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LIMIT THEOREMS IN FREE PROBABILITY THEORY. I1

BY G. P. CHISTYAKOV AND F. GÖTZE

Institute For Low Temperature Physics and Engineering
and University of Bielefeld

Based on an analytical approach to the definition of additive free con-
volution on probability measures on the real line, we prove free analogues
of limit theorems for sums for nonidentically distributed random variables in
classical probability theory.

1. Introduction. In recent years a number of papers have investigated limit
theorems for the free convolution of probability measures (p-measures) defined
by D. Voiculescu.

The key concept of this definition is the notion of freeness, which can be in-
terpreted as a kind of independence for noncommutative random variables. As in
the classical probability where the concept of independence gives rise to the clas-
sical convolution, the concept of freeness leads to a binary operation on the
p-measures on the real line, the free convolution. Many classical results in the the-
ory of addition of independent random variables have their counterpart in this new
theory, such as the law of large numbers, the central limit theorem, the Lévy–
Khintchine formula and others. We refer to Voiculescu, Dykema and Nica [33]
for an introduction to these topics. Bercovici and Pata [15] established the dis-
tributional behavior of sums of free identically distributed random variables and
described explicitly the correspondence between limits laws for free and classical
additive convolution. In this paper, using an analytical approach to the definition
of the additive free convolution (see [20]), we generalize the results of Bercovici
and Pata to the case of free nonidentically distributed random variables. We show
that the parallelism between limits law for additive free and classical convolution
found by Bercovici and Pata holds in the general case of free nonidentically dis-
tributed random variables. Our analytical approach to the definition of the additive
free convolution allows us to obtain estimates of the rate of convergence of dis-
tribution functions of free sums. We prove the semicircle approximation theorem
(an analogue of the Berry–Esseen inequality), the law of large numbers with esti-
mates of the rate of convergence. We describe Lévy’s class L� of limiting distrib-
utions of normed sums of free random variables obeying infinitesimal conditions.
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As in the classical case we derive a canonical representation of the measures in
the class L�. Furthermore, we shall give a characterization of the class L� by
means of the property of self-decomposability, extending results by Barndorff-
Nielsen and Thorbjørsen [3].

The paper is organized as follows. In Section 2 we formulate and discuss the
main results of the paper. In Section 3 we formulate auxiliary results. In Section 4
we prove the extended additive free central limit theorem for the general case of
free nonidentically distributed random variables. This extends the Bercovici and
Pata parallelism between additive free and classical additive infinite divisibility
and limits laws for additive free and classical convolution to the general case. In
Section 5, using results of Section 4, we describe an analogue of the Lévy class
L� for additive free convolution. We establish the Bercovici and Pata parallelism
between the classical Lévy class L∗ and the class L�. In Section 6, using our
approach to the definition of the additive free convolution, we derive the semicircle
approximation theorem (an analogue of the Berry–Esseen inequality) as well as
a law of large numbers with estimates of convergence.

2. Results. Denote by M the family of all Borel p-measures defined on
the real line R. On M define the associative composition laws denoted ∗ and �
as follows. For µ1,µ2 ∈ M let the p-measure µ1 ∗ µ2 denote the classical con-
volution of µ1 and µ2. In probabilistic terms, µ1 ∗ µ2 is the probability distrib-
ution of X + Y , where X and Y are (commuting) independent random variables
with probability distributions µ1 and µ2, respectively. The p-measure µ1 �µ2, on
the other hand, denotes the free (additive) convolution of µ1 and µ2 introduced
by Voiculescu [31] for compactly supported p-measures. Free convolution was
extended by Maassen [26] to p-measures with finite variance and by Bercovici
and Voiculescu [11] to the class M. Thus, µ1 � µ2 is the distribution of X + Y ,
where X and Y are free random variables with the distributions µ1 and µ2, respec-
tively. There are free analogues of multiplicative convolutions as well; these were
first studied in Voiculescu [32].

Let C
+(C−) denote the open upper (lower) half of the complex plane. For

µ ∈ M, define its Cauchy transform by

Gµ(z) =
∫ ∞
−∞

µ(dt)

z − t
, z ∈ C

+.(2.1)

Following Maassen [26] and Bercovici and Voiculescu [11], we shall consider
in the following the reciprocal Cauchy transform

Fµ(z) = 1

Gµ(z)
.(2.2)

The corresponding class of reciprocal Cauchy transforms of all µ ∈ M will be
denoted by F . This class admits a simple description. Recall that the Nevanlinna
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class N is the class of analytic functions F : C+ → C
+∪R. The class F is the sub-

class of Nevanlinna functions Fµ for which Fµ(z)/z → 1 as z → ∞ nontangen-
tially to R (i.e., such that �z/�z stays bounded), and this implies that Fµ has
certain invertability properties. (See [1, 2, 17].) More precisely, for two numbers
α > 0, β > 0 define

�α = {z = x + iy ∈ C
+ : |x| < αy} and �α,β = {z = x + iy ∈ �α :y > β}.

Then for every α > 0 there exists β = β(µ,α) such that Fµ has a right inverse

F
(−1)
µ defined on �α,β . The function φµ(z) = F

(−1)
µ (z)−z is called the Voiculescu

transform of µ. It is not hard to show that φµ(z) is an analytic function on �α,β and
�φµ(z) ≤ 0 for z ∈ �α,β , where φµ is defined. Furthermore, note that φµ(z) = o(z)

as |z| → ∞, z ∈ �α .
Based on an alternative definition of free convolution developed in Chistyakov

and Götze [20], we define the free convolution µ1 � µ2 of p-measures µ1 and µ2
as follows. Let Fµ1(z) and Fµ2(z) denote their reciprocal Cauchy transforms, re-
spectively. We shall define the free convolution µ1 � µ2, using Fµ1(z) and Fµ2(z)

only. It was proved in Chistyakov and Götze [20] that there exist unique functions
Z1(z) and Z2(z) in the class F such that, for z ∈ C

+,

z = Z1(z) + Z2(z) − Fµ1(Z1(z)) and Fµ1(Z1(z)) = Fµ2(Z2(z)).(2.3)

The function Fµ1(Z1(z)) belongs again to the class F and hence by Remark 3.1
(see Section 3) there exists a p-measure µ such that Fµ1(Z1(z)) = Fµ(z), where
Fµ(z) = 1/Gµ(z) and Gµ(z) is the Cauchy transform as in (2.1). We define µ1 �
µ2 := µ. The measure µ depends on µ1 and µ2 only.

Thus, we define the additive free convolution by purely complex analytic meth-
ods.

The existence and uniqueness of the subordination functions Zj(z) in (2.3)
have been studied earlier by other methods in Voiculescu [34–36], Biane [19],
Maassen [26], Pastur and Vasilchuk [27], Vasilchuk [29].

On the domain �α,β , where the functions φµ1�µ2(z), φµ1(z) and φµ2(z) are
defined, we have

φµ1�µ2(z) = φµ1(z) + φµ2(z).(2.4)

This relation for the distribution µ1 � µ2 of X + Y , where X and Y are free ran-
dom variables, is due to Voiculescu [31] for the case of compactly supported p-
measures. The result was extended by Maassen [26] to p-measures with finite
variance; the general case was proved by Bercovici and Voiculescu [11]. Note that
Voiculescu and Bercovici’s definition uses the operator context for the definition of
µ1 �µ2, whereas Maassen’s approach is closest to our analytical definition for the
additive free convolution of arbitrary p-measures. Note that this approach extends
as well to the case of multiplicative free convolutions (see [20]). By (2.4) it follows
that our definition of µ1 � µ2 coincides with that of Voiculescu and Bercovici as
well as Maassen’s definition.



LIMIT THEOREMS IN FREE PROBABILITY THEORY 57

In their seminal paper [15] Bercovici and Pata proved free analogues of limit
theorems for identically distributed random variables based on the relation (2.4).
In this paper we use the relation (2.3) to obtain free analogues of limit theorems
in the general case of nonidentically distributed random variables. The functions
Fµj

(z),Zj (z) from (2.3) belong to the class F . This means that they are defined on
the whole half-plane C

+ and admit a special integral representation which allows
us to study the limit behavior of the corresponding measures. It seems that free
convolutions of nonidentical measures are easier to handle by these characterizing
functions than the Voiculescu transforms φµj

(z).
The relation (2.3) has been used successfully in the papers [6–9, 13, 18] as well.
There is a notion of infinitely divisible p-measures for additive free convolution.

As in the classical case, a p-measure µ is �-infinitely divisible if, for every natural
number n, µ can be written as µ = νn � νn � · · ·� νn (n times) with νn ∈ M. Such
�-infinitely divisible p-measures were characterized by Voiculescu [31] for com-
pactly supported measures. The �-infinitely divisible p-measures with finite vari-
ance were studied in Maassen [26] and Bercovichi and Voiculescu [11] extended
these results to the general case. There is an analogue of the Lévy–Khintchine for-
mula (see [10, 11, 33]) which states that a p-measure µ, on R, is infinitely divisible
if and only if the function φµ(z) has an analytic continuation to C

+, with values in
C

− ∪ R, such that

lim
y→+∞

φµ(iy)

y
= 0.(2.5)

By the Nevanlinna representation for such function (see Section 3), we know that
there exist a real number α, and a finite nonnegative measure ν, on R, such that

φµ(z) = α +
∫

R

1 + uz

z − u
ν(du), z ∈ C

+.(2.6)

Since there is a one-to-one correspondence between functions φµ(z) and pairs
(α, ν), we shall write φµ = (α, ν).

Formula (2.6) is an analogue of the well-known Lévy–Khintchine formula for
characteristic functions ϕ(t;µ) := ∫

R
eituµ(du), t ∈ R, of ∗-infinitely divisible

measures µ ∈ M. A measure µ ∈ M is ∗-infinitely divisible if and only if there
exist a finite nonnegative Borel measure ν on R, and a real number α such that

ϕ(t;µ) = exp{fµ(t)}
(2.7)

:= exp
{
iαt +

∫
R

(
eitu − 1 − itu

1 + u2

)
1 + u2

u2 ν(du)

}
, t ∈ R,

where (eitu − 1 − itu/(1 + u2))(1 + u2)/u2 is defined as −t2/2 when u = 0.
Since there is again a one-to-one correspondence between functions fµ(t) and
pairs (α, ν), we shall write fµ = {α, ν}.
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Bercovici and Pata [15] determined the distributional behavior of sums of free
identically distributed infinitesimal random variables. More precisely, they showed
that, given a sequence µn of p-measures, and an increasing sequence kn of positive
integers, the free convolution product of kn measures identical to µn converges
weakly to a free infinitely divisible distribution if and only if the corresponding
classical convolution product converges weakly to a classical infinitely divisible
distribution. Moreover, the correspondence between the classical and free limits
can be described explicitly.

In the classical case the precise formulation of the limit problem is as follows:
Let {µnk :n ≥ 1,1 ≤ k ≤ kn} be a triangular scheme of measures in M such that

lim
n→∞ max

1≤k≤kn

µnk({u : |u| > ε}) = 0(2.8)

for every ε > 0, and let {an :n ≥ 1} be a sequence of real numbers. Such triangular
schemes of measures µnk are called infinitesimal. Denote by δa a p-measure such
that δa({a}) = 1. The basic limit problem arising in this context is:

(a) Find all µ ∈ M such that µ(n) = δ−an ∗ µn1 ∗ µn2 ∗ · · · ∗ µnkn converges to µ

in the weak topology.
(b) Find conditions such that µ(n) converges weakly to a given µ.

The complete solution of this problem has been obtained by the efforts of Kol-
mogorov, Lévy, Feller, de Finetti, Bawly, Khintchine, Marcinkewicz, Gnedenko
and Doblin.

