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Nested Sampling for General Bayesian

Computation

John Skilling∗

Abstract. Nested sampling estimates directly how the likelihood function relates
to prior mass. The evidence (alternatively the marginal likelihood, marginal den-
sity of the data, or the prior predictive) is immediately obtained by summation.
It is the prime result of the computation, and is accompanied by an estimate of
numerical uncertainty. Samples from the posterior distribution are an optional by-
product, obtainable for any temperature. The method relies on sampling within
a hard constraint on likelihood value, as opposed to the softened likelihood of an-
nealing methods. Progress depends only on the shape of the “nested” contours of
likelihood, and not on the likelihood values. This invariance (over monotonic re-
labelling) allows the method to deal with a class of phase-change problems which
effectively defeat thermal annealing.

Keywords: Bayesian computation, evidence, marginal likelihood, algorithm, nest,
annealing, phase change, model selection

1 Introduction

Our primary task is to evaluate

Z = evidence =

∫
LdX , (1)

where L = L(θ) is the likelihood function, dX = π(θ)dθ is the element of prior mass, and θ
represents the unknown parameter(s). The probabilistic context of this is usually in the form
of Bayes’ theorem, being the product law under background model assumptions I:

Pr(D | θ, I)× Pr(θ | I) = Pr(D | I)× Pr(θ | D, I)
Likelihood × Prior = Evidence× Posterior

L(θ) × π(θ)dθ = Z × p(θ)dθ .
(2)

Here D are the acquired data which let us modulate our prior belief dX = π(θ)dθ into
posterior dP = p(θ)dθ. Prior and posterior, as always, are normalised to unit total. Inputs L
and π yield outputs Z and p.

Calculating the value of Z allows different model assumptions to be compared through
the ratios of evidence values known as Bayes factors. Presenting Z thus lets the results be
future-proof, in that future models can be compared with the current one, without having to
re-do the current calculation. Giving the value of Z is a courtesy to other workers who may
wish to perform model selection, and ought to be a standard part of rational enquiry. It is
one half of the output from a Bayesian calculation, the other half being the posterior. Oddly,
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the quantity currently lacks a universal name, and the author favours the crisp single word
“evidence”, which is growing in popularity (MacKay (2003)) and for which no other standard
technical definition has yet been agreed. “Marginal likelihood” describes how it is (usually but
not always) constructed. “Prior predictive” describes how it is (usually but not always) used.
“Evidence” denotes what it is.

Historically, following Metropolis et al. (1953) and Hastings (1970), algorithms such as
Markov chain Monte Carlo (MCMC) have been principally designed for the posterior. Indeed,
standard MCMC yields only a set of samples representing the normalised posterior, and fails to
give the evidence at all. Obtaining the evidence has required considerable extra work, usually
involving a sequence of intermediate distributions that bridge between prior and posterior, as in
thermodynamic integration reviewed with generalisations by Gelman and Meng (1998). This
is unfortunate, because the extra computational difficulty and the lack of standard terminology
suggest that the evidence value is an optional by-product, rather than a quantity of central
importance. Nested sampling reverses the historical approach. The evidence is now the prime
target, with representative posterior samples available as the optional by-product.

The paper starts with the idea of sorting points θ by their likelihood values, which are
then summed to give the evidence. Of course, there are usually far too many points to do this
explicitly, so nested sampling simulates the operation statistically. The evidence then becomes
accompanied by a corresponding numerical uncertainty. A methodological section argues that
nested sampling is Bayesian in nature. With the basic method in place, it is possible to estimate
the density of states, to obtain samples from the posterior, and to quantify arbitrary properties
of θ. These sections complete the formal development. Nested sampling is then compared with
the conventional approach of annealing, and is shown by examples and limiting cases to be
wider in scope. The paper concludes with an overview, and an Appendix with a simple ‘C’
program.

2 Sorting

The evaluation of
∫
LdX looks like a straightforward problem of numerical analysis. Simplis-

tically, one might raster over underlying coordinates θ to evaluate
∫
L(θ)π(θ)dθ. However, this

rapidly becomes impractical as soon as θ has more than a very few dimensions. Instead, we
will use the prior X directly.

Prior mass X can be accumulated from its elements dX in any order, so define

X(λ) =

∫

L(θ)>λ

π(θ)dθ (3)

as the cumulant prior mass covering all likelihood values greater than λ. As λ increases, the
enclosed mass X decreases from 1 to 0. Writing the inverse function as L(X), i.e. L(X(λ)) ≡ λ,
the evidence becomes a one-dimensional integral over unit range

Z =

∫ 1

0

L(X) dX (4)

in which the integrand is positive and decreasing (Figure 1), so it has to be well behaved.
Accomplishing this transformation from θ to X involves dividing the unit prior mass into tiny
elements, and sorting them by likelihood.
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Figure 1: Likelihood function with area Z.

A very simple example, on a 4 × 4 grid of two-dimensional θ, is shown in the table (5) of
likelihood values ascribed to its 16 cells of equal prior mass 1

16
.

L =

0 8 15 3

11 24 22 10

19 30 26 16

9 23 18 6

(5)

Our plan is to proceed as if we could sort these elements by likelihood, in the above example
to L = (30,26,24,23,22,19,18,16,15,11,10,9,8,6,3,0), whence

Z =
30

16
+

26

16
+

24

16
+

23

16
+

22

16
+

19

16
+

18

16
+

16

16
+

15

16
+

11

16
+

10

16
+

9

16
+

8

16
+

6

16
+

3

16
+

0

16
= 15 ,

to be evaluated right-to-left into domains of progressively greater likelihood. The likelihood
corresponding to (say) X = 1

5
, being one fifth of the way along the sequence so falling into the

fourth cell out of sixteen, is L(X=0.2) = 23.

As a technicality we may need to resolve ties between points of equal L. A point k, which
has coordinates θk and corresponding likelihood Lk = L(θk), can also be assigned a label `k,
chosen from some library large enough that repeats are not expected. Random samples from
Uniform(0,1) suffice, as would a cryptographic identification key derived from θ, or almost
anything else. Labels parameterise within each likelihood contour, and extend the likelihood
to

L
+
k = Lk + ε`k , (6)

where ε is some tiny coefficient that never affects numerical likelihood values (which are always
held to finite precision), but nevertheless enables an unambiguous ranking of the points, even
where raw likelihoods are equal. For clarity, we mostly ignore this refinement hereafter.
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3 Integration

Coordinate-dependent complications of geometry, topology, even dimensionality, are all anni-
hilated by the sorting operation, and the remaining task is easy and well understood. Suppose
that we knew how to evaluate the likelihood as Li = L(Xi) at a right-to-left sequence of m
points

0 < Xm < · · · < X2 < X1 < 1 . (7)

Any convenient numerical recipe would then estimate Z as a weighted sum

Z ←−
m∑

i=1

wiLi (8)

of these values, in which the area in Figure 1 is approximated as a set of columns of height L
and width w ∼ ∆X.

Because L(X) is non-increasing, it is bounded below by any value evaluated at larger X.
Hence wi = Xi −Xi+1 with Xm+1 = 0 gives a lower bound

Z =

∫ 1

0

LdX ≥

m∑

i=1

(Xi −Xi+1)Li . (9)

0 1
0

max

#1

#2

#m

X

L

L

Figure 2: Lower bound (dark shading) and upper bound (all shading) on area. The

thick line indicates the trapezoidal rule.

