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Combining Experimental Data and Computer

Simulations, With an Application to Flyer Plate

Experiments
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Michael McKay¶, and Sallie Keller-McNulty‖

Abstract. A flyer plate experiment involves forcing a plane shock wave through
stationary test samples of material and measuring the free surface velocity of the
target as a function of time. These experiments are conducted to learn about
the behavior of materials subjected to high strain rate environments. Computer
simulations of flyer plate experiments are conducted with a two-dimensional hydro-
dynamic code developed under the Advanced Strategic Computing (ASC) program
at Los Alamos National Laboratory. This code incorporates physical models that
contain parameters having uncertain values. The objectives of the analyses pre-
sented in this paper are to assess the sensitivity of free surface velocity to variations
in the uncertain inputs, to constrain the values of these inputs to be consistent with
experiment, and to predict free surface velocity based on the constrained inputs.
We implement a Bayesian approach that combines detailed physics simulations
with experimental data for the desired statistical inference (Kennedy and O’Hagan
2001; Higdon, Kennedy, Cavendish, Cafeo, and Ryne 2004).

The approach given here allows for:

• uncertainty regarding model inputs (i.e. calibration);

• accounting for uncertainty due to limitations on the number of simulations
that can be carried out;

• discrepancy between the simulation code and the actual physical system;

• and uncertainty in the observation process that yields the actual field data
on the true physical system.

The resulting analysis accomplishes the objectives within a unified framework.
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1 Introduction

A flyer plate experiment involves forcing a plane shock wave through stationary test samples
of material and measuring the free surface velocity of the target as a function of time. These
experiments are conducted to learn about the behavior of materials subjected to high strain-rate
environments relevant to integrated hydrodynamic calculations of implosions driven by high
explosives. Figure 1 is an example of an experimental facility capable of producing impactor
plate velocities of 3.5 to 6.5 km/s (Trunin 1998). In this setup, velocity is measured using
pin detectors coated with insulating enamel. These detectors are comprised of oppositely
charged electrodes that come in contact as the shock front passes through, sending a signal
that is recorded by a measuring device. Modern experiments measure free surface velocity
using Velocity Interferometer System for Any Reflector (VISAR) technology.

Figure 1: Diagram of flyer plate experiment with an accelerated aluminum impactor:

(1) lens-shaped high- explosive charge; (2) correcting lens; (3) main charge; (4) impactor

plate; (5) shield from a standard material; (6) tested sample; (7) shorting-pin detectors;

(8) peripheral steel ring. (Adapted from Trunin (1998).)

Figure 2 shows a notional VISAR velocity profile of the shocked material as a function of
time. During loading, this material passes through elastic and plastic states prior to reaching
peak velocity, at which it remains for the duration of the pulse. A material experiencing stress
behaves elastically if it returns to its initial shape upon cessation of loading, and plastically if the
loading is strong enough to cause permanent deformation of the material. Phase transistions in
the material during the plastic phase are indicated by boundaries in the velocity profile where
the slope of the free surface velocity changes abruptly. Unloading occurs elastically and then
plastically, and wave interactions in the material can lead to fracturing (spalling).
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Figure 2: Generic velocity profile of condensed material subjected to shock loading.

(Adapted from Meyers (1994).)

The analysis of this paper makes use of a single experimental dataset containing the VISAR
free surface velocity profile from a tantalum flyer plate experiment. Tantalum is used as a
surrogate for hazardous fissile materials. An absolute time scale is not available for these
data, so they were uniformly shifted in time by an amount that forced the time at which
half the maximum free surface velocity is observed prior to reaching peak velocity to match
the corresponding time from a simulation run conducted with nominal values for all input
parameters. The simulations are carried out using code developed for the Shavano project at
the Los Alamos National Laboratory. The analysis objectives are to explore the sensitivity of
the simulated velocity profiles to the unknown model parameters, and to calibrate these model
parameters to observed flyer plate data, utilizing the general statistical approach for computer
model calibration of Kennedy and O’Hagan (2001). The statistical methods of relevance to
analysis of the flyer plate data are outlined in Section 2. The analysis and results are presented
in Section 3, followed by conclusions and discussion in Section 4.

2 Statistical Methods

Before giving additional details regarding the application, we first give an overview of the
methods used for statistical analysis. These include the experimental design used to determine
an initial collection of input settings at which to run the simulator as well as statistical model
formulation, which allows for estimation of unknown calibration parameters and includes a
Gaussian process-based emulator which models the simulator output at untried settings. As a
byproduct of this formulation, the emulator model can be querried to give a variety of sensitivity
measures to describe how changing input settings affect the simulation output.
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2.1 Computer Experiment Design

To begin the analysis, a simulation campaign consisting of a sequence of computer model runs
is required. We require a design that leads to accurate emulator-based predictions over a pre-
specified range of input settings. A large number of empirical studies have lead us to favor
variants of orthogonal array-based latin hypercube (OA-based LH) designs. Such designs are
similar to the space-filling latin hypercubes calculated by the software package Algorithms
for the Construction of Experimental Designs (Welch 1985) and are a slight extension of the
OA-based LH designs given in Tang (1993) and Owen (1994).

We take η(x, t) to denote simulator output given input vector (x, t), where the p-vector x
holds observable, and often controllable, inputs and the q-vector t holds additional unobservable
calibration and tuning parameters which are required to run the code. When the simulator
output is multivariate, we use a component of x to index the output so that η(x, t) may be
treated as univariate. An example of this partitioning of the simulator inputs (x, t) is given in
the flyer plate experiment where x is time, t is a collection of uncertain parameters in models
describing fundamental properties of the target material, and η(x, t) is the free surface velocity
of the target material at time x for material properties t.