The limit problem in free probability theory has the same form for the
p-measures µ(n) = δ−an � µn1 � µn2 � · · · � µnkn . In the sequel we denote
by µ̂nk p-measures such that µ̂nk((−∞, u)) := µnk((−∞, u + ank)), where
ank := ∫

(−τ,τ ) uµnk(du) with finite τ > 0 which is arbitrary, but fixed.
We provide a complete solution of this limit problem for free random variables.

For the classical case see [22], Chapter 4 and [25], Section 22.

THEOREM 2.1. Let µnk be a triangular scheme of infinitesimal probability
measures. Then we have:

(a) The family of limit measures of sequences µ(n) = δ−an �µn1�µn2� · · ·�µnkn

coincides with the family of �-infinitely divisible measures.
(b) There exist constants an such that the sequence µ(n) = δ−an � µn1�

µn2 � · · · � µnkn converges weakly if, and only if, νn converges weakly to
some finite nonnegative measure ν, where, for any Borel set S,

νn(S) :=
kn∑

k=1

∫
S

u2

1 + u2 µ̂nk(du).
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Then all admissible an are of the form an = αn −α +o(1), where α is an arbitrary
finite number and

αn =
kn∑

k=1

(
ank +

∫
R

u

1 + u2 µ̂nk(du)

)
.

Furthermore, all possible limit measures µ ∈ M have a Voiculescu transform of
type φµ = (α, ν).

Note that the first statement of the theorem is due to Bercovici and Pata [16].
Another proof of this statement, based on the theory of Delphic semigroups, has
been given by Chistyakov and Götze [20]. We see that this result is an obvious
consequence of the second statement of the theorem.

Comparing the formulations of the second statement of Theorem 2.1 and of
the second statement of the classical limit theorem (see [25], page 310), we see
that these formulations coincide for (M,�) and (M,∗). Therefore the following
result holds, which for the case of identical measures µnj , j = 1, . . . , kn, is known
as Bercovici–Pata bijection [15].

THEOREM 2.2. Let µnk be a triangular scheme of infinitesimal probability
measures. There exist constants an such that the sequence δan � µn1 � µn2 �
· · · � µnkn converges weakly to µ� ∈ M such that φµ� = (α, ν) if and only if
the sequence δan ∗ µn1 ∗ µn2 ∗ · · · ∗ µnkn converges weakly to µ∗ ∈ M such that
fµ∗ = {α, ν}.

Let µ ∈ M. Denote µk∗ := µ ∗ · · · ∗ µ (k times) and µk� := µ � · · · � µ

(k times). Theorem 2.2 in the identical case µn1 = · · · = µnkn has the following
form.

COROLLARY 2.3. Let µn be a sequence of probability measures. The se-
quence µ

kn�
n converges weakly to µ� ∈ M such that φµ� = (α, ν) if and only

if the sequence µ
kn∗
n converges weakly to µ∗ ∈ M such that fµ∗ = {α, ν}.

Bercovici and Pata [15] characterized stable laws and domains of attraction in
free probability theory for the case of identical p-measures µnj and established
the so-called Bercovici–Pata bijection between infinitely divisible limits in (M,∗)

and (M,�). In particular they proved Corollary 2.3. Our approach allows us to
study the case of nonidentical p-measures µnj as well and to obtain the results
about limiting stable laws.

By Theorem 2.2, all results concerning the convergence of distribution func-
tions of free sums can be reduced to the corresponding classical results. In par-
ticular, one obtains a criterion for the semicircle convergence [the case when
φµ� = (α,λδ0), λ > 0], a criterion for the Marchenko–Pastur convergence [φµ� =
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(α,λδb), λ > 0, b 
= 0], as well as the degenerate convergence criterion [φµ� =
(α, ν = 0)] for additive free convolution. These results generalize the correspond-
ing results of Voiculescu [30], Bercovici and Voiculescu [12], Maassen [26],
Pata [28], Bercovici and Pata [14] and of Lindsay and Pata [24] to the nonidenti-
cally distributed case.

Our analytical approach to the definition of the additive free convolution allows
us to give explicit estimates for the rate of convergence of distribution functions
of free sums. We shall demonstrate this by proving a semicircle approximation
theorem (an analogue of the Berry–Esseen inequality; see [25], page 288), and a
quantitative version of the law of large numbers, that is, including estimates of
convergence.

To formulate the corresponding results we need the following notation. Let µ

be a p-measure. Define mk(µ) := ∫
R

ukµ(du) and βk(µ) := ∫
R

|u|kµ(du), where
k = 0,1, . . . . We denote by µw the semicircle p-measure, that is, the measure with

the density 1
2π

√
(4 − x2)+, x ∈ R, where a+ := max{a,0} for a ∈ R.

Denote by �(µ,ν) the Kolmogorov distance between the p-measures µ and ν,
that is,

�(µ,ν) := sup
x∈R

|µ((−∞, x)) − ν((−∞, x))|,
and by L(µ,ν) the Lévy distance between these measures, that is,

L(µ,ν) := inf
{
h :µ((−∞, x − h)) − h ≤ ν((−∞, x))

≤ µ((−∞, x + h)) + h,x ∈ R
}
.

As it is easy to see, L(µ,ν) ≤ �(µ,ν).
Let µ be a p-measure such that m1(µ) = 0 and m2(µ) < ∞. Denote µn((−∞,

x)) := µ((−∞, x
√

m2(µ)n)), x ∈ R.
The following theorem is an analogue of the well-known Berry–Esseen inequal-

ity (see [25], page 288) for the case of identically distributed free random variables
assuming that the moment condition m4(µ) < ∞ holds.

THEOREM 2.4. Let µ be a p-measure such that m1(µ) = 0 and m2(µ) = 1.
If m4(µ) < ∞, there exists an absolute constant c > 0 such that

�
(
µn�

n ,µw

) ≤ c
|m3(µ)| + (m4(µ))1/2

√
n

.(2.9)

The following proposition shows that estimate (2.9) is sharp.

PROPOSITION 2.5. Let µ be a p-measure such that µ({−√
p/q}) = q and

µ({√q/p}) = p, where 0 < p < 1, q = 1 − p and p − q 
= 0. Then

�
(
µn�

n ,µw

) ≥ L
(
µn�

n ,µw

) ≥ c(p)√
n

,

where c(p) is a positive constant, depending on p only.
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Now we shall consider the case of nonidentically distributed free random vari-
ables. Let {µj }∞j=1 be a sequence of measures in M such that m1(µj ) = 0 and
β3(µj ) < ∞ for all j = 1, . . . . Denote

B2
n =

n∑
k=1

m2(µk), An :=
n∑

k=1

β3(µk), Ln := An

B3
n

.

Write µnk((−∞, x)) := µk((−∞,Bnx), x ∈ R, k = 1, . . . , n, and µ(n) := µn1 �
· · · � µnn as well.

THEOREM 2.6. There exists an absolute constant c > 0 such that

�
(
µ(n),µw

) ≤ cL1/2
n , n = 1, . . . .(2.10)

Finally we shall formulate the classical degenerate convergence criterion for
additive free convolution with an estimate of the convergence.

Let {µj }∞j=1 be a sequence of measures in M and let µnk((−∞, x)) :=
µk((−∞, nx)), x ∈ R, for k = 1, . . . , n. Denote µ(n) := µn1 � . . . � µnn.

THEOREM 2.7. In order that

L
(
µ(n), δ0

) → 0(2.11)

as n → ∞ it is necessary and sufficient that, for n → ∞,

ηn1 :=
n∑

k=1

∫
{|x|≥n}

µk → 0,(2.12)

ηn2 := 1

n

n∑
k=1

∫
(−n,n)

xµk(dx) → 0,(2.13)

ηn3 := 1

n2

n∑
k=1

{∫
(−n,n)

x2µk(dx) −
(∫

(−n,n)
xµk(dx)

)2}
→ 0.(2.14)

In addition, for some absolute positive constant c,

L
(
µ(n), δ0

) ≤ c
(
(ηn1 + ηn3)

1/6 + ηn2
)
, n = 1, . . . .(2.15)

Note that the statement of this theorem without the quantitative bound (2.15)
is a simple consequence of Theorem 2.2 and the classical degenerate criterion
(see [25], page 318). Therefore we need to prove (2.15) only.

Finally we shall describe Lévy’s class L� of limit laws of normed sums obey-
ing the infinitesimal condition for the case of free summands. Let µ1,µ2, . . . be
a sequence of measures in M and sequences of real numbers {an} and {bn > 0}.
Denote by µnk : n ≥ 1,1 ≤ k ≤ n, the measures such that µnk(S) := µk(bnS) for
every Borel set S.
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Consider again the sequence of measures {µ(n) := δ−an � µn1 � µn2 � · · · �
µnn}.

As in the classical case the following problems arise:

(a) Given a sequence {µ(n)} of measures in M, find whether there exist sequences
{an} and {bn > 0} such that the µnk,n ≥ 1, k = 1, . . . , n, are infinitesimal and
µ(n) → µ weakly as n → ∞, where µ is an infinitely divisible probability
distribution such that φµ = (α, ν). If such sequences exist, then characterize
them.

(b) Characterize the family L�; in other words, characterize those functions φµ(z)

and the corresponding measures ν which represent limit measures of µ(n).

It is convenient to exclude degenerate limit distributions from our consideration.
The solution of the problem (a) follows from the next result.

THEOREM 2.8. There exist constants an and bn > 0 such that µnk,

k = 1, . . . , n, are infinitesimal and the sequence δan � µn1 � µn2 � · · · � µnn

converges weakly to µ� ∈ M such that φµ� = (α, ν) if and only if the sequence
δan ∗ µn1 ∗ µn2 ∗ · · · ∗ µnn converges weakly to µ∗ ∈ M such that fµ∗ = {α, ν}.

This theorem establishes the Bercovici–Pata bijection for the case of infinites-
imal measures µnj , which are rescaled versions of the measures µj . The proof
follows immediately from Theorem 2.1 and the classical results for cumulative
sums (see [22], Section 31 and [25], Section 23). The characterization of the se-
quences {an} and {bn} follows immediately from the classical norming theorem
(see [25], Section 23, pages 320–322).

The next result allows us to solve the problem (b).
Using the classical results about the class L∗ (see [22], Section 30 and [25],

Section 23), we obtain from Theorem 2.8 the canonical representation of the mea-
sures of the class L�.

THEOREM 2.9. In order that µ ∈ M belong to the class L�, it is necessary
and sufficient that Voiculescu’s transform of the measure µ has the form φµ =
(α, ν), where on (−∞,0) and (0,∞) the left and right derivatives of the function

ν(u) := ν((−∞, u)), u ∈ R, denoted indifferently by ν′(u), exist and 1+u2

u
ν′(u) do

not increase.

The class L� admits another description which does not follow in a straight-
forward way from the classical results. Let µ ∈ M. For any real constant γ 
= 0,
we denote by Dγ µ the measure on R given by Dγ µ(S) = µ(γ −1S) for any Borel
set S.

THEOREM 2.10. In order that µ ∈ M belong to the class L�, it is necessary
and sufficient that for every γ,0 < γ < 1, µ = Dγ µ � µγ , where µγ ∈ M.
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REMARK 2.11. The measure µ and, for any γ ∈ (0,1), the measure µγ are
�-infinitely divisible and φµ = (α, ν) and φµγ = (αγ , νγ ). Moreover, a measure
µ∗ such that fµ∗ = {α, ν} admits the representation µ∗ = Dγ µ∗ ∗ µ∗

γ for any γ ∈
(0,1), where µ∗

γ is ∗-infinitely divisible and fµ∗
γ

= {αγ , νγ }.

Barndorff-Nielsen and Thorbjørnsen in [3] and [5] studied the connection be-
tween the classes of infinitely divisible p-measures in classical and free proba-
bility. In [4] they studied the property of self-decomposability in free probability
and, proving that such laws are infinitely divisible, studied Lévy processes in free
probability and constructed stochastic integrals with respect to such processes. Our
results allow us to extend the results of Biane [19] and of Barndorff-Nielsen and
Thorbjørnsen [3]–[5].

