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Bayesian nonparametric estimation of the

radiocarbon calibration curve

Caitlin E. Buck∗, Delil Gómez Portugal Aguilar†,
Cliff D. Litton‡, and Anthony O’Hagan§

Abstract. The process of calibrating radiocarbon determinations onto the cal-
endar scale involves, as a first stage, the estimation of the relationship between
calendar and radiocarbon ages (the radiocarbon calibration curve) from a set of
available high-precision calibration data. Traditionally the radiocarbon calibra-
tion curve has been constructed by forming a weighted average of the data, and
then taking the curve as the piece-wise linear function joining the resulting cal-
ibration data points. Alternative proposals for creating a calibration curve from
the averaged data involve a spline or cubic interpolation, or the use of Fourier
transformation and other filtering techniques, in order to obtain a smooth calibra-
tion curve. Between the various approaches, there is no consensus as to how to
make use of the data in order to solve the problems related to the calibration of
radiocarbon determinations.

We propose a nonparametric Bayesian solution to the problem of the estimation
of the radiocarbon calibration curve, based on a Gaussian process prior structure
on the space of possible functions. Our approach is model-based, taking into ac-
count specific characteristics of the dating method, and provides a generic solution
to the problem of estimating calibration curves for chronology building.

We apply our method to the 1998 international high-precision calibration dataset,
and demonstrate that our model predictions are well calibrated and have smaller
variances than other methods. These data have deficiencies and complications that
will only be unravelled with the publication of new data, expected in early 2005,
but this analysis suggests that the nonparametric Bayesian model will allow more
precise calibration of radiocarbon ages for archaeological specimens.

Keywords: Gaussian process, archaeology, chronology building, cross-validation

1 Introduction

Radiocarbon (14C) has a number of properties that make it suitable for archaeological
dating, including a half-life of the right order for much of prehistory, chemical features
that ensure distribution throughout the biosphere, and of course, feasibility of measure-
ment (Aitken, 1990). Besides its widespread use in archaeology, radiocarbon dating is
also useful in other disciplines such as geology and climatology. Hence, radiocarbon
dating is one of the most commonly used chronometric (or absolute) dating techniques.
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The production of radiocarbon occurs in the upper atmosphere, due to the interac-
tion of cosmic rays with nitrogen. 14C combines with oxygen to form carbon dioxide
which is chemically indistinguishable from the carbon dioxide containing stable (non-
radioactive) carbon isotopes (12C and 13C). By means of the photosynthesis process,
this ‘heavy’ carbon dioxide enters plants and hence, via the food chain, all animals.
Consequently, as long as plants and animals continue to metabolise, they exchange car-
bon with the atmosphere (or ocean) in which they live and so the ratio of radioactive to
non-radioactive carbon in their cells is in equilibrium with their environment. There is
only about one part of 14C in a million million of modern carbon, whereas 99% of total
carbon is 12C and 1% is 13C (Bowman, 1990). This balance is maintained by the car-
bon cycle. After the death of an organism, however, the assimilation of carbon ceases,
and the amount of 14C present in the organism — originally in equilibrium with the
atmosphere — decreases in an exponential fashion, according to the law of radioactive
decay. This states that given an initial (atmospheric) 14C/12C ratio m(0) at time t = 0,
an organism that ceases exchange with the atmosphere at that time will at a later time
t have a remaining 14C/12C ratio given by

m(t) = m(0) exp (−λt) , (1)

where λ is the decay rate of radiocarbon.

The essence of radiocarbon dating is to use equation (1) to deduce t given m(t) and
m(0). Thus, t is the unknown age of some organic archaeological object, and we measure
its 14C/12C ratio m(t) at the present time. The early use of the method assumed that
the 14C/12C ratio in the carbon available to living organisms had remained constant over
time, and so we could equate m(0) to the known present ratio M0. However, researchers
soon had to accept that the rate of production of 14C (and hence, the 14C/12C ratio in
the atmosphere and oceans) has not remained constant over time, and the complex na-
ture of this production process induces a relationship between calendar and radiocarbon
ages that is non-monotonic, with many kinks (the so-called wiggles). This relationship
is captured in the 1998 internationally-agreed high-precision calibration data sets which
consist of observations (actually weighted averages of other observations) of the type

θ
(d)
i , (yi ± σi) ; i = 1, . . . n, (2)

where for i = 1, . . . , n, yi ± σi represents the (average) radiocarbon-determined age
assuming m(0) = M0 and associated (average) standard error for a sample of known

exact calendar age θ
(d)
i . Since the raw data from which these averages were derived

were not made publicly available, we follow other authors in treating these averages as
observed data. A convention in radiocarbon dating, designed to avoid confusion over
time and to allow comparison of dates, is to quote all dates in years before present (BP),
where ‘present’ is defined to be the year 1950. Radiocarbon ages are always quoted in
years BP, whereas calendar dates are expressed in years ‘cal BP’.
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2 The calibration data

There are currently two internationally-agreed calibration data sets (known as the INT-
CAL98 datasets): one suitable for calibrating radiocarbon ages for samples of organic
material derived from organisms (such as terrestrial herbivores) that metabolised car-
bon from the atmospheric (or terrestrial) reservoir and the other for organisms (such
as marine fish) that metabolised carbon from the marine (or oceanic) reservoir (Stuiver
et al. 1998). Two calibration data sets are needed because there is a 14C age offset be-
tween “terrestrial” and “oceanic” samples with identical calendar ages. Put simply, this
offset arises because the (poorly understood) processes by which newly produced 14C
enters the ocean, mixes and becomes available to organisms that live in it is particularly
slow (currently believed to be in the order of 400 years). Current knowledge about the
mixing of 14C in the atmosphere and oceans is summarised in the calibration issue of
Radiocarbon, INTCAL98 (Stuiver et al. 1998).

In this paper we will focus on the atmospheric radiocarbon calibration data set and,
more specifically, on the part of the data set that derives from measuring the 14C/12C
ratio in tree-rings of known calendar age. Both the atmospheric and marine calibration
data sets are publicly available at the University of Washington Quaternary Isotope Lab-
oratory’s World Wide Web site http://depts.washington.edu/qil/datasets. The

calendar ages θ
(d)
1 , . . . , θ

(d)
n of tree-ring samples are obtained via denrochronology (tree-

ring dating), which is an extremely precise dating method that leads to reliable calendar
age estimates (to the nearest year or even the nearest season in a given year). The INT-
CAL98 tree-ring data span 11,850 to zero cal BP (Stuiver et al. 1998) and are taken
to have zero uncertainty on their calendar age estimates. Like all previous authors, we
will take these data at face value. We are aware that they are not in reality raw data
but have been subjected to a variety of preprocessing stages; however, the raw data are
not readily available. Some discussion of deficiencies of these data, and of how they are
being addressed in the ongoing INTCAL04 project, is given in Section 6.