Given an initial range for each input setting, which we standardize to [0,1] for each input, the
experimental design effort determines a set of m input settings (x∗

1, t
∗
1), . . . , (x∗

m, t
∗
m) over the

(p+q)-dimensional hypercube at which to run the simulator. The resulting output η(x∗
j , t

∗
j ), j =

1, . . . ,m, is then used for carrying out the statistical analysis, which includes a Gaussian process
(GP) model for the simulator η(x, t) at untried input settings. This GP representation of the
simulator response can also be used to explore sensitivities to input variations as is shown in
the flyer plate analysis of Section 3. Note that additional constraints on the input settings may
lead to additional complications to consider in design specification.

As an example, 2-d projections of a 16 run orthogonal array (OA) design are shown in
the lower triangle of Figure 3. This design is over 3 factors, with each factor having 4 levels.
The design in Figure 3 has strength 2. This means that for any two inputs every factor level
combination occurs an equal number of times. For the 16 run OA, there are precisely 16
values associated with any 2 of the 3 inputs. In terms of an analysis of variance model, effects
associated with 4 levels for all 3 inputs would be estimable but interaction effects would not be
resolvable. However, if the response is dominated by a subset of the inputs, say only 2, then this
strength 2 array would allow estimation of an up to third degree polynomial response surface
model. Generally, a strength 3 or higher OA is required to obtain interaction information if
many inputs are active. Higher strength of an OA design also assures that the m design points
inherit better space filling properties in higher dimensional projections which is important for
fitting a GP model to the simulation output.

Although the OA designs give good coverage in higher dimensions, the one-dimensional
projections are quite discrete with only 4 values occurring for each input. On the other
hand, LH designs give one-dimensional projections which are a sample of m values, in this
example m = 16 values on each input, but a LH design is effectively a stength 1 OA. Strict
OA designs with very discretized input levels can lead to inefficency when fitting a response
surface to a simulator whose response is dominated by a small number of input factors.
Linkletter, Bingham, Sitter, Ye, Hengartner, and Higdon (2003) show that by spreading out
an OA design so that it becomes a Latin hypercube sample (LHS), the prediction error in
response surface models can go down substantially. This LH modification of 2-level OA de-
signs is introduced in Tang (1993) and Owen (1994) and is straightforward to carry out for
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designs with factors having 2 or more levels. There are catalogues of, and many algorithms
for generating, 2-level orthogonal arrays with good properties. Tang (1993) and Owen (1994)
argue that an OA-based construction of a LH design results in a LHS with good space-filling
properties and smaller correlation between inputs. LH designs constructed in this way have
better maximin distance than a random LHS and guaranteed good binning properties with the
underlying OA skeleton. The binning induced by the orthogonal array skeleton is useful for
sensitivity studies. Figure 3 shows a LHS construction from the previously mentioned 16 run
OA design. Note that this OA-based LH design maintains the same 2-d binning properties of
the original OA design. The simulation campaign for the flyer plate analysis was based on a
LH design constructed from an OA of strength 3 having 128 runs and two levels per factor.

From an OA-based LH design, sensitivity analysis can be conducted essentially as suggested
in Moore and McKay (2002), comparing R2 values evaluated from the OA skeleton structure
underlying the OA-based LH design or, equivalently, by binning values of the inputs. However,
there is added variability in calculations and, thereby, inefficiency in comparing R2 values based
on binned values of inputs specified in a LH design. Modification of OA designs so that they
are LH designs is preferred for fitting the simulator output with GP models (see Higdon et al.
2004, for example). In cases where a nonparametric sensitivity analysis is the main goal, such
as the R2 analysis of McKay (1995), methods will perform better utilizing an OA design. OA-
based LH designs are used to obtain an experiment design with some potential to conduct both
analyses, sensitivity and prediction, desired in the simulation studies undertaken here. Another
option for conducting sensitivity analysis in the context of a calibration and prediction study
is to generate samples of the response surface on a standard OA design and calculate R2 values
from each sample–this is done for the flyer plate analysis of this paper. The result is predicted
R2 indices with associated uncertainty estimates.

Orthogonal arrays for many (> 10) factors with more than 2- or 3-levels can dictate more
runs than are acceptable, and, as the move to OA-based LH designs indicates, often more
than 2- or 3-level factors are desired, even for sensitivity analysis. Strategies for dealing
with run size limitations compromise adherence to strict orthogonality. The two main strate-
gies we consider are near orthogonal arrays (Xu 2002) and combined orthogonal arrays, an
idea presented in Moore, McKay, and Campbell (2004). With an alternative design relaxing
strict orthogonality, again LHS construction from these designs as skeletons, as with OA-based
LH designs, is possible. Additional design references related to this section are included in
Santner, Williams, and Notz (2003).