3. Auxiliary results. We need results about some classes of analytic functions
(see [1], Section 3, and [2], Section 6, §59).

The class N (R. Nevanlinna) is the class of analytic functions f (z) : C+ →
{z :�z ≥ 0}. For such functions there is an integral representation

f (z) = a + bz +
∫

R

1 + uz

u − z
τ(du)

(3.1)

= a + bz +
∫

R

(
1

u − z
− u

1 + u2

)
(1 + u2)τ (du), z ∈ C

+,

where b ≥ 0, a ∈ R and τ is a nonnegative finite measure. Moreover, a = �f (i)

and τ(R) = �f (i)−b. The measure τ and the parameter b are defined by the func-
tion f (z) uniquely. From formula (3.1) it follows that

f (z) = (
b + o(1)

)
z(3.2)

for z ∈ C
+ such that z → ∞ nontangentially.

A function f ∈ N admits the representation

f (z) =
∫

R

σ(du)

u − z
, z ∈ C

+,(3.3)

where σ is a finite nonnegative measure, if and only if supy≥1 |yf (iy)| < ∞.

REMARK 3.1. Since the class F is the subclass of Nevanlinna functions f (z)

for which f (z)/z → 1 as z → ∞ nontangentially, we note that every f ∈ F
admits representation (3.1), where b = 1. Moreover −1/f (z) admits representa-
tion (3.3), where σ ∈ M. Note as well that a function f ∈ F satisfies the obvious
inequality

�f (z) ≥ �z, z ∈ C
+.(3.4)
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The Stieltjes–Perron inversion formula for the functions f of class N has
the following form. Let ψ(u) := ∫ u

0 (1 + t2)τ (dt). Then

ψ(u2) − ψ(u1) = lim
η→0

1

π

∫ u2

u1

�f (ξ + iη) dξ,(3.5)

where u1 < u2 denote two continuity points of the function ψ(u).
Furthermore, we shall need the following inequality for the distance between

distributions in terms of their Stieltjes transform.

LEMMA 3.2. Let µw be the semicircle measure and let µ be a p-measure such
that ∫

R

|µw((−∞, x)) − µ((−∞, x))|dx < ∞.(3.6)

Then there exists an absolute constant c such that, for any 0 < v < 1,

�(µw,µ) ≤ c

∫
R

|Gµw(u + i) − Gµ(u + i)|du + cv

+ c sup
x∈[−2,2]

∣∣∣∣∫ 1

v

(
Gµw(x + iu) − Gµ(x + iu)

)
du

∣∣∣∣,
where Gµw and Gµ are defined in (2.1).

This lemma is a simple consequence of Corollary 2.3 in Götze and Tikho-
mirov [23].

Let µj ∈ M, j = 1,2. In Section 2 we defined the additive free convolution
µ1 � µ2 by purely complex analytic methods.

As shown in [20], (2.3) admits the following consequences.

PROPOSITION 3.3. Let µ1, . . . ,µn ∈ M. There exist unique functions
Z1(z), . . . ,Zn(z) of class F such that, for z ∈ C

+,

z = Z1(z) + · · · + Zn(z) − (n − 1)Fµ1(Z1(z))

and(3.7)

Fµ1(Z1(z)) = · · · = Fµn(Zn(z)).

Moreover, Fµ1�···�µn(z) = Fµ1(Z1(z)) for all z ∈ C
+.

Let µ1 = µ2 = · · · = µn = µ and write µ1 � · · · � µn = µn�.

PROPOSITION 3.4. Let µ ∈ M. There exists a unique function Z ∈ F such
that

z = nZ(z) − (n − 1)Fµ(Z(z)), z ∈ C
+,(3.8)

and Fµn�(z) = Fµ(Z(z)), z ∈ C
+.
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We need the following auxiliary results of Bercovici and Voiculescu [11].

PROPOSITION 3.5. Let {µn}∞n=1 be a sequence of p-measures on R. The fo-
llowing assertions are equivalent:

(a) The sequence {µn}∞n=1 converges weakly to a p-measure µ.
(b) There exist α > 0, β > 0, and a function φ, such that all the functions φ,φn

are defined on �α,β , and such that the sequence {φµn}∞n=1 converges uniformly
on compact subsets of �α,β to a function φ, and φµn(iy) = o(y) uniformly in
n as y → +∞.

Moreover, if (a) and (b) are satisfied, we have φ = φµ in �α,β .

PROPOSITION 3.6. Let {µn}∞n=1 and {νn}∞n=1 be sequences of p-measures on
R which converge weakly to p-measures µ and ν, respectively. Then {µn � νn}∞n=1
converges weakly to the p-measure µ � ν.

We also need the following two results which are due to Bercovici and
Pata [16, 15].

PROPOSITION 3.7. Let α,β, ε be positive numbers, and let φ :�α,β → C be
an analytic function such that

|φ(z)| ≤ ε|z|, z ∈ �α,β.

For every α′ < α and β ′ > β there exists k > 0 such that

|φ′(z)| ≤ kε, z ∈ �α′,β ′ .

PROPOSITION 3.8. For every α,β > 0 there exists ε > 0 with the following
property. If µ ∈ M such that

∫
R

u2/(1 + u2)µ(du) < ε, then φµ is defined on
the region �α,β and φµ(�α,β) ⊂ C

− ∪ R.

Let µ be a p-measure. Denote by µ̄ the measure defined by µ̄(B) = µ(−B) for
any Borel set B . Write µs := µ � µ̄.

PROPOSITION 3.9. A p-measure µ is symmetric if and only if the functions
Gµ(iy) and Fµ(iy) take imaginary values for y > 0 and the function φµ(iy) takes
imaginary values on the set y ≥ y0 > 0, where it is defined.

We omit the proof of this simple proposition.
We obtain, as an obvious consequence of Proposition 3.9, that µs is a symmetric

p-measure. In addition, if µ1 and µ2 are symmetric p-measures, then µ1 � µ2 is
a symmetric p-measure as well.
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4. Additive free limit theorem. In this section we shall prove Theorem 2.1.
In the sequel we denote by c positive absolute constants. For some measure ν

and for some parameter τ we denote by c(ν), c(τ ) and c(ν, τ ) positive constants
which only depend on the measure ν, on the parameter τ , and on ν and τ , respec-
tively. Before proving Theorem 2.1 we establish some properties of the measures
{µnk :n ≥ 1,1 ≤ k ≤ kn}, satisfying condition (2.8), and the corresponding recip-
rocal Cauchy transforms {Fµnk

(z) :n ≥ 1, 1 ≤ k ≤ kn}.
It is well known that condition (2.8) is equivalent to the following relation

(see [25], page 302):

max
k=1,...,kn

∫
R

u2

1 + u2 µnk(du) → 0, n → ∞.

Recall that µ̂nk((−∞, u)) := µnk((−∞, u+ank)), where ank := ∫
(−τ,τ )xµnk(dx),

k = 1, . . . , kn, with arbitrary τ > 0 which is finite and fixed. Since obviously
maxk=1,...,kn |ank| → 0 as n → ∞, we obtain

εn := max
k=1,...,kn

εnk → 0, n → ∞, where εnk :=
∫

R

u2

1 + u2 µ̂nk(du).(4.1)

By Remark 3.1, for every k = 1, . . . , kn the reciprocal of the Cauchy transform
Gµ̂nk

(z) [see (2.1)] has the form

Fµ̂nk
(z) = bnk + z +

∫
R

1 + uz

u − z
σnk(du),(4.2)

where bnk := �(Gµ̂nk
(i))−1 and σnk is a nonnegative finite measure such that

σnk(R) = �(Gµ̂nk
(i))−1 − 1. From (4.2) we deduce the following relation:

− �Gµ̂nk
(iy)

|Gµ̂nk
(iy)|2 = y

(
1 +

∫
R

1 + u2

u2 + y2 σnk(du)

)
, y > 0, k = 1, . . . , kn,(4.3)

which yields

1 +
∫

R

1 + u2

u2 + y2 σnk(du) ≤ − 1

y�Gµ̂nk
(iy)

, y > 0, k = 1, . . . , kn.(4.4)

On the other hand we see that, for y > 0,

−y�Gµ̂nk
(iy) =

∫
R

y2

u2 + y2 µ̂nk(du) = 1 −
∫

R

u2

u2 + y2 µ̂nk(du).(4.5)

Hence, for sufficiently large n ≥ n0 and k = 1, . . . , kn, we obtain, by (4.4) and
(4.5), the upper bound∫

R

1 + u2

u2 + y2 σnk(du) ≤ 2
∫

R

u2

u2 + y2 µ̂nk(du) ≤ 32εnk, y ≥ 1/4.(4.6)
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It follows from (4.6) that, for n ≥ n0,

σnk(R) ≤ 2εnk, k = 1, . . . , kn,(4.7)

and maxk=1,...,kn σnk(R) → 0 as n → ∞.
Now we deduce the relation

�Gµ̂nk
(i) =

∫
R

u − ank

(u − ank)2 + 1
µnk(du)

=
∫
(−τ,τ )

u − ank

(u − ank)2 + 1
µnk(du) +

∫
|u|≥τ

u − ank

(u − ank)2 + 1
µnk(du)

=
∫
(−τ,τ )

(u − ank)µnk(du) −
∫
(−τ,τ )

(u − ank)
3

(u − ank)2 + 1
µnk(du)

+
∫
|u|≥τ

u − ank

(u − ank)2 + 1
µnk(du)

= −
∫
(−τ,τ )

(u − ank)
3

(u − ank)2 + 1
µnk(du)

+
∫
|u|≥τ

u + ank(u − ank)
2

(u − ank)2 + 1
µnk(du).

Using straightforward estimates we easily have, for sufficiently large n ≥ n0,

|�Gµ̂nk
(i)| ≤ c(τ )εnk, k = 1, . . . , kn.(4.8)

In view of (4.1), (4.5) and (4.8), we get, for n ≥ n0 and k = 1, . . . , kn,

|bnk| ≤ |�Gµ̂nk
(i)|/(�Gµ̂nk

(i))2 ≤ c(τ )εnk.(4.9)

From (4.2), (4.7) and (4.9) we obtain, for z ∈ C
+ and n ≥ n0, k = 1, . . . , kn,

|Fµ̂nk
(z) − z| ≤ |bnk| +

∫
R

σnk(du)

|u − z| +
∫

R

|z||u|
|u − z|σnk(du)

(4.10)

≤ c(τ )εnk

(
1 + 1 + |z|2

�z

)
≤ c(τ )εnkQ(z),

where Q(z) := 1+|z|2
�z

. Using (4.6) we deduce the estimate, for k = 1, . . . , kn and
�z ≥ 1/4,

�(
Fµ̂nk

(z) − z
) = �z

∫
R

1 + u2

(u − �z)2 + (�z)2 σnk(du)

≤ 2
( |z|

�z

)2

�z

∫
R

1 + u2

(�z)2 + u2 σnk(du)

(4.11)

≤ 4
( |z|

�z

)2

�z

∫
R

1 + u2

(�z)2 + u2

u2

1 + u2 µ̂nk(du)

≤ 64
( |z|

�z

)2

ηnk(�z)�z,
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where

ηnk(�z) := 1

�z

∫
[−√�z,

√�z]
u2

1 + u2 µ̂nk(du) +
∫
|u|>√�z

u2

1 + u2 µ̂nk(du).

