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RANDOM MATRIX CENTRAL LIMIT THEOREMS FOR
NONINTERSECTING RANDOM WALKS

BY JINHO BAIK1 AND TOUFIC M. SUIDAN2

University of Michigan, Ann Arbor and University of California, Santa Cruz

We consider nonintersecting random walks satisfying the condition that
the increments have a finite moment generating function. We prove that in a
certain limiting regime where the number of walks and the number of time
steps grow to infinity, several limiting distributions of the walks at the mid-
time behave as the eigenvalues of random Hermitian matrices as the dimen-
sion of the matrices grows to infinity.

1. Introduction. It is known that various limiting local statistics arising in
random matrix theory are independent of the precise structure of the randomness
of the ensemble [11, 17, 18, 21, 32, 44, 48]. For example, consider the set of
Hermitian matrices equipped with a probability measure invariant under unitary
conjugation. For a very general class of measures, as the size of the matrix be-
comes large, the largest eigenvalue converges in distribution to the Tracy–Widom
distribution, while the gap probability in the “bulk scaling limit” converges to a
(different) universal distribution.

It has been discovered that the limiting distributions arising in random matrix
theory also describe limit laws of a number of specific models in combinatorics,
probability theory and statistical physics; apparently, these models are not express-
ible in terms of random matrix ensembles. Examples include the longest increasing
subsequence of random permutations [5, 13, 31, 43], random Aztec and Hexagon
tiling models [9, 33], last passage percolation models with geometric and expo-
nential random variables [30], polynuclear growth models [34, 45] and vicious
walker models [3, 27]. For these models, the distribution function of interest was
computed explicitly in terms of certain determinantal formulae and the asymp-
totic analysis of these determinants yielded the desired limit law. Nevertheless,
it is believed that such limit laws should hold for a class of models much wider
than the explicitly computable (“integrable”) models. One such universality result
for models “outside random matrices” was obtained in [10, 12, 50] for thin last
passage percolation models with general random variables.
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This paper studies nonintersecting random walks and proves random matrix
central limit theorems in a certain limiting regime. The motivation for this study
comes from two sources. The first is the fact that the eigenvalue density func-
tion of the Gaussian unitary ensemble can be described in terms of a noninter-
secting Brownian bridge process [22, 33]. Namely, consider n standard Brownian
bridge processes (B

(1)
t , . . . ,B

(n)
t ) conditioned not to intersect during the time in-

terval (0,2) (i.e., B
(1)
t > · · · > B

(n)
t for 0 < t < 2), all starting from and ending

at the origin. A simple computation shows that the distribution of {B(1)
1 , . . . ,B

(n)
1 }

at time 1 is the same as the distribution of the eigenvalues of the n × n Gaussian
unitary ensemble; see Section 1.1.1 below for the computation. Hence, it is nat-
ural to ask if the same limit laws hold for general nonintersecting random walks.
The second motivation is that a number of the aforementioned specific probability
models for which the random matrix central limit theorem was obtained are indeed
interpreted in terms of nonintersecting random walks. We mention a few of them
in the following subsection.

1.1. Motivating examples. We begin by introducing two distribution func-
tions. Define the kernels

A(a, b) = Ai(a)Ai′(b) − Ai′(a)Ai(b)

a − b
, S(a, b) = sin(π(a − b))

π(a − b)
.(1)

Set

FTW(ξ) = det
(
1 − A|(ξ,∞)

)
, FSine(η) = det

(
1 − S|[−η,η]

)
.(2)

The Tracy–Widom distribution, FTW, is the limiting distribution of the largest
eigenvalue and FSine is the limiting distribution for the gap probability of the eigen-
values “in bulk” in Hermitian random matrix theory.

1.1.1. Nonintersecting Brownian bridge process. Let Bt = (B
(1)
t , . . . ,B

(n)
t )

be an n-dimensional standard Brownian motion. We compute the density func-
tion of B1 conditioned that B

(1)
t > B

(2)
t > · · · > B

(n)
t for 0 < t < 2 and B0 = B2 =

(0, . . . ,0). Let pt(x, y) = 1√
2πt

e−(x−y)2/(2t). The argument of Karlin and McGre-
gor [36] implies that the density function of n one-dimensional nonintersecting
Brownian motions at time t which start from (x1, . . . , xn), where x1 > · · · > xn, is
given by

ft (b1, . . . , bn) = det(pt (xi, bj ))
n
i,j=1, b1 > · · · > bn.(3)

Hence, for b1 > · · · > bn, the density function of B1 equals

f (b1, . . . , bn) = lim
x,y→0

det(p1(xi, bj ))
n
i,j=1 · det(p1(bi, yj ))

n
i,j=1

det(p2(xi, yj ))
n
i,j=1

(4)

= 2n(n−1)/2

πn/2∏n−1
j=1 j !

