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Bayesian Modelling and Analysis of
Spatio-Temporal Neuronal Networks

Fabio Rigat*, Mathisca de Gunst’, and Jaap van Pelt?

Abstract. This paper illustrates a novel hierarchical dynamic Bayesian network
modelling the spiking patterns of neuronal ensembles over time. We introduce,
at separate model stages, the parameters characterizing the discrete-time spiking
process, the unknown structure of the functional connections among the anal-
ysed neurons and its dependence on their spatial arrangement. Estimates for all
model parameters and predictions for future spiking states are computed under the
Bayesian paradigm via the standard Gibbs sampler using a shrinkage prior. The
adequacy of the model is investigated by plotting the residuals and by applying the
time-rescaling theorem. We analyse a simulated dataset and a set of experimental
multiple spike trains obtained from a culture of neurons in vitro. For the latter
data, we find that one neuron plays a pivotal role for the initiation of each cycle of
network activity and that the estimated network structure significantly depends
on the spatial arrangement of the neurons.

Keywords: hierarchical models, shrinkage priors, Bayesian model selection, multi-
ple spike trains analysis, multi-electrode arrays.

1 Introduction

Stochastic modelling of multiple spike trains provides a formal framework to evaluate
the scientific hypotheses explaining the observed neuronal firing patterns. This paper
presents a novel hierarchical dynamic Bayesian network (DBN) model for the analy-
sis of such patterns. The rationale to adopt such a modelling framework is that the
functional relationships within any group of neurons can be uniquely represented as a
directed cyclic graph (DCG), where the directed edges identify pair-wise connections
and the cycles represent each neuron’s self dependence over time. Furthermore, it is well
known that DCGs are in one-to-one correspondence with the class of DBN models. Sem-
inal papers in the area of Bayesian networks and of DBNs are Spirtes (1995), Heckerman
(1996), Ghahramani (1998), Friedman et al. (1998), Murphy and Mian (1999), Murphy
(2001) and Friedman (2004). Here we adopt a Bayesian hierarchical perspective to
jointly estimate from the spike data all the model parameters, namely each neuron’s
baseline firing probability, the functional connectivities and their prior standard devi-
ation, the unknown network structure and the covariate effects. By letting the net-
work relationships be unknown parameters, we face a problem of model uncertainty
(Gelfand and Dey (1994), Draper (2002), Spiegelhalter et al. (2002), Clyde and George
(2004)). Dellaportas et al. (2000), George and McCulloch (1997) and Godsill (2001)
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provide extensive reviews of several simulation-based Bayesian model selection methods
using the Gibbs sampler and the reversible jump Markov chain Monte Carlo algorithm
(Green (1995)). In order to infer the unknown network structure, we employ a shrinkage
prior along the lines of George and McCulloch (1993). In this framework, joint inference
for the network parameters can be carried out using the standard Gibbs sampler within
a parameter space of fixed dimension. We also show that the shrinkage prior yields
robust inferences for the network structure with respect to the occurrence of moderate
random spike detection errors. Finally, in order to take into account some of the main
features of the neuronal spiking process, the network model described in this work in-
corporates a Markovian dependence of varying order over time and a spatial regression
term, both of which are not standard features of DBNs.

The remainder of this paper is organized as follows. Section 2 reviews the statistical
literature relevant for this work. Section 3 presents our model for the joint distribution of
the network spiking activity and its hierarchical prior. Section 4 illustrates the derivation
of the posterior estimates of the model parameters and the predictive probabilities of
future spiking states. Section 5 describes the assessment of the model’s goodness of fit
and of its predictive power. Sections 6 and 7 report the analyses of simulated spike trains
and of a set of in vitro spike data. Section 8 discusses the strengths and weaknesses
of our modelling approach and it describes some directions for future developments.
The Appendix gives the expressions for the full conditional posterior distributions used
within the Gibbs sampler.

2 A review of the statistical modeling of spike trains

Neurons are complex input-output systems whose dynamics have been investigated by
experimental neurophysiologists during the last sixty years. Nowadays, high-throughput
technologies generate measurements of the activity of the nervous system from the level
of single neurons (Van Pelt et al. (2004), Morin et al. (2005)) up to the whole brain
(Woolrich et al. (2004)). For a comprehensive review of the literature in this area, we
refer to Dayan and Abbott (2001), Gerstner and Kistler (2002), Feng (2003) and to the
fundamental papers by Hodgkin and Huxley (1952), FitzHugh (1961), Nagumo et al.
(1962) and Izhikevitch (2001). Fienberg (1974) described the essential physiology of the
neuronal spike process and the early literature on the statistical analysis of single neuron
spike trains. Brillinger and coauthors (Brillinger et al. (1976), Brillinger and Segundo
(1979), Brillinger (1988b), Brillinger (1988a), Brillinger (1992)) and Doss (1989) devel-
oped several point process models characterizing the spiking activity of single neurons
and the interactions among small numbers of neurons over time. West and Turner
(1992), Turner and West (1993) and West (1997) employed a Dirichlet process mixture
of Gaussian densities (Ferguson (1983), Escobar and West (1995)) to model the dis-
tribution of the response to excitatory post synaptic potentials of individual neurons.
Kass and Ventura (2001) introduced the inhomogeneous Markov interval point process,
which memory structure is determined by the inter-arrival times of successive spikes.
Kass et al. (2003) proposed the BARS method (Di Matteo et al. (2001)) as a model-
based smoother of the instantaneous firing rate function. As emphasized by lyengar
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(2001), the focus of this literature is the behaviour of either single neurons or of small
sets of neurons. Brown et al. (2004) and Kass et al. (2005) offer two perspectives on
the state-of-the-art in the area of multiple spike trains analysis, which is concerned with
the development of statistical models for the joint firing activity of many neurons over
time. These papers indicate two key challenges, namely estimating the mutual depen-
dence of the firing activity of several neurons over time and modelling the noise induced
by spike detection problems. In order to address the former issue, Brillinger and Villa
(1997) proposed a discrete time random threshold model where the interactions among
neurons are captured via their membrane potential and threshold functions. Recently,
Okatan et al. (2005) introduced a maximum likelihood method to estimate the func-
tional connectivity of stochastic neuronal networks based on a discretisation of the
approach of Chornoboy et al. (1988). Truccolo et al. (2005) proposed a point process
framework to relate the spiking probability of neuronal ensembles to the neurons’ own
spiking history, to the concurrent ensemble activity and to extrinsic covariates, such as
external stimuli and behaviour. Martignon et al. (2000) modelled the high order inter-
actions among the measured spike trains using log-linear models. Finally, Rao (2005)
proposed a Bayesian hierarchical model for integrate-and-fire networks in continuous
time based on measurements of the cells’ membrane potentials.