There is a similar upper bound (Figure 2) from wi = Xi−1 −Xi with X0 = 1,

Z =

∫ 1

0

LdX ≤

m∑

i=1

(Xi−1 −Xi)Li +XmLmax , (10)

where Lmax is the maximum likelihood value to be found as X → 0. Technically, Lmax is not
determined by nested (or any other) sampling. There could always remain some tiny volume
containing huge and dominant likelihood values, unless that can be ruled out by some global
analysis (as when a Gaussian likelihood factor cannot exceed 1/

√
2πσ). However, when judging

that a run can be terminated, we implicitly assert that any increase in L beyond the highest
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value yet found is not consequential. With this proviso, the upper limit (10) holds, and errors
from numerical integration are at most O(N−1) — that being the difference between upper
and lower bounds.

The trapezoidal rule wi = 1
2
(Xi−1−Xi+1), with reflecting boundary conditions X0 = 2−X1

and Xm+1 = −Xm to avoid awkward behaviour, reduces this to O(N−2) in most cases. The
integrand is already quite well behaved, so we do not expect useful improvement over the
trapezoid rule (or similar) denoted by the “←−” arrow.

4 Evidence

The integral for Z is dominated by wherever the bulk of the posterior mass is to be found.
Typically, this occupies a small fraction e−H of the prior, where

H = information =

∫
log(dP/dX) dP . (11)

H is (minus) the logarithm of that fraction of prior mass that contains the bulk of the posterior
mass, and it may well be of the order of thousands or more in practical problems where the
likelihood is concentrated in some obscure corner of the prior domain.

To illuminate the width over X of the posterior, suppose the likelihood function has C
approximately-Gaussian principal components, so that L is approximately a rank-C multivari-
ate normal. For this model case, the likelihood can be written L ∝ exp(− 1

2
r2), where r is radius

in C dimensions, with enclosed prior mass X ∝ rC . This posterior dP ∝ LdX = LX d logX
induces a standard deviation 〈(δ logX)2〉1/2 of

√
C/2. So we expect the posterior mass to be

fairly broadly distributed over a range something like −H±
√
C in logX. Generally, each useful

principal component of the likelihood significantly restricts the range originally permitted by
the prior (otherwise it’s not useful), so H should usually exceed C, let alone

√
C, suggesting

that locating and reaching the posterior domain is a more difficult task than navigating within
it. This qualitative behaviour, where the posterior mass is mostly around logX ≈ −Huge±big
(Huge meaning H), is widely seen in practical applications.

To cover such a range, sampling ought to be linear in logX rather than in X, and we set

X1 = t1, X2 = t1t2, · · · · · · , Xi = t1t2 . . . ti, · · · · · · , Xm = t1t2t3 . . . tm , (12)

where each ti lies between 0 and 1. It is these ratios t that control the subsequent calculations.
If, for example, we could set t = 0.99 each time, then we should reach the bulk of the posterior
after something like 100H steps, and cross it in a further 100

√
C steps. Any such sequence t

leads to an estimate of Z, which we can make explicit by writing

Z(t) ←−

m∑

i=1

wi(t)Li . (13)

5 Nested sampling idea

Although we cannot usually set precise values of t, it turns out that we can often set them
statistically, and that is enough. All we need do, at step i, is take a random new point Xi

from the prior, subject to Xi < Xi−1 (starting with X0 = 1). Our knowledge of the new point
Xi = tiXi−1 would be specified by ti ∈ Uniform(0, 1).
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In principle, such a point could be obtained by sampling Xi uniformly from within the
corresponding restricted range (0, Xi−1), then interrogating the original likelihood-sorting to
discover what its θi would have been. In practice, it would naturally be obtained directly as
θi, by sampling within the equivalent constraint L(θ) > Li−1 (with L0 = 0 to ensure complete
initial coverage), in proportion to the prior density π(θ). This too finds a random point,
distributed just the same. The second method is equivalent to the first, but bypasses the use
of X. So we don’t need to do the sorting after all! That’s the key.

Successive points are illustrated in Figure 3, in which prior mass is represented by area.
Thus, point 2 is found by sampling over the prior within the box defined by L > L1, and so
on. Such points will usually be found by some MCMC approximation, starting at some point
θ∗ known to obey the constraint (if available), or at worst starting at θi−1 which lies on and
defines the current likelihood boundary.

0 1X X X

L

L

L

L

L

L
L

Parameter space 3 2 1

1

2

3

1

2
3

Figure 3: Nested likelihood contours are sorted to enclosed prior mass X.

It is not the purpose of this introductory paper to develop the technology of navigation
within such a volume. We merely note that exploring a hard-edged likelihood-constrained do-
main should prove to be neither more nor less demanding than exploring a likelihood-weighted
space. For example, consider a uniform prior weighted by a C-dimensional unit Gaussian like-
lihood L(θ) = exp(− 1

2
|θ|2). Conventional Metropolis-Hastings exploration is simply accom-

plished with trial moves of arbitrary direction having step-length |δθ| around 1 for efficiency.
Most points have |θ| ≈

√
C, so the relaxation time is about C steps.

In nested sampling, the corresponding hard constraint is the ball |θ| <
√
C (or thereabouts).

The typical point has |θ| ≈
√
C − 1/

√
C, that being the median radius of the ball. Again, the

efficient trial step-length is |δθ| ≈ 1, so the relaxation time per iterate is much the same as
before. There are well-developed methods, such as Hamiltonian (or “hybrid”) Monte Carlo
(Duane et al. (1987), Neal (1993)), slice sampling (Neal (2003)) and more, which learn about
more general shapes of L in order to explore the likelihood-weighted space more efficiently.
Similar methods ought to work for exploring likelihood-constrained domains, but have not yet
been developed.

In terms of prior mass, successive intervals w scan the prior range from X = 1 down to
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X = 0. In terms of coordinates θ, the intervals represent nested shells around contours of
constant likelihood value, with points exactly on the same contour being ranked by their labels
`. More generally, instead of taking one point within the likelihood-constrained box, take N
of them where N is any convenient number, and select the worst (lowest L, highest X), as the
i’th point. This recurrence is

X0 = 1, Xi = tiXi−1, Pr(ti) = NtN−1
i in (0, 1) , (14)

ti being the largest of N random numbers from Uniform(0,1). The mean and standard deviation
of log t (which dominates the geometrical exploration) are

E(log t) = −1/N, dev(log t) = 1/N . (15)

The individual log t are independent, so after i steps, the prior mass is expected to shrink to
logXi ≈ −(i ±

√
i)/N . Thus we expect the procedure to take about NH ±

√
NH steps to

shrink down to the bulk of the posterior, and a further N
√
C or so steps to cross it. For a

crude implementation, we can simply proclaim logXi = −i/N as if we knew it, though it’s
more professional to acknowledge the uncertainties.

Actually, it is not necessary to find N points anew at each step, because N−1 of them
are already available, being the survivors after deleting the worst. Only one new point is
required per step, and this θ may be found by any method that draws from the prior subject
to L(θ) being above its constraint Li−1. One method is to replace the deleted point by a copy
of a random survivor, evolved within the box by MCMC for some adequate number of trials.
Surviving points could be used as stationary guides in such exploration. Another method might
be generation of new points by genetic mixing of the survivors’ coordinates. All that matters
is that the step ends with N usably independent samples within the box.