3 Other information relevant to modelling

In addition to the fluctuation in the production rate of 14C, there are other, more
minor, problems which mean that calibration is essential. For instance, at the time of
the development of the radiocarbon dating method, it was determined, to the levels
of accuracy and precision then achievable, that the half-life t 1

2

for 14C was 5568 years.

This was used to set λ = ln 2/t 1

2

. It was subsequently discovered, however, that this
value is incorrect, a better estimate of the true value being t 1

2

= 5730. Once more, in

order to facilitate references to results obtained with the original (incorrect) value, and
to avoid the confusion regarding correcting those results, the convention is to continue
the use of the initial value of 5568 years. This is known as Libby’s value for the half-life
of radiocarbon, and its corresponding decay rate will be denoted as λL = ln 2/5568
throughout this paper.

For these reasons, the radiocarbon age of a specimen (obtained assuming m(0) = M0

http://depts.washington.edu/qil/datasets
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Figure 1: Part of the high-precision atmospheric calibration data (INTCAL98, Stuiver

et al. 1998). The midpoints along each bar are the data points (θ
(d)
k , yk), and the vertical

lines represent the intervals yk±2σk. The dotted line represents the identity relationship
between calendar and radiocarbon years BP.

and λ = λL) will differ from its true calendar age. This is evident in Figure 1, which
shows a section of the tree-ring derived part of the INTCAL98 data (Stuiver et al. 1998)
and the identity relationship between the two time scales (dotted line). Notice that the
calendar-ages axis runs from right to left. This is yet another convention amongst the
radiocarbon community. It simply implies that the ‘flow of time’ follows the usual
direction from left to right; i.e. older ages are located further left in the plot. Thus,
Figure 1 suggests that a specimen that truly dates from 1800 cal BP will be given a
radiocarbon age of around 1830 (radiocarbon) years BP.

In principle, there is a deterministic relationship between the two timescales, in
the sense that organisms that ceased metabolising in year θ will all have the same
radiocarbon age r(θ). Thus, one of the objectives of radiocarbon calibration is to
determine the calibration function r(·). A further objective of radiocarbon calibration is
to transform (or calibrate) radiocarbon ages obtained for samples of material of unknown
age onto the calendar timescale. Notice, however, that in Figure 1 radiocarbon ages
in the range 1900–1700 years BP cannot be uniquely matched to calendar ages, and
this is generally true throughout the radiocarbon dating range. Uncertainty about the
true calendar age of a new radiocarbon sample is therefore a product of the interaction
between uncertainty about r(·) and its nonlinear form.
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3.1 Outline of paper

The calibration process consists of two phases. The first is the ‘estimation phase’,
in which r(·), the functional relationship between calendar and radiocarbon years, is
estimated from a set of calibration data. The second is the ‘prediction phase’, in which,
from a new observation y0±σ0, interest lies in making inference about the corresponding
calendar age θ0.

In this paper we are interested in the first stage of the calibration process for radio-
carbon dating, namely inference about r(·), the radiocarbon calibration curve, describ-
ing the relationship between calendar and radiocarbon years. The problem effectively
corresponds to making inference about an unknown function, some of whose values are
observed with error.

Several approaches have been proposed throughout the history of radiocarbon dating
for ‘constructing’ the radiocarbon calibration curve. The radiocarbon community seem
to share the view that the calibration curve should be a smooth curve that nevertheless
follows some of the ‘wiggles’ in the calibration data. There is currently no agreement as
to how to achieve this, but commonly used models for r(·) are given by either the piece-
wise linear function that joins the calibration data (we refer to this as the ‘traditional’
radiocarbon calibration curve, since this was the earliest method adopted), or by spline
functions or cubic interpolation which produce a smoother curve (for example, cubic
interpolation is implemented in popular calibration software known as OxCal: Bronk
Ramsey, 1995). These methods produce calibration curves that pass exactly through

the data points (θ
(d)
i , yi). Knox and McFadgen (1997) also argue for a smooth function

and illustrate a method based on least-squares fitting of Fourier transformed and fil-
tered calibration data that additionally smooths the data points. The latter feature is
justified by the acknowledged measurement error in the calibration data. Gómez Por-
tugal Aguilar et al. (2002) proposed modelling the calibration curve as a random walk,
resulting in an estimate that is piece-wise linear but smooths the data points.

In what follows, we develop a model that attempts to incorporate scientific knowledge
about the process of radiocarbon production. Naturally, the radiocarbon community
is reluctant to embrace any proposal for modelling the calibration curve without clear
evidence of the benefits and rationale behind them, and without making sure that the
real problem is being properly addressed. Hence we proceed in stages, stressing the
implications and significance of each assumption. We adopt a Bayesian approach to
tackle this problem, based on the use of a Gaussian process prior structure for r(·),
and incorporating our knowledge relating the calibration curve to the flux of 14C in the
atmosphere. We present the proposed model in Section 4. We emphasize the importance
of the specification of the covariance structure, and illustrate its effects through the
Gómez Portugal Aguilar et al. (2002) structure that yields a piece-wise linear calibration

curve, but one that does not pass exactly through the data points (θ
(d)
i , yi). This first

step moves away from approaches that exactly interpolate the calibration data, whilst
retaining the familiar feature of piece-wise linearity of the ‘traditional’ calibration curve.
In Section 5 a more general process is introduced. The resulting calibration curve is
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smooth, as well as allowing for the observation error in not simply interpolating the
data points. Particular attention is paid to validating the model’s predictions by cross-
validation. The new model is shown to estimate r(·) more accurately than previous
methods, and hence to lead to more accurate calibration of radiocarbon ages for new
specimens. The results of this analysis are discussed in Section 6, where we also outline
possible further refinements of the model.