2.2 Statistical model formulation for calibration and prediction

At various settings for xi, n observations yi are made of the physical system

y(xi) = ζ(xi) + ε(xi), i = 1, . . . , n ,

where ζ(xi) denotes the response of the actual physical system and the ε(xi)’s denote obser-
vation error. In a flyer plate experiment, ζ(·) represents the actual, unobserved free surface
velocity of the target material as a function of time, and y(xi) is the observed velocity at
time xi. Often the size and nature of the ε(xi)’s are sufficiently well characterized that their
distribution can be treated as known. We take y = (y(x1), . . . , y(xn))T to denote the physical
observations. Often highly multivariate observations are taken from the system; in this case
certain components of each xi can index the multivariate, observed data so that each y(xi) is
still univariate. These observed data are then modeled statistically using the simulator η(x, θ)
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at the best calibration value θ according to

y(xi) = η(xi, θ) + δ(xi) + ε(xi), i = 1, . . . , n ,

where the stochastic term δ(xi) accounts for discrepancy between the simulator η(xi, θ) and
reality ζ(xi), and θ denotes the best, but unknown, setting for the calibration inputs t. In the
context of flyer plate simulations, η(xi, θ) represents the calculated free surface velocity of the
target material at time xi, when the uncertain target material properties have values θ. In
some cases, the discrepancy term can be ignored; in other cases it plays a crucial role in the
analysis.

We treat the fixed set of m simulation runs

η(x∗
j , t

∗
j ), j = 1, . . . ,m ,

as data to be used in the analysis. We are in the situation where the computational demands
of the simulation code are so large that only a fairly limited number of runs can be carried
out. In this case, a GP model for η(x, t) is required for input combinations (x, t) for which the
simulator has not been run. Note that we use t to denote an input setting for the calibration
parameters here. We reserve θ to denote the “best” value of the calibration parameters, which
is a quantity about which we wish to infer.

If x is a vector in Rp and t a vector in Rq, then the function η(·, ·) maps Rp+q to R. We
utilize a Gaussian process to model this unknown function
(O’Hagan 1978; Sacks, Welch, Mitchell, and Wynn 1989; Santner et al. 2003). A mean func-
tion µ(x, t) and covariance function Cov((x, t), (x′, t′)) are required to fully specify a GP prior
model for η(x, t). Following Sacks et al. (1989) and Kennedy and O’Hagan (2001) we scale all
inputs to the unit hypercube, take µ(x, t) to be a constant and specify a product covariance
having power exponential form

Cov((x, t), (x′, t′)) =
1

λη

p∏

k=1

(ρη
k)|2(xk−x′

k)|αη

×

q∏

k=1

(ρη
p+k)|2(tk−t′k)|αη

, ρη
k = exp(−βη

k/4) , (1)

where the parameter λη controls the reciprocal of the marginal variance of η(·, ·), the (p+ q)-
vector ρη controls the dependence strength in each of the component directions of x and t, and
αη controls the smoothness of η(·, ·). A value of αη = 2 leads to a smooth, infinitely differen-
tiable representation for η(·, ·), while taking smaller values of αη give rougher representations.
Our experience has been that the simulator output η(x∗

j , t
∗
j ), j = 1, . . . ,m, does not typically

give much information about αη . Hence we usually fix αη based on prior information regard-
ing η(·, ·) or based on computational considerations. For αη = 2, ρη

k is the correlation between
outputs evaluated at inputs that vary in only the k-th dimension by half their domain. We
note that it is often useful to add a small white noise component to the covariance model (1)
to account for small numerical fluctuations in the simulation. Such fluctuations can by caused
by slight changes in adaptive meshing or tolerances caused by changes in the input settings.
For models with random outputs, such as epidemiological or agent based models, an additional
independent error term will be required in (1) above.

The prior model specification is completed by specifying independent priors for the param-
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eters controlling η(·, ·):

π(µ) ∝ exp

{
−

1

2v
µ2

}

π(λη) ∝ λ
aη−1
η exp{−bηλη}, λη > 0

π(ρη) ∝

p+q∏

k=1

(1− ρη
k)−.9, 0 ≤ ρη

k ≤ 1.

Because of the standardization, we can simplify the parameterization and MCMC by fixing µ
at 0 (i.e., v = 0) and encouraging λη to be close to 1 by taking aη = bη = 5. The prior for ρη

encourages strong dependence in each of the component directions so that prior realizations
for η(·, ·) are generally quite flat. Hence it will be the data that move the ρη

k’s away from 1 in
the posterior.

We specify a GP model for the discrepancy term δ(x) with mean function of 0, and a
covariance function of the form

Cov(x, x′) =
1

λδ

p∏

k=1

(ρδ
k)|2(xk−x′

k)|αδ
, ρδ

k = exp(−βδ
k/4) . (2)

The prior specification for the parameters governing the GP model for δ(·) mirrors the speci-
fication for η(·, ·),

π(λδ) ∝ λaδ−1
δ exp{−bδλδ}, λδ > 0

π(ρδ) ∝

p∏

k=1

(1− ρδ
k)−.7, 0 ≤ ρδ

k ≤ 1.

Here .7 in the prior for ρδ gives δ(·) a slightly weaker tendency towards flatness than η(·, ·).