6 Nested sampling procedure

At each step, the procedure has N points θ1, . . . , θN , with corresponding likelihoods
L(θ1), . . . , L(θN ), augmented to L+ as in (6) if ties of likelihood are anticipated. The
lowest (minimum) such value is the likelihood Li associated with step i. There are to be j
iterative steps.

Start with N points θ1, . . . , θN from prior;

initialise Z = 0, X0 = 1.
Repeat for i = 1, 2, . . . , j;

record the lowest of the current likelihood values as Li,

set Xi = exp(−i/N) (crude) or sample it to get uncertainty,
set wi = Xi−1 −Xi (simple) or (Xi−1 −Xi+1)/2 (trapezoidal),
increment Z by Liwi,

then replace point of lowest likelihood by new one drawn

from within L(θ) > Li, in proportion to the prior π(θ).
Increment Z by N−1(L(θ1) + . . . + L(θN ))Xj .

The last step fills in the missing band 0 < X < Xj of the desired integral
∫ 1

0
LdX with weight

w = N−1Xj for each surviving point, after the iterative steps have compressed the domain
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to Xj . So the final number of terms in the evidence summation (8) is m = j +N . However,
there should already have been sufficient steps j to accumulate most of the integral, so this
final increment ought to be an unimportant refinement. It is also possible to accumulate the
information H along with Z.

Figure 4 illustrates the method, running with N = 3 points. Initially, three samples are
taken from the unconstrained prior, whose mass is represented by the complete square area
on the left. These points could equivalently have been taken randomly from X in (0,1), as
shown on the lower line on the right. They have labels 1, 3, 4, as yet unknown. In step 1, the
worst (lowest L, highest X) of these points is identified as number 1, with likelihood L1. It is
then replaced by a new point, drawn from inside the contour L(θ) > L1. Equivalently, it could
have been taken randomly from X in (0, X1). Including the two survivors, there are still three
samples, now all uniform in the reduced range (0, X1). With the particular random numbers
used for Figure 4, the new point in step 1 happened to lie outside the two survivors, so became
number 2, but in step 2 the new point happened to be the innermost, and was eventually
identified as number 5. After the j = 5 allotted steps, the five discarded points 1,2,3,4,5 are
augmented with the final three survivors 6,7,8 to give the m = 8 points (X1, . . . , X8) shown
on the top line. It is over these points that the sum

∑8
i=1 Liwi is evaluated to estimate Z.

Parameter space Enclosed prior mass X

8 samples X

0 1

0 X     Step 1

0 X     Step 2

0 X     Step 3

0 X     Step 4

0 X     Step 5

0 1

1

2

3

4

5

1

2

3

4

5

6
7

8

Figure 4: Nested sampling for five steps with a collection of three points. Likelihood

contours shrink by factors exp(−1/3) in area and are roughly followed by successive

sample points.

With N = 3 samples, shrinkage is expected to be roughly geometrical, by ∆ logX ∼ −1/3
per step. The diagram on the left of Figure 4 shows likelihood contours drawn at levels
corresponding to enclosed areas diminishing by this factor — i.e. the i’th contour encloses
prior mass e−i/3. Indeed, the first point lies close to the first contour, the second point is not
too far outside the second contour, and so on until the fifth point chances to fall inside the fifth
contour. If we could arrange exact matching, we would know the X’s and have a definitive
answer for Z, depending only on the scheme of numerical integration. Since we can’t arrange
this, we proceed towards deriving a probabilistic estimate instead. Although it is unusual to
deal with an integral in which the ordinate L is known and the abscissa X is uncertain, rather
than the other way around, the problem remains soluble.



John Skilling 841

7 Nested sampling termination

Termination of the main loop could simply be after a pre-set number of steps, or could be
when even the largest current likelihood, taken over the full current box, would not increase
the current evidence by more than some small fraction f ;

max(L1, . . . , LN )Xj < fZj =⇒ termination. (16)

Plausibly, the accumulation of Z is then tailing off, so the sum is nearly complete.

The usual behaviour of the areas Liwi is that they start by rising, with the likelihood Li

increasing faster than the widths wi decrease. The more important regions are being found.
At some point, L flattens off sufficiently that decreasing width dominates increasing likelihood,
so that the areas pass across a maximum and start to fall away. Most of the total area is
usually found in the region of this maximum, which occurs in the region of X ≈ e−H . There
are counter-examples, but that behaviour is often expected. Remembering Xi ≈ e−i/N , this
suggests an alternative termination condition

“continue iterating until the count i significantly exceeds NH”, (17)

which still expresses the general aim that a nested-sampling calculation should be continued
until most of Z has been found. (Of course, H is here the current evaluate from the previous
i iterates.) This is the criterion used in the Appendix program.

Unfortunately, we can offer no rigorous criterion based on sampling to ensure the validity of
any such termination condition. It is perfectly possible for the accumulation of Z to flatten off,
apparently approaching a final value, whilst yet further inward there lurks a small domain in
which the likelihood is sufficiently large to dominate the eventual results. Termination remains
a matter of user judgment about the problem at hand, albeit with the aim of effectively
completing the accumulation of Z. If in doubt, continue upward and inward.

However, if an analytical upper bound L ≤ Lmax can be found, such as when a Gaussian
likelihood factor cannot exceed 1/

√
2πσ, it can be used in (16) to give a firmer termination

criterion
LmaxXj < fZj =⇒ termination. (18)

In this case, all but a fraction f of Z has been found.

8 Numerical uncertainty

It is possible to run nested sampling crudely, by assigning each log t its mean value of −1/N ,
and ignoring its uncertainty. With Xi thereby being set to e−i/N , this captures the basic
idea by giving a quick picture of the likelihood function L(X). An early example of a similar
approach is McDonald and Singer (1967), and it is encoded in the simple Appendix program.
However, a fuller and better treatment is also possible.

For a given choice of coefficients t, the estimate of Z would be
∑

i Liwi(t) from (13). One
such choice of t will be correct, corresponding to the selected points θi, but we do not know
which, and it could have been any. In particular, the correct choice of log ti is most unlikely
to be −1/N for all i. Instead, the “sequence probability” Pr(t)dt =

∏
i Nt

N−1
i dti from (14)

induces a distribution for our estimates of Z;

Pr(Z) ←−

∫
δ
(
Z −

m∑

i=1

Liwi(t)
)

Pr(t) dt . (19)
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Analytic expressions for moments 〈Z〉, 〈Z2〉, . . . are available through means, correlations, and
higher moments of t1, t1t2, t1t2t3, . . .. However, the dominant uncertainty in Z is usually due
to the Poisson variability NH ±

