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The authors point to several problems occurring if DIC = 2D(θ)−D(θ) is applied

to missing data models: (i) the focus of the model depends on whether the missing data

z are considered as observations or as parameters or integrated out; (ii) the parameter

θ may be non-identifiable; (iii) θ can be a poor estimator of θ. They then investigate

modifications of DIC mainly based on estimates other than θ in D(θ) respectively

pD = D(θ)−D(θ) and/or on integration w.r.t. the missing data.

Comment (1). In (Spiegelhalter et al. (2002)) DIC was derived as an approximation

to the posterior predictive target −2EXrep
[log f(Xrep|θ)|x] where Xrep denotes repli-

cate observations from the same experiment. It depends on the posterior mean θ which

may not universally be a good choice. Using this or a similar target as an expected

loss in model comparison a specification of variables to be predicted and of parameters

is presumed. The choice of the loss function then defines the purpose of a model inde-

pendently of the sampling scheme, although the sampling scheme affects and possibly

limits the evaluation of the expected loss. From this perspective the performances of

predictive criteria for X = Y only or for X = (Y,Z) jointly are not comparable: if

the purpose of a model is set to be predictive, should not the performance of the cri-

terion be evaluated in terms of prediction rather than the detection of the ‘true’ (for

example mixture) model? Furthermore, often, as in the derivation of DIC, the target is

expanded and the resulting terms approximated. Modifications of the approximations

as tried in the paper may reversely induce different targets; the inconsistency of DIC5

is particularly worrying from this point of view. More generally, it should be examined

if the new criteria DIC2 −DIC8, some of which look quite sensible, correspond to well

justified losses and thus turn out to be valid from a decision theoretic point of view.

Comment (2). Loss functions similar to the one underlying DIC were analyzed in

(van der Linde (2005)), where it was shown that the decomposition of the predictive

target into terms of model fit and model complexity arises as a variant of the decom-

position of (posterior predictive, that is) marginal entropy into conditional entropy and

mutual information. It might therefore be argued that the divergence between future

(replicate) observations Xrep and posterior parameters θ reasonably describes model

complexity independently of any parameter estimate. If the sampling density f(·|θ)
belongs to an exponential family, this divergence can be represented using the posterior

mean θ and pD be justified as an appropriate estimator (for details see (van der Linde

(2004)). Clearly, mixture models do not fit into this framework and pD fails as an esti-

mator although model complexity is still well defined. In contrast, it is not clear what

the ‘complexity of a predictive density’ (referred to at the end of section 4.1) means.

Comment (3). A major achievement initiated with the introduction of DIC and pD
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is the formal quantification of the reduction of model complexity due to the information

in a prior. Further analysis of model complexity in terms of mutual information reveals

that model complexity is a symmetric (dual) concept of variables Xrep and random

parameters θ. Hence, also restrictions inherent in the sampling distribution can reduce

model complexity. For instance, in a linear regression model (with known variance)

which is not of full rank p, say, pD with more and more diffuse priors converges to

the reduced rank q < p. Similarly, in the example of Scottish lip cancer discussed by

Spiegelhalter et al. (2002) two out of 56 observations happened to be non-informative.

This was correctly reflected by pD ≈ 54, indicating only 54 identifiable parameters under

a vague prior (in the plots presented by Brooks (2002) in the discussion). Thus lack of

identifiability of parameters as a feature of a (mixture) model shows up in diminishing

model complexity. This is to be distinguished from a poor performance of an estimator

of model complexity (like that of pD for mixture models). However, even under lack of

identifiability of parameters, an estimator of model complexity should not take negative

values (as pD does for mixture models where therefore it is inappropriate).

Concluding remarks. Although in my comments I mainly addressed some views

presented in the paper by Celeux et al. which I do not share, I appreciate the paper

as well. Already in the discussion of (Spiegelhalter et al. (2002)) some of the authors

correctly pointed out that an unmodified DIC may be tied to exponential families, and

this objection is elaborated in the present article. The authors also set up a challenge

in insisting on a posterior predictive target based on variables that cannot be observed,

thus turning the evaluation of the target into a particularly difficult problem. Posterior

predictive assessment of missing data models requires further research, and in this paper

stimulating arguments and proposals are contributed to the discussion.
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