4 Gaussian Process Model for the Radiocarbon Calibra-

tion Curve

We adopt a Bayesian approach to inference about the radiocarbon calibration curve
r(·), relating calendar and radiocarbon ages. We interpret the calibration data (2) sta-
tistically as asserting that conditional on the true curve the values yi are independently
and normally distributed with known variances σ2

i , thus

yi | r(·) ∼ N(r(θ
(d)
i ), σ2

i ); i = 1, 2, . . . , n; independent.

This yields the likelihood function for the statistical analysis, and we now formulate a
prior distribution for r(·).

The model we propose for r(·) is a Gaussian process (GP). There is a substantial
literature concerning the use of GPs to represent prior distributions for unknown func-
tions in a variety of situations; see for example O’Hagan (1978, 1992), Neal (1999),
Kennedy and O’Hagan (2001), Schmidt and O’Hagan (2003) and Oakley and O’Hagan
(2004). Formally, we suppose that the function r(·) has a GP prior distribution with
mean function m(·) and covariance function c(·, ·), denoted by

r(·) |β, τ2 , η ∼ GP (m(·), c(·, ·)) , (3)

meaning that the joint distribution of r(θ1), r(θ2), . . . , r(θN ), for any θ1, θ2, . . . , θN and
any N = 1, 2, . . ., is multivariate normal with parameters given by E [r(θj)] = m(θj)
and Cov [r(θj), r(θj′ )] = c(θj , θj′). The rationale for such modelling in general can be
found in the previously cited references; the choice of the mean and covariance functions
will be developed here to represent appropriate prior beliefs about the radiocarbon
calibration function r(·). Note that the model (3) is expressed conditionally on three
hyperparameters β, τ2 and η, which will appear in our formulations of m(·) and c(·, ·).

We begin by setting the mean function as

m (θ) = βθ (4)

describing the belief that radiocarbon ages are proportional to the true calendar ages.
There are several reasons for this choice. First, it is certainly the simplest possible
relationship between calendar ages and radiocarbon ages, since we really do not believe
a priori that radiocarbon ages should be, for example, a quadratic or higher-order-
polynomial function of their corresponding calendar ages. Another reason relates to
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a general belief in the approximate stationarity of the atmospheric 14C concentration.
Stationarity (and using the correct half-life value for 14C) would suggest β = 1, whereas
allowing β 6= 1 encompasses the effects of both using an ‘incorrect’ value of the half-life
of 14C and of a non-stationarity drift over archaeological time of the production rate of
14C. Ultimately, the Gaussian Process model allows the curve to deviate from linearity
according to the information provided by the data, but the linear prior mean helps to
damp spurious wiggles in the curve due to observation error.

The covariance function will take the form

c(θ, θ∗) = τ2vη(θ, θ∗) , (5)

depending on a scale parameter τ 2 and a smoothness hyperparameter η in a form that
will be developed in Section 4.1.

This stage of the model formulation is completed by establishing prior distributions
for the hyperparameters β, τ 2 and η. As discussed above, there is some genuine prior
information about β, in that the known inaccuracy in the Libby half-life λL means
that β = λ/λL = 5568/5730 = 0.97 would be a better initial expectation than β = 1.
However, this correction is small compared to uncertainty about the possibility of a
drift over time in 14C production that would lead to β deviating from this value. We
chose the prior distribution β ∼ N(1, 1

36 ). This adopts the mean of 1 for convenience,
and accommodates a prior judgement that β might easily deviate by as much as 1

6 from
unity due to non-stationarity in 14C production.

It is, however, difficult to propose any meaningful prior information about the mag-
nitude of the scale parameter τ 2 or the smoothness parameter η. We adopt the Jeffreys
log-uniform prior for τ2 and a uniform prior for η, independently of β, so that the prior
distribution for the model parameters is

p(β, τ2, η) = p(β)p(τ2)p(η) ∝ 1

τ2
exp

{

−18(β − 1)2
}

.

As in any Bayesian analysis, the posterior results will be a synthesis of the informa-
tion contained in the prior structure and that provided by the data. The relative weight
given to each of these components depends on the strength of belief stated in the prior,
and on the ‘amount’ of data (the number of data points and their precision). The fact
that we have access to a large set of data means that the choice of the prior settings for
β, τ2 and η will in fact have negligible influence on the posterior analysis.

4.1 Specification of the Covariance Structure

We now consider the formulation of the covariance function c (., , ). Its definition is of
fundamental importance in the resulting calibration curve. The choice of covariance
structure will determine the degree of smoothness and differentiability of the resulting
curve. Furthermore, a suitable choice for the covariance function can represent specific
characteristics of the radiocarbon calibration curve, such as the existence of a starting
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point (zero point) in the chronology, and the fact that the uncertainty in the relationship
between calendar and radiocarbon ages grows the further we move back in time from
this starting point.

This second issue deserves some elaboration since two separate factors contribute to
the uncertainty on the radiocarbon timescale. Firstly, there is the uncertainty related
to a particular estimate of the radiocarbon content of a sample. Due to practical
restrictions (not least the extremely tiny proportion of 14C remaining in old specimens),
this uncertainty is greater for older samples. This is represented in the standard errors
reported for each of the radiocarbon determinations that make up the calibration data
sets, and we assume here that σ2

1 , . . . , σ2
n adequately reflect this aspect of the uncertainty.

The other source of uncertainty is represented by the covariance structure in the
Gaussian process model and relates to our current knowledge about the true relation-
ship between calendar and radiocarbon ages. In recent years, substantial effort has
been made to extend the calibrated 14C record and to offer us greater insight into the
range and nature of the variations in 14C levels over time (van der Plicht, 2002; Beck
et al. 2001). Beyond the limits of INTCAL98, data relating calendar and 14C ages are
mainly based on foraminifera trapped in laminated sediments and on various carbon-
ates dated by U-series isotopes (van der Plicht, 2002). The results provide valuable
qualitative information about the relationship between the two timescales. This work
makes it clear that our present knowledge about the relationship between calendar and
radiocarbon ages is subject to a higher level of uncertainty for older periods of time
than for more recent ones.

In order to derive a suitable covariance structure for the radiocarbon calibration
curve, we propose making use of the link that exists between the process of generation
of 14C and the relationship between calendar and radiocarbon ages.

In practice, the determination of the radiocarbon age r(θ) of a sample of (unknown)
calendar age θ that has a current 14C/12C ratio m is performed, as mentioned earlier,
using Libby’s half-life value for 14C, so that

r(θ) = − 1

λL
ln

(

m

M0

)

.