The Bayesian model proposed in this work differs from the current literature in three
essential aspects. First, we separate the notions of connectivity between neurons and
strength of their functional interaction. Second, we explain the structure of network
connections through a regression term at the top of the model hierarchy. Third, we
assess the model adequacy from two perspectives, namely by evaluating the goodness
of the model fit for a training sample and its predictive power for a distinct validation
sample.

3 A binary stochastic neuronal network

At any point in time a neuron is spiking if its membrane potential exhibits a character-
istic large fluctuation called an action potential. Because action potentials arise within
very short time intervals, the spiking state can be thought of as having only two values,
spiking and not-spiking. We assume that experimental measurements of such spiking
states for a fixed set of K neurons are available for a time grid ¢t € {1,...,T}. In what
follows, the intervals between the time points are small enough so that spikes occurring
within the interval (¢ — 1,¢] are observed at time ¢.

Let Y, with dimensions K x T, columns Y; and elements Y;;, be the binary matrix
of random spiking states, so that Y;; = 1 if neuron ¢ is firing at time ¢ and Y;; = 0
otherwise. Let P denote the joint distribution of the data Y, given a parameter vector
0 of length K and a parameter matrix § with dimensions K x K. Conditionally on
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(0,08), P can always be factored as

P(Y|9,ﬂ) = P(Ylv"'7YT|97/8)
T
= [IP0e16,8 (v, (1)
t=1

where P; is the conditional distribution of the K-dimensional column vector Y; and
{Y,,}0% _, is defined to be the empty set. In this framework, each 6; represents a neuron-
specific baseline coefficient whereas each element 3;; represents the strength of the pair-
wise functional connection having j as the transmitting neuron and i as the receiving
neuron. Furthermore, let the distribution of the firing state Y;; depend only on (6, 5)
and on the past network history between neuron 4’s last firing time, 7;;, and time (¢ —1).
Formally 7;; is defined as

Lif SF Vi, =0ort=1,
Tit =
! max{1l <7 < t:Y;; =1} otherwise.

Under the latter assumption, the joint distribution P can be further factored as

K

P(Y | 975) = H H‘Pzt(}/zt | eiuﬁila "'7ﬁiK7 {Yw}tw_:lnt)7 (2)

t=14i=1

with P;; being the conditional distribution of Y;;. In equation (2), the spiking process
for each neuron is modelled as a discrete time renewal process which renewals take
place after each firing (Dayan and Abbott (2001), Brillinger (1988b), Kass and Ventura
(2001)). This assumption reflects an essential feature of the underlying biological pro-
cess, namely that at each point in time the firing probability of a neuron can be thought
of as a function of the network activity taking place between its successive firings.
Moreover, equation (2) states that at each time ¢, conditionally on their parameters
(05, Bi1, ---Bir ) and on the relevant history of the network, the spiking states Y14, ..., Yy
are independent random variables. Finally, we note that the factorization (2) would not
hold if the random spiking states would be allowed to simultaneously depend on each
other. In such a case, to define consistently the joint distribution P we would face the

issues illustrated, for instance, in Lauritzen and Spiegelhalter (1988) and in Lauritzen
(1996).

In order to give an explicit form to the likelihood function (2), at any time ¢ we let
{Yi:}X | be conditionally independent Bernoulli random variables given their success
probabilities m;+(0;, Bi1, .., Bix, {Yuw fU_:lTit). We also assume a linear integration of the
input signal and we adopt a logistic link, defining the firing probabilities m;; as

(14+e %) Lift =1,

t—1 - o\ 1
it (03, Bir, s Birc, { Vo Yrzr,,) = <1 + e‘@—Zle ﬁwW) otherwise
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For notational convenience, in what follows we will drop the dependence of 7;; on
the array of parameters and the network history. Under equation (3), the likelihood (2)
can be rewritten as

st v
K v, T K e“f<9i+zjﬁij_t—:¢tt >
P(Y|976) = Hl-i-eelHH ZEUszth’ : (4)
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We note that Brillinger (1988a) and Brillinger and Villa (1997) proposed a speci-
fication of the conditional spike probabilities similar to equation (3) for their random
threshold spike train models. However, in our formulation we do not assume that a
spike occurs at time ¢ when the membrane potential of a neuron exceeds an unknown
threshold but we let its firing probability, 7;;, depend on its own as well as on other
neurons’ spiking history. Truccolo et al. (2005) illustrate the relationship between dis-
crete time Bernoulli generalised linear models such as (4) and continuous time Poisson
generalised linear point process models.

In equation (4), each parameter [3; measures the slope of the linear relationship
between the time lag (¢ — 7;;) and the firing log odds log( T ) When G; < 0

this coeflicient represents the overall refractoriness of neuron 4, i.e. the propensity of
its firing probability to decrease after a spike as a consequence of the underlying ion
channel dynamics. If 8;; > 0, neuron i is self-excitatory and it can display a bursting

behaviour. Each off-diagonal term (3;; represents the constant contribution of neuron

t—1
W=T;¢ Jw

j’s firing proportion o to the spiking probability m;;. Positive values of (;;
correspond to excitatory functional relationships whereas negative values characterise
inhibitory functional relationships. These parameters in fact do not correspond to indi-
vidual synapses between pairs of interconnected neurons but they represent the average
effect of the activity of neuron j on the firing rate of neuron ¢ under the linear input
integration process modelled in equation (3). Finally, in absence of network inputs and
when neuron’s i own refractoriness becomes negligible, (3) implies that neuron #’s firing
probability is (1 + e~%)~1, constant over time.

Let X with elements z;; be a K x K matrix of predictors fixed over time, repre-
senting the available neuron-specific characteristics which may influence the functional
development of the network. Potential covariates of interest are the cell type (e.g. pyra-
midal, interneuron, sensory, motor), the spatial coordinates of their somas, the location
of a neuron within a particular brain section, past exposure of the neurons to chemical
treatments and genetic covariates such as indicator variables for knock-out genes and
so forth. In the following analyses, the elements z;; represent the Euclidean distance
between the somas of neurons (7, j). The effect of this predictor on the network connec-
tivity is introduced in the next Section via a regression term at the top of the model
hierarchy.
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3.1 Prior distributions

The neuron-specific coefficients 8 are assigned a K dimensional Gaussian prior density
with zero mean and with covariance matrix s%[ x, where 35 is their common prior
variance and [ is the K x K identity matrix.