√
NH in the number of steps to reach the posterior, implying

a geometrical uncertainty factor exp(±
√
H/N) which could be many powers of e. Hence it

is logZ rather than Z itself that should usually have a fairly symmetrical roughly-normal
uncertainty. The distribution of Z may be awkwardly skewed, with its moments dominated by
occasional upward outliers in logZ. A reader who doubts this may consider the hypothetical
normally-distributed logZ = 100 ± 10, whose direct mean and standard deviation Z = e150 ±
e200 are unhelpful, especially since it is known that Z has to be positive. So, rather than
proceeding with moment expansions, it seems better to use Monte Carlo, taking a set {t}
of several dozen samples from the sequence probability Pr(t) to simulate the X’s and thence
obtain the distribution of Z from samples {Z}t, from which the statistics of logZ can be read
off with adequate confidence:

logZ ←− estimate ± uncertainty, from {logZ}t . (20)

The uncertainty accompanying such estimates will usually diminish as the inverse square root
of N , the amount of computation that one is prepared to invest in the original exploration.
The same approach can be applied to any average over t:

∫
· · · Pr(t) dt =

〈
· · ·
〉
t
. (21)

Alongside the uncertainty of about ±
√
H/N in logZ, there is also the systematic numerical

bias imposed by the integration rule. Thus, the lower- or upper-bound numerical weights (9)
or (10) will usually give O(1/N) bias, which the trapezoidal improvement reduces to O(1/N 2).
Usually, these biasses are overwhelmed by the uncertainty.

Technically, Pr(Z) is most easily evaluated by Monte Carlo sampling over t. That is highly
unlikely to be a significant source of error if several dozen samples are used (which is allowable
because no likelihood evaluations are involved). However, if this is thought to be of concern, it
is worth noting that Monte Carlo could be evaded by evaluating the integral differently. Write
(13) (with lower-bound weights (9) for simplicity) as

Z(t) ←−
m∑

i=1

λiXi(t) , λi = Li − Li−1 (22)

with L0 = 0, and expand Xi using (12):

Z(t) ←− t1
(
λ1 + t2

(
λ2 + · · · + tm−1(λm−1 + tm(λm)) · · ·

))
. (23)

Working outwards, use the recurrence relation

Zm = λm, Zi−1 = λi−1 + tiZi (24)

to reach the required Z = Z1. Each step of this takes a computed distribution Pr(Zi) and
integrates it with Pr(t) from (14) (a convolution over logX) before shifting it by λi−1 to reach
Pr(Zi−1), ending with the required Pr(Z), from which statistics of Z or logZ can be read
off. In this way, the m-dimensional integral (19) can be reduced to m feasible one-dimensional
operations without any methodological qualms.
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9 Simple example

In C dimensions, consider the simple Gaussian problem

L(θ) = exp
(
−

r2

2σ2

)
, r2 =

C∑

i=1

θ2i , (25)

where θ has flat prior within the unit sphere

prior π(θ) =
(C/2)!

πC/2
(π = 3.1415...) in r < 1 . (26)

For convenience, take σ � C−1/2, so that almost all the likelihood is well within the prior
domain. The evidence (discarding the tails outside the domain) evaluates to

Z = (C/2)! (2σ2)C/2 . (27)

We observe that L is a decreasing function of radius r, so that sorting (were we able to
perform it) would organise θ into an outward radial sequence of nested shells, having enclosed
prior mass

X = rC . (28)

Hence the likelihood function is

L(X) = exp(−X2/C/2σ2) , (29)

as plotted in Figure 5 for C = 10, σ = 0.01.

log  X

L

e
0-10-20-30-40-50-60-70

Figure 5: Likelihood function of simple example (on logarithmic abscissa).

The bulk of this mass is around radius r ∼ σ
√
C, and the information required to reach down

into this small patch is

H ≈ −C log(σ
√
C) . (30)

Meanwhile, the true numerical values are logZ = −37.81, H = 32.80. (Although Figure 5 is
a little misleading visually because of the logarithmic scale, the bulk of the posterior is indeed
around logX ≈ −H ≈ −33.)
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It is our task to reproduce this likelihood function, and thence the evidence as its integral,
by nested sampling. For simplicity, consider using just one sample N = 1.

The initial step is to take a random point θ1 within the unit sphere, and evaluate its
likelihood L1 = L(θ1). The next step is to take a random point θ2 of greater likelihood,
L(θ2) > L1. Using our analytical insight into this particular problem, we know that we can
obtain such a point by sampling within the sphere r < r1. We have special knowledge, and
can use it. However, a nested sampling program would generally have to find θ2 by some other
method. It might use MCMC over the prior, starting at θ1 and accepting only those points
with greater likelihood, until correlation with the original point was deemed to be lost. Or it
might use something else. We do not discuss such choices here; we simply assume that sampling
from within a likelihood constraint is possible.

log  X

L

e
0-10-20-30-40-50-60-70

110203040

50

60

7079

Figure 6: A random sequence of the first 79 nested sampling points, shown at their true

X values. With N = 1, the i’th point lies at log X = −i on average, but particular

sequences drift randomly away.

The next step is to take a third random point θ3 of yet greater likelihood, L3 = L(θ3) > L2,
and so on indefinitely. If we could use our analytical insight (28), we would evaluate the enclosed
prior masses X and hence determine the sequence (X1, L1), (X2, L2), (X3, L3), . . . properly, as
shown in Figure 6 for one particular run. By construction, these points lie exactly on the true
likelihood curve. Although the points are quite coarsely spaced so thatO(1) errors are expected,
numerical integration (by trapezoid, say) gives a respectable estimate logZ ≈ −37.60. This
example used just one point (N = 1), but for more accuracy we might evolve a collection
of N > 1 points to obtain a sequence N times more closely spaced and N 2 more accurate.
But, without the analytical insight available in this simple example, we would not have exact
locations X, so we could not use this scheme.

However, we do have crude central estimates logXi = −i/N for the locations, and could
use them as in Figure 7. The general profile of the likelihood function is preserved, in that
likelihood values L and their ordering are the same. However, the logX abscissa has been
distorted to keep the points uniformly spaced in keeping with the central estimates. By the
time the bulk of the posterior has been reached, the accumulated Poisson errors have shifted the
peak away from i ≈ H by δi ∼ ±

√
i, so that logX has been offset, leading to a corresponding

(and dominating) uncertainty of ±
√
H in logZ (or ±

√
H/N for general N). Numerically, this

particular result was logZ = −43.6±5.9, being these crude estimates of the mean and standard
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Figure 7: The same sequence of nested sampling points as in Fig. 6, shown at the crude

central estimate of their X values (i.e. uniformly in log X).

deviation.
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Figure 8: The same sequence of nested sampling points as in Fig. 6, showing three

random assignments (•, +,×) for X values taken from Pr(X).

A more professional but quite similar estimate logZ = −42.7 ± 5.5 (again mean and stan-
dard deviation) is obtained by sampling (i.e. repeatedly guessing) the mass ratios t from their
pdf (14), and accumulating the values of Z that are thereby produced. Three of these guesses
are shown in Figure 8. As expected, the curves are mostly the same shape and differ principally
by random offset in logX. Averaged over many assignments of t, this better estimate misses
the true value logZ = −37.81 by an unremarkable 0.9 standard deviations.

It is, of course, necessary to take enough iterates (at least NH) to reach and then cross the
bulk of the posterior mass. Likelihood values can guide the termination decision by indicating
when the accumulation of Z appears to be tailing off, perhaps as in (17), but there is seldom
a definitive criterion.
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Incidentally, the discerning reader will have noticed that the original dimensionality of the
example disappeared early on. The problem could just as well have been one-dimensional,
described by (29). Nested sampling ignores dimensionality, off-loading such complications to
the task of sampling within the likelihood constraint.