Apart from the measurement error represented by σ2, m is given by (1):

m = M(θ) exp (−λθ) ,

and depends upon the original (but unknown) atmospheric 14C/12C ratio at time θ cal
BP, M(θ), and the correct half-life value for 14C, λ. Hence,

r(θ) =
λ

λL
θ − 1

λL
ln

(

M(θ)

M0

)

.

Consider the rate of change

r′(θ) =
d

dθ
r(θ) =

λ

λL
− 1

λL

M ′(θ)

M(θ)
. (6)
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It is well known that M(·) is not strictly stationary, and many factors, such as
geomagnetism and sunspot activity, may affect its behaviour (Bowman, 1990). In par-
ticular, M(θ) represents the accumulated effects to time θ of both 14C generation in the
upper atmosphere and its dissipation through the biosphere and decay. We propose to
model r′(·) as a stationary Gaussian process, and refer to it as the flux process.

Thus, we now redefine our model for the radiocarbon calibration curve as the inte-
grated version of the process r′ (·), using the fact that r(0) = 0, i.e.

r(θ) =

∫ θ

0

r′ (t) dt,

where we now suppose that

r′ (.) ∼ GP
(

β, τ2wη (·, ·)
)

.

We specify that wη(·, ·) is a correlation function through wη(θ, θ) = 1, ∀θ, so that τ2 is
the variance of the process. Then it is straightforward to show that r(·) is also a GP
with mean function

E (r(θ)) =

∫ θ

0

βdt = βθ,

as in (4). As for the covariance structure for r(·), in terms of (5)

vη(θ, θ∗) =

∫ θ

0

∫ θ∗

0

wη(t, u) dt du, (7)

and we need to define an appropriate correlation function wη (·, ·) for r′ (θ). From
equation (6) we see that the uncertainty for r′ (θ) is directly related to the uncertainty
of M ′ (θ), which corresponds to the flux that generates changes in 14C levels. Notice
also from (7) that uncertainty about r(θ) increases with θ, reflecting the fact that,
prior to incorporating the high-precision calibration data, the uncertainty about the
radiocarbon age should be an increasing function of calendar age.

4.2 A piecewise linear curve

An initial possibility for establishing the full model for the radiocarbon calibration
curve is by proposing a pure random noise model for this flux. This was the approach
in Gómez Portugal Aguilar et al. (2002) (henceforth, GPA, L & O’H). That is,

wη (t, u) = w0 (t, u) =

{

1 ; if t = u,
0 ; otherwise.

This gives rise to the following covariance structure for the calibration curve r(θ)

Cov (r(θ), r (θ∗)) = τ2v (θ, θ∗) = τ2 min {θ, θ∗} . (8)

Thus, r(·) is a random walk or Wiener process, with no hyperparameter η in the corre-
lation function. It can be proved that the resulting posterior mean for the radiocarbon
calibration curve is piece-wise linear.
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Figure 2: A section of the GPA, L & O’H piece-wise linear curve resulting from the
random-walk covariance structure in equation (8). The solid line is the posterior mean,
and the dashed lines show the mean plus and minus two standard deviations. The dots
and vertical bars show the calibration data points plus and minus two standard errors
as in Figure 1.

Our piece-wise linear (posterior mean) radiocarbon calibration curve, however, dif-
fers from the traditionally employed curve in that it smooths the data rather than
interpolating them (see Figure 2). This is a fully desirable feature of our approach,
reflecting the fact that the calibration data are themselves subject to uncertainty as
expressed through the reported errors σ1, σ2, . . . σn. Furthermore, we can assess the
posterior uncertainty associated with the calibration curve through the computation
of the posterior variance for any point r(θ) on the calibration curve. GPA, L & O’H
carried out a detailed comparison of this assessment, with those corresponding to the
calibration programs CALIB (Stuiver and Reimer, 1993) and BCal (Buck, Christen and
James, 1999). It emerged from this comparison that the posterior variance values for
any point on the calibration curve used in those programs are much larger than the
results arising from our formulation (for further details refer to GPA, L & O’H.)

This constitutes the first, motivating proposal for modelling the radiocarbon cali-
bration curve. It retains the familiarity of straight-line segments whilst breaking away
from the data points themselves, which is justified in terms of the acknowledged error
in the data points, plus the resulting estimate of uncertainty in the flux process.

5 Smooth Calibration Curve

A clear advantage of our modelling strategy for the radiocarbon calibration curve is that
the proposed (integrated) Gaussian process structure is a generic one. In particular, the
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random-walk choice for the covariance structure that yields a piece-wise linear posterior
calibration curve arises by modelling the flux of 14C as white noise. However, it is
arguable that the flux should be less erratic than white noise, and this is matched by
a feeling in at least part of the radiocarbon dating community that the calibration
curve should be smooth rather than piece-wise linear (as indicated by the fact that
some researchers favour cubic interpolation, e.g. Bronk Ramsey, 1995). The same basic
structure we have proposed can accommodate this possibility if we establish a correlation
structure for the flux of 14C, wη (θ, θ∗), that is smoother than the integrated white noise
(the random-walk model) of GPA, L & O’H. This is reasonable, not only because we
have no reason to believe a priori that this process does not have a smooth behaviour
over time, but also because even if production of 14C did change in a stepwise manner,
the atmospheric mixing time and continuous exchange between atmosphere and ocean
would smooth out any jumps.

We propose an integrated correlation structure for the radiocarbon calibration curve
r(·), given by equation (7) with

wη (θ, θ∗) = exp

{

− 1

2η2
(θ − θ∗)

2

}

.

This form implies that r′ (·) is infinitely differentiable everywhere, provided the prior
mean function is too (O’Hagan, 1992). That is, this correlation function expresses the
belief that the curve of interest has derivatives of any order; it is therefore appropriate
when the curve is believed to vary smoothly. The hyperparameter η describes how rough
or smooth the function is. The larger the value of η, the higher the correlation between
two values of the function, hence the smoother the curve is. As η → 0, the correlation
between any two values goes to zero and the process approaches white noise. Hence this
formulation will include the previous analysis as a limiting case.