Note that, for such k = 1, . . . , kn and �z ≥ 1/4, ηnk(�z) ≤ 4εnk .
We conclude from (4.10), (4.11) and Rouché’s theorem that for every y ≥ 1

there exists a neighborhood |z − iy| ≤ y/2 such that the inverse function F
(−1)
µ̂nk

(z)

with n ≥ n0 exists and is analytic in this domain. In addition, the following in-
equalities hold:

|�φµ̂nk
(z)| = ∣∣�(

F
(−1)
µ̂nk

(z) − z
)∣∣ ≤ c(τ )εnky,

(4.12)
|�φµ̂nk

(z)| = ∣∣�(
F

(−1)
µ̂nk

(z) − z
)∣∣ ≤ cη̃nk(y)y,

for |z − iy| ≤ y/2, n ≥ n0, k = 1, . . . , kn, where η̃nk(y) := maxt∈[y/4,2y] ηnk(t).

PROOF OF THEOREM 2.1. Sufficiency. Consider the measure µ̂n := µ̂n1 �
· · · � µ̂nkn . It follows from Proposition 3.3 that there exist unique functions
Zn1, . . . ,Znkn of class F such that, for z ∈ C

+,

Fµ̂n1(Zn1(z)) − z = Fµ̂n1(Zn1(z)) − Zn1(z) + · · ·
(4.13)

+ Fµ̂nkn
(Znkn(z)) − Znkn(z)

and

Fµ̂n1(Zn1(z)) = Fµ̂n2(Zn2(z)) = · · · = Fµ̂nkn
(Znkn(z)) = Fµ̂n(z).(4.14)

Then, by (4.12)–(4.14), for |z − iy| ≤ y/2, y ≥ c(ν) ≥ 1, it follows that

|�φµ̂n1�···�µ̂nkn
(z)| ≤ ∣∣�φµ̂n1(z)

∣∣ + · · · + |�φµ̂nkn
(z)|

(4.15)

≤ c(τ )ηny := c(τ )

(
kn∑

k=1

εnk

)
y

and

|�φµ̂n1�···�µ̂nkn
(z)| ≤ ∣∣�φµ̂n1(z)

∣∣ + · · · + |�φµ̂nkn
(z)|

(4.16)

≤ cηn(y)y := c

(
kn∑

k=1

η̃nk(y)

)
y.

By the assumptions of the theorem, we have ηn ≤ ν(R) + 1 for sufficiently large
n ≥ n0. In addition, by (4.11) and the assumptions of the theorem, we see that

ηn(y) ≤ 16ν(R) + 1

y
+ 4ν

(
R \ [−√

y/2,
√

y/2
])

(4.17)



LIMIT THEOREMS IN FREE PROBABILITY THEORY 69

for sufficiently large n ≥ n1(y), where −√
y/2 and

√
y/2 are continuity points of

the function ν((−∞, x)), x ∈ R. In the sequel we choose y so that −√
y/2 and√

y/2 are continuity points of ν((−∞, x)). Since

φµ̂n1�···�µ̂nkn
(z) = (Fµ̂nk

(Znk))
(−1)(z) − z

= Z
(−1)
nk

(
F

(−1)
µ̂nk

(z)
) − z, k = 1, . . . , kn,

for |z − iy| ≤ y/2, we have, by (4.10), the relation

φµ̂n1�···�µ̂nkn
(Fµ̂nk

(z)) = Z
(−1)
nk (z) − Fµ̂nk

(z), k = 1, . . . , kn,

for |z − iy| ≤ y/4. Therefore we conclude by (4.10)–(4.12) and (4.15)–(4.17) that
the functions Z

(−1)
nk (z) are analytic in the disk |z − iy| < y/4 and∣∣�(

Z
(−1)
nk (z) − z

)∣∣ ≤ c(τ )
(
ν(R) + 1

)
Q(y),

(4.18) ∣∣�(
Z

(−1)
nk (z) − z

)∣∣ ≤ c
(
1 + ν(R) + yν

(
R \ [−√

y/2,
√

y/2
]))

,

for |z − iy| ≤ y/4, n ≥ n1(y), k = 1, . . . , kn. We conclude from (4.18) that
there exists y0 = y0(ν) ≥ 4 such that Z

(−1)
nk (z) ∈ Ry0 := {z : |�z| ≤ c(τ )(ν(R) +

1)y0, y0/2 ≤ �z ≤ 3y0/2} for |z − iy0| ≤ y0/4, n ≥ n1(y0), k = 1, . . . , kn. Hence
there exist points znk ∈ Ry0 such that |Znk(znk) − iy0| ≤ y0/4 for n ≥ n1(y0), k =
1, . . . , kn.

The functions Znk are of class F . Therefore

Znk(z) = dnk + z +
∫

R

1 + uz

u − z
νnk(du)

(4.19)

= dnk + z +
∫

R

(
1

u − z
− u

1 + u2

)
(1 + u2)νnk(du)

for z ∈ C
+, where dnk ∈ R and νnk are finite nonnegative measures. Since

�Znk(znk) − y0 ≤ y0/2, we have

c(ν, τ )νnk(R) ≤ �znk

∫
R

1 + u2

(u − �znk)2 + (�znk)2 νnk(du)

(4.20)

≤ �Znk(znk) ≤ 3y0

2
.

It is easy to see from (4.19) and (4.20) that |Znk(znk) − dnk| ≤ c(ν, τ ). Hence,
using the bound |Znk(znk)| ≤ 3y0/2, we conclude that |dnk| ≤ c(ν, τ ) + 3y0/2.
Hence we have

|dnk| ≤ c(ν, τ ) and νnk(R) ≤ c(ν, τ ), n ≥ n1(y0), k = 1, . . . , kn.(4.21)

In the sequel we assume that n ≥ n1(y0) + n0. As in (4.10) we obtain, for z ∈ C
+

and k = 1, . . . , kn,

|Znk(z) − z| ≤ c(ν, τ )Q(z).(4.22)
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Using (4.22) and the inequality �Znk(z) ≥ �z, z ∈ C
+ [see (3.4)], we deduce

Q(Znk(z)) = 1 + |Znk(z)|2
�Znk(z)

≤ c(ν, τ )
1

�z
Q2(z)(4.23)

for z ∈ C
+ and k = 1, . . . , kn. Therefore we obtain from (4.10)

|Fµnk
(Znk(z)) − Znk(z)| ≤ c(τ )εnkQ(Znk(z)) ≤ c(ν, τ )εnk

1

�z
Q2(z)(4.24)

for z ∈ C
+ and k = 1, . . . , kn. Let us return to relation (4.14). In view of (4.24), we

have, for z ∈ C
+ and k = 1, . . . , kn,

|Zn1(z) − Znk(z)| ≤ |Fµ̂n1(Zn1(z)) − Zn1(z)| + |Fµ̂nk
(Znk(z)) − Znk(z)|

(4.25)

≤ c(ν, τ )εn

1

�z
Q2(z).

On the other hand, in view of (4.2) and (4.7), we conclude∣∣(Fµ̂nk
(Znk(z)) − Znk(z)

) − (
Fµ̂nk

(Zn1(z)) − Zn1(z)
)∣∣

≤
∫

R

|Znk(z) − Zn1(z)|(1 + u2)σnk(du)√
(u − �Znk(z))2 + (�Znk(z))2

√
(u − �Zn1(z))2 + (�Zn1(z))2

≤ cεnk|Znk(z) − Zn1(z)|(1 + |Zn1(z)|)(1 + |Znk(z)|)
�Zn1(z)�Znk(z)

for z ∈ C
+ and k = 1, . . . , kn. Thus, taking into account (4.22), (4.25) and the in-

equality �Znk(z) ≥ �z, z ∈ C
+, we have, for the same z and k as above,∣∣(Fµ̂nk

(Znk(z)) − Znk(z)
) − (

Fµ̂nk
(Zn1(z)) − Zn1(z)

)∣∣
(4.26)

≤ c(ν, τ )εnkεn

1

(�z)3 Q4(z).

Consider the functions

fnk(z) := z2
(
Gµ̂nk

(z) − 1

z

)
= γnk +

∫
R

1 + uz

z − u
ρnk(du), z ∈ C

+, k = 1, . . . , kn,

where

γnk :=
∫

R

u

1 + u2 µ̂nk(du) and ρnk(du) := u2

1 + u2 µ̂nk(du).

By (4.8), the constants γnk admit the estimates |γnk| ≤ c(τ )εnk for k = 1, . . . , kn.
Hence, γn := ∑kn

k=1 γnk satisfies the inequality

|γn| ≤ c(ν, τ ), n ≥ n0.(4.27)
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As in (4.10), we conclude that

|fnk(z)| ≤ c(τ )εnkQ(z), z ∈ C
+, k = 1, . . . , kn.(4.28)

We have, for z ∈ C
+ and k = 1, . . . , kn,

Fµ̂nk
(z) = z2

z + fnk(z)
= z − fnk(z) + θnk(z),(4.29)

where

θnk(z) = f 2
nk(z)

z + fnk(z)
= f 2

nk(z)Fµ̂nk
(z)z−2.

Hence, by (4.10) and (4.28), we conclude, for those z, k,

|θnk(z)| ≤ c(τ )ε2
nkQ

2(z)
(|z| + εnkQ(z)

) 1

|z|2 .(4.30)

We see from (4.22), (4.23), (4.30) and from the inequality �Znk(z) ≥ �z, z ∈ C
+,

that, for z, k as above,

|θnk(Zn1(z))| ≤ c(τ )ε2
n1Q

2(Zn1(z))
(|Zn1(z)| + εnkQ(Zn1(z))

) 1

|Znk(z)|2
(4.31)

≤ c(ν, τ )ε2
nk

1

(�z)4 Q5(z)

(
1 + εnk

1

�z
Q(z)

)
.

Therefore (4.13), (4.26), (4.29) and (4.31) together yield the relation

Fµ̂n1(Zn1(z)) − z
(4.32)

= −fn1(Zn1(z)) + · · · − fnkn(Zn1(z)) + rn(z), z ∈ C
+,

where the function

rn(z) :=
kn∑

k=1

((
Fµ̂nk

(Znk(z)) − Znk(z)
) − (

Fµ̂nk
(Zn1(z)) − Zn1(z)

))

+
kn∑

k=1

θnk(Zn1(z))

is analytic in C
+ and admits the estimate

|rn(z)| ≤ c(ν, τ )εn

1

(�z)4 Q5(z)

(
1 + εn

1

�z
Q(z)

)
.(4.33)

From (4.33) it is easy to see that

|rn(z)| ≤ c(ν, τ )ε1/20
n(4.34)

in the closed domain Dn := {z ∈ C
+ : ε1/20

n ≤ �z ≤ ε
−1/20
n , |�z| ≤ ε

−1/20
n }.

We return to the representation (4.19) for the functions Zn1(z).
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By (4.21), (4.27) and the vague compactness theorem (see [25], page 179), we
conclude that there exists a subsequence {n′} such that

dn′1 → d, νn′1(R) → b, γn′ → γ, n′ → ∞,

where d, b ≥ 0, γ are real numbers, and {νn′1} converges in the vague topology to
some nonnegative measure ν1 such that ν1(R) ≤ b. Now we rewrite the formula
(4.19) with n = n′ and k = 1 in the form

Zn′1(z) = dn′1 + z +
∫

R

(
1 + uz

u − z
− z

)
νn′1(du) + νn′1(R)z.

Since the kernel under the integral sign tends to 0 as u → ±∞ uniformly in z

from every compact set in C
+, we obtain, by the Helly–Bray lemma (see [25],

page 181),

Zn′1(z) → d + z +
∫

R

(
1 + uz

u − z
− z

)
ν1(du) + bz

= d + z +
∫

R

1 + uz

u − z
ν1(du) + (

b − ν1(R)
)
z, n′ → ∞,

uniformly on every compact set in C
+.

Finally we obtain from this relation that

Zn′1(z + γn′1) → Z(z) + az(4.35)

as n′ → ∞, uniformly on every compact set in C
+, where Z(z) ∈ F and a ≥ 0.