10 Multiple runs

In repeated trials of nested sampling, the 50% interquartile range for Z is observed to cover
the truth about half of the time, and similarly for other confidence intervals. Logically, though,
that frequentist observation is pointless because the test is forced to succeed. It could only fail if
there were an error, either in the logic of nested sampling or in the programming. Nevertheless,
it raises the question of how multiple runs should best be combined. Loosely, one might invent
some ad hoc averaging, but there ought to be a better way.

Suppose that several runs r = 1, 2, . . . are undertaken with numbers N (r) of points, and
that run r accumulates likelihood values L

(r)
1 < L

(r)
2 < L

(r)
3 < . . . . Merge these values into a

single global sequence
L1 < L2 < L3 < . . . (31)

and consider the status of the runs as they pass any likelihood value L∗. Unless run r has
already been terminated, it will at that time have its N (r) points uniformly distributed in X
(as always), but subject to their likelihoods being above L∗, so that their enclosed prior masses
are leftward of X∗ = X(L∗) as illustrated in Figure 9. The run’s rightmost point (with worst
L) is distributed along X as the largest of N (r) random numbers from Uniform(0, X∗).

0 C BA X

L

1*

*

Figure 9: N = 4 points each from 3 runs (•, +,×) as they pass L∗. A,B,C are their

rightmost points, respectively. B is the rightmost of all 12 points.

Meanwhile, the rightmost point of all (“B” in Figure 9) is being distributed as the largest
of all these ν = N (1) +N (2) +N (3) + . . . random numbers from Uniform(0, X∗). But, if X∗ is
taken to be the i’th element Xi of likelihood Li in the global sequence, then this rightmost of
all is the subsequent element Xi+1. The shrinkage factor ti+1 = Xi+1/Xi is distributed as

Pr(t) = νtν−1 . (32)

Hence the merged combination of individual runs behaves just like a single run with the com-
bined number of points, and can be analyzed as such with no need for any damaging ad hoc

fixup. Presumably, this is how nested sampling might be conveniently implemented on parallel
hardware.

11 Philosophy

Note that our inferences are properly probabilistic. O’Hagan (1987) has criticised Monte Carlo
integration for being frequentist, because results depend on the random generator with its
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sampling distribution, as well as on the likelihood function. This criticism has entered the
folklore and makes it difficult for Bayesians, who have been using frequentist algorithms to
generate their results, to argue convincingly against frequentist methodology. Fortunately, the
criticism does not apply to nested sampling.

It is true that our results depend on the generator which, by sampling θ within the like-
lihood constraint, thereby implicitly samples the shrinkage factors t according to (14). Yet
nested sampling takes that into account. The numerical integration rule (whether trapezoid
or an alternative) imposes a definitive functional form Z(t) on the evidence values, parame-
terised by the evaluated likelihoods. Accordingly, the known Pr(t) induces a correspondingly
unambiguous Pr(Z) through the multi-dimensional integral (19).

In the analogy with ordinary Bayesian inference from data, the shrinkage factors t play
the role of noise of known distribution, the algorithm plays the role of observing equipment,
and the likelihood evaluations play data from which we infer Pr(Z | data). Implicit in this
is that we knew nothing else of significance about Z or its underlying likelihood function. If
we did have some such expectation (Rasmussen and Gharamani (2003)), we could factor those
probabilities into the calculation, and thereby improve the results. In general it seems unlikely
that there would be much to gain, but there might be cases where something useful was known,
and the facility is present.

Note that integrating the monotonic function L(X) is quite different from integrating the
arbitrary f(x) that O’Hagan had in mind. Suppose, to take a limiting illustration, that we
knew f(0) = f(1) = c. If f were arbitrary, the uncertainty in its integral would be substantial,
and questionable. O’Hagan made that point in greater generality. If f is monotonic, though,
it has to be constant, and

∫ 1

0
f(x)dx = c, with no uncertainty. Nested sampling generalises

this without any compromise with the ordinary rules of probability theory.

O’Hagan also criticised the Monte Carlo integration of his day for producing results which
depended on the sampling distribution. Thus, if the likelihood function factorises as L = L1L2,
then the result Z =

∫
(L1L2) dX of sampling overX will differ from the result Z ′ =

∫
L1 (L2dX)

of including L2 with X and sampling from that combination instead. But that’s not a criticism
of nested sampling; it’s a straightforward feature, to be expected and approved. If we are
clever enough to factor part of the likelihood into the prior, and sample from that, we would
thereby start closer to the posterior, and can expect to be rewarded with a better estimate
having diminished uncertainty. Conversely, if we were foolish enough to retreat away from the
posterior by dividing some factor out of the prior, then we should expect to pay for it with
increased uncertainty. This is just how a properly constituted algorithm for inference ought to
behave. Anything else would be worrisome.

In summary, nested sampling obeys the rules of probability calculus. Accordingly, and as
befits an algorithm for Bayesian computation, its nature is Bayesian, not frequentist.

12 Density of states

The density of states (being the prior mass in a thin likelihood shell — loosely, its area) is
often defined with respect to “energy” E = − logL as g = dX/dE = −dX/d logL, but here it
is more convenient to define it in fully logarithmic form as

g∗(L) = −
d logX

d logL
. (33)
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Differencing across r steps gives

g∗(L) ←− −
logXi − logXi−r

logLi − logLi−r
=
− log ti − log ti−1 − . . .− log ti−r+1

logLi − logLi−r
(34)

for L somewhere between Li−r and Li. The statistics (15) of each log t are known, and
independent, so that in terms of mean and standard deviation

g∗ ←−
(r ±

√
r)/N

logLi − logLi−r
. (35)

As usual in numerical differentiation, the formal uncertainty diminishes as the chosen interval
widens, but the difference ratio relates less precisely to the required differential.

Individual steps (r = 1) estimate g∗ with 100% expected error. Even so, these steps underlie
the evidence summation and are the most basic results of the computation. Individual steps
can also build properties other than the evidence (known in thermodynamics as the partition
function). In particular, the annealed partition function

Z(β) =

∫
LβdX (36)

is available at any inverse temperature β, provided the computation is carried far enough
inward to cover the bulk of the required integral. Nested sampling is not thermal, but can
simulate any temperature.

13 Posterior

Representative samples θ̃ from the posterior density are defined by sampling from the posterior
distribution p(θ), which is simply the prior weighted by likelihood. Equivalently, they can be
obtained by sampling randomly from the area Z under the one-dimensional curve L(X), as
shown in Figure 10.

0 1X

L

Figure 10: Posterior samples are scattered randomly over the area Z.

Because this area Z is already decomposed (8) into
∑

i Liwi, we can select our samples by
choosing from these sub-areas. In other words, the existing sequence of points θ1, θ2, θ3, · · ·
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already gives a set of posterior representatives, provided the i’th is assigned the appropriate
importance weight Liwi, normalised by Z to yield a probability with unit total. For a given
choice of coefficients t, the posterior probability for point i would be

pi(t) = Liwi(t)/Z(t) . (37)

Taking into account the uncertainty of the coefficients, this posterior probability for point i
becomes

pi ←−

∫
Liwi(t)

Z(t)
Pr(t) dt = Li

〈wi(t)

Z(t)

〉
t

, (38)

which can be evaluated by Monte Carlo as before.