Thus, the model we propose for the atmospheric radiocarbon calibration curve is
given by

yi | r(·) ∼ N
(

r(θ
(d)
i ), σ2

i

)

, i = 1, 2, . . . , n indep.

r(θ) | θ, β, τ2 , η ∼ GP
(

βθ, τ2vη (θ, θ)
)

(9)

p(β, τ2, η) ∝
(

τ2
)−1

exp(−18(β − 1)2) . (10)

The integrated covariance function in (9) can be evaluated as

vη(θ, θ∗) =

∫ θ

0

∫ θ∗

0

exp

(

− 1

2η2
(t − u)

2

)

dt du

=
√

2πη [η {φ(θ/η) + φ(θ∗/η) − φ((θ − θ∗)/η) − φ(0)}
+ θ {Φ(θ/η) − Φ((θ − θ∗)/η)}
+ θ∗ {Φ(θ∗/η) + Φ((θ − θ∗)/η) − 1}] ∀θ ≥ θ∗ , (11)

where φ(·) is the standard normal density function and Φ(·) is the standard normal
distribution function. Although the explicit form (11) may appear complex, it is com-
putationally straightforward to evaluate.
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The prior distribution (10) for the hyperparameters combines the N(1, 1/36) prior
distribution for β with a noninformative log-uniform prior distribution for τ 2 and a
uniform prior distribution for the smoothness parameter η. In fact we shall see that
the data are sufficiently substantial to identify these hyperparameters quite accurately
enough for prior information to be unimportant.

5.1 Posterior distributions of hyperparameters

For computational reasons, it is convenient to let y0 = 0, θ
(d)
0 = 0, and σ2

0 = 0, and to
work in terms of the differences

zi = yi − yi−1 , δi = r(θ
(d)
i ) − r(θ

(d)
i−1) , di = θ

(d)
i − θ

(d)
i−1

for i = 1, 2, . . . , n. Thus we regard the data as being z1, z2, . . . , zn, instead of y1, y2, . . . , yn,
with distributions

zi | r(·) ∼ N(δi, σ
2
i + σ2

i−1) , i = 1, 2, . . . , n . (12)

Note that the zis are not independent, as

cov(zi+1, zi | r(·)) = −σ2
i , (13)

but the covariances between zis whose subscripts differ by more than 1 are zero.

From (9) and (11), the δis have a multivariate normal prior distribution with the
following structure.

E(δi | r(·), β, τ2, η) = βdi ,

var(δi | r(·), β, τ2, η) = τ2η2
√

2π[2g(γi − γi−1)

−2g(0)− (γi − γi−1)] , (14)

cov(δi, δi−k | r(·), β, τ2, η) = τ2η2
√

2π[g(γi − γi−k−1)

−g(γi − γi−k)

− g(γi−1 − γi−k−1)

+g(γi−1 − γi−k)] , (15)

for i = 1, 2, . . . , n and k = 1, 2, . . . , i − 1, where

γi = θ
(d)
i /η ,

g(x) = φ(x) + xΦ(x) .

Therefore, letting z = (z1, z2, . . . , zn)T and d = (d1, d2, . . . , dn)T , we have that

z |β, τ2, η ∼ N(βd, τ2Aη + S) , (16)
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where τ2Aη is the variance matrix of the δis, a function of η with diagonal elements
given by (14) and off-diagonal elements by (15), and where

S =



















σ2
1 −σ2

1 0 0 . . . 0
−σ2

1 σ2
1 + σ2

2 −σ2
2 0 . . . 0

0 −σ2
2 σ2

2 + σ2
3 −σ2

3 0
0 0 −σ2

3 σ2
3 + σ2

4
...

...
. . .

0 0 0 σ2
n−1 + σ2

n



















is the variance matrix of z given the δis, from (12) and (13).

The purpose of working with differences zi is to make the variance matrix τ 2Aη +S

better behaved than it would have been had we worked with the yis. In particular,
the elements of Aη are smaller and this matrix is much nearer to being diagonal than

the corresponding variance matrix of the r(θ
(d)
i )s. Although the variance matrix of the

yis would be diagonal, the change to tri-diagonal S still leaves τ 2Aη + S much less
ill-conditioned.

Combining the likelihood from (16) with the prior distribution (10), the posterior
distribution of the hyperparameters is

p(β, τ2, η | z) ∝ τ−2
∣

∣τ2Aη + S
∣

∣

−1/2

× exp

{

−1

2
(z − βd)T (τ2Aη + S)−1(z − βd) − 18(β − 1)2

}

.

(17)

It is now clear that the conditional posterior distribution of β given τ 2 and η is normal,
given by

β | τ2, η, z ∼ N(mβ, vβ) , (18)

where

mβ = vβ

(

dT (τ2Aη + S)−1z + 36
)

,

vβ = 1/
(

dT (τ2Aη + S)−1d + 36
)

are functions of both τ2 and η. We can therefore integrate out β from (17), with the
result

p(τ2, η | z) ∝ τ−2
∣

∣τ2Aη + S
∣

∣

−1/2 √
vβ

× exp

{

−1

2
(z − mβd)T (τ2Aη + S)−1(z − mβd) − 18(mβ − 1)2

}

.

(19)
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5.2 Posterior distribution of the calibration curve given the hyperpa-

rameters

The posterior distribution of r(·) conditional on the hyperparameters can be constructed
in two steps. First, letting δ = (δ1, δ2, . . . , δn)T , the joint prior distribution of any
collection of r(θ)s and δ is multivariate normal, from the definition of the GP (9). It is
then straightforward to derive from standard conditioning results that

r(·) | δ, β, τ2, η ∼ GP
(

m∗(·), τ2v∗(·, ·)
)

,

where
m∗(θ) = βθ + t(θ)T A−1

η (δ − βd) ,

v∗(θ, θ∗) = vη(θ, θ∗) − t(θ)T A−1
η t(θ∗) ,

t(θ) is the vector of covariances between r(θ) and δ, with elements

ti(θ) = vη(θ, θi) − vη(θ, θi−1)

=































η2
√

2π {g(γi) − g(γi−1) − g(γ − γi) + g(γ − γi−1) − (γi − γi−1)}
if θ ≥ θi

η2
√

2π {g(γi) − g(γi−1) − g(γi − γ) + g(γ − γi−1) − (γ − γi−1)}
if θi ≥ θ ≥ θi−1

η2
√

2π {g(γi) − g(γi−1) − g(γi − γ) + g(γi−1 − γ)}
if θi−1 ≥ θ

and γ = θ/η.

Second, we have from (12) and (13),

z | r(·) ∼ N(δ,S) .