Rewrite the relation (4.32) in the form

Fµ̂n1

(
Zn1(z + γn)

) − z

=
∫

R

(Zn1(z + γn) − Z(z) − az)(1 + u2)

(u − Zn1(z + γn))(u − Z(z) − az)
νn(du)(4.36)

+
∫

R

1 + u(Z(z) + az)

u − Z(z) − az
νn(du) + rn(z + γn), z ∈ C

+.

Note that, for every compact set S in C
+,

lim sup
n′→∞

sup
z∈S

∣∣∣∣∫
R

1 + u2

(u − Zn′1(z + γn′))(u − Z(z) − az)
νn′(du)

∣∣∣∣ < ∞.(4.37)

In view of the assumption that νn → ν weakly, we have, by the Helly–Bray theo-
rem (see [25], page 182),

lim
n′→∞

∫
R

1 + u(Z(z) + az)

u − Z(z) − az
(νn′ − ν)(du) = 0, z ∈ C

+.(4.38)

Since Fµ̂n1(z) → z uniformly on every compact set in C
+ and (4.34), (4.35), (4.37)

and (4.38) hold, we easily deduce from (4.36) in the limit n′ → ∞ that

Z(z) + az − z =
∫

R

1 + u(Z(z) + az)

u − (Z(z) + az)
ν(du), z ∈ C

+.(4.39)
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It is easy to see that Z(iy) − iy = o(y) and the integral on the right-hand side of
(4.39) is a function which is o(y) as y → ∞ for z = iy. Therefore we conclude
that a = 0. Thus the relation (4.39) holds with a = 0.

Since Z ∈ F has an inverse Z(−1) defined on �α,β with some positive α and β ,
it is easy to see that (4.39) has a unique solution in the set F . Now suppose that
{Zn1(z + γn)}∞n=1 does not converge to Z(z) on some compact set in C

+. Then,
as above there exists a subsequence {n′′} such that Zn′′1(z + γn′′) → Z∗(z) as
n′′ → ∞ on every compact set in C

+, and Z∗(z) ∈ F , Z∗(z) 
≡ Z(z), z ∈ C
+.

But Z∗(z) is a solution of (4.39). We arrive at a contradiction. Hence {Zn1(z +
γn)}∞n=1 converges to Z(z) uniformly on every compact set in C

+. The relation
(4.39) implies that Z(z) is infinitely divisible with parameters (0, ν), since we
may rewrite (4.39) via z = Z(−1)(w) for w ∈ �α,β with some α,β > 0. Since
Fµ̂n1(Zn1(z + γn)) → Z(z) uniformly on every compact set in C

+, we see that
µ̂n � δ−γn converges weakly to a p-measure µ̂ such that φµ̂ = (0, ν). Recalling
the definition of an, we finally conclude that µ(n) converges weakly to p-measure
µ such that φµ = (α, ν).

Hence the sufficiency of the assumptions of Theorem 2.1(b) is proved.
Necessity. Denote µs

nk := µnk � µ̄nk = µ̂nk � µ̂nk, n ≥ 1, k = 1, . . . , kn. By
Proposition 3.6, we obtain the convergence

µ(n,s) := µs
n1 � µs

n2 � · · · � µs
nkn

→ µs weakly as n → ∞.(4.40)

For the measures µs
k,n, n ≥ 1, k = 1, . . . , kn, relations (4.13) and (4.14) hold

with the functions Fµs
nk

(z), n ≥ 1, k = 1, . . . , kn, replacing Fµnk
(z), n ≥ 1, k =

1, . . . , kn, and with some functions Znk,s(z) ∈ F , n ≥ 1, k = 1, . . . , kn, replacing
Znk(z), n ≥ 1, k = 1, . . . , kn. Rewrite (4.13) in the form

Fµs
n1

(Zn1,s(z)) − z

= Fµs
n1

(Zn1,s(z)) − Zn1,s(z) + · · ·(4.41)

+ Fµs
nkn

(Znkn,s(z)) − Znkn,s(z), z ∈ C
+.

By Proposition 3.9, the measures µs
nk, k = 1, . . . , kn, are symmetric and µ(n,s) :=

µs
n1 �µs

n2 � · · ·�µs
nkn

is symmetric as well. Since Fµs
nk

(Znk,s(z)) = Fµ(n,s)(z), z ∈
C

+, and by Proposition 3.9, Fµ(n,s)(iy),Fµs
nk

(iy), y > 0, assume imaginary val-
ues, we conclude that Znk,s(iy), y > 0, k = 1, . . . , kn, assume imaginary values
as well. Hence, it is easy to see that Znk,s(z), k = 1, . . . , kn, admit representation
(4.19) with dnk = 0, k = 1, . . . , kn, and with finite nonnegative symmetric mea-
sures νs

nk, k = 1, . . . , kn, respectively.
Since

Fµs
nk

(z) = z +
∫

R

1 + uz

u − z
σ s

nk(du), z ∈ C
+, k = 1, . . . , kn,
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where σ s
nk is a finite nonnegative measure, we deduce from (4.41) that

�(
Fµs

n1
(Zn1,s(i)) − i

) =
n∑

k=1

�(
Fµs

nk
(Znk,s(i)) − Znk,s(i)

)
(4.42)

=
n∑

k=1

�Znk,s(i)

∫
R

(1 + u2)σ s
nk(du)

u2 + (�Znk,s(i))2 .

Let us show that the measures µs
n1, . . . ,µ

s
nkn

are infinitesimal. Indeed, we de-
duce from (4.12) the estimate

−�φµs
nk

(z) = −�φµ̂nk
(z) − �φµ̂nk

(z) ≤ c(εnk + εnk) ≤ cεnk, k = 1, . . . , kn,

for |z − i| ≤ 1/4, where εnk := ∫
R

u2/(1 + u2)µ̂nk(du) = εnk . This implies∫
R

u2

1 + u2 µs
nk(du)

/∫
R

1

1 + u2 µs
nk(du)

(4.43)
= �(

Fµs
nk

(i) − i
) ≤ cεnk, k = 1, . . . , kn,

as claimed.
The bounds (4.43) and (4.10) for the functions Fµs

nk
(z), n ≥ n0, k = 1, . . . , kn,

imply the inequality

|Znk,s(i)| ≤ |Znk,s(i) − Fµs
nk

(Znk,s(i))| +
∣∣Fµ(n,s)(i)

∣∣
(4.44)

≤ cεnkQ(Znk,s(i)) + ∣∣Fµ(n,s)(i)
∣∣

for n ≥ n0, k = 1, . . . , kn. Since Znk,s ∈ F and takes imaginary values for
z = iy, y > 0, we see that |Znk,s(i)| = �Znk,s(i) ≥ 1. We note from this that
Q(Znk,s(i)) ≤ 2|Znk,s(i)| and, by (4.40), we easily conclude from (4.44) that

|Znk,s(i)| ≤ c(µs), n ≥ n0, k = 1, . . . , kn.

Moreover,

�(
Fµs

n1
(Zn1,s(i)) − i

) = �(
Fµ(n,s)(i) − i

) → �(
Fµ(s)(i) − i

)
, n → ∞.

Therefore we obtain from (4.42) the relation

σ s
n1(R) + · · · + σ s

nkn
(R) ≤ c(µs), n → ∞.(4.45)

Since µs
nk = µ̂nk � ¯̂µnk , we note, by definition of the free �-convolution

(see Section 2), that there exist functions Wnk(z) ∈ F such that Fµs
nk

(z) =
Fµ̂nk

(Wnk(z)), z ∈ C
+. Therefore we have �Fµs

nk
(i) − 1 = �Fµ̂nk

(Wnk(i)) − 1.
Rewrite this relation in the form

σ s
nk(R) = �Wnk(i) − 1

+ �Wnk(i)

∫
R

1 + u2

(u − �Wnk(i))2 + (�Wnk(i))2 σnk(du)(4.46)

≥ �Wnk(i)

∫
R

1 + u2

(u − �Wnk(i))2 + (�Wnk(i))2 σnk(du).
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As in the proof of (4.10), we see that Fµs
nk

(z) and Fµ̂nk
(z) tend to z as n → ∞ uni-

formly in k = 1, . . . , kn and |z− i| < 1/2. Hence Wnk(i) → i as n → ∞ uniformly
in k = 1, . . . , kn. Thus we obtain from (4.46) that, for sufficiently large n ≥ n0,

σnk(R) ≤ 2σ s
nk(R), k = 1, . . . , kn.(4.47)

Thus (4.45) and (4.47) imply the inequality

σn1(R) + · · · + σnkn(R) ≤ c(µs), n → ∞.(4.48)

By (4.3), (4.5) with y = 1, and (4.8), we note that σnk(R) ≥ εnk/2, k = 1, . . . , kn,
for sufficiently large n ≥ n0 and we deduce from (4.48) the upper bound

εn1 + · · · + εnkn ≤ c(µs), n → ∞.(4.49)

Let us return to (4.13) and (4.14). Since Fµ(n)(z) = Fµ̂n(z + an − bn), where

bn = ∑kn

k=1 ank , we see that Fµ(n)(z) = Fµ̂nk
(Znk(z + an − bn)), z ∈ C

+, k =
1, . . . , kn.

We shall show that {Znk(z+an −bn)}∞n=1 converges uniformly in k = 1, . . . , kn

and on every compact set in C
+ to the function Z(z) := Fµ(z) ∈ F .

Let S be a compact set in C
+. Then there exist α0 > 0 and β0 > 0 such

that S ⊂ �α0,β0 . It is clear that, for n ≥ n1(α0, β0), Fµ(n)(�α0,β0) ⊂ �α1,β1 with
some α1 > 0 and β1 > 0. It is well known (see Proposition 3.8 as well) that for
every α > 0, β > 0 there exists sufficiently large n1(α,β) such that F

(−1)
µ̂nk

(z),

k = 1, . . . , kn, are defined on �α,β for n ≥ n1(α,β). Therefore we can choose α,β

such that �α1,β1 ⊂ �α,β and we will consider the functions F
(−1)
µ̂nk

(z), k = 1, . . . , kn,
for n ≥ n1(α,β). Since, for sufficiently large z ∈ �α,β , the functions Fµ̂nk

(z) and
Znk(z + an − bn) satisfy (3.2) with b = 1 and are univalent, and the functions
F

(−1)
µ̂nk

(Fµ(n)(z)), k = 1, . . . , kn, are analytic in the domain �α0,β0 for n ≥ n1(α,β),
the relation

Znk(z + an − bn) = F
(−1)
µ̂nk

(
Fµ(n)(z)

)
, k = 1, . . . , kn, z ∈ �α0,β0,

holds for these n. Taking into account that F
(−1)
µ̂nk

(z) tend to z and Fµ(n)(z) tend to
Fµ(z) as n → ∞ uniformly in k = 1, . . . , kn and uniformly on every compact set
in C

+, we obtain that {Znk(z+ an − bn)}∞n=1 converges uniformly in k = 1, . . . , kn

and on the compact set S to the function Z(z) = Fµ(z) ∈ F . Thus, the required
assertion is proved.