To obtain equally-weighted posterior representatives, all we need do is accept point θi

with probability pi/K, where K ≥ maxj(pj) must be large enough to avoid duplication. The
maximum number of representative posterior samples is given by the entropy (i.e. the Shannon
channel capacity) as

N = exp
(
−

m∑

i=1

pi log pi

)
, (39)

though in practice the available number is somewhat less because of the maximisation limit
K. For the approximately rank-C multivariate normal likelihood conjectured earlier, we may
expect N ∼ N

√
C. More precisely, we saw after (11) that this form of likelihood would have a

posterior of standard deviation
√
C/2 with respect to logX. The step number i is expected to

be roughly −N logX, so pi should be roughly Gaussian in i, with standard deviation N
√
C/2.

In that case, (39) evaluates to N = N
√
πeC. Hence we may assign

C ←− N 2/πeN2 (40)

as our estimate of the effective rank (number of useful principal components) of the likelihood.
It might be nice to know this, and the diagnostic can easily be accumulated along with Z and
H.

14 Quantification

Suppose we wish to quantify property Q(θ), for which point θi carries value Qi = Q(θi).
For this, we seek the posterior distribution Pr(Q). This could be estimated from the posterior
samples just obtained, through representative values Q(θ̃). More accurately, we can use the full
sequence of nested points directly, without reducing it to a less informative equally-weighted
subset. Each value Qi is associated with probabilistic weight pi(t) from (37). In particular,
the mean and standard deviation of Q (if they exist) are as usual obtainable from the first and
second moments

µ(t) =
∑m

i=1Qi pi(t)

σ(t) =
(∑m

i=1Q
2
i pi(t) − µ(t)2

)1/2 (41)

for any specified sequence t. Again, we ought to acknowledge uncertainty by invoking the
sequence probability. Just as for the evidence in (20), the spread over t yields mean and
deviation

E(Q) ←− estimate ± uncertainty, from {µ}t
dev(Q) ←− estimate ± uncertainty, from {σ}t .

(42)

As was the case for Z, these numerical uncertainties are caused by our limited sequence of nested
points, not by any small errors in their evaluation, whether by Monte Carlo or otherwise. With
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sufficient resources, we could increase N to make these uncertainties arbitrarily small, but of
course we would not thereby eliminate dev(Q), which is caused by the likelihood failing to
specify θ precisely, and is part of what we ought to want to know about Q. However, if the
numerical uncertainty on the mean E(Q) exceeded the standard deviation dev(Q), one might
question the utility of the computation, and wish to repeat it more slowly with more points.

15 Annealing

Nested sampling is related to simulated annealing, which uses fractional powers Lβ of the
likelihood to move gradually from the prior (β = 0) to the posterior (β = 1). As the inverse
temperature β increases, annealing softly compresses points {θ} sampled from dPβ ∝ LβdX,
known as a thermalised ensemble. At stage β, the mean log-likelihood

〈logL〉β =

∫
logL dPβ =

∫
Lβ logL dX∫
LβdX

=
d

dβ
log

∫
LβdX (43)

is estimated by averaging over the corresponding ensemble. Summing this yields

∫ 1

0

〈logL〉β dβ = log

∫
LdX − log

∫
dX = logZ , (44)

which is the thermodynamic integration formula. It is not normally accompanied by any
estimate of uncertainty, presumably because the uncertainty in 〈logL〉 is difficult to assess.

The bulk of the ensemble, with respect to logX, should follow the posterior dPβ ∝

LβX d logX and be found around the maximum of LβX. Under the usual conditions of differ-
entiability and concavity “_”, this maximum occurs where

g∗ = −
d logX

d logL
= β . (45)

Annealing over β thus tracks the density-of-states g∗, equivalent to −1/slope on a logL/ logX
plot, whereas nested sampling tracks the underlying abscissa value logX.

As β increases from 0 to 1, one hopes that the annealing maximum tracks steadily up in
L, so inward in X (Figure 11a). The annealing schedule that dictates how fast β is increased
ought to allow successive posteriors Pβ to overlap substantially — exactly how much is still a
matter of some controversy. Yet it may not be possible at all.

Suppose that g∗ is not an increasing function of logX, so that LβX is not concave (Figure
11b). No matter what schedule is adopted, annealing is supposed to follow the concave hull of
the log-likelihood function as its tangential slope flattens. But this will require jumping right
across any convex “^” region that separates ordinary concave “phases” where local maxima
of LβX are to be found. At β = 1, the bulk of the posterior should lie near a maximum
of LX, in one or other of these phases. Let us call the outer phase “steam” and the inner
phase “water”, as suggested by the potentially large difference in volume. Annealing to β = 1
will normally take the ensemble from the neighbourhood of A to the neighbourhood of B,
where the slope is d logL/d logX = −1/β = −1. Yet we actually want samples to be found
from the inner phase beyond D, finding which will be exponentially improbable unless the
intervening convex valley is shallow. Alternatively, annealing could be taken beyond β = 1
until, when the ensemble is near the point of inflection C, the supercooled steam crashes
inward to chilled water, somewhere near F. It might then be possible to anneal back out
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Figure 11: Proper annealing needs log-likelihood to be concave like (a), not (b).

to unit temperature, reaching the desired water phase near E. However, annealing no longer
bridges smoothly during the crash, and the value of the evidence is lost. Lost along with
it is the internal Bayes factor Pr(states near E)/Pr(states near B), which might have enabled
the program to assess the relative importance of water and steam. If there were three phases
instead of just two, annealing might fail even more spectacularly. It would be quite possible for
supercooled steam to condense directly to cold ice, and superheated ice to sublime directly to
hot steam, without settling in an intermediate water phase at all. The dominant phase could
be lost in the hysteresis, and inaccessible to annealing.

Phase change problems in general are well known to be difficult to anneal, and especially
so when of first order as here. Nested sampling, though, marches steadily down in prior mass
X along ABCDEF· · · , regardless of whether the associated log-likelihood is concave or convex
or even differentiable at all. There is no analogue of temperature, so there is never any thermal
catastrophe. Nested points will pass through the steam phase to the supercooled region, then
steadily into superheated water until the ordinary water phase is reached, traversed, and left
behind in an optional continued search for ice. All the internal Bayes factors are available, so
the dominant phase can be identified and quantified.

16 Physics example

For an example from physics, consider the following elementary model of order/disorder. Atoms
can be in either of two states, 0 or 1. A sequence of n atoms is laid out along a line, so there
are 2n equally-weighted prior states. The atoms define a sequence of clusters c with widths hc

across which the state is constant. For example, the ten atoms 0001111001 have four clusters
of width h1 = 3 (zeros), h2 = 4 (ones), h3 = 2 (zeros), h4 = 1 (one). Each cluster has an
energy benefit (i.e. a log-likelihood gain) proportional to the number 1

2
h(h − 1) of internal

interactions permitted among its members, so that (with specific scaling)

logL = (2/n)
∑

c

1
2
hc(hc − 1) ,

∑

c

hc = n . (46)
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Of the 1024 states of 10 atoms, the top two (0000000000 and 1111111111) were fully ordered
with logL = 9 and shared 49% of the posterior, the next four (0000000001, 0111111111,
1000000000, 1111111110) with logL = 7.2 shared another 16%, the example ten atoms
0001111001 had logL = 2, and so on down to the two lowest states (0101010101 and
1010101010) with logL = 0, which shared 0.006%.
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Figure 12: Order/disorder example for 1000 atoms. The upper sub-plot magnifies the

“order” phase, and the lower sub-plot magnifies the “disorder” phase. The order phase

is favoured by a Bayes factor exp(300), but is hard to find by a factor exp(110). Dashed

lines enclose 75% of posterior samples for each phase.