We define y = (y(x1), . . . , y(xn))T to be the vector of field observations and η = (η(x∗
1, t

∗
1), . . . ,

η(x∗
m, t

∗
m))T to be the simulation outcomes from the experimental design. Now we define the

joint (n+m)-vectorD = (yT , ηT )T which has associated simulation input values (x1, θ), . . . , (xn, θ)
for its first n components and (x∗

1, t
∗
1), . . . , (x

∗
m, t

∗
m) for its final m components. The sampling

model, or likelihood, for the observed data D is then

L(D|θ, µ, λη, ρ
η, λδ, ρ

δ,Σy) ∝ |ΣD |
− 1

2 exp

{
−

1

2
(D − µ1n+m)T Σ−1

D (D − µ1n+m)

}
, (3)

where 1n+m is the (n+m)-vector of ones and

ΣD = Ση +

(
Σy + Σδ 0

0 0

)
,

where Σy is the n× n observation covariance matrix, elements of Ση are obtained by applying
(1) to each pair of the n+m simulation input points corresponding to D, and Σδ is a n×nmatrix
obtained by applying (2) to each pair of the n input settings xi, i = 1, . . . , n, that correspond
to the observed field data y. Note that Ση depends on the experimental input conditions xi,
the simulator input conditions (x∗

j , t
∗
j ), and the parameter value θ. Hence updating θ affects

Ση which means its determinant and a linear solve need to be recomputed to evaluate (3).
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The resulting posterior density has the form

π(θ, µ, λη, ρ
η, λδ, ρ

δ
|D) ∝ (4)

L(D|θ, µ, λη, ρ
η, λδ, ρ

δ,Σy)× π(µ)× π(λη)× π(ρη)× π(λδ)× π(ρδ)

which can be explored via Markov chain Monte Carlo (MCMC) or some other numerical in-
tegration scheme. We use tuned, univariate random walk metropolis updates in our MCMC
implementation (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953). Figure 4 shows
the results from a simple example consisting of a one-dimensional x and t, using m = 20 sim-
ulations and n = 5 experimental observations.

2.3 Computer Model Emulation and Sensitivity Analysis

Given the MCMC output of parameters governing the various GP models, posterior realizations
of η(x, t) can be generated using standard theory. As an example, we consider modeling the
output of the 3-d function

η(x) = (x1 + 1) cos(πx2) + 0x3.

Although η(x) takes in a 3-dimensional input x, the third factor does not affect the output.
The emulator can account for this by estimating a value for ρη

3 which is close to 1. We evaluate
η(x) according to the n = 16 run OA-based LH design from Figure 3. The computed values
η(x∗

i ) along with the posterior mean for η(x) are shown in Figure 5 as a function of x1 and
x2. The resulting posterior medians for (ρη

1 , ρ
η
2 , ρ

η
3) are (.95, .68, .999). Hence, the resulting

emulator is effectively independent of x3. The posterior mean estimate for η(x) is shown as
a function of (x1, x2) in the right frame of Figure 5. This analysis also gives uncertainties
regarding this emulator.

The posterior distribution of ρη is one measure of simulator output sensitivity to inputs.
More generally, sensitivity analysis studies how variation in simulator response can be appor-
tioned to the various code inputs. Formal sensitivity analyses can be carried out in a variety
of ways. Empirical or sampling based approaches are discussed in Saltelli, Chan, and Scott
(2000); model based approaches which first build an emulator and carry out sensitivity analy-
ses on this emulator are discussed in Welch, Buck, Sacks, Wynn, Mitchell, and Morris (1992)
and, from a Bayesian perspective, in Oakley and O’Hagan (2004).

One approach we have been using is the empirical R2 measure of McKay (1995). This
measure is one of a host of measures based on sensitivity indices which make use of an ANOVA-
type decomposition (Sobol’ 1993) of the simulator η(x). For simplicity we assume η(x) is defined
over x ∈ [0, 1]p.

Sobol’ (1993) shows that there is a unique decomposition

η(x1, . . . , xp) = η0 +

p∑

k=1

ηk(xk) +
∑

1≤k<`≤p

ηk`(xk, x`) + · · · + η1,2,...,p(x1, x2, . . . , xp), (5)

for which

η0 =

∫

[0,1]p
η(x1, . . . , xp) dx1 · · · dxp and

∫ 1

0

ηk1,...,ks(xk1 , . . . , xks) dxki
= 0

for any 1 ≤ i ≤ s and has orthogonal components.
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So, for example, the main effect for factor k of the simulator is given by

ηk(xk) =

∫

[0,1]p−1

η(x) dx−k − η0

where x−k denotes all input factors except k. The three main effects estimated from the
emulator in our simple 3-d example are given by the lines in Figure 6. The two-factor interaction
effect for factors j and k of the simulator is given by

ηjk(xj , xk) =

∫

[0,1]p−2

η(x) dx(−j,−k) − ηj(xj)− ηk(xk)− η0

where x(−j,−k) denotes all input factors except j and k.

The R2 measure of McKay (1995) is a variance-based measure of sensitivity which comple-
ments these plot diagnostics. Before getting to R2, we first describe a family of variance-based
measures of η(x). The total variance V of η(x) is defined to be

V =

∫

[0,1]p
η2(x)dx− η2

0 .

Partial variances are computed from each of the terms of Sobol’s decomposition (5) as

Vk1,...,ks =

∫

[0,1]s
η2

k1,...,ks
(xk1 , . . . , xks) dxk1 · · · dxks

for s = 1, . . . , p and 1 ≤ k1 < · · · < ks ≤ p. If both sides of (5) are squared and integrated over
[0, 1]p, one obtains

V =

p∑

k=1

Vk +
∑

1≤k<`≤p

Vk` + · · ·+ V1,2,...,p

due to the orthogonality of the terms in (5). Sensitivity measures Sk1,...,ks are given by

Sk1,...,ks =
Vk1,...,ks

V
.

The R2 sensitivity index applied to the factor group {k1, . . . , ks} measures its combined effect
on the output,

R2
k1,...,ks

=
Var[E(η(x) |xk1 , . . . , xks)]

V
=

s∑

i=1

∑

ω⊂{k1,...,ks};

|ω|=i

Sω .