To introduce the prior uncertainty about the network structure, for any couple (i, j)
we let the connectivities 3;; be a priori Gaussian with zero mean, zero prior correlation
with the other connectivity parameters and standard deviations

oij = o(vij +€(1 —vij)). (5)

In equation (5), the coefficient o represents the unknown common baseline prior
standard deviation for the network connectivities, the scalar e € (0, 1) is a fixed shrinkage
factor common to all neurons and v;; = 1 indicates the existence of a statistically
significant functional relationship with direction j — i. Box and Tiao (1968) used
a mixture with form (5) to extend the Bayesian linear regression model in presence
of outliers. Furthermore, the prior mixture (5) has been proposed in the context of
covariate selection for the linear regression model by George and McCulloch (1993)
and by George and Foster (1997), who labeled their method stochastic search variable
selection (SSVS). In our work the prior standard deviation o is estimated jointly with
the other parameters given a fixed value of € to fit the shrinkage mechanism to the
spike data. Estimation of ¢ is carried out by placing a conjugate inverse gamma prior
IG(a,b) on 0?. We note that when both a and b tend to zero, this inverse gamma
prior approaches 1/02, which is the Jeffreys’ prior for the variance of the Gaussian
distribution.

In order to let the structure of functional connections depend on the spatial arrange-
ment of the neurons, we let v be the K x K binary matrix which (¢, j)th element, v;;,
is one with probability (1 + e~®~%%ii)~! and zero otherwise. In this formulation, «
represents the spatial dependence of the network connectivity. In particular, o < 0
implies that the further apart are the somas of neurons (7,j), the lower is the prior
expectation of a direct functional connection being established between them and vice
versa. Moreover, o represents an unknown intercept capturing the baseline propensity
of the network to form pair-wise functional connections independently of the spatial co-
variates. Conditionally on ag, o and X, the parameters v;; are assumed to be a priori
independent Bernoulli random variables, so that the prior distribution for the network
structure is

P | ag,a,X) = He(a”‘””)””(l + eotawij) =1, (6)

ij

By equation (6), with prior probability (1 + e® %)~ we have that v;; = 0. Having
fixed € close to zero, from equation (5) it can be seen that in this case the spiking activity
of neuron j does not significantly affect the firing probability of neuron ¢ and at any
point in time. Indeed, if v;; = 0 the 99% probability interval for the conditional prior
of the parameter [;; is approximately (—3ce, 30¢€). In the case v;; = 1, this shrinkage
prior allocates 99% probability on the interval (—3c,3c). Thus, in this framework the
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value of € defines the size of a negligible network effect relative to the prior standard
deviation o.

Finally, the spatial dependence parameter o and the intercept ag are assigned in-
dependent Gaussian priors with mean zero and with common standard deviation s,,.
Under this prior structure, the full model can be written as

ag, o ind- N(0,s2), (7)

vij | 0, a, i ind- Bernoulli((1 4 e~ @0~ %)~ 1),

o~ IG(a,b),
o = o(vij + el —viy)),
ind.
61] | Vij,0,€ ~ N(Oagfj)a
0 ~ N(0,s3lk),
Y |0, ~ equation (4).

4 Parameter estimation and prediction of future spiking
states

In what follows, the data Y is divided in a training sample including all the spike states
recorded during the period ¢t € {1,...,t* < T} and a validation sample including the
remaining spikes. The former is used to estimate the model parameters which, in turn,
are used to assess the model’s predictive power for the validation sample.

Under model (7), the posterior estimates of all parameters (g, a, v, 0,6, 3) can be
computed by simulation via the Gibbs sampler
(Gelfand and Smith (1990), Smith and Roberts (1993), Tierney (1994)). The latter
proceeds by iteratively sampling realisations of the parameters from their respective full
conditional posterior densities (FCPDs) which can be obtained, up to a multiplicative
constant, by dropping from the joint posterior the terms which do not depend on the
parameter of interest. The FCPDs of all model parameters are reported in the Appendix.
The FCPDs for ¢ and v are conjugate to their priors, so that these parameters can be
updated in closed form. For the update of (ag, «) we employ a vector-wise random walk
Metropolis step, whereas for the update of (6, 3) we use a neuron-wise random walk
random scan Metropolis sampler. The proposal distributions used for these Metropolis
steps are Gaussian.

In this work we adopt the sample means and the sample 95% equal tails frequency
intervals computed from the Gibbs sampler output as estimates of the marginal posterior
means and of the marginal posterior probability intervals of the model parameters.
Averaging over the Gibbs sampler draws for (8, 3) we obtain estimates of the marginal

posterior means for the likelihood parameters, (@‘\, B) The latter are plugged in equation
(3) to compute the fitted spiking probabilities 7 = 7 (0;, Bit, -, Bikcs {Yw ﬁu;lm) over

the training period. The posterior mean network v = {ﬁij}i}fj:l can be obtained by
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letting U;; = 1 if Lo V] > 0.5 and U;; = 0 otherwise, where {v!?} represents the
ij M-B =Y i J ij

sequence of Gibbs sampler draws for the parameter v;;, B is a fixed burn-in period and
M is the total number of draws. An alternative point estimate of the network structure
U is the posterior modal network, which is the configuration of v most visited during the
posterior sampling. From a decision theoretical perspective, the mean is the posterior
summary which minimizes the posterior risk under a quadratic loss function, whereas
the mode minimizes the posterior risk under an absolute value loss function (Berger
(1985)). In the following examples the mean estimate will be preferred to the mode
because the latter might not be unique. In order to graphically represent the network
point estimate, an arrow will be drawn from neuron j to neuron ¢ when U;; = 1. The
DCG of the posterior mean network will be constructed by matching the set of arrows
between all pairs of neurons together with the spatial coordinates of their somas.