We then find that the posterior distribution of δ given the hyperparameters is

δ |β, τ2, η,y ∼ N(m,V) ,

where

V = (τ−2A−1
η + S−1)−1 ,

m = V(τ−2A−1
η dβ + S−1z) .

Therefore, putting the two steps together,

r(·) |β, τ2, η,y ∼ GP (m∗∗(·), c∗∗(·, ·)).

where
m∗∗(θ) = βθ + t(θ)T A−1

η (m− βd) ,

c∗∗(θ, θ∗) = τ2
{

vη(θ, θ∗) − t(θ)T A−1
η t(θ∗)

}

+ t(θ)T A−1
η VA−1

η t(θ∗) .
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We can now marginalise this with respect to the distribution (18) of β given τ2, η
and z, to give

r(·) | τ2, η,y ∼ GP (m∗∗∗(·), c∗∗∗(·, ·)) , (20)

where (after some simplification)

m∗∗∗(θ) = mβθ + τ2t(θ)T (τ2Aη + S)−1(z − mβd) (21)

and

c∗∗∗(θ, θ∗) = τ2
{

vη(θ, θ∗) − t(θ)T A−1
η t(θ∗)

}

+ t(θ)T A−1
η VA−1

η t(θ∗)

+ vβ

{

θ − τ2t(θ)T (τ2Aη + S)−1d
} {

θ∗ − τ2t(θ∗)T (τ2Aη + S)−1d
}

.

(22)

5.3 Estimating τ 2 and η

The marginal posterior distribution of r(·) is in principle now obtained by marginalising
its conditional posterior (20) with respect to the posterior distribution (19) of τ2 and
η (representing, respectively, the variability and smoothness of the flux process r′(·)).
However, the latter is complex, and even though it is only two-dimensional involves a
substantial computational burden. The reason is that we have n = 1149 data points,
covering the most recent (tree-ring derived) part of the INTCAL98 data (11,850 to
zero cal BP). To compute (19) at any point requires the inversion of the 1149 × 1149
matrix τ2Aη + S. The use of differences was designed to make it possible to do these
inversions without numerical instability, but the simple computing time of constructing
and inverting the matrix, followed by several other matrix operations with the inverse,
is non-trivial. Rather than formally marginalising with respect to this distribution, we
have chosen to adopt the approach of finding point estimates of τ 2 and η and then
to substitute these into (20). The justification of this approach lies in the following
observations.

1. Exploration of (19) shows that the posterior density falls to less than one-hundredth
of its modal value for τ2 and η outside a fairly narrow region. Trying a variety
of values in this region suggests that the posterior conditional distribution (20)
is quite insensitive to the choice. Therefore, although conditioning rather than
marginalising will understate the posterior uncertainty, it seems that the under-
statement will be very small compared with the posterior uncertainty in r(θ)
expressed in (20) conditional on any plausible values of τ 2 and η.

2. The predictive variances produced by this conditional approach validate well with
the data, as will be shown below, suggesting again that any understatement of
uncertainty is immaterial.

3. There is a need to provide a calibration curve for the radiocarbon community
that is as simple as possible. We have described in Section 3.1 that estimating
the calibration curve is just the first of two tasks, the second of which is to use
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the curve to calibrate new radiocarbon ages obtained for archaeological samples
of unknown calendar age. The second task is itself computationally intensive,
meaning that there is a benefit in having a relatively simple computation of the
curve and its uncertainty that is gained for every subsequent use in practice.

The joint posterior mode is at τ 2 = 3.33 and η = 6.7. We therefore propose to use
the GP (20) conditioned on these values as the posterior distribution for the calibration
curve.

It is worth noting that η is defined such that the correlation between r′(θ) and
r′(θ + η) equals exp(−0.5) = 0.6. This therefore determines the time lapse over which
the flux process r′(·) is reasonably highly correlated. A value of 6.7 can therefore be
interpreted as suggesting stability of the flux process over a period of a few years but not
tens of years. It is clear that this will lead to quite different estimation of the process
r(·) than the implicit value of η = 0 in the analysis of GPA, L & O’H.

5.4 Model validation

An alternative method for estimating the smoothness parameter η is cross-validation
(Oakley, 1999). In view of the importance of the smoothness parameter in GP modelling,
it is sensible to use cross-validation as a check on both the model estimates and the model
fit.

For this purpose, we leave out each observation in turn and use the remaining data to
fit the model and predict the missing observation. If ŷi is the predictive expectation of
yi using all observations except yi the cross-validation fit criterion is

∑n
i=1(yi− ŷi)

2. We
can then choose τ2 and η to minimise this criterion. (We omitted the twentieth century
calibration data points in both the posterior mode calculation and cross-validation, since
it is clear that these are affected by human activity.)

This is again a computationally intensive process. We need to invert a 1148× 1148
matrix for each of the n = 1149 missing observations. However, it is easy to see that
this is not strictly necessary. Conditional on τ 2 and η, the predictive distribution for

yi will only depend on the calibration data for θ
(d)
j points reasonably close to θ

(d)
i . The

range depends on η, but we found that for values of η of interest it is certainly adequate
to use a window of ten points on each side of the missed out data point, a range covering
at least 100 years on each side. This makes it computationally feasible to explore the
(τ2, η) space to minimise the cross-validation criterion. The optimal values were found
to be τ2 = 3.37, η = 6.6, very close to the modal values.

The cross-validation can also be used as a direct model check. Conditional on the
chosen values of τ2 and η, the predictive distribution of yi is normal with mean the

posterior mean (21) of r(θ
(d)
i ) and variance σ2

i plus the posterior variance (22) of r(θ
(d)
i ).

We can therefore standardise the predictive residuals yi−ŷi by dividing by the predictive
standard deviation. The resulting standardised residuals should look like a sample
from a standard normal distribution. Figure 3 shows a normal probability plot of the
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Figure 3: Normal probability plot of standardised cross-validation residuals with τ 2 =
3.33 and η = 6.7. The straight line corresponds to the standard normal distribution.

residuals. The straight line is the theoretical N(0, 1) line, and it is clear that the model
fit is almost perfect in this respect. The very slight curvature at the ends indicates a
slightly heavier tail than the normal, and is consistent with having ignored uncertainty
in τ2, but corresponds roughly to a Student t distribution with many hundreds of degrees
of freedom.

