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Rejoinder

William J. Browne∗, and David Draper†

We are grateful to Gelman, Kass and Natarajan, and Lambert for their thoughtful
comments (and indeed for the original research that they summarize in their papers),
and we offer the following remarks by way of rejoinder.

• Many of the results presented in our article were obtained more than a few years
ago (based, as they were, on part of the work in Browne (1998)) and are only now
seeing the light of publication largely due to, shall we say, the vagaries of non-
Bayesian refereeing. We focused on the Γ−1(ε, ε) prior for random-effects variances
in some of our work because—under the influence of the WinBUGS package and the
examples distributed with it—this was very much the most common prior in use in
hierarchical/multilevel modeling in the mid to late 1990s. Lambert expresses the
opinion that this is still true today, although it appears to us that the pendulum
is shifting away from this prior, for reasons like those mentioned by Gelman. (To
be fair to the WinBUGS development group, in many of the examples distributed
with release 1.4.1 they currently offer analyses with both Γ(0.001, 0.001) priors on
random-effects precision parameters τ and Uniform priors on the corresponding
standard deviation parameters σ = τ−1/2, although they send a distinctly mixed
message by building in default values of 0.001 for each of the shape and scale pa-
rameters whenever a parameter is given a Gamma distribution in the DoodleBUGS
part of the package.)

It is interesting to see that in 2006 there is still no consensus on a general-purpose
choice of diffuse prior for this situation, although the work summarized in both
the Gelman and Kass-Natarajan contributions to this discussion may go some
distance toward achieving this goal. We have found ourselves recently gravitat-
ing toward Uniform priors on random-effects standard deviations, which accord
with one of Gelman’s suggestions, although instead of using Uniform(0,∞) (or
Uniform(0, A) for huge A) we prefer Uniform(0, c) where c is chosen just large
enough not to truncate the marginal likelihood for σ (and, in an interesting res-
urrection of the sometimes appropriately maligned Gamma prior, c can often be
chosen well by making a preliminary fitting with a Γ−1(0.001, 0.001) prior on σ2

and looking at the marginal posterior for σ). It is also interesting that Γ−1(ε, ε)
priors were originally chosen for computational convenience (through their condi-
tional conjugacy), and the half t family mentioned by Gelman again has surfaced
due to computational benefits, this time arising from model expansion. One of us
(Browne (2004)) has also seen these benefits in a more complex random effects
model, reinforcing Gelman’s comments on efficiency of MCMC chains.
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• The IGLS estimation method we use to get maximum likelihood estimates in
the paper (see Section 2.1) has other features that are of interest to explore for
their potential payoff with MCMC methods. Given a particular random effects
model, the IGLS method does not in fact directly fit this model, but rather fits
a structured multivariate normal model with the whole set of responses treated
as one vector-valued outcome, and with constraints (e.g., positive between-groups
variance) included in the covariance matrix of the response; these constraints
create equivalence between the multivariate model and the original random effects
model. We are currently investigating MCMC algorithms for such structured
multivariate normal models; here we have the option of allowing the parameter
in this model that corresponds to the between-groups variance in the random
effects model to have positive prior probability of taking negative values. This has
advantages in performing Bayesian model selection and may help in choosing a
reference prior for this family of structured multivariate normal models (although
the equivalence with the random effects model is lost by such a prior choice).

• In three places in Gelman’s paper (Sections 5.1, 5.2, and 6.2) he refers to what
he characterizes as the good performance of a particular choice of prior (“the
simplest approach ... seems to perform well”; “this prior distribution appears to
perform well in this example”; “the half-Cauchy prior distribution does slightly
better than the uniform”) without saying what standard of merit he is using to
come to these conclusions. We believe that the best way to settle issues of this
type is through simulation studies (of the type illustrated in our paper, in Kass
and Natarajan’s contribution to this discussion, and in Lambert et al. (2005)), in
which an environment embodying a particular known truth is created and then a
variety of Bayesian inferential methods are compared on their ability to reproduce
the known truth. This is a form calibration inquiry—how often does my method
get the right answer?—that it would seem all statisticians, whether they are using
Bayesian methods or not, would be interested in undertaking. (How exactly can
Gelman know that the half-Cauchy prior distribution does slightly better than
the uniform in his ANOVA example without performing such a simulation? See,
e.g., Draper (2006) for some recent thoughts on the importance of combining the
notions of coherence (internal consistency) and calibration (external consistency)
in contemporary Bayesian inference.) In fact, this simulation approach has by now
become so easy to perform—e.g., by embedding calls to WinBUGS in a random-
data-set-generating environment in R (in part thanks to the useful R functions
Gelman has made available at www.stat.columbia.edu/∼gelman/bugsR)—and
inexpensive computers have become so fast that most questions one might have
about the calibration properties of a particular choice of diffuse prior can be
answered in a completely problem-specific manner with just an hour or two of
programming and a few hours or days of computer time.

At about the time of Browne (1998), we were the co-developers of the MCMC ca-
pabilities in the multilevel modeling package MLwiN (Rasbash et al. (2005)), and—
since we wanted to give users a default choice of diffuse priors for that package—it
was natural to ask calibration questions of the type addressed in our paper. We
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believe that similar questions are routinely worth asking, not just by software
developers but by essentially all Bayesian analysts, and we hope that the imple-
mentation and publication of Bayesian calibration studies of the type discussed
here will become considerably more frequent in the not-too-distant future.
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