Within the Bayesian framework, predicting the random spiking state Y; +11 condi-
tionally on the observed data {y.,}!,_; can be carried out via the neuron’s one step
ahead marginal posterior predictive spiking probability, which for model (7) is

Pit+r1 = P(Yi,t+1 =1 | {yw}fuzl)
= /P(Y;,t+1 =1,0;, Bi1, -y Birc | {Yw}lye1)d(0i, Bit, -y Birc)

= /7Ti,t+1(9iaﬁilu~~uﬁiK7{yw}Z}:7—M+1) X
0, Bi1, ooy Birc | {ywt—1)d(0s, Bits .., Birc).- (8)

X

The right-hand side of equation (8) is the expectation of the spiking probability
for neuron ¢ at time ¢ + 1 with respect to the joint posterior density of its parameters
(0:, Bi1y -y Bix ). Under model (7), these predictive probabilities cannot be computed
analytically. However, the left-hand side of (8) can be estimated by Monte Carlo inte-
gration:

M
Zm:B+1 T, t+1 (9?17 617?7 EEE) 6:?{5 {yW}fﬂ:‘ri,tJrl)
M- B ’

(9)

Pit+1 =

where the summands on the right-hand side of (9) are defined in equation (3) and
the sequence {0, 8%, ..., B} M_ | includes the Gibbs sampler draws of the parameters

(0;, 81, -, Birc ). Given p; 441, the one step ahead predicted spiking state is Y; ;41 =

1{5i,t+120~5}'

5 Model assessment

Conditionally on the spike data observed along the training period, (yi,...,ys+), the
goodness of fit of model (7) can be evaluated through the fitting residuals

= yi — i, i=1,. K;t=1,..t. (10)
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If y;; = 1, then rzjt € [0,1] and the closer the residuals are to 1, the more the fit is at
odds with the observed data. If y; = 0, then 7/, € [=1,0] and lack of fit is reflected
by residuals close to —1. Unfortunately, for model (7) the sampling distribution of
these residuals is not known. As illustrated by Pregibon (1981), Landwehr et al. (1984)
and Albert and Chib (1996), similar difficulties are encountered in the evaluation of the
goodness of fit for the class of generalized linear regression models with binary outcomes.
However, following Albert and Chib we note that, given the spike data over the training
period, the Gibbs sampler draws of (6, §) provide an estimate of the distribution of each
residual 7"1{5 through equation (3). The latter estimate reflects the degree of agreement
between the model fit and the training data. After observing the spike data up to time
T > t*, we can also compare the model predictions with the validation data using the
prediction residuals

Th = Yit — Dits (11)

where ¢ belongs to the validation period {t* + 1,...,7}. Unlike the fitting residuals r'ift,
conditionally on the spike data, the prediction residuals 7}, do not depend on the model
parameters.

Here we employ the estimated distributions of the fitting residuals and the estimated
values of the prediction residuals as graphical displays of the consistency between the
model results and the observed spiking patterns. For instance, if the assumption of an
underlying constant functional connectivity structure does not hold for some neurons,
we may expect their residuals to deteriorate over time. Furthermore, if the spiking
activity of a group of measured neurons functionally depends on that of some unobserved
neurons, we expect all residuals of the former group to depart from zero when the activity
of the latter varies.

To provide a quantitative measure of the model fit and of its predictions, we use the
well-known time-rescaling theorem (Papangelou (1972), Daley and Vere-Jones (2003)
or, in the context of neuronal spiking models, Brown et al. (2001), Truccolo et al. (2005)
and Feng (2003)). Let the sequence {sij}'j]i:l, with J; = Zi:l Yiw and s;; = min{s :
> —1 Yiw = j}, represent the spike times for neuron i over the training period. For j =
2, ..., J;, we define the rescaled spike times as u;; =1 — ea:p(ztgsi_ Tit — ZtSSi,j—l Tit)-
Then we compare the empirical distribution function of the rescaled spike times with
the cumulative distribution function of the uniform distribution on (0,1). When the grid
of time points adopted in (1) is fine with respect to the spike times and if the model
fit is adequate, these functions should be approximately the same and the empirical
distribution function should lie approximately on the 45° line. An approximate 95%
confidence band for this comparison, obtained from the Kolmogorov-Smirnov test, has
width 2.72v/J;. To evaluate the adequacy of the model’s predictions over the valida-
tion period we repeat for each neuron the same comparison as for the training period
while using in the transformation of the spike times the estimated predictive spiking
probabilities, p;;, instead of the fitted spiking probabilities 7;;.
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6 Analysis of a simulated dataset

In this Section, we first illustrate the analysis of a set of simulated data by employing
our implementation of model (7). Second, we evaluate the robustness of the model
estimates when the same set of data is contaminated by a moderate proportion of false
negative and false positive spiking states.

The simulated network includes ten neurons, so that the number of possible con-
figurations of v is 219" = 1.267651¢ + 30. The true value of the connectivity matrix v
and of the network parameters § were sampled from the hierarchical prior introduced
in Section 3, having fixed ag = 0.50,c = —2.00,0 = 4.00 and the shrinkage factor
e = 0.05. Moreover, the spatial coordinates of all neurons were sampled uniformly at
random over the unit square. Four thousand data points were generated for each neu-
ron by implementing equations (3) and (4). The sample was then divided in a training
batch including the first half of the data points and a validation batch composed of
the remaining data. On the left-hand side, Figure 1 shows the spike intensity functions
(SIFs) for the simulated neurons. Each point of a SIF represents the proportion of
spikes recorded for its corresponding neuron over windows of four hundred time points.
In order to give a smoother representation, in Figure 1 the SIFs were computed using
windows overlapping by one hundred time points. The firing rates of the ten neurons lie
approximately within the interval 8 — 21 percent. These low firing rates were obtained
by setting #; = —sgp = —1.00 and (3;; = —1.50 for all neurons. In this example, we set
these parameters to such low values in order to ensure that the simulated firing rates are
comparable to those observed for in vitro multi-electrode recordings. Although these
values are not generated from the prior, they are nevertheless included in their 95%
prior probability intervals. On the right-hand side, Figure 1 shows the histograms of
the inter-spike times for all neurons. The histograms display their largest mode be-
tween 5 and 10 time units, whereas most of inter-spike times are included in the interval
(1,25).

In order to analyse the simulated data through model (7), the prior standard deviations
of the spatial dependence parameter and of the intercept ag were set at so, = So = 1/3
whereas that of the coeflicients 6 was set at sy = 1.00. We used the Jeffreys’ prior for
the variance o2, letting its inverse gamma parameters be a = 0 and b = 0. The starting
configuration for the posterior sampling of the network structure was the null network,
whereas the starting value for o was 1.00 and those of the parameters («g, o) were set
at zero. The starting values for (6, 3) were set by numerically maximising the likelihood
(4) with respect to these parameters. The posterior estimates were computed using a
Gibbs sampler run of one hundred thousand iterations using a burn-in period of fifty
thousand iterations. The posterior sampling for (6, 3) was carried out via a neuron-wise
random scan random walk Metropolis within Gibbs step with independent Gaussian
proposals having standard deviation 0.20, which yielded acceptance ratios between 18
and 55 percent. In the current model implementation, these computations took half an
hour to complete on a single 2GHz laptop CPU with 1 Gb of RAM. Figure 2 illustrates
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Figure 1: on the left-hand side, the plot shows the spike intensity functions (SIFs) for
the ten simulated neurons, representing their proportions of spikes over overlapping
windows 400 time points wide. On the right-hand side, the plot shows the histograms
of the inter spike times for the ten simulated neurons.

the inference results for the parameters at the top of the hierarchy, namely (aq, ), and
for the prior standard deviation . The posterior means for (g, ) are respectively 0.69
and —1.67 with 95% equal tails posterior intervals (—0.19,1.63) and (—2.61,—0.78).
The posterior mean for o is 4.53 and its 95% interval is (3.44,6.10). The estimated 95%
posterior intervals for these three parameters include their underlying true values.