Figure 4 shows the standardised residuals plotted over time. There is an indication
here of heteroscedasticity, with larger variances for more recent values, but this impres-
sion is entirely due to a very small number of residuals out of 1149. Averages of 20
consecutive residuals show no such heteroscedasticity. We also fitted the model to the
data for the most recent 5000 years and found almost identical estimates of τ 2 and η,
indicating that the underlying model is stable over the whole time period.

Overall, we consider that the assumptions implied by the model are adequately
verified.

5.5 Posterior inference for the calibration curve

Figure 5 shows the posterior mean and one standard deviation bounds for r(θ) over the
range of θ from 1900 to 1700 cal BP. The way that the estimated curve smooths the
data points is clear, and the resulting curve is smoother and more plausible than the
GPA, L & O’H curve shown in Figure 2.
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Figure 4: Standardised cross-validation residuals plotted against calendar age.
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Figure 5: The new smooth calibration curve over the time period 1900–1700 cal BP.
The posterior mean is shown as a solid line, with dashed lines at plus and minus two
posterior standard deviations. The dots and vertical lines show the calibration data yi

plus and minus 2σi.
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Figure 6: Posterior standard deviations for the new smooth calibration curve (solid
line) and the piecewise linear curve of GPA, L & O’H (dashed), over the time period
1900–1700 cal BP.

The posterior variance is also important. Figure 5 shows that the calibration data
have not identified the calibration curve without some appreciable posterior uncertainty.
Nevertheless, the standard deviation of the curve from this new analysis is much smaller
than has been obtained by other approaches. Figure 6 compares the standard devia-
tion with that of GPA, L & O’H over the same time interval. We see that the new
methodology predicts with distinctly greater precision. GPA, L & O’H showed that
their estimates generally had lower standard deviations than any other plausible meth-
ods.

It is important to emphasise that this claim of lower predictive uncertainty is backed
up by the cross-validation analysis and Figure 3, showing that, as far as it is possible to
verify, the new method does indeed predict points on the curve to within the claimed
margin of error.

5.6 Example of calibration

Figure 6 shows that the reduction in uncertainty is appreciable, but Figure 5 demon-
strates that even a modest improvement can have a disproportionate effect on the ac-
curacy with which we can calibrate new radiocarbon determinations. Suppose that we
obtain a radiocarbon age of 1870 BP. Then although the most probable calibration of
this is to about 1820 cal BP there is enough uncertainty around the curve to allow a
possibility that the true calendar age is anywhere from 1830 cal BP to almost 1730 cal
BP. The range of uncertainty for the calibration is already much less with our analysis
than would be the case with previous methods. Figure 7 demonstrates this by show-
ing the posterior probability distribution for the true calendar age θ0 of a sample with
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radiocarbon age y0 = 1870 BP and standard error σ0 = 30 years, from three different
calibration curves. These are based on a weak prior distribution; see Buck et al (1996)
for details of how these posterior distributions are derived.

We see that the uncertainty about θ0 is substantially less in Figure 7(a) using the
new smooth calibration curve than in Figure 7(b) which results from the GPA, L &O’H
piece-wise linear curve. The posterior distribution in Figure 7(c) arises from calibration
of the same radiocarbon age y0 and standard error σ0 using the traditional piecewise
linear interpolation of the INTCAL98 data. This shows dramatically wider uncertainty
about θ0. All three curves have basically four modes at the same places but, primarily
because of its lower variance, the new smooth curve discriminates far more strongly
between them. The ‘lumpiness’ of the density in Figure 7(b) is linked to the behaviour
of the standard deviation (the dashed curve in Figure 6), which in turn arises from the
non-smoothness of the flux process in the model of GPA, L & O’H.

It is possible that some of the improvement that we have achieved with the new
radiocarbon calibration curve is due to our having to take the INTCAL98 data at face
value, whereas we know that they ignore uncertainty in the calendar ages and may
have been over-smoothed. Nevertheless, we believe that the nonparametric Bayesian
modelling has the potential to provide a major advance for the radiocarbon dating
community.

5.7 The slope parameter β

We argued in Section 4 that the prior settings for the model hyperparameters would,
given the vast amount of calibration data, have little impact on the posterior results.
In particular, we claimed that the posterior inference about β would not be materially
affected by the N(1, 1/36) prior distribution. Using (18) and the estimated values of τ 2

and η (but the distribution is quite insensitive to variations of these parameters), we
find that the posterior distribution of β is N(0.862, 0.00476). A 99% posterior credible
interval is therefore from 0.75 to 0.97, showing that not only is β almost certainly less
than 1 but also that it is very probably less than the ratio λ/λL = 0.97.

6 Discussion

The proposed methodology provides a sound statistical framework for making inference
about the radiocarbon calibration curve. Within our Bayesian approach, the calibration
curve is dealt with as an unknown function some of whose values are observed, subject
to observation error.

The Gaussian process prior distribution is a very flexible structure that allows the
incorporation of the information provided by the calibration data, in accordance with
their quality. The structure also allows the incorporation of prior information not only
about a plausible mean function, but also about features such as continuity and differ-
entiability of the calibration curve.
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Figure 7: Posterior densities for true calendar age θ0 of a sample with radiocarbon age
1870 ± 30. (a) Density from the new smooth radiocarbon curve. (b) Density from the
piece-wise linear curve of GPA, L & O’H. (c) Density from the traditional piecewise
linear interpolation of the INTCAL98 data.
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Specific characteristics of the process underlying the generation of 14C led to the
idea of having an integrated process in order to reflect the nonstationarity of the 14C
level. Thus, prior beliefs about the 14C flux in the atmosphere have been incorporated
through a stationary covariance structure for r′(·). As a result of this, the fact that there
is growing uncertainty in the dating method as we move further back in the timescale
has also been acknowledged in the model.

In this paper we have outlined the case of a piece-wise linear calibration curve,
arising from assuming a white noise model for the flux of 14C in the atmosphere and
previously analysed fully by GPA, L & O’H. We also offered a proposal for a smooth
calibration curve by adjusting beliefs about the flux process from a random-walk to a
smoothly-varying process. Just how smoothly this process varies is dictated by a further
hyperparameter η whose value is estimated from the data. The tree-ring subset of the
INTCAL98 calibration data support a value of η = 6.7 that yields a posterior mean
which indicates smoothness of the flux process over a time-scale of several years. The
resulting radiocarbon calibration curve varies more smoothly than the piecewise linear
form and represents a more plausible representation of r(·).