∏
1≤i<j≤n

|bi − bj |2
n∏

j−1

e
−b2

j ,
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which is the density function of the eigenvalues of n × n Hermitian matrices from
the Gaussian unitary ensemble. Therefore, combined with the well-known results
of random matrix theory,

lim
n→∞ P

((
B

(1)
1 − √

2n
)√

2n1/6 ≤ x
)= FTW(x).(5)

1.1.2. Longest increasing subsequence and Plancherel measure on partitions.
The longest increasing subsequence problem can be formulated in the following
manner. Denote by Sn the symmetric group on n symbols endowed with uniform
measure. Given π ∈ Sn, a subsequence π(i1), . . . , π(ir) is called an increasing
subsequence if i1 < · · · < ir and π(i1) < · · · < π(ir). Denote by �n(π) the length
of the longest increasing subsequence (this subsequence need not be unique). For
applications of �n and activities around the asymptotic behavior of �n, see, for
example, [2, 5, 16]. In particular, in [5], the following limit theorem is:

lim
n→∞ P

(
�n(π) − 2

√
n

n1/6 < x

)
= FTW(x).(6)

A closely related object is the uniform measure on the set of pairs of stan-
dard Young tableaux having the same shape (equivalently, the so-called Plancherel
measure on the set of partitions). Given a partition of n, λ = (λ1, . . . , λr), where
λ1 ≥ · · · ≥ λr > 0 and λ1 + · · · + λr = n, a standard Young tableaux of shape λ

consists of r rows of boxes with distinct entries from {1, . . . , n} such that the rows
are left-justified, the ith row has λi boxes and the entries are constrained to in-
crease along rows and columns from left to right and top to bottom, respectively.
These objects will be called row-increasing Young tableaux if the rows increase
but the columns do not necessarily increase. The Robinson–Schensted bijection
implies that the number of boxes in the top row of the pair of standard Young
tableaux corresponding to π ∈ Sn is equal to �n(π) [49]. Therefore, the distribu-
tion of �n is the same as the distribution of the number of boxes in the top row
of the pair of standard Young tableaux having the same, shape chosen uniformly.
This correspondence provides a representation of �n which is computable in terms
of explicit formulae if the number of standard Young tableaux of a given shape is
computable.

One way (among many) to compute the number of standard Young tableaux of
shape λ is by means of a nonintersecting path argument [35]. Let N1

t , . . . ,Nr
t be

independent rate-1 Poisson processes with initial conditions Ni
0 = 1 − i for i =

1,2, . . . , r . Define Aλ to be the event that Ni
1 = λi + (1 − i) for all i = 1,2, . . . , r .

For almost every element of Aλ (the elements of Aλ where no two jumps of these
processes occur at the same time), there is a natural map to a row-increasing Young
tableaux. The map is defined as follows. If Ni jumps first, then place a 1 in the left-
most box in row i; if Nj jumps second, then place a 2 in the first box of row j

if j �= i and a 2 in the second box of row i if j = i. Continue in this fashion
to produce a row-increasing Young tableaux of shape λ. It is not hard to show
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that this map induces the uniform probability measure [when properly normalized
by P(Aλ)] on the row-increasing Young tableaux. The subset Bλ ⊂ Aλ which is
mapped to the standard Young tableaux of shape λ corresponds to the set of real-
izations whose paths do not intersect each other for all t ∈ [0,1]. Since the map-
ping described induces uniform measure on the row-increasing Young tableaux of
shape λ and the standard Young tableaux correspond to nonintersecting path real-
izations, Bλ, the number of standard Young tableaux of shape λ, can be computed
by evaluating

|row-increasing Young tableaux of shape λ|P(Bλ)

P(Aλ)
.(7)

The denominator of (7) is e−r ∏r
i=1

1
λi ! , by definition of Poisson processes and

the independence of the Ni , while |row-increasing Young tableaux of shape λ| =
n!

λ1!···λr ! by elementary combinatorics. On the other hand, via the Karlin–McGregor
formula [36],

P(Bλ) = det
(

e−1

(λi − i + j)!
)r

i,j=1
.(8)

Hence, the number of standard Young tableaux of shape λ is n!det( 1
(λi−i+j)!)

r
i,j=1.

In tandem with the RSK correspondence, this formula leads to an algebraic for-
mula for the number of π ∈ Sn for which �n(π) ≤ m. Moreover, a slight extension
of this argument shows that result (6) can be stated in terms of the top curve of the
nonintersecting Poisson processes if these processes were forced to return to their
initial locations at time 2 by imposing that their dynamics between times 1 and 2
have negative rather than positive jumps. The asymptotic behavior of other curves
can also be studied [6, 7, 13, 31, 43].