The posterior mean for the network structure v is shown in Figure 3. The plot on the
left-hand side represents the estimated marginal posterior probabilities of all pair-wise
network connections. In this plot, each row represents the estimated marginal posterior
probabilities for the occurrence of functional connections incoming into a particular
neuron, whereas each column represents the estimate probabilities for the outgoing
connections originating from each neuron. The plot on the right-hand side shows the
estimated network connections with estimated probability larger than 0.5 within their
2-dimensional spatial layout. In this plot, directed edges are represented as arrows and
a vertical bar within a neuron represents the existence of a significant self-dependence
over time. Furthermore, the red edges in this plot are associated to positive estimates
for their corresponding parameter (3;; whereas the green edges correspond to negative
estimates. The estimated network coincides with the underlying true value of v.

As illustrated in Figure 4, the true values of all parameters 6 are included in their
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Figure 2: on the left-hand side, the two curves represent the Gibbs sampler frequencies
for the intercept o (black) and for the spatial dependence coefficient a (red). On the
right-hand side, the plot shows the posterior frequencies for the standard deviation o.
All the three 95% posterior intervals include their respective true values (ag = 0.50, =
—2.00, 0 = 4.00).

Estimated marginal posterior probabilities Estimated mean posterior network

1 2 3 4 5 6 7 8 9 10

Figure 3: the plot on the left-hand side represents the estimated marginal posterior
probabilities of all pair-wise network connections. The plot on the right-hand side
represents the estimated network structure within its 2-dimensional spatial layout. The
estimated network structure coincides with the underlying true value of v.
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estimated 95% posterior intervals. Furthermore, as opposed to the network parameters
0, the precision of these estimates is comparable across neurons.
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Figure 4: posterior inferences for the neurons’ intercept parameters 6. Plus symbols
mark the positions of the true values of the parameters, whereas circles mark their
estimated posterior means. Their common true value, —1.00, lies within the estimated
95% posterior intervals for all neurons. Furthermore, the precision of these posterior
estimates is comparable across neurons.

The posterior point estimates for the parameters 3 are presented in Figure 5. On the
upper left side, the plot represents the true values of these parameters. On the upper
right side, the plot shows their estimated marginal posterior means. The two lower
plots illustrate in detail the posterior estimates of the coefficients § for the incoming
connections of two representative neurons, namely number 2 and number 7. In the latter
two plots, circles mark the position of the estimated posterior means, triangles mark
the endpoints of their 95% posterior intervals and plus signs indicate the true values of
the corresponding coefficient. Due to the shrinkage prior (5), the width of the posterior
intervals for the statistically insignificant coefficients, which estimated posterior mean
lies around zero, is smaller than that of the significant network parameters.

Figures 6 illustrates the goodness of fit for neurons 2 and 7 over the training period,
reflecting the typical model performance for these simulated data. On the left-hand
side, the Figure reports the estimated posterior mean of the fitting residuals, marked
by plus symbols, along with their 95% posterior intervals, which endpoints are marked
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Figure 5: the upper left plot represents the true values of the network parameters [.
The upper right plot represents their estimated marginal posterior means. The two
plots at the bottom show in detail the estimates of the network parameters § for the
connections directed into the representative neurons 2 and 7. The effect of the shrinkage
prior can be appreciated in these two plots, where the 95% posterior intervals for the
parameters close to zero are generally narrower than for the other parameters.
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by triangles. At the times when the two neurons actually fired (marked in red) their
fitted spiking probabilites are rather low, so that the fitting residuals are concentrated
towards one. This feature should not be taken as an indication of lack of fit. In fact,
given the low value of the neuronal intercepts 6 and of the diagonal parameters 3, their
true spiking probabilities at the observed firing times lie approximately in the range
(0.05,0.35). In other terms, when the fitted parameter values coincide with their true
values, the residuals marked in red in Figure 6 lie approximately in the range (0.65,0.95).
Therefore, as pointed out in the previous Section, we cannot base our conclusions about
the lack of fit only on the magnitude of these fitting residuals. On the other hand, we
note that the variability of these residuals for the two neurons is approximately constant
over time, which is consistent with the assumption of a fixed network structure. On
the right-hand side, the Figure compares the uniform CDF, represented by red lines,
with the empirical CDF of the neurons’ rescaled spike times, which have been computed
using their estimated spiking probabilities as illustrated in the previous Section. These
two plots show that the fit for both neurons is consistent with their uniform reference
distribution.

6.1 Spike detection and robustness

In this Section we use the simulated data analysed above to assess whether, under the
shrinkage prior adopted in model (7), the posterior estimates are robust with respect
to the occurrence of spike detection errors. We define this extrinsic noise component
as the errors caused by the hardware used to record the neuronal spike trains, as in
Gerstner and Kistler (2002). These errors should thus be distinguished from the intrin-
sic variability of the neuronal firing patterns, which is modelled in equation (4). Extrin-
sic noise can also be included in model (7) via a separate measurement error equation.
However, currently very little is known about the statistical properties of the extrinsic
noise affecting multiple spike trains recordings. Here we induce a moderate random
error in the simulated data by changing the spiking status of each neuron at each time
point independently with constant probability 0.01. After contaminating the data with
this extrinsic error, we repeat the analysis using the same priors and simulation strat-
egy as above. The posterior means for the top-level parameters «g, @ are respectively
0.66 and —1.77 with 95% posterior intervals (—0.20,1.56) and (—2.78,—0.81). With
respect to its true value, the estimated network structure is missing the four pair-wise
connections 10 — 3, 1 — 5, 2 — 6 and 4 — 8 whereas the remaining ninety-six entries
of the matrix v are correctly estimated. The posterior mean for o is 3.07 and its 95%
posterior interval is (2.24,4.40). The posterior intervals for 22 of the one hundred coef-
ficients # do not include their respective true values, with the largest bias occurring for
the self-dependence parameters (3;;. The posterior intervals for all parameters 6 include
their common true value —1.00.