For the simple 3-d example, the theoretical values of the sensitivity indices are S2 = 27/28
and S12 = 1/28, with all others equal to zero. The quantities Sk, k = 1, . . . , p, are the first
order sensitivities (main effects). The theoretical values of R2 are R2

2 = 27/28, R2
12 = 1,

R2
23 = 27/28, and R2

123 = 1. (S1, S2, S3) and (R2
1, R

2
2, R

2
3) are estimated from the emulator to

be (0, .98, 0). Note here that if one were only to look at the first order sensitivities, factor 1
would not be chosen as important. From Figure 5 it is clear that input x1 does affect η(x).
Higher order sensitivities do show input 1 to be active as a second order interaction with
input 2 (estimated S12 = .02). In the special case that [0, 1]p is discretized to a grid with
discrete uniform measure, the partial variances become the sums of squares and the sensitivity
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measures become the R2 values of a standard ANOVA decomposition. For sufficiently high-
dimensional inputs, calculations of sensitivity indices on the entire grid become infeasible due
to the complexity of the calculations involved, in terms of the number of simulations required or
the order of the linear solve required to generate realizations from the emulator. A subset of grid
points is used in place of the entire grid. However, it is now impossible to obtain uncorrelated
estimates of all sensitivity indices, but a properly chosen design can allow the lower order effects
to be estimated cleanly if it is assumed that higher order effects are negligible. Orthogonal
array designs are often used for this purpose.

Designs having at least three levels per variable are desirable, allowing quadratic main
effects to be estimated. Main effects will be confounded with three-factor or higher interactions
in strength 3 OA designs, and with four-factor or higher interactions in strength 4 OA designs,
while two-factor interactions will be confounded with other two-factor or higher interactions in
strength 3 OA designs and with three-factor or higher interactions in strength 4 OA designs.
Strength 2 OA designs are not desirable as some main effects will be confounded with two-factor
interactions. In short, if three-factor or higher interactions are assumed negligible, a strength
3 OA design will allow main effects to be estimated cleanly and a strength 4 OA design will
allow main effects and all two-factor interaction effects to be estimated cleanly.

The main effect and two-factor interaction effect sensitivity indices and functions can be
estimated using an emulator of the response surface constructed from posterior realizations
generated on a sequence of runs specified by an appropriate OA(N , s1s2 · · · sp, t) design,
where N denotes the number of runs in the design, p the number of input parameters, sk the
number of levels for input k, and t the strength of the array:

1. Generate a draw η? given the data and a posterior realization of the parameters (λη, ρ
η)

from (4) at untried input settings x?
i taken from the OA design.

2. Let η?
−k(xk,i) denote the average of the η? having the k-th input set to xk,i (i = 1, . . . , sk

and k = 1, . . . , p), and η? denote the overall mean. Estimate the main effect of input k
at xk,i by

η̂k(xk,i) = η?
−k(xk,i)− η? .

3. Estimate Sk for each input factor k by

Ŝk =

N
sk

∑sk

i=1 η̂k(xk,i)
2

∑N
i=1(η

?(x?
i )− η

?)2
.

4. Let η?
−j,−k(xj,h, xk,i) denote the average of the η? having the j-th input set to xj,h and the

k-th input set to xk,i (h = 1, . . . , sj , i = 1, . . . , sk, k = j + 1, . . . , p and j = 1, . . . , p− 1).
Estimate the two-factor interaction effect of inputs j and k at (xj,h, xk,i) by

η̂j,k(xj,h, xk,i) = η?
−j,−k(xj,h, xk,i)− η̂j(xj,h)− η̂k(xk,i)− η? .

5. Estimate Sjk for each pair of inputs j and k by

Ŝjk =

N
sj sk

∑sj

h=1

∑sk

i=1 η̂j,k(xj,h, xk,i)
2

∑N
i=1(η

?(x?
i )− η

?)2
.

6. Repeat the previous steps for multiple posterior realizations. The result is a sample from
the posterior predictive distributions of the sensitivity indices, and of the main effect and
two-factor interaction functions on a grid of input values defined by the OA.
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Posterior means and quantiles are easily derived from these samples and constitute point es-
timates of and probability bounds on these indices, and pointwise estimates/bounds on the
functions restricted to the grid of inputs from the OA.

3 Analysis of a Flyer Plate Experiment

In this analysis of a flyer plate experiment, ten paramaters are calibrated to experimental
data. The results of this calibration can be used to restrict variation in these parameters for
downstream integrated calculations that involve potentially many other uncertain parameters
that may be independently calibrated using a similar approach. The free surface velocity is
a function of both equation of state (EOS) and material strength. One calibration parameter
specifies deviations from the nominal tantalum EOS table. Material strength is incorporated
through the Preston-Tonks-Wallace (PTW) model (Preston, Tonks, and Wallace 2003). Seven
PTW model parameters that describe the plastic stress–strain relationship are calibrated. A
parameter specifying the spall strength of tantalum in the damage model is calibrated. Finally,
the flyer plate impact velocity is calibrated due to deficiencies in the mechanism used to measure
this velocity in the experiment.