Using relations (4.13) and (4.14) with z + an − bn instead of z and taking into
account that the measures µn1, . . . ,µnkn are infinitesimal and the upper bound
(4.49) holds, we can repeat the arguments which we used for the proof of (4.32).
We arrive at the following relation, for z ∈ C

+:

Zn1(z + an − bn) − (z + an − bn)
(4.50)

= −fn2
(
Zn1(z + an − bn)

) − . . . − fnkn

(
Zn1(z + an − bn)

) + rn(z),
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where rn(z) is analytic in C
+ and rn(z) → 0 on every compact set in C

+. As
above, {Znk(z + an − bn)}∞n=1 converges uniformly in k = 1, . . . , kn and on every
compact set in C

+ to Z(z) ∈ F . Since, by (4.49), the sequence {νn}∞n=1 is tight
in the vague topology, there exists a subsequence {n′} such that there exists
limn′→∞ νn′(R) < ∞ and {νn′ } converges to some finite nonnegative measure ν

in the vague topology. Now we conclude from (4.50) that (an′ − bn′ − γn′) → a′
as n′ → ∞, where a′ ∈ R, and the following relation holds:

Z(z) = z + a′ + b′Z(z) +
∫

R

1 + uZ(z)

u − Z(z)
ν(du), z ∈ C

+,(4.51)

with b′ = limn′→∞ νn′(R) − ν(R) ≥ 0. Recalling that Z(z) ∈ F , we easily con-
clude from this relation that b′ = 0. Indeed, it is not difficult to see that Z(iy) −
iy = o(y) and the integral in (4.51) for z = iy is o(y) as y → +∞. Comparing
a behavior of all members in (4.51), we obtain the desired result.

We shall show that {νn} converges to the measure ν in the vague topology. As-
sume to the contrary that there exists a subsequence {n′′} such that there exists
limn′′→∞ νn′′(R) < ∞ and {νn′′ } converges in the vague topology to some finite
measure ν′′ 
≡ ν. Then (an′′ − bn′′ − γn′′) → a′′ as n′′ → ∞, and (4.51) holds with
a′′ replacing a′ and ν′′ replacing ν. Comparing relations (4.51), we deduce the re-
lation

a′ +
∫

R

1 + uz

u − z
ν(du) = a′′ +

∫
R

1 + uz

u − z
ν′′(du), z ∈ C

+.

Applying the Stieltjes–Perron inversion formula (3.5) (see Section 3), we get that
ν = ν′′ and then a′ = a′′, a contradiction. Since, as above, limn→∞ νn(R) = ν(R),
we finally conclude that {νn} converges to the measure ν weakly. In addition,
an − bn − γn tends to some real constant as n → ∞. It remains to note that, by
the relation Z(z) = Fµ(z), z ∈ C

+, we see from (4.51) that the limit measure µ is
infinitely divisible with parameters (a′, ν).

This proves the necessity of the assumptions of Theorem 2.1(b) and thus Theo-
rem 2.1. �

PROOF OF COROLLARY 2.3. In order to prove Corollary 2.3 using Theo-
rem 2.2 we need to show that if µ

kn∗
n converges weakly to some µ∗ ∈ M or µ

kn�
n

converges to some µ� ∈ M, then µn are infinitesimal. The first assertion is a well-
known fact (see [25]). It remains to prove the second assertion only. By Proposi-
tion 3.5 and Lemma 2.2 from [15], knφµn(z) converges uniformly on compact sub-
sets of �α,β , with some α > 0, β > 0, to the function φµ�(z) and knφµn(iy) = o(y)

uniformly in n as y → +∞. Hence φµn(z) → 0 uniformly on compact subsets of
�α,β , as n → ∞, and φµn(iy) = o(y) uniformly in n as y → +∞. By Proposi-
tion 3.5, µn converges weakly to δ0 as n → ∞. Therefore the p-measures µn are
infinitesimal. �
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5. The class L� of infinitely divisible limits for free sums. In this section
we shall prove Theorem 2.10.

Let {µn}∞n=1 be a sequence of measures in M and let {an}∞n=1 and {bn}∞n=1,

bn > 0, be sequences of real numbers. In Section 5 we denote by µnk :n ≥ 1,1 ≤
k ≤ n, the p-measures such that µnk(S) := µk(bnS) for every Borel set S ∈ R.
Consider the sequence of p-measures {µ(n) := δ−an � µn1 � · · · � µnn}∞n=1.

PROOF OF THEOREM 2.10. Sufficiency. First we show that φµ(z) admits
an analytic continuation on C

+. Indeed, the function φµ(z) is regular on some
domain �α,β (see Section 2). Let us assume that there are singular points of φµ(z)

on the boundary of this domain. Let z0 be one of such points with the largest mod-
ulus. By the definition of φµ(z), it is easy to see that |z0| < ∞. By the assumption
and by Voiculescu’s relation (2.4), we have

φµ(z) = γφµ(z/γ ) + φγ (z), z ∈ �α,β,(5.1)

for 0 < γ < 1. Here φγ (z) := φµγ (z) and is defined on �α,β as well (see
Lemma 4.4 in [4]). Hence

φγ (z) = (1 − γ )φµ(z) + γ
(
φµ(z) − φµ(z/γ )

)
= (1 − γ )φµ(z) + γ

∫ z

z/γ
φ′

µ(ζ ) dζ, z ∈ �α,β.

By Proposition 3.7 and the property |φµ(z)| = o(|z|) as z → ∞, z ∈ �α,β , we have
the relation φγ (z) → 0 for z ∈ �α,β and φγ (iy) = o(y), y → ∞, uniformly in
γ → 1. If γ → 1, then by Proposition 3.5, µγ → δ0 weakly and, by Proposi-
tion 3.8, φµγ (z) is regular in the domain �2α,β/2 for γ close to 1. The functions
φµ(z/γ ) and φγ (z) are regular on �α,�z0 , therefore φµ(z) is regular at the point
z0, a contradiction. Hence our assertion holds. Note that the function φγ (z) ad-
mits an analytic continuation on C

+ for every γ ∈ (0,1) as well and the relation
(5.1) holds for all γ ∈ (0,1) and z ∈ C

+ for such functions. We again denote these
functions, defined on C

+, by φµ(z) and φγ (z).
Consider the p-measures µk, k = 1, . . . , determined via

φµk
(z) := 1

πk

φγk
(πkz) = 1

πk

φµ(πkz) − 1

πk−1
φµ(πk−1z), z ∈ C

+,

where πk = ∏k
l=1 γl and γl = 1 − 1/(l + 1),π0 := 1.

Voiculescu’s transform of the p-measure µ(n) := µn1 � . . . � µnn with µnk,

k = 1, . . . , n, defined at the beginning of this section using bn := 1/πn, has
the form

φµ(n)(z) =
n∑

k=1

(
πn

πk

φµ

(
πk

πn

z

)
− πn

πk−1
φµ

(
πk−1

πn

z

))
(5.2)

= φµ(z) − πnφµ

(
z

πn

)
, z ∈ C

+.
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From (5.2) and Proposition 3.5 it follows that µ(n) → µ weakly as n → ∞. It is
not difficult to verify that the functions φµnk

(z) converge to zero on every compact
set of C

+ uniformly in k,1 ≤ k ≤ n. This implies that |Fµnk
(i)− i| → 0 as n → ∞

uniformly in k = 1, . . . , n, and hence |Gµnk
(i) + i| → 0 as n → ∞ uniformly in

k = 1, . . . , n. Finally note that the p-measures µn1, . . . ,µnn are infinitesimal. This
follows directly from formula (4.5) for the measures µnk, k = 1, . . . , n.

Necessity. Let µ ∈ L�. This means that there exists a sequence of p-measures
{µn} such that for some suitably chosen sequences of constants {an} and {bn},
bn > 0, the sequence of the measures {µ(n) = δ−an � µn1 � · · · � µnn} converges
weakly to a limit measure µ and that the measures µnk,n ≥ 1, k = 1, . . . , n,
are infinitesimal. By Theorem 2.1, the measure µ is �-infinitely divisible and
φµ = (α, ν).

Consider the sequence of p-measures {δ−an ∗µn1 ∗ · · · ∗µnn}. By Theorem 2.2,
this sequence converges weakly to the p-measure µ∗ ∈ L∗ such that fµ∗ = {α, ν}.
Using the classical arguments on pages 323–324 in [25], Theorem 2.2 and Propo-
sition 3.6, we easily conclude that, for every γ ∈ (0,1), µ = Dγ µ � µγ , where
µγ ∈ M and is �-infinitely divisible. Hence φµγ = (αγ , νγ ) with some αγ ∈ R

and a finite nonnegative measure νγ .
Hence, by these arguments, we have µ∗ = Dγ µ∗ ∗ µ∗

γ for every γ ∈ (0,1),
where µ∗

γ ∈ M and µ∗
γ is ∗-infinitely divisible. Moreover fµ∗

γ
= {αγ , νγ }.

Hence, the theorem is proved. �

The assertion of Remark 2.11 follows from the arguments above.

6. Estimates of convergence in the free central limit theorem. In this sec-
tion we prove Theorem 2.4, Proposition 2.5, Theorem 2.6 and Theorem 2.7. In the
sequel we denote c1, c2, . . . explicit positive absolute constants.

PROOF OF THEOREM 2.4. Denote µ(n) := µn�
n . By Proposition 3.4,

Gµ(n)(z) = 1/Fµ(n)(z), z ∈ C
+, where Fµ(n)(z) := Fµ(Z(

√
nz))/

√
n. In this for-

mula Z(z) ∈ F is the solution of (3.8). Consider the functions S(z) := 1
2(z +√

z2 − 4) and Sn(z) := Z(
√

nz)/
√

n for z ∈ C
+. Note that 1/S(z) = Gµw(z),

where w denotes Wigner semicircle measure. Since Sn ∈ F , we see by Remark 3.1
that there exists a p-measure ν(n) such that 1/Sn(z) = Gν(n)(z).

We obtain the estimate (2.9) for n ≥ n2, where n2 := [c1(|m3(µ)|2 + m4(µ))]
with a sufficiently large positive absolute constant c1. For n ≤ n2, (2.9) holds ob-
viously. Using (2.1), we may write

Z(z)Gµ(Z(z)) = 1 + 1

Z2(z)
+ m3(µ)

Z3(z)
+ 1

Z3(z)

∫
R

u4µ(du)

Z(z) − u
, z ∈ C

+.(6.1)

Equation (3.8) may be rewritten as

Gµ(Z(z))
(
Z(z) − z

) = (n − 1)
(
1 − Z(z)Gµ(Z(z))

)
, z ∈ C

+.(6.2)
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By (6.1) and the definition of Sn(z), (6.2) may be reformulated as(
1 + 1

Z2(
√

nz)
+ m3(µ)

Z3(
√

nz)
+ 1

Z3(
√

nz)

∫
R

u4µ(du)

Z(
√

nz) − u

)(
Sn(z) − z

)
= −n − 1

n

(
1

Sn(z)
+ m3(µ)

Sn(z)Z(
√

nz)
(6.3)

+ 1

Sn(z)Z(
√

nz)

∫
R

u4µ(du)

Z(
√

nz) − u

)
for z ∈ C

+. Rewrite (6.3) in the form(
1 + rn1(z)

)(
Sn(z) − z

) = −
(

1 − 1

n

)
1

Sn(z)

(
1 + rn2(z)

)
,(6.4)

where rn1(z) and rn2(z) are analytic functions on C
+ which, by the inequality

�Z(
√

nz) ≥ √
n�z, z ∈ C

+ [compare with (3.4)], admit the estimates

|rn1(z)| ≤ 1

(�z
√

n)2 + |m3(µ)|
(�z

√
n)3 + m4(µ)

(�z
√

n)4 ,

(6.5)

|rn2(z)| ≤ |m3(µ)|
�z

√
n

+ m4(µ)

(�z
√

n)2 , z ∈ C
+.

Introduce for every α > 0, C
+
α := {z ∈ C :�z > α} and Dα := {z ∈ C :α ≤ �z ≤

1, |�z| ≤ 4}.
By (6.5), |rn1(z)| + |rn2(z)| ≤ 1/10 for z ∈ C

+
a/2, where a =: c2(|m3(µ)| +

m
1/2
4 (µ))/

√
n and c2 > 0 is a sufficiently large absolute constant. Therefore we

conclude from (6.4) that

10−1 ≤ |Sn(z)| ≤ 10, z ∈ Da.(6.6)

From (6.4) we see that the function Sn(z) satisfies the approximate functional
equation

Sn(z) − z = − 1

Sn(z)
+ rn3(z)

Sn(z)
,(6.7)

for z ∈ C
+
a/2, where

rn3(z) := 1 −
(

1 − 1

n

)
1 + rn2(z)

1 + rn1(z)
.