From these results we conclude that, in presence of this moderate spike detection
error, the posterior estimates for the network structure and for the coefficients at the
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Figure 6: evaluation of the goodness of fit for neurons 2 and 7 over the training period.
The plots on the left-hand side represent the estimated posterior means of the fitting
residuals for the two neurons (plus signs) along with their 95% posterior intervals (de-
limited by triangles). The red points correspond to the neurons’ spike times whereas
the blue points correspond to time intervals during which the corresponding neuron
did not fire. The plots on the right-hand side represent the evaluation of the goodness
of fit using the time-rescaling theorem. For both neurons, the fitting residuals corre-
sponding to their spiking times are rather high, reflecting their low spiking probabilities.
Furthermore, the plots on the right-hand side show that the transformed spike times
obtained using the estimates values of (6, 3) are consistent with their uniform reference
distribution.
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top of our model’s hierarchy are not affected, whereas a considerable proportion of the
connectivity parameters § may be significantly biased.

7 In vitro multiple spike train analysis

In this Section we analyse via model (7) a set of multiple spike trains recorded from
an ensemble of neurons cultured in-vitro. A detailed description of the materials and
methods employed to generate the data can be found in Van Pelt et al. (2004). The
neurons recorded during the experiment are part of a large pool of dissociated rat corti-
cal cells. After extraction from the rat embryo, the cells were plated as a monolayer in
a culture chamber, the bottom of which consisted of a multi-electrode array (MEA), i.e.
a glass plate in which 61 conductive lanes where etched, ending in a hexagonal pattern
of electrode tips with diameter 12um. In this experiment, the size of the electrodes
roughly matches that of the somas, ensuring that the detected spikes mostly originate
from single cells. Since the Euclidean distance between neighboring electrodes is 70um,
the space between electrodes is filled with many cells from which no activity is recorded.
Therefore, in this example the structure of functional connections among the recorded
cells cannot be interpreted as corresponding to their physical network of synapses. The
data consist of the spiking times recorded at the 61 electrodes for more than 40 days
in-vitro (DIV). No external stimulation was given during the whole experiment, so that
the resulting firing patterns and the corresponding network dynamics are entirely spon-
taneous. In this Section we will analyze the spikes recorded during the first four minutes
of the twelfth hour of day 14 of the experiment for electrodes (7,11, 22, 29, 37, 46, 52, 53).
The first two minutes of recordings will be used to estimate the model parameters and
the successive two minutes will be used to compute the prediction residuals. We focus
on this subset of neurons because the remaining 53 electrodes do not exhibit enough
activity to estimate their network parameters with acceptable precision within such a
short time frame. Although the cultured network at 14 DIV is still in a developing
state, the period over which the data is being analyzed is much smaller than the time
scale of neurite outgrowth and synapse formation. Therefore we can reasonably assume
that the functional connectivity within these four minutes is stable.

In this Section we discretised the spike data into time bins with constant width of
one millisecond. Figure 7 shows the spike intensities of the eight neurons along with
the histograms of their inter-spike times. The latter plot emphasizes that the spiking
activity of these neurons is markedly different, with numbers 22 and 29 exhibiting
many more spikes than the other six cells. Furthermore, as noted in Van Pelt et al.
(2005), the spike intensities display a cyclical pattern characterised by very low levels
of activity. In particular, Figure 7 shows that for each cycle of network activity the
firing rate of number 29, depicted in cyan, increases over time until firing of all the
other neurons is triggered. The latter in turn appear to inhibit firing of number 29 until
all neurons fall silent. The successive cycle of network activity seems to be initiated
spontaneously by neuron 29. Our main interest in analysing this data is to investigate
whether the posterior inferences of model (7) can adequately explain and predict such
spiking pattern.
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Figure 7: spike intensity functions and histograms of the inter-spike times for the eight
analysed neurons. Neurons 22 and 29 exhibit many more spikes than the remaining six
neurons. The activity of all neurons is markedly cyclical, with neuron 29 (depicted in
cyan) starting a new cycle soon after all neurons fall silent.

Simulation based inferences for all model parameters were obtained by summarizing
a Gibbs sampler run of fifty thousand iterations after discarding a burn-in period of
twenty thousand iterations. As in the previous Section, the parameters (o,v) were
updated in closed form, whereas updating for («g, ) was carried out via a vector-wise
random walk Metropolis step and that of (8, 3) was performed by a neuron-wise random
walk Metropolis step with independent Gaussian proposals. The prior setting for all
model parameters is the same as in the previous example. Completion of the posterior
sampling took approximately twelve hours on a single 2GHz laptop CPU using 1 Gb
of RAM. Figure 8 shows the Gibbs sampler draws and the corresponding posterior
frequencies for the intercept g, for the spatial dependence coefficient v and for the
prior standard deviation o. The former has estimated posterior mean 0.48 and 95%
posterior interval (—0.08,1.03). The estimated posterior mean for « is —0.22 and its
95% posterior interval is (—0.69,0.28). The posterior mean for ¢ is 13.94 and its 95%
posterior interval is (10.42,18.73). From these inferences we conclude that the analysed
neurons tend to develop functional connections with other cells in their vicinity more
likely than with far cells. Furthermore, since the shrinkage factor was set at € = 0.05,
the latter results imply that a priori the network parameters 3 within the interval
(—4.20.4.20) are not associated with significant pair-wise functional connections.

The posterior inference for the network structure v are shown in Figure 9. The plot
on the left-hand side reports the estimated marginal posterior probabilities for each
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Figure 8: on top, the plots show the Gibbs sampler draws of (g, a) (left) and for o
(right). At the bottom, posterior inferences for (g, ) (left)and for o (right). Most of
the posterior mass for the spatial dependence parameter is allocated to negative values,
suggesting that couples of neurons which are close in space develop direct functional
connections more likely than neurons which are far from each other. Given e = 0.05,
the posterior inference for ¢ indicate that a priori the network parameters 8 within the
interval (—4.20,4.20) do not correspond to significant network connections.
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network pair-wise connection. The plot on the right-hand side represents the functional
connections with estimated probability larger than 0.5, projected on the MEA’s lay-
out. The posterior inferences uncover a complex network of 42 pair-wise functional
relationships, of which 20 are inhibitory and 22 are excitatory. In particular, with high
probability neuron 29 receives input from all other neurons in the network and it pro-
vides excitatory inputs to its nearest neighbours, numbers 22 and 37. Moreover, despite
of its relatively isolated position, neuron number 11 provides input to all other neurons
but to number 7.