Figure 12 shows the behaviour for n = 1000, precisely calculated by recurrence on n. Again,
the “order” phase with wide clusters dominates, with the two fully-ordered states 0000 · · · and
1111 · · · with logL = 999 sharing 71% of the posterior, the next four with logL = 997.002
sharing 19%, and so on. With n being large, the “disorder” phase with most clusters narrow
is well separated, but the “order” phase is favoured overall by a Bayes factor of e300.

An ensemble annealed to β = 1, though, has no chance (technically, about e−110 chance)
of finding the tiny volume occupied by the “order” states. It ought to transition to the ordered
phase at the freezing point β = 0.69, where the two phases ought to become equally populated,
but it won’t. As expected, the author’s simulation (which started with a random state and
evolved by inverting atoms at random according to the usual Metropolis detailed balance)
failed to move away from the “disorder” phase in an allotted trillion trial inversions. Even if
by incredible luck it had succeeded in finding the “order” phase, it could not have determined
the order/disorder Bayes factor, or the evidence Z = e306.8878 .

Yet nested sampling (with a fresh sample within the likelihood constraint approximated
by allowing trial MCMC inversions of each atom ten times per iterate) successfully estimated
logL as a function of logX and reached the fully-ordered states steadily, in the expected
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NH ≈ 700N iterates.

17 Data analysis example

It is not just large problems with awkward likelihood functions that exhibit phase changes. For
an example in data analysis, consider a small experiment to measure the single coordinate θ,
over which the prior π(θ) is flat in (0,1). Its data D yield the likelihood function

L(θ) = 0.99 q−1e−θ/q + 0.01 with, say, q = 10−9. (47)

This is already a decreasing function, and the sorting operation of nested sampling is just the
identity, X = θ.

An interpretation of (47) is that the experiment was anticipated to work with 99% reliability.
If it worked, the likelihood L = q−1 exp(−θ/q) would have been appropriate, meaning that
θ ≈ 10−9 was measured. If it failed, which was anticipated 1% of the time, the likelihood
would have been the uninformative L = 1, because the equipment would just return a random
result. Under annealing, the original hot phase is the failure mode. An annealed ensemble
limited to β ≤ 1 is most unlikely to find the “working” mode unless it is allowed millions of
trials, and will wrongly suggest “failure”, with Z = 0.01. Only if β is increased far beyond 1
to something above e1000 would the ensemble be likely to find the working mode in fewer than
millions of trials. Even then, the samples would crash inward and have to be annealed back
out through those thousand orders of magnitude. And the evidence value would have been
lost.

For nested sampling, which steadily tracks logX instead of trying to use the slope, these
problems are easy. All one needs is the determination to keep going for the NH or so shrinkage
steps needed to reach and then cross the dominant mode with a collection of N points. By
then, the behaviour of logL as a function of logX has been found, so that any distinct phases
can be identified along with their Bayes factors, as well as the overall evidence Z.

18 Statistics example

Let the coordinates θ have uniform prior over the 20-dimensional unit cube [− 1
2
, 1

2
]20, and let

the likelihood be

L(θ) = 100

20∏

i=1

1
√

2πu
exp

(
−

θ2i
2u2

)
+

20∏

i=1

1
√

2πv
exp

(
−

θ2i
2v2

)
(48)

with u = 0.01 and v = 0.1. This represents a Gaussian “spike” of width 0.01 superposed on a
Gaussian “plateau” of width 0.1. The Bayes factor favouring the spike is 100, and the evidence
is Z = 101. There is only a single maximum, at the origin; this should surely be an easy
problem. Yet L(X) is partly convex (Figure 13), and an annealing program needs roughly a
billion (e20) trials to find the spike, and several times e25 to equilibrate properly. On the other
hand, H is only 63.2, so nested sampling could reach and cross the spike and cover the whole
range of Figure 13 in a mere 100 iterates.

Admittedly, about N = 16 points would be needed if the uncertainty from

logZ ≈ log(101) ±
√

63.2/N (49)
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Figure 13: Gaussian spike on plateau. The spike is favoured by a Bayes factor exp(5),

but annealing needs exp(20) trials to find it.

(and hence in the spike/plateau Bayes-factor logarithm) needs to be reduced to the ±2 or so
required to identify the favoured (spike) mode with reasonable confidence. That multiplies the
computational load to 1600 evaluations, which remains less than a billion.

On the other hand, if the spike was moved off-centre to (0.2, 0.2, 0.2, . . .), with likelihood

L(θ) = 100
20∏

i=1

1
√

2πu
exp

(
−

(θi − 0.2)2

2u2

)
+

20∏

i=1

1
√

2πv
exp

(
−

θ2i
2v2

)
, (50)

then nested sampling too would be in difficulty. There are now two maxima over θ and, at the
separatrix contour above which the phases separate, the aperture of the plateau is e35 times
greater than that of the spike. This means that some huge number of trial points is needed to
have a good chance of finding the spike, even though the logL/ logX plot is indistinguishable
from Figure 13. That’s impossible in practice. General multi-modality remains difficult.

19 Limiting cases

Two potentially awkward situations merit comment. The first (Figure 14a) is when logL, as
a function of logX, has a discontinuity, visualised as a vertical cliff in the plot. Nested sam-
pling is unaffected by this. The likelihood values that accompany a set of nested contours may
change the termination condition, but they do not otherwise alter the algorithm’s progress.
The cliff doesn’t matter. For the possible alternative method of multicanonical simulation
(Berg and Neuhaus (1991)), the cliff would matter. Multicanonical simulation incorporates
procedures to re-weight points artificially until n(E) ≡ g = −dX/d logL becomes nearly uni-
form. Having done that, the results can simulate any temperature. In this, the method is
similar to nested sampling, though it lacks such clean numerical uncertainties. However, the
discontinuous cliff will be difficult because the formal aim of multicanonical sampling becomes
unattainable. There is a range of L over which there are no prior states at all, so their density
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Figure 14: Cliff (a) and plateau (b) likelihood functions.

n(logL) can’t be re-weighted to the desired constant. Nested sampling’s logX is the abscissa
of choice, not multicanonical simulation’s logL.

The other potentially awkward situation (Figure 14b) is when logL, as a function of logX,
has a plateau. In this case, a finite prior mass is associated with one particular likelihood value.
If the plateau covers a wide range, it may be difficult to locate the small interior domain in
which L takes larger, possibly dominant, values. After all, the likelihood is offering no guidance,
and the domain might have to be found (or not) by random exploration. It might then be very
difficult to obtain useful new samples. Even so, it may be possible to generate them efficiently,
by choosing labels ` so that small values anticipate easy transition to larger likelihoods. In this
way, a judicious choice of extended likelihood L+ (equation (6)) might give guidance even where
L does not. Nested sampling would then continue to work without its samples becoming unduly
expensive. However, “difficult” shapes, where the posterior breaks into separated islands whose
mass is poorly predicted by their volume, will likely remain difficult.