Here rn3(z) is an analytic function on z ∈ C
+
a/2 which is bounded as follows:

|rn3(z)| ≤ 2
(

1

n
+ |rn1(z)| + |rn2(z)|

)
, z ∈ C

+
a/2.(6.8)
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Recalling the definition of the functions rn1(z) and rn2(z), we obtain with the help
of (6.6) and the inequality |Sn(z)| ≥ 1, z ∈ C

+
1 ,

|rn1(z)| ≤ 1

(
√

n|Sn(z)|)2 + |m3(µ)|
(
√

n|Sn(z)|)3 + m4(µ)

(
√

n|Sn(z)|)3
√

n�z
(6.9)

≤ 103
(

1

n
+ |m3(µ)|

n3/2 + m4(µ)

n2�z

)
and

|rn2(z)| ≤ |m3(µ)|√
n|Sn(z)| + m4(µ)

n|Sn(z)|�z
≤ 10

( |m3(µ)|√
n

+ m4(µ)

n�z

)
for z ∈ Da ∪ C

+
1 . Applying these estimates to (6.8), we finally have

|rn3(z)| ≤ 3 · 103
( |m3(µ)|√

n
+ m4(µ)

n�z
+ 1

n

)
, z ∈ Da ∪ C

+
1 .(6.10)

Solving (6.7), we see that

Sn(z) = 1
2

(
z ± √

ρn(z)
)
, z ∈ C

+
a/2,

where ρn(z) := z2 − 4 + 4rn3(z). Note that the function ρn(z) is nonzero on
the half-plane C

+
a/2. Indeed, let ρn(w) = 0 for some w ∈ C

+
a/2. Then, by (6.7),

S2
n(w) − wSn(w) = −w2/4 and we have Sn(w) = w/2. But the function Sn(z)

satisfies the inequality �Sn(z) ≥ �z, z ∈ C
+, a contradiction. We define the func-

tion
√

ρn(z) on C
+
a/2, taking the branch of

√
ρn(z) such that

√
ρn(i) ∈ C

+. Since

Sn(z) ∈ N , we see that Sn(z) = 1
2(z + √

ρn(z)) for z ∈ C
+
a/2.

For z ∈ C
+
a/2, using the previous formula for Sn(z) and S(z) = 1

2(z + √
z2 − 4),

we write
1

Sn(z)
− 1

S(z)
= S(z) − Sn(z)

S(z)Sn(z)
(6.11)

= 1

S(z)Sn(z)
· 2rn3(z)√

z2 − 4 + √
z2 − 4 + 4rn3(z)

.

Since, for z ∈ C,0 < �z ≤ 1, |z2 − 4| ≥ m(z) := max{�z, ((�z)2 − 5)+}, where
for x ∈ R, (x)+ := max{0, x}, we obtain from (6.10) the following inequality:∣∣∣∣ rn3(z)

z2 − 4

∣∣∣∣ ≤ 3 · 103

m(z)

( |m3(µ)|√
n

+ 2m4(µ)

n�z

)
≤ 1

10
,(6.12)

z ∈ Da ∪ {z ∈ C :�z = 1}.
Hence we get, for z ∈ Da or for �z = 1,∣∣√z2 − 4 +

√
z2 − 4 + 4rn3(z)

∣∣
=

√
|z2 − 4|∣∣1 +

√
1 + 4rn3(z)/(z2 − 4)

∣∣ ≥
√

|z2 − 4|.
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Using this estimate we deduce from (6.10) and (6.11), for z ∈ (Da ∪ {z ∈ C :�z =
1}), ∣∣∣∣ 1

Sn(z)
− 1

S(z)

∣∣∣∣ ≤ 2
|rn3(z)|

|√z2 − 4|
1

|S(z)||Sn(z)|
(6.13)

≤ 6 · 103
√

m(z)

( |m3(µ)|√
n

+ 2m4(µ)

n�z

)
1

|S(z)||Sn(z)| .

Recall that 1/S(z) = Gµw(z) and 1/Sn(z) = Gν(n)(z), where ν(n) is a p-
measure.

Since, for u ∈ R, m(u+i) = max{1, (u2 −5)+}, |Sn(u+i)| ≥ 1 and |S(u+i)| ≥
1
2

√
1 + ((u − 4)+)2, we conclude, using (6.13),∫

R

∣∣Gµw(u + i) − Gν(n)(u + i)
∣∣du

≤ c

( |m3(µ)|√
n

+ m4(µ)

n

)∫
R

du

1 + u2

(6.14)

≤ c√
n

(
|m3(µ)| + m4(µ)√

n

)
≤ c√

n

(|m3(µ)| + (m4(µ))1/2)
, n ≥ n2.

Since, for z ∈ Da ,
√

m(z) ≥ √�z, |Sn(z)| ≥ 1/10 and |S(z)| ≥ 1/10, we obtain
from (6.13), for x ∈ [−2,2],∫ 1

a

∣∣Gµw(x + iu) − Gν(n)(x + iu)
∣∣du

≤ c

∫ 1

a

( |m3(µ)|√
nu

+ m4(µ)

nu3/2

)
du

(6.15)

≤ c√
n

(
|m3(µ)| + m4(µ)√

na

)
≤ c√

n

(|m3(µ)| + (m4(µ))1/2)
, n ≥ n2.

Now we consider the representation

Gµ(n)(z) − Gν(n)(z) = rn1(z)

Sn(z)
, z ∈ C

+.(6.16)

Relation (6.13) leads to the following estimate, for z ∈ C with �z = 1:

1

2

(
1 + (|�z| − 4)+

) ≤ |S(z)| − 6 · 103
√

nm(z)

(
|m3(µ)| + 2m4(µ)√

n

)
≤ |Sn(z)|(6.17)
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≤ |S(z)| + 6 · 103
√

nm(z)

(
|m3(µ)| + 2m4(µ)√

n

)
≤ 2

(
1 + (|�z| − 4)+

)
.

Using (6.9), (6.16) and (6.17), we easily obtain the following inequality:∫
R

∣∣Gµ(n)(u + i) − Gν(n)(u + i)
∣∣du

≤ c

n

(
1 + |m3(µ)|√

n
+ m4(µ)

n

)∫
R

du

1 + u2(6.18)

≤ c

n

( |m3(µ)|√
n

+ m4(µ)

n

)
≤ c

n
, n ≥ n2,

and for x ∈ [−2,2], using (6.9) and the estimate |Sn(z)| ≥ 1/10, z ∈ Da , we de-
duce ∫ 1

a

∣∣Gµ(n)(x + iu) − Gν(n)(x + iu)
∣∣du

≤ c

n

(
1 + |m3(µ)|√

n
+ m4(µ)| loga|

n

)
(6.19)

≤ c

n

(|m3(µ)| + (m4(µ))1/2)
, n ≥ n2.

In order to prove the upper bound of �(µ(n),µw) for n ≥ n2, we apply
Lemma 3.2 with v = a. Since m4(µ) < ∞, it is well known that m2(µ

(n)) < ∞
and the assumption (3.6) obviously holds. Therefore Lemma 3.2, (6.14), (6.15),
(6.18) and (6.19) together imply the estimate (2.9).

Hence, Theorem 2.4 is proved. �

PROOF OF PROPOSITION 2.5. Let µ be a measure satisfying the assumptions
of Proposition 2.5. The corresponding transforms are given by

Gµ(z) = q

z + √
p/q

+ p

z − √
q/p

and Fµn(z) = z − 1

n
· 1

z + c̃/
√

n
,

where c̃ := (p −q)/
√

pq . With the help of simple calculations we find the explicit
form of the functions φµn(z) and thus of φµn�

n
(z) = nφµn(z). From this relation

we obtain the explicit form of Gµn�
n

(z) and, using the Stieltjes–Perron inversion
formula (3.5), we have

µn�
n ((−∞, u)) = 1

2π

∫ u

x1

p(x)dx, x1 < u < x2(6.20)

where p(x) :=
√

(x − x1)(x2 − x)

1 − x(x/n + c̃/
√

n)
.
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In this formula,

x1 := − c̃√
n

− 2

√
1 − 1

n
, x2 := − c̃√

n
+ 2

√
1 − 1

n
.

It is not difficult to verify that the assertion of the proposition follows from (6.20).
For details of these calculations, see [21]. �

PROOF OF THEOREM 2.6. By Proposition 3.3, Gµ(n)(z) = 1/Fµ(n)(z), z ∈
C

+, where Fµ(n)(z) := Fµ1(Z1(Bnz))/Bn = · · · = Fµn(Zn(Bnz))/Bn. In this for-
mula Zj(z), j = 1, . . . , n, are in the class F and are the solutions of the functional
equations (3.7). Without loss of generality, we assume that minj=1,...,n m2(µj ) ≥ 1
and minj=1,...,n m2(µj ) = m2(µ1). Denote Sn(z) := Z1(Bnz)/Bn and let, as in
the proof Theorem 2.4, S(z) := 1

2(z + √
z2 − 4). Note that 1/Sn(z) = Gν(n) for

some p-measure ν(n).
We prove inequality (2.10) for Ln ≤ c with a sufficiently small positive absolute

constant c. For Ln ≥ c (2.10) holds obviously. From (3.7) we have the relation

Z1(z) − z = Fµ2(Z2(z)) − Z2(z) + Fµ3(Z3(z)) − Z3(z) + · · ·
(6.21)

+ Fµn(Zn(z)) − Zn(z)

and

Fµ1(Z1(z)) = Fµ2(Z2(z)) = · · · = Fµn(Zn(z)), z ∈ C
+.(6.22)

By (6.1), we note that

Fµj
(Zj (z)) − Zj(z) = 1 − Zj(z)Gµj

(Zj (z))

Zj (z)Gµj
(Zj (z))

Zj (z)

(6.23)

= − rn,j (z)

1 + rn,j (z)
Zj (z), z ∈ C

+,

where

rn,j (z) := 1

Zj(z)

∫
R

u2µj(du)

Zj (z) − u
= m2(µj )

Z2
j (z)

+ 1

Z2
j (z)

∫
R

u3µj(du)

Zj (z) − u
.(6.24)

In addition, by (6.22), we have

Z1(z)

Zj (z)
= Z1(z)Gµ1(Z1(z))

Zj (z)Gµj
(Zj (z))

= 1 + rn,1(z)

1 + rn,j (z)
, z ∈ C

+.(6.25)

Since �Zj(Bnz) ≥ Bn�z, we obtain from (6.24) that |rn,j (Bnz)| ≤ 1/10,

j = 1, . . . , n, for �z ≥ c3Mn, where Mn := (maxj=1,...,n m2(µj ))
1/2/Bn and c3 is
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a sufficiently large absolute constant. Moreover, we deduce from (6.23) and (6.24)
the following estimates:∣∣∣∣Fµj

(Zj (Bnz)) − Zj(Bnz) + m2(µj )

Zj (Bnz)

∣∣∣∣
≤ β3(µj )

|Zj(Bnz)|Bn�z
(6.26)

+ 2m2(µj )

|Zj(Bnz)|2Bn�z

(
m2(µj ) + β3(µj )

Bn�z

)
and ∣∣∣∣Fµj

(Zj (Bnz)) − Zj(Bnz) + m2(µj )

Zj (Bnz)

∣∣∣∣
(6.27)

≤ β3(µj )

|Zj(Bnz)|Bn�z
+ 2

|Zj(Bnz)|3
(
m2(µj ) + β3(µj )

Bn�z

)2

for �z ≥ a1 := c3Mn. In the same way we obtain from (6.25) the following in-
equalities: ∣∣∣∣Z1(Bnz)

Zj (Bnz)
− 1

∣∣∣∣ ≤ 2

Bn�z

(
m2(µ1)

|Z1(Bnz)| + m2(µj )

|Zj(Bnz)|
)

≤ 1

10
(6.28)

for �z ≥ a1 and j = 2, . . . , n. Using (6.28) we conclude that, for �z ≥ a1,∣∣∣∣ m2(µ2)

Z2(Bnz)
+ · · · + m2(µn)

Zn(Bnz)
− B2

n − m2(µ1)

Z1(Bnz)

∣∣∣∣
≤

n∑
j=2

2m2(µj )

|Z1(Bnz)|Bn�z

(
m2(µ1)

|Z1(Bnz)| + m2(µj )

|Zj(Bnz)|
)

(6.29)

≤ 8

|Z1(Bnz)|2Bn�z

n∑
j=2

m2
2(µj ).