1.1.3. Symmetric simple random walks and random rhombus tilings of a
hexagon. Consider n symmetric simple (Bernoulli) random walks S(m) =
(S(1)(m), . . . , S(n)(m)), conditioned not to intersect and such that S(0) = (2(n −
1),2(n − 2), . . . ,0) = S(2k). Any realization of such walks is in one-to-one cor-
respondence with a rhombus tiling of a hexagon with side lengths k, k, n, k, k, n.
Again, using the argument of Karlin and McGregor, the distribution of S(k) can be
expressed in terms of a determinant. This determinant was significantly simplified
and was shown to be related to the so-called Hahn orthogonal polynomials by Jo-
hansson [33]. A further asymptotic analysis of the Hahn polynomials [8, 9] shows
that as n, k → ∞ such that k = O(n), the top walk S(1)(k) converges to FTW and
the gap distribution “in bulk” converges to a discrete version of FSine. A similar
asymptotic result was also obtained for domino tilings of an Aztec diamond [33].

Certain polynuclear growth models, last passage percolation problems and a bus
system problem [4, 34, 42, 46] have also been analyzed in depth using noninter-
secting path techniques. In each of the cases described above, the random walks
are very specific and the analysis relies heavily on their particular properties.
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1.2. Statement of theorems. Let k be a positive integer. Let

xi = 2i − k

k
, i ∈ {0, . . . , k}.(9)

Note that xi ∈ [−1,1] for all i. Let {Y j
l }k,Nk

j=0,l=1 be a family of independent iden-
tically distributed random variables where Nk is a positive integer. Assume that
EY

j
l = 0 and Var(Y j

l ) = 1. Further, assume that there exists λ0 > 0 such that

E(eλY
j
l ) < ∞ for all |λ| < λ0.

Define the random walk process S(t) = (S0(t), . . . , Sk(t)) by

Sj (t) = xj +
√

2

Nk

(|tNk/2|∑
i=1

Y
j
i +

(
tNk

2
−
⌊
tNk

2

⌋)
Y

j
|tNk/2|+1

)
(10)

for t ∈ [0,2],
which starts at Sj (0) = xj . For Nk equally spaced times, Sj is given by

Sj

(
2

Nk

l

)
= xj +

√
2

Nk

(Y
j
1 + · · · + Y

j
l ), l = 1,2, . . . ,Nk.(11)

For t between 2
Nk

l and 2
Nk

(l + 1), Sj (t) is simply defined by linear interpolation.

Let (C([0,2];R
k+1),C) be the family of measurable spaces constructed from

the continuous functions on [0,2] taking values in R
k+1 equipped with their Borel

sigma algebras (generated by the sup norm). Let Ak,Bk ∈ C be the events defined
by

Ak = {y0(t) < · · · < yk(t) for t ∈ [0,2]},(12)

Bk = {
yi(2) ∈ [xi − hk, xi + hk] for i ∈ {0, . . . , k}},(13)

where hk > 0. The results of this paper focus on the process S(t) conditioned on
the event Ak ∩ Bk , where hk � 2

k
. In other words, the particles never intersect and

all particles essentially return to their original locations at the final time 2.
The main results of this paper state that under certain technical conditions on hk

and Nk , as k → ∞, the locations of the particles at the half time (t = 1) behave
statistically, after suitable scaling, like the eigenvalues of a large random Hermitian
matrix from the Gaussian unitary ensemble. The conditions for hk and Nk are
that {hk}k>0 is a sequence of positive numbers and that {Nk}k>0 is a sequence of
positive integers satisfying

hk ≤ (2k)−2k2
and Nk ≥ h

−4(k+2)
k .(14)

Let Ck,Dk ∈ C be defined by

Ck =
{
yk(1) ≤ √

2k + ξ√
2k1/6

}
,(15)

Dk =
{
yi(1) /∈

[
− πη√

2k
,

πη√
2k

]
for all i ∈ {0, . . . , k}

}
,(16)
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where ξ and η > 0 are fixed real numbers. The event Ck is a constraint on the
location of the rightmost particle and Dk is the event that no particle is in a small
neighborhood of the origin at time 1.

THEOREM 1 (Edge). Let Pk be the probability measure induced on (C([0,2];
R

k+1),C) by the random walks {S(t) : t ∈ [0,2]}. Let {hk}k>0 and {Nk}k>0 sat-
isfy (14). Then

lim
k→∞Pk(Ck|Ak ∩ Bk) = FTW(