20 Overview

Nested sampling reverses the accepted approach to Bayesian computation by putting the evi-
dence first. A conventional collection of posterior samples can be computed as the calculation
proceeds, but that is an optional extra, and quantified properties are better accumulated di-
rectly. The procedure runs with an evolving collection of N points, where N can be chosen
small for speed or large for accuracy. In a specific application, it is the user’s task to sample
according to the prior density subject to a hard constraint on likelihood value. Helpfully, N−1
such points are already available as guides.

Nested sampling proceeds by systematically constraining the available prior mass, steadily
decreasing its logarithm according to the shape of the likelihood contours. Its evolution path
is independent of the actual likelihood values. This invariance over monotonic re-labelling
may make it easier to find analytic properties that might imply almost-certain convergence.
Currently, lack of convergence proofs for MCMC procedures is the main missing ingredient
in Bayesian calculations, and with nested sampling attention can be focussed cleanly on the
shape of the contours, without any distraction from likelihood values.
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We do not address the errors that would arise from imperfect sampling of the box within a
given likelihood contour. The uncertainties that arise from the method itself, though, are un-
derstood and controllable. Numerical uncertainties accompany estimates of evidence and any
quantified property. These are properly probabilistic, and not derived from jack-knife or sim-
ilar frequentist fixup. In short, nested sampling follows the rules of probability calculus, so is
Bayesian in nature, as befits an algorithm for Bayesian computation. As usual with probabilis-
tic procedures, uncertainties decrease as

√
N whereas the computational load is proportional

to N .

For some problems, it may be possible to find provably exact samples (Propp and Wilson
(1996)) within a likelihood contour, and thus remove any doubt concerning imperfect sam-
pling. Because the probabilities pi of the nested samples are calculated essentially perfectly,
the posterior samples generated through nested sampling would also be exact, as would the
quantification statistics Q derived from the complete nested sequence. If exact samples turn
out to be easier to find within a likelihood contour than with respect to the full posterior,
this would extend the currently small class of problems amenable to exact sampling, with the
added benefit of obtaining the evidence value.

Nested sampling has some similarity with annealing in that it works by compressing the
available domain. The hard outer constraint on likelihood happens to give a similar restriction
on step-length to that applying in standard Metropolis-type detailed balance, so the new
method should offer no great gain or loss of computational speed, as compared with annealing
under an efficient schedule. Even so, nested sampling is more fundamental than annealing, in
that it gives a direct view of the underlying density of states g∗(L) as it steps steadily inward.
More importantly, it can deal straightforwardly with convex likelihood functions that exhibit
first-order phase changes. Nested sampling has the simplicity and generality that speak of
wide-ranging power.
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Appendix

/*=============================================================
TOY NESTED SAMPLING PROGRAM IN ‘C’ by John Skilling, Aug 2005

GNU GENERAL PUBLIC LICENSE software
http://www.gnu.org/copyleft/gpl.html

=============================================================*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#define UNIFORM ((rand()+0.5) / (RAND MAX+1.0)) // Uniform(0,1)

#define logZERO (-DBL MAX * DBL EPSILON) // log(0)

#define PLUS(x,y) (x>y ? x+log(1+exp(y-x)) : y+log(1+exp(x-y)))

// logarithmic addition log(exp(x)+exp(y))

/* YOU MUST PROGRAM THIS FROM HERE ++++++++++++++++++++++++++++++
typedef struct

{

ANYTYPE theta; // YOUR coordinates

double logL; // logLikelihood = ln Prob(data | theta)

double logWt; // ln(Weight), summing to SUM(Wt) = Evidence Z
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} Object;

double logLhood(ANYTYPE theta){...} // logLikelihood function

void Prior (Object* Obj){...} // Set Object according to prior

void Explore(Object* Obj, double logLstar){...}

// Evolve Object within likelihood constraint

--------------------------------------------------- UP TO HERE */

int main(void)

{

#define N 100 // # Objects

#define MAX 9999 // max # Samples (allow enough)

Object Obj[N]; // Collection of N objects

Object Samples[MAX]; // Objects defining posterior

double logw; // ln(width in prior mass)

double logLstar; // ln(Likelihood constraint)

double H = 0.0; // Information, initially 0

double logZ = logZERO; // ln(Evidence Z, initially 0)

double logZnew; // Updated logZ

int i; // Object counter

int copy; // Duplicated object

int worst; // Worst object

int nest; // Nested sampling iteration count

double end = 2.0; // Termination condition nest = end * N * H

// Set prior objects

for( i = 0; i < N; i++ )

Prior( &Obj[i] );

// Outermost interval of prior mass

logw = log(1.0 - exp(-1.0 / N));

// Begin Nested Sampling loop +++++++++++++++++++++++++++++++++++

for( nest = 0; nest <= end * N * H; nest++ )

{

// Worst object in collection, with Weight = width * Likelihood

worst = 0;

for( i = 1; i < N; i++ )

if( Obj[i].logL < Obj[worst].logL )

worst = i;

Obj[worst].logWt = logw + Obj[worst].logL;

// Update Evidence Z and Information H

logZnew = PLUS(logZ, Obj[worst].logWt);

H = exp(Obj[worst].logWt - logZnew) * Obj[worst].logL

+ exp(logZ - logZnew) * (H + logZ) - logZnew;

logZ = logZnew;

// Posterior Samples (optional, care with storage overflow)

Samples[nest] = Obj[worst];

// Kill worst object in favour of copy of different survivor

do copy = (int)(N * UNIFORM) % N; // force 0 <= copy < N
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while( copy == worst && N > 1 ); // don’t kill if N=1

logLstar = Obj[worst].logL; // new likelihood constraint

Obj[worst] = Obj[copy]; // overwrite worst object

// Evolve copied object within constraint

Explore( &Obj[worst], logLstar );

// Shrink interval

logw -= 1.0 / N;

} // -------------------------------- end nested sampling loop

// Begin optional final correction, should be small +++++++++++++

logw = -(double)nest / (double)N - log((double)N); // width

for( i = 0; i < N; i++ )

{

Obj[i].logWt = logw + Obj[i].logL; // width * Likelihood

// Update Evidence Z and Information H

logZnew = PLUS(logZ, Obj[i].logWt);

H = exp(Obj[i].logWt - logZnew) * Obj[i].logL

+ exp(logZ - logZnew) * (H + logZ) - logZnew;

logZ = logZnew;

// Posterior Samples (optional, care with storage overflow)

Samples[nest++] = Obj[i];

} // --------------------------- end optional final correction

// Exit with evidence Z, information H, and posterior Samples

printf("#samples = %d\n", nest);

printf("Evidence: ln(Z) = %g +- %g\n", logZ, sqrt(H/N));

printf("Information: H = %g nats = %g bits\n", H, H/log(2.));

// You can now accumulate results from Samples[0...nest-1]

return 0;

}
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