Estimated marginal posterior probabilities Estimated mean posterior network

Figure 9: on the left-hand side, estimated marginal posterior probabilities for each pair-
wise functional connection. On the right-hand side, estimated posterior mean network.
The pivotal role of neuron 29 is reflected by these estimates. This neuron in fact receives
significant input from all other neurons in the network and it provides excitatory inputs
to its two nearest neighbours, numbers 22 and 37.

As can be seen in Figure 10, the estimated values for the neuronal intercepts 6 are
negative, reflecting the low firing rates of all neurons. However, the posterior mean of
the neurons exhibiting more spikes, number 22 and 29, have a larger value than those
of the other neurons. In particular, the estimate for 629 may partially account for the
fact that, as noted in Figure 7, following each interruption of the spiking activity of all
neurons, number 29 starts spontaneously a new cycle of network firing.

Figure 11 shows the posterior inferences for the network parameters . The upper
left plot represents their estimated posterior means. The plot shows that neuron 29 is
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Figure 10: posterior inferences for the intercept parameters §. The high estimates for
022 and 629 explain the higher firing rates of these two neurons with respect to the
remaining six cells.

strongly excited by number 11, 22, 46 and 52 whereas it is inhibited by its own activity
and by that of neuron 53. The activity of the latter is promoted and promotes that
of neurons 11 and 22. The remaining three plots in the figure represent the estimated
posterior means and the 95% posterior intervals of the network parameters for the in-
coming connections of three representative neurons, namely number 11, 22 and 29. The
width of the posterior intervals reflects the information content of the data for different
pair-wise interactions. For instance, the self-dependence parameters for the relatively
high-firing neurons (22 22 and (329 29 are estimated with good precision, whereas the in-
teractions with the lowest-firing neuron, (37,11, 837,22 and 37 29, exhibit large posterior
intervals.

In Figure 12 are displayed the fitting and prediction residuals for neurons 22 and 29,
which are the most active in the analysed ensemble. The estimated firing probabilities
for both neurons lie in the range (0.20,0.58), so that the residuals corresponding to
their firing times are rather high. As pointed out in the previous example, in absence
of a reference distribution for the residuals, we cannot interpret these relatively high
values as indicating a significant lack of fit and of predictive power. However, also some
of the residuals at times when the two neurons did not spike appear to be large. In
particular, these negative residuals are concentrated over the same short time periods
for both cells, suggesting that the model might fail to capture a common inhibitory
input. Given that along the analysed period the remaining 53 recorded neurons hardly
displayed any activity, we conclude that such an inhibitory input may be originated by
one or more of the cells in the culture which was not recorded by the MEA. Finally,
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Figure 11: the upper left plot represents the estimated posterior means for all the
network parameters §. The remaining three plots show in detail the posterior inferences
for the parameters § corresponding to the connections incoming into neurons 11, 22 and
29. Neuron 29 is strongly excited by number 11, 22, 46 and 52, whereas it is inhibited
by its own activity and by that of neuron 53. The activity of the latter is promoted and
promotes that of neurons 11 and 22.
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the pattern of both these residuals as well as that of the remaining six neurons appears
to be constant over time, suggesting that the structure of the functional connections
among the neurons does not change over the analysed recordings.
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Figure 12: estimated fitting residuals (left-hand side) and estimated prediction resid-
uals (right-hand side) for neurons 22 and 29. The estimated firing probabilities for
both neurons lie in the range (0.20,0.58), so that the residuals corresponding to their
firing times are rather high. The negative residuals for both neurons are concentrated
approximately over the same short time periods, suggesting that the model might fail
to capture a common inhibitory input for these two neurons.

Our model’s fit and predictions were again evaluated for the eight analysed neurons via
the time-rescaling theorem. The model results are generally consistent with the uniform
reference distribution of the rescaled spike times for all neurons. The results for the two
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most active cells, which are neurons 22 and 29, are presented in Figure 13. From these
results we conclude that the parameter values inferred during the training period predict
adequately the spiking pattern observed during the validation period. Consistently with
the residuals illustrated in Figure 12, this suggests that the network structure and the

connectivity parameters did not significantly change over the analysed recordings.
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Figure 13: evaluation of the model fit (on left-hand side) and of the predictions (on
the right-hand side) via the time-rescaling theorem for neurons 22 and 29. The model
results are generally consistent with the uniform reference distribution of the rescaled
spike times for both neurons.
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8 Discussion

In this paper we introduced a novel Bayesian hierarchical network model for the analysis
of multiple spike trains recordings. As in Brillinger (1988a) and in Brillinger and Villa
(1997), we defined the spiking probabilities over a finite grid of time intervals. Along
the lines of Kass and Ventura (2001), we adopted a Markovian dependence structure of
varying order over time to mimic some of the main features of the spiking process. A
distinctive feature of our approach is that the network structure v is modelled explicitly
as one of the unknown parameters via a shrinkage prior for the network effects .
Within this hierarchical model structure, the network connectivity is explained by a
regression term including the available fixed-time covariates. We note that these are
two differences of our approach with respect to the model proposed by Truccolo et al.
(2005), where the effects of their time-varying covariates and those of the network
inputs independently influence a neuron’s firing probability. Of course, when both fixed
covariates and time-varying covariates are available, integrating these two approaches
would be recommendable. For instance, equation (3) can be generalised by introducing
a neuron-specific and time-dependent regression term.

In this work we model via equation (3) the relationships between the network coef-
ficients (3, the past history of the spiking process Y and the firing probabilities of the
neurons being analysed. This aspect of model (7) is very specific and it arises from sev-
eral simplifying assumptions. For instance, in equation (3) the firings recorded within
each inter-spike time of a given neuron ¢ are not weighted usinlg their arrival times,

i
but they contribute by the same amount via the proportion %ﬁij Moreover, al-
though the exponent of equation (3) is linear in the model parameters (6, 3), the logit
link implies a symmetric saturation of the spiking probability with respect to the input
process. In fact, since the logistic density is a symmetric bell-shaped curve, the fluc-
tuations of the network activity produce small changes of a neuron’s firing probability
when the exponent of (3) is far from zero and larger changes when it is close to zero.
For these reasons, we regard further investigation of this model stage as a key focus for

our forthcoming research.

