {

#A prior: Sahu (2002)

a[j] ~ dnorm(1,2)I(0,)

b[j] ~ dnorm(0,0.5)

delta[j] ~ dunif(-1,1)

#B prior : Sahu (2002)

#a[j] ~ dnorm(1,2)I(0,)

#b[j] ~ dnorm(0,0.5)

#delta[j] ~ dnorm(0,1)I(-1,1)

#prior C: Patz e Junker (1999)

# a[j] ~ dlnorm(0,2)

# b[j] ~ dnorm(0,0.5)

# delta[j] ~ dunif(-1,1)

#prior D Patz e Junker (1999)

# a[j] ~ dlnorm(0,2)

# b[j] ~ dnorm(0,0.5)

# delta[j] ~ dnorm(0,1)I(-1,1)

preczs[j]<- 1/(1-pow(delta[j],2))

lambda[j]<-delta[j]*sqrt(preczs[j])

}

#latent variable prior

for(i in 1:n){ u[i]~ dnorm(0,1) }

lo[1]<- -50; lo[2]<- 0 ## Zs*|y=0~N(-delta*V+m,1-delta^2)I(-50,0)

up[1]<- 0; up[2]<-50 ## Zs*|y=1~N(-delta*V+m,1-delta^2)I(0,50)

mu<-mean(u[])

du<-sd(u[])

}

Inits list(b

=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1),

delta=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0))

Data list(n=131, k=14,y= structure(.Data =

c(1,1,0,1,1,0,1,1,1,1,1,0,0,1, .... 1,1,0,1,0,0,1,1,0,0,1,0,1,1),

.Dim = c(131,14)))
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Figure 1: ICCs for different values of the latent variable associated with individual

ability U , and considering item parameters a = 1, b = 0 and λ = −2,−1, 0, 1, 2 in the

skew-probit IRT model. Note that when λ > 0, the probability of success has a slow

growth for low values of the latent variable U . On the other hand, when λ < 0, the

probability of success has a quick growth for low values of the latent variable U .
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Figure 2: Performance of parameter estimates for Tanners data, using 95 % confi-

dence intervals for the efficiency (EF12) between probit an skew-probit models with λ
(SP(lambda)) and δ (SP(delta)) parameterizations.
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Figure 3: Histogram for the observed scores of the 131 sixth grade students for a

mathematical test (Math Data) with k=14 items. The sample mean value is 10.84,

the standard deviation is 0.449 and the sample skewness index is −0.804).
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Figure 4: Discrimination and difficulty parameter estimates under probit and skew-

probit IRT models. Note that the parameters are equally interpretable under both

models: item 11 is the most discriminating while item 9 is the least; also, item 11 is the

easiest while item 12 is the most difficult.
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Figure 5: Differences between the probit and skew-probit IRT models (sum of abso-

lute values of differences in aj and bj parameters) for the estimated δ parameter. As

expected, the estimated difficulty and discrimination parameters in the probit and skew-

probit IRT models are approximately equal when the asymmetry parameter is close to

zero

.
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Figure 6: Box-Plots for the δ parameters of the 15 items weight’s perception scale under

the skew-probit IRT model
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Figure 7: ICCs for item 7 for the weights data set, under probit and skew-probit IRT

models

.