For this simulation study, the allowed domain of variability for the seven free PTW pa-
rameters is described by the boundaries of a minimum volume, hyper–rectangular probability
region (covering as much probability as possible up to the target of 95%) based on the joint
posterior distribution of these parameters, determined by fitting the PTW model simultane-
ously to several Hopkinson bar and quasi-static stress–strain datasets under a variety of strain
rate and temperature conditions
(Fugate, Williams, Higdon, Hanson, Gattiker, Chen, and Unal 2006; Hanson 2004). Table 1
summarizes the ten calibration parameters and their domains for this analysis.

Input Description Domain

Min Max

ε Perturbation of EOS table from nominal -5% 5%

θ0 Initial strain hardening rate 2.78× 10−5 0.0336

Material constant in thermal activation

energy term — relates to the

κ temperature dependence 0.438 1.11

Material constant in thermal activation

energy term — relates to the

γ strain rate dependence 6.96× 10−8 6.76× 10−4

y0 Maximum yield stress (at 0 K) 0.00686 0.0126

y∞ Minimum yield stress (∼ melting) 7.17× 10−4 0.00192

s0 Maximum saturation stress (at 0 K) 0.0126 0.0564

s∞ Minimum saturation stress (∼ melting) 0.00192 0.00616

pspall Spall strength -0.055 -0.045

vs Flyer plate impact velocity 329.5 338.5

Table 1: Calibration parameters with input domains.

The simulator was run at 128 unique combinations of the ten calibration parameters as
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specified by an OA-based LH design generated from a two-level, strength 3 OA design (Tang
1993). The design values for ε were binned to the eleven integer values in the range [−5, 5].
The left panel of Figure 7 shows the resulting free surface velocity profiles in gray, with the
experimental velocity profile in blue and the mean of the calculations in red. The right panel of
Figure 7 shows more detail, with the mean of the calculations subtracted out of each simulated
profile and the experimental data. The dashed vertical segments at the bottom of the right
panel indicate one hundred locations along the time axis at which calculations and data were
extracted for this statistical analysis.

The single physical parameter x in this analysis is time, and the ten calibration pa-
rameters θ are described in Table 1. The calculations η(x, t) are taken at the locations
(x1, t1), . . . , (x100, t1), . . . , (x1, t128), . . . , (x100, t128), and the experimental data y(x) are taken
at the locations x1, . . . , x100. The calculations and experimental data are standardized by sub-
tracting out the mean of the calculations at each x location, and dividing these residuals by the
overall standard deviation of the calculations. The statistical analysis takes advantage of kro-
necker product structure in the covariance matrices to make likelihood calculations tractable;
without this structure, the analysis would be limited to a more restrictive extraction of calcu-
lations and experimental data. Table 2 gives the prior distributions on all of the parameters
involved in the statistical model.

Parameters Description Prior Distribution

Calibration parameters Uniform on hyper–rectangle

θ defined in Table 1 defined by domains in Table 1

Coefficient in simulator

ρη covariance model (1) Beta(1, 0.1)

Coefficient in discrepancy

ρδ covariance model (2) Beta(1, 0.3)

λη Simulator precision Gamma(5, 5)

λδ Discrepancy precision Gamma(1, 0.0001)

λy Measurement precision fixed at 1

Table 2: Prior distributions on statistical model parameters.

The Gaussian process model for η(x, t) includes a nugget effect with precision having prior
distribution Gamma(1, 0.0001). The measurement error variance at location xi is assumed to
be C2

i /λy, where Ci = 0.05371 is the standard deviation of the empirical free surface velocities
in the relatively constant peak velocity portion of the profile prior to unloading. The prior
distribution for λy is fixed at 1, so that the measurement error standard deviation takes the
value Ci at location xi. The Markov chain was run for 10,000 iterations, after discarding
the first 2,100 samples. Figure 8 shows histograms of the retained posterior samples for the
calibration parameters θ0 and y0, with the assumed uniform prior indicated by the straight line
segment. The posterior distributions of these parameters shows a distinct gain in information
on the plausible range and concentration of values useful for calibrating this simulator to the
experimental data. In fact, the parameters ε, κ, γ, pspall and vs calibrate strongly to the
lower end of their ranges, while y0, y∞ and s0 calibrate to the higher end of their ranges.
The parameters θ0 and s∞ calibrate to the extremes of their ranges, with this effect most
pronounced for θ0.

Figure 9 shows 90% pointwise probability intervals for the stress-strain relationship calcu-
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lated from the PTW model based on samples from the prior and posterior distributions of the
7 PTW parameters of Table 1. The main implication of Figure 9 is the tantalum sample used
in this flyer plate experiment is slightly less compressible than the tantalum samples used in
the Hopkinson bar and quasi-static experiments. Although the posterior distribution excludes
the higher compressibility regions admitted by the prior, there is considerable overlap in the
stress-strain relationship allowed by these distributions. Calibration to multiple flyer plate
experiments conducted under a variety of environments is required to reach conclusions robust
to non-physical sources of bias or variation.

Figure 10 shows kernel density estimates of the bivariate posterior distributions of the ten
calibration parameters. The importance of essentially every parameter (with the exception
of s∞) to the calibration is indicated by a concentration of probability on a subset of their
domains. Bivariate relationships between calibration parameters can be discerned from Figure
10. In this example, there is strong negative correlation between ε and θ0 (−0.89) and moderate
correlations between several other parameter pairs: y0 and θ0 (−0.43), ε and y0 (0.38), ε and
vs (−0.3), and y0 and s∞ (0.28). The bimodal nature of the posterior distribution for θ0 (and
to a lesser extent, s∞) is due in part to these correlation relationships between parameters.
For example, increasing ε or θ0 increases the stiffness of the target material. These parameters
are able to trade-off against each other to achieve similar velocity profiles. Additional sources
of information beyond the single flyer plate experiment available for this analysis are necessary
to restrict the feasible trade-off spaces among these parameters.