Since the number of possible network configurations for any set of K neurons is 2% 2,
an exhaustive search throughout its domain is computationally infeasible even for small
networks. The Markov chain Monte Carlo (MCMC) estimation for v proposed in Section
4 is an appealing alternative to exhaustive model search because, rather than system-
atically scanning the state space, the Gibbs sampler tends to visit more frequently the
network configurations with high posterior probability and it rejects those which could
not have generated the observed spiking patterns. In particular, when the posterior
distribution of v is characterized by several peaks, the Gibbs sampler can effectively
locate the most likely configurations. In such a case, instead of adopting the posterior
mean as the point estimate of the network structure, it may be more informative to
report all the configurations associated with the highest estimated marginal posterior
probabilities. For the analyses presented above, the standard Gibbs sampler generated
reliable posterior inferences for all the model parameters. It was also noted that when
the firing rates of the neurons to be analysed are very low, a neuron-wise update of
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(0, 8) yields more reliable estimates than a component-wise sampling. However, since
the number of parameters of model (7) grows more than quadratically with the number
of recorded neurons, computing reliable MCMC estimates for large neuronal ensem-
bles is a critical issue. In particular, while the estimation of the parameters (g, @),
representing global network properties, benefits from the inclusion of additional neu-
rons, estimating a large number of network parameters 8, which represent local network
properties, may pose serious computational problems. In the authors’ experience, the
current implementation of model (7) is effective for the analysis of networks including
up to about one hundred neurons recorded over a few minutes. For larger networks,
faster mixing of the Markov chains may be obtained by employing more sophisticated
posterior samplers. For instance, Nott and Green (2004) proposed a method for the
Bayesian assessment of the model uncertainty based on the Swendsen-Wang algorithm
(Swendsen and Wang (1987)). In the context of model (7), Nott and Green’s sam-
pler prescribes the introduction of a further layer of auxiliary variables conditionally
on which the parameters 8 can be efficiently block-updated. Alternatively to variable
augmentation methods, a multiple-chains sampler such as the parallel tempering algo-
rithm (Geyer (1991)) may be employed. Since these alternatives are computationally
more expensive than the standard Gibbs updating, in general the choice of the posterior
sampler will reflect a compromise between mixing of the Markov chains and computa-
tional speed. Finally, from the computational perspective it is important to note that,
conditionally on o, the joint posterior distribution of the parameters (6, 5) factors into
a product of neuron-specific posterior distributions. Therefore, when the network to be
analysed is large, fast posterior sampling can be implemented by updating in parallel
the likelihood parameters belonging to different neurons.

Section 6 demonstrates that the current implementation of model (7) can effectively
recover the true parameter values for a set of simulated data which firing rates are
comparable to those observed for in vitro recordings. Furthermore, we showed that the
shrinkage prior (5) yields robust estimates for the network structure with respect to a
moderate random spike detection error. This is a relevant model feature because, as
emphasised in Section 7, experimental multiple spike trains typically report the activity
of a small fraction of the neurons in culture and can be affected by several sources of
error. Moreover, specific sources of extrinsic noise can be added to the hierarchical
framework (7) in the form of a measurement error equation in order to further enhance
the robustness of the posterior estimates. For instance, spike sorting errors may be
modelled by introducing a spatially correlated extrinsic noise structure. From this
perspective, additional topics for further research are the study of explicit formulations
for such measurement errors and assessing the robustness of model (7) with respect to
missing neurons.

Finally, the results of our analysis in Section 7 suggest that functional connections
among pairs of neurons are more likely established between cells which somas are close
in space. Furthermore, we concluded that neuron 29 plays a key role in the initiation of
the network activity, which reveals over time a complex pattern of functional network
relationships among the eight analysed cells. We note that the latter findings are consis-
tent with the exploratory analysis over longer time periods reported in Van Pelt et al.
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(2004). From this perspective, we look forward to using model (7) to fit multiple spike
trains including richer sets of covariates.

Appendix

The expressions for the FCPDs of all the model parameters are reported in this Section.
In the following equations, the symbol  indicates that the left-hand side is proportional
to the right-hand side up to a multiplicative constant.

Conditionally on the array (s, X,v,aqp), the spatial dependence coefficient « is a
posteriori independent of (0, 3,5,Y). Its FCPD satisfies

fla]sa, X,v,00) o< ¢l ] sq) Heo‘xij“”(l 4 eotawijy =1 (12)

ij
where ¢(. | So) is the Gaussian density with zero mean and with standard deviation
Sa- This conditional posterior density does not have a closed form so that updating of

« within the Gibbs sampler can be carried out via the Metropolis-Hastings algorithm
(Metropolis et al. (1953), Hastings (1970)).

Conditionally on (s, X, v, «), the intercept coefficient « is a posteriori independent
of the spike data and of the remaining model parameters. For its FCPD we have

flao | sas X,0,0) o dfao | sa) [T 1+ emrtarn) (13)

ij

As for the spatial dependence parameter, updating of ag can be carried out via a
Metropolis within Gibbs step.

Conditionally on (8,5, oo, v, x5, 0, €) each v;; is a Bernoulli random variable inde-
pendent of the remaining parameters and of the spike data. Its conditional posterior
success probability is given by

¢(Bij | o)etororn
Bij | o)ecotorii 4 (B | o€)”

P(Ul_] =1 | ﬁij7a07a7xij70'7 6) = ¢( (14)

Given (€, 8,v) and under the inverse gamma prior adopted in model (7), the FCPD
of 02 is inverse gamma with parameters (a*,b*) defined as

2

a = a+ —,
2

2

b* b+05y — W 16
" zz'jjvijﬂLﬁQ(l—Uij)’ (16)

so that updating for o can be carried out in closed form.
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For the FCPD of each parameter 3;; we have

. Doy, v
F(Biy | Yovij, Bij0,6,0:) o< (B | oig) [J e mie x

t

yit—1 vk -1
. . W=Tig W
% <1 4 691+Zk Bik —5=75 > 7 (17)

where o;; is given in equation (5) and j3; _; represents the ith row of the matrix 3 except
Bij. Updating of each (3;; can be carried out via a Metropolis within Gibbs step as for
the parameters a.

The FCPD of each neuron-specific parameter 6; is given by

st—1 vy -1
F(0; 1Y, 8,03, 50) o< p(6; | s9) [ [ " (He“*zfﬁ“iﬁi ) : (18)
t

where 6_; stands for the vector 6§ but its ith term. These conditional posterior densities
are not available for exact sampling, so that the Metropolis-Hastings algorithm can be

employed to produce approximate posterior inferences also for the neuronal intercepts
0.
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