Our method can in principle take account of uncertainty in the hyperparameters η
and τ2 (the variance of the flux process). However, we have argued that the substantial
extra computational effort of this is not necessary. Instead we simply estimate these
parameters and then treat them as fixed. Our model validation procedure has suggested
that the posterior variances are not being underestimated, confirming our claim that
to account for the extra uncertainty in η and τ 2 would have negligible effect. Further-
more, the fact that we obtain substantially lower variances than other methods can be
attributed to more accurate statistical modelling and analysis.

There is clearly scope for incorporating even more of modern scientific opinion on the
production of radiocarbon, for instance by modelling the flux as linked to the sunspot
cycle. The finding that the flux process is coherent on a scale comparable with the 11-
year sunspot cycle suggests the possibility to reduce uncertainty in r(·) still further. In
addition, there is further structure to the data that has not thus far been well handled
during the curve building process. For example, due to physical restrictions related
to the measurement of the proportion of 14C remaining in a sample, the construction
of the calibration data set often involves the need to handle tree-ring samples whose
calendar age estimate arises from a number of adjacent tree-rings (as opposed to a

single one as we have assumed here). Thus, the resulting value yi ± σi paired with θ
(d)
i

(usually taken as the calendar age of the middle ring) actually consists of an average of
the radiocarbon ages corresponding to the calendar ages of all the tree rings included
in the sample. Clearly, this relationship could be modelled and accounted for using an
appropriate covariance structure. The international radiocarbon community is currently
revising its high-precision dataset, and one of the authors (CEB) is a member of the
INTCAL04 team that is charged with identifying the definitive data and estimated
calibration curve, and in particular is addressing the aggregated nature of much of the
data.

Finally, since there is now a considerable body of data which do not derive from
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tree-ring dated timbers, there are a lot of potential calibration data that we have not
considered at all in the present paper. Other sources of calibration data include plant
and animal remains trapped in lake sediments, corals from marine deposits and sta-
lactites from caves. Many such samples now meet the criteria for inclusion in the
international radiocarbon calibration data set and will form part of the raw data re-
leased upon publication of the new internationally-agreed calibration curves (Reimer et
al. 2002). Other than the tree-ring dated samples, all such samples have uncertainty
associated with their calendar age estimates. This is because the calendar ages derive
from chronometric methods such as uranium-series dating which are much less precise
than tree-ring dating. As part of the INTCAL04 project, all such sources of error are
being identified and quantified so that, in future, we will have substantial, publicly
available, unprocessed calibration data with imprecise calendar age estimates. In or-
der to take account of this, the INTCAL04 estimate of the calibration curve will use
tailored random walk models (similar to those in GPA, L & O’H) with extensions that
take account of a range of sources of uncertainty on both the calendar and radiocarbon
scales. Clearly such extensions result in greater analytical complexity and computa-
tional load, but once the INTCAL04 work is published and the new data released, it
will be worth returning to the smooth calibration curve model presented here and to
consider options for more sophisticated curve building in the future. We hope that the
methodology presented here may in due course develop into the standard approach for
the radiocarbon community.
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Gómez Portugal Aguilar, D., Litton, C., and O’Hagan, A. (2002). “Novel Statistical
Model for a Piece-wise Linear Radiocarbon Calibration Curve.” Radiocarbon, 44:
195–212.

http://intarch.ac.uk/journals/issue7/buck/


288Bayesian nonparametric estimation of the radiocarbon calibration curve

Grimmett, G. and Stirzaker, D. (1992). Probability and Random Processes. Oxford:
Clarendon Press, 2nd edition.

Kennedy, M. and O’Hagan, A. (2001). “Bayesian Calibration of Computer Models (with
discussion).” Journal of the Royal Statistical Society, Series B, 63: 425–464.

Knox, F. and McFadgen, B. (1997). “Least-Squares Fitting a Smooth Curve to Radio-
carbon Calibration Data.” Radiocarbon, 39: 193–204.

Neal, R. (1999). “Regression and Classification Using Gaussian Process Priors.” In
Bernardo, J., Berger, J., Dawid, A., and Smith, A. (eds.), Bayesian Statistics 6 ,
475–501. Oxford: University Press.

Oakley, J. (1999). “Bayesian Uncertainty Analysis for Complex Computer Codes.”
Ph.D. thesis, Department of Probability and Statistics, University of Sheffield, UK.

Oakley, J. and O’Hagan, A. (2004). “Probabilistic Sensitivity Analysis of Complex
Models: A Bayesian Approach.” Journal of the Royal Statistical Society, Series B,
66: 751–769.

O’Hagan, A. (1978). “Curve Fitting and Optimal Design for Prediction (with discus-
sion.” Journal of the Royal Statistical Society, Series B, 40: 1–42.

— (1992). “Some Bayesian Numerical Analysis.” In Bernardo, J., Berger, J., Dawid,
A., and Smith, A. (eds.), Bayesian Statistics 4 , 345–363. Oxford: University Press.

Reimer, P., Hughen, K., Guilderson, T., McCormac, G., Baillie, M., Bard, E., Barratt,
P., Beck, J., Buck, C., Damon, P., M., F., Kromer, B., Ramsey, C., Reimer, R.,
Remmele, S., Southon, J., Stuiver, M., and van der Plicht, J. (2002). “Preliminary
Report of the First Workshop of the IntCal04 Radiocarbon Calibration /Comparison
Working Group.” Radiocarbon, 44: 653–661.

Schmidt, A. and O’Hagan, A. (2003). “Bayesian Inference for Non-stationary Spatial
Covariance Structure via Spatial Deformations.” Journal of the Royal Statistical
Society, Series B, 65: 745–758.

Stuiver, M. and Reimer, P. (1993). “Extended 14C Data Base and Revised CALIB 3.0
14C Age Calibration Program.” Radiocarbon, 35: 215–230.

Stuiver, M., Reimer, P., Bard, E., Beck, W., Burr, G., Hughen, K., Kromer, B., Mc-
Cormac, G., van der Plicht, J., and Spurk, M. (1998). “INTCAL98 Radiocarbon Age
Calibration 24,000–0 Cal BP.” Radiocarbon, 40: 1041–1083.

van der Plicht, J. (2002). “Calibration of the 14C Time Scale: Towards the Complete
Dating Range.” Netherlands Journal of Geosciences, 81: 85–96.

Acknowledgments

DGPA was sponsored by Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT) of Mexico,
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