Figure 11 shows a posterior prediction of the experimental data based solely on the cal-
ibrated simulator ηc(x), i.e. without the discrepancy adjustment δ(x). Specifically η(x, θ),
given all of the observed data D and θ, is a Gaussian process. Let ξ = (θ, λη, ρ

η, λδ, ρ
δ, λy).

Given posterior samples ξ1, . . . , ξN from (4), the distribution of the calibrated simulator at x
is estimated to be

π(ηc(x) | D) =

∫
π(η(x, θ) | D, ξ)π(ξ|D) dξ ≈

1

N

N∑

i=1

π(η(x, θi) | D, ξi) .

The solid red line is the median of π(ηc(x) | D), and the lower and upper dashed red lines are
the 5% and 95% quantiles. Note the reduction in the uncertainty of this posterior prediction
relative to prior uncertainty represented by variability in the gray traces corresponding to
calculations on the uniform space–filling experimental design.

In the right panel of Figure 11, note the presence of substantial discrepancy between the
calibrated simulator and the data prior to, and following, the peak velocity portion of the
profile prior to unloading, particularly in the vicinity of the Hugoniot elastic limit (HEL)
at x = 0.95. Figure 12 shows a posterior prediction of the experimental data based on the
calibrated simulator ηc(x) adjusted for discrepancy δ(x). Specifically, this prediction is based
on the posterior distribution of ζ(x),

π(ζ(x) | D) =

∫
π([η(x, θ) + δ(x)] | D, ξ)π(ξ | D) dξ ≈

1

N

N∑

i=1

π([η(x, θi) + δ(x)] | D, ξi) .

This correction improves the prediction quality along most of the velocity curve, but lack of fit
remains in the vicinity of the HEL, where discrepancy between the data and simulation model
is particularly abrupt and pronounced. The inability to adjust for deviations of this nature is
a consequence of the fact that discrepancy is modeled as a stationary Gaussian process, which
can only correct smooth deviations of the calibrated simulator from the experimental data.
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Figure 13 shows results from two sensitivity analyses conducted on the flyer plate simulation
output. The goal of these analyses is to provide some information about which input parame-
ters are most influential in explaining output variability. The first order sensitivity indices of
Section 2.3 define the metric applied to assess input importance. Each index corresponds to
an input parameter, estimating the proportion of total variation in the output explained by
variation in that parameter. The first analysis used outputs extracted from the simulation runs
at times corresponding to two important features in the experimental data: the HEL and the
damage point. The second analysis was based on a principal components decomposition of the
mean-centered simulation runs as described in Campbell, McKay, and Williams (2006). The
outputs were the three sets of coefficients corresponding to the first three empirical orthogonal
basis functions. This type of analysis is useful when each basis function has a physical inter-
pretation. In this event, the partitioning of total variability in the coefficients of a particular
basis function into components explained by the input main effects provides information about
the degree to which each input influences the physical characteristics described by that basis
function.

In Figure 13, the ten calibration inputs are listed on the y-axis and the outputs are listed
on the x-axis of each plot. The ordering of the inputs is based on their degree of importance
as defined by the mean of their main effect indices across the outputs, with more influential
inputs situated lower on the y-axis. The ordering of the outputs is based on the degree to
which they can be explained by main effects, with outputs having higher proportion of total
variation due to main effects situated to the left on the x-axis. The parameter ε specifying
deviations from the nominal EOS table is the most influential input in both analyses, followed
by the PTW parameter κ. The PTW parameter γ and the damage model parameter pspall
are also influential in both analyses. The EOS perturbation ε is the only important input that
contributes significantly to explaining total variability in every output analyzed. Figure 14
shows 90% probability intervals for the predictive distributions of the main effect sensitivity
indices corresponding to the three sets of principal component coefficients. The point estimates
of these indices are given in the right panel of Figure 13.

The first principal component explains 80.56% of the total dispersion in the mean-centered
simulation runs. The left panel of Figure 15 shows the first component primarily affects the
times at which initial loading (rise to peak velocity), initial unloading (release) and pull-back
occur. This timing is determined by the speed of the shock wave traveling through the material,
which is a function of the tantalum EOS and material strength. The right panel of Figure 15
shows the EOS perturbation ε drives first order variation in the sign of the coefficient of
this component, while the other parameters have negligible first order effects. As ε traverses
its range from negative values to positive, this coefficient linearly decreases from positive to
negative values, changing sign at ε = 0. This behavior translates to initial loading, unloading
and damage occurring earlier as ε increases, which is consistent with the fact that the sound
speed is an increasing function of ε. The main effect functions for all inputs are estimated using
the algorithm of Section 2.3, based on a 625-run, five-level, strength 3 orthogonal array.

The second principal component picks up an additional 9.58% of the total dispersion in
the mean-centered simulation runs. The left panel of Figure 16 shows the second component
makes adjustments to the free surface velocities across the entire velocity profile. This behavior
is determined primarily by material strength. Elastic waves travel faster in stiffer materials,
resulting in higher free surface velocities at times in the vicinity of the HEL. The elastic waves
reflect off the leading edge of the target material and reduce the amplitude of the approaching
plastic wave. Greater amplitude reduction is achieved by faster elastic waves, resulting in lower
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free surface velocities at times subsequent to the HEL. A positive coefficient on this component
is consistent with greater material strength relative to a negative coefficient. The right panel
of Figure 16 shows the main effect functions for κ, γ, vs and ε. Smaller values of κ and γ are
associated with increasing coefficient values, consistent with the fact that material strength
increases as κ and γ decrease in the PTW model.

The third principal component picks up an additional 5.71% of the total dispersion in
the mean-centered simulation runs. This component makes adjustments to the free surface
velocities primarily in the region of the release phase near the damage point. The EOS param-
eter ε influences the shape of the velocity profile in the release phase. The pspall parameter
specifies an amount of tension the tantalum can withstand before spalling; it is expressed as
a negative pressure so smaller pspall values correspond to a higher tension threshold. The
difference between peak velocity and velocity at the damage point is an increasing function
of this tension threshold. The left panel of Figure 17 shows a positive coefficient corresponds
to damage occurring later at lower free surface velocity relative to a negative coefficient. The
right panel of Figure 17 shows the main effect functions for ε and pspall. The main effect for
ε first increases then decreases. The main effect function for pspall decreases monotonically.
Therefore, smaller values of pspall are associated with damage occurring later at lower free
surface velocity, consistent with a higher tension threshold.

4 Discussion

We have demonstrated a Bayesian approach for fusing model simulations and observed field
data to carry out model sensitivity, calibration and prediction on a flyer plate experiment. Un-
certainties arising from unknown calibration parameters, limited simulation runs, and discrep-
ancy between simulator and reality are incorporated here. Sensitivity analysis of the functional
flyer plate simulation output highlighted the insights gained by identifying physical interpre-
tations of the principal component representation. The availability of such interpretations
provides the necessary context for understanding the relative importance and behavior of the
uncertain model parameters. Calibration of simulation model parameters to a flyer plate ex-
periment highlighted the extent to which uncertain material properties can be constrained,
including the identification of trade-offs among parameters that cannot be resolved by avail-
able experimental data. The flyer plate simulation model provides a compelling example of the
need to account for uncertainty due to simulation model inadequacies. Including a discrepancy
component in the statistical model focuses the calibration effort on physics in the simulation
model that provides a sufficiently complete picture of the physical processes generating the
experimental data.

This modeling effort requires a very high dimensional GP model to model the simulated
VISAR trace at untried input settings. By utilizing kronecker identities, the 12800 × 12800
covariance matrix can be quickly inverted in the MCMC (12800 = 128×100 = (number of simu-
lations × number of VISAR trace points). A drawback of using this kronecker structure is that
the spatial dependence in the GP model is somewhat constrained as it allows only 11 spatial de-
pendence parameters, one for each dimension. One may prefer to allow the dependence model to
vary with different features of the VISAR trace. An alternative is to use a basis representation
to account for the multivariate simulator output. See Higdon, Gattiker, and Williams (2005) or
Bayarri, Berger, Garcia-Donato, Palomo, Sacks, Walsh, Cafeo, and Parthasarathy (2005) for ex-
amples.
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The statistical modeling of the simulator function η(·, ·) becomes increasingly difficult as
the dimensionality of the input space increases since the limited number of runs must now
cover a high dimensional space. Adaptive design as well as dimension reduction strategies
have been proposed (Craig, Goldstein, Rougier, and Seheult 2001) for dealing with this issue.
As an alternative, it may be wise to develop a faster, more approximate simulator and use a
strategy that avoids modeling η(·, ·). Another promising approach is to replace the simulator
altogether with a statistical model that incorporates key features of the physical process as in
Wikle, Milliff, Nychka, and Berliner (2001).
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Figure 11: Posterior prediction of the experimental data based solely on the calibrated

simulator ηc(x).
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Figure 12: Posterior prediction of the experimental data based on the calibrated simu-

lator ηc(x) adjusted for discrepancy δ(x).
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Figure 13: First order sensitivity indices for each of the ten calibration parameters. Out-

puts are simulated free surface velocities extracted at the HEL and damage points in the

experimental data (left panel), and coefficients of the first three principal components

calculated from the mean-centered simulation runs (right panel).
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Figure 14: Uncertainties in the first order sensitivity indices corresponding to coefficients

of the first (red), second (green) and third (blue) principal components for each of the

ten calibration parameters. The 5th and 95th quantiles of the predictive distributions

are indicated by horizontal bars.
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Figure 15: Mean of simulation runs and first principal component added with positive

(+) and negative (−) coefficients (left panel), and 1-d marginalizations of the posterior

mean fit to the observed coefficients of the first component with the most active input ε
in red and all others in grey (right panel). Vertical bars provide 95% probability regions

for the main effect of ε at the five input values it was estimated.
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Figure 16: Mean of simulation runs and second principal component added with positive

(+) and negative (−) coefficients (left panel), and 1-d marginalizations of the posterior

mean fit to the observed coefficients of the second component with the most active inputs

(ε, κ, γ and vs) in color and all others in grey (right panel). Vertical bars provide 95%

probability regions for the main effects of the active inputs at the five input values they

were estimated.
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Figure 17: Mean of simulation runs and third principal component added with positive

(+) and negative (−) coefficients (left panel), and 1-d marginalizations of the posterior

mean fit to the observed coefficients of the third component with the most active inputs

(ε and pspall) in color and all others in grey (right panel). Vertical bars provide 95%

probability regions for the main effects of the active inputs at the five input values they

were estimated.