In view of (6.26), (6.28) and (6.29), (6.21) yields for �z ≥ a1 the functional
equation

Sn(z) − z = −1 − r̂n(z)

Sn(z)
,(6.30)

where r̂n(z) is an analytic function on C
+
a1

which admits the upper bound

|̂rn(z)| ≤ 2

B3
n�z

n∑
j=1

β3(µj ) + 12

(B2
n�z)2

n∑
j=1

m2
2(µj )

+ 4

B5
n(�z)3

n∑
j=1

m2(µj )β3(µj ) + m2(µ1)

B2
n
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for �z ≥ a1. Using the well-known inequalities

1

B4
n

n∑
j=1

m2
2(µj ) ≤ min{M2

n,L4/3
n },

(6.31)
1

B5
n

n∑
j=1

m2(µj )β3(µj ) ≤ M2
nLn, Ln ≥ 1√

n
,

we finally arrive at

|̂rn(z)| ≤ 2Ln

�z
+ 12 min{M2

n,L
4/3
n }

(�z)2 + 4M2
nLn

(�z)3 + L2
n ≤ 20

c4
<

1

10
(6.32)

for �z ≥ a2 := c4(Ln + min{Mn,L
2/3
n } + M

2/3
n L

1/3
n ), where c4 > c3 is a suffi-

ciently large absolute constant. It follows from (6.30) and (6.32) that

10−1 ≤ |Sn(z)| ≤ 10, z ∈ Da2,(6.33)

where the closed domain Da2 is defined in the proof of Theorem 2.4. Using this
inequality and (6.27)–(6.29), we may improve the estimate (6.32) for z ∈ Da2 .
Using as well (6.31) and the well-known estimate

1

B6
n

n∑
j=1

β2
3 (µj ) ≤ L2

n,

we obtain the following bound:

|̂rn(z)| ≤ 2

B3
n�z

n∑
j=1

β3(µj )

+ 104

B4
n�z

n∑
j=1

m2
2(µj ) + 104

B6
n(�z)2

n∑
j=1

β2
3 (µj ) + m2(µ1)

B2
n

(6.34)

≤ 5
Ln

�z
, z ∈ Da2 .

By (6.32), this estimate holds for z ∈ C
+ such that �z = 1.

Now we repeat the arguments of the proof of Theorem 2.4. Solving (6.30) we
see that

Sn(z) = 1
2

(
z + √

ρ̂n(z)
)
, �z ≥ a2,(6.35)

where ρ̂n(z) := z2 − 4 + 4̂rn(z).
Write the formula, for z ∈ C

+
a2

,

1

Sn(z)
− 1

S(z)
= S(z) − Sn(z)

S(z)Sn(z)
(6.36)

= 1

S(z)Sn(z)
· r̂n(z)√

z2 − 4 + √
z2 − 4 + 4̂rn(z)

.
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Let a3 := 3c4L
1/2
n . Note that the well-known inequality Mn ≤ L

1/3
n implies

a2 < a3. Recalling that |z2 − 4| ≥ m(z) := max{�z, ((�z)2 − 5)+},0 < �z ≤ 1,
we deduce from (6.34) that∣∣∣∣ r̂n(z)

z2 − 4

∣∣∣∣ ≤ 5Ln

m(z)�z
≤ 1

10
, z ∈ Da3 .

Therefore we easily get, for z ∈ Da3 ∪ {z ∈ C : �z = 1},∣∣√z2 − 4 +
√

z2 − 4 + 4̂rn(z)
∣∣ ≥

√
|z2 − 4| ≥ √

m(z).

Applying this estimate together with (6.34) to (6.36), we conclude that, for z ∈
Da3 ∪ {z ∈ C : �z = 1},∣∣∣∣ 1

Sn(z)
− 1

S(z)

∣∣∣∣ ≤ |̂rn(z)|
|√z2 − 4|

1

|S(z)||Sn(z)|
(6.37)

≤ 5
Ln√

m(z)�z|S(z)||Sn(z)| .
We conclude in the same way as in (6.14) and (6.15), using (6.37), that is,∫

R

∣∣Gµw(u + i) − Gν(n)(u + i)
∣∣du ≤ cLn

∫
R

du

1 + u2 ≤ cLn(6.38)

and, for x ∈ [−2,2],∫ 1

a3

∣∣Gµw(x + iu) − Gν(n)(x + iu)
∣∣du ≤ c

∫ 1

a3

Ln

u3/2 du ≤ c
Ln

a
1/2
3

≤ cL3/4
n .(6.39)

Now we write

Gµ(n)(z) − Gν(n)(z) = rn,1(Bnz)

Sn(z)
, z ∈ C

+.(6.40)

We deduce from (6.37) the following estimate, for z ∈ Da3 ∪ {z ∈ C :�z = 1}:
1

2

(
1 + (|�z| − 4)+

) ≤ |S(z)| − 5Ln√
m(z)�z

≤ |Sn(z)|
(6.41)

≤ |S(z)| + 5Ln√
m(z)�z

≤ 2
(
1 + (|�z − 4)+

)
.

In addition we have, by (6.24),

|rn,1(Bnz)| ≤ 1

(Bn|Sn(z)|)2

(
m2(µ1) + β3(µ1)

Bn�z

)
,(6.42)

z ∈ Da3 ∪ {z ∈ C :�z = 1}.
Using (6.40)–(6.42), we easily obtain the following inequalities:∫

R

∣∣Gµ(n)(u + i) − Gν(n)(u + i)
∣∣du ≤ c

(
1

n
+ Ln

)∫
R

du

1 + u2 ≤ cLn(6.43)



LIMIT THEOREMS IN FREE PROBABILITY THEORY 87

and, for x ∈ [−2,2],∫ 1

a3

∣∣Gµ(n)(x + iu) − Gν(n)(x + iu)
∣∣du

(6.44)

≤ c

(
1

n
+ Ln| loga3|

)
≤ cLn| logLn|.

In order to prove the upper estimate of �(µ(n),µw) we apply again Lemma 3.2
with v = a3. Since β3(µj ) < ∞, j = 1, . . . , it is well known that m2(µ

(n)) < ∞
and the assumption (3.6) holds. Lemma 3.2, (6.38), (6.39), (6.43) and (6.44) to-
gether imply the estimate (2.10) and the theorem is proved. �

PROOF OF THEOREM 2.7. For k = 1, . . . , n denote µ̂nk× ((−∞, x)) :=
µk((−∞, nx + ank)), x ∈ R, where ank := ∫

(−n,n) uµk(du). We shall now verify
the condition (4.1) with kn = n for the measures µ̂nk . We obtain

εnk =
∫

R

u2

1 + u2 µ̂nk(du) =
∫

R

(u − ank)
2

n2 + (u − ank)2 µk(du)

≤ 1

n2

∫
(−n,n)

(u − ank)
2µk(du) +

∫
{|u|≥n}

µk(du).

Therefore (4.1) follows from (2.12) and (2.14). Moreover, it follows from (2.12)
and (2.14) that

n∑
k=1

εnk ≤ ηn where ηn := ηn1 + ηn3.(6.45)

In the proof of this theorem we use the notation of Section 4 with kn = n and
τ = 1.

From Proposition 3.3 we deduce the relations (4.13) and (4.14) with kn = n. In
addition Fµ̂n(z) = Fµ̂n1(Zn1(z)), z ∈ C

+, where µ̂n := µ̂n1 � · · · � µ̂nn. By (4.12)
and (6.45), we get

|φµ̂n1�···�µ̂nn(z)| ≤ |φµ̂n1(z)| + . . . + |φµ̂nn(z)|
(6.46)

≤ c

n∑
k=1

εnk ≤ cηn, |z − i| ≤ 1/2.

Since

φµ̂n1�···�µ̂nn(z) = (Fµ̂n1(Zn1))
(−1)(z) − z = Z

(−1)
n1

(
F

(−1)
µ̂n1

(z)
) − z

for |z − i| ≤ 1/2, we have, by (4.10), the relation

φµ̂n1�···�µ̂nn(Fµ̂n1(z)) = Z
(−1)
n1 (z) − Fµ̂n1(z)
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for |z − i| ≤ 1/4. Therefore we conclude by (4.10) and (6.46) that the function
Z

(−1)
n1 (z) is analytic in the disk |z− i| < 1/4 and |Z(−1)

nk (z)−z)| ≤ cηn for |z− i| <
1/4. From this relation we see that

|Zn1(z) − z| ≤ cηn, |z − i| ≤ 1/8.(6.47)

The function Zn1(z) admits the representation (4.19). By (6.47), |dn1| ≤ cηn and
νn1(R) ≤ cηn. Similarly to (4.10) we obtain

|Zn1(z) − z| ≤ cηn

(
1 + 1 + |z|2

�z

)
, z ∈ C

+.(6.48)

Then we have, using (4.10) and (6.48),

|Fµ̂n1(Zn1(z)) − Zn1(z)| ≤ cηn

(
1 + 1 + |Zn1(z)|2

�Zn1(z)

)
≤ cη2/3

n(6.49)

for z = x + iη
1/3
n , η

1/6
n ≤ x ≤ η

1/6
n . For such z we finally get

|Fµ̂n(z) − z| ≤ cη2/3
n .(6.50)

Since Fµ̂n(z) ∈ F and therefore |Fµ̂n(z)| ≥ �z, z ∈ C
+, we conclude from (6.50)

that, for z = x + iη
1/3
n , η

1/6
n ≤ x ≤ η

1/6
n ,∣∣∣∣Gµ̂n(z) − 1

z

∣∣∣∣ = |Fµ̂n(z) − z|
|Fµ̂n(z)||z|

≤ c.(6.51)

From (6.51) we get, for sufficiently large n ≥ n3 ≥ c,

− 1

π

∫
{|x|≤η

1/6
n }

�Gµ̂n(x + iη1/3
n ) dx

(6.52)

≥ 1

π

∫
{|x|≤η

1/6
n }

η
1/3
n

x2 + η
2/3
n

dx − cη1/6
n ≥ 1 − cη1/6

n .

On the other hand, we obtain

− 1

π

∫
|x|≤η

1/6
n

�Gµ̂n(x + iη1/3
n ) dx

= 1

π

∫
R

(
arctan

η
1/6
n − u

η
1/3
n

+ arctan
η

1/6
n + u

η
1/3
n

)
µ̂n(du)

(6.53)

≤ µ̂n({|u| ≤ 2η1/6
n }) + 1 − 2

π
arctan

1

η
1/6
n

≤ µ̂n({|u| ≤ 2η1/6
n }) + cη1/6

n .

From (6.52) and (6.53), for sufficiently large n ≥ n4 ≥ c, we have

µ̂n({|u| ≤ 2η1/6
n }) ≥ 1 − cη1/6

n
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which immediately implies L(µ̂n, δ0) ≤ cη
1/6
n . By the definition of µ(n) and µ̂n,

we see that L(µ(n), µ̂n) ≤ ηn2. The estimate (2.15) is now an obvious consequence
of the last two estimates.

Thus, Theorem 2.7 is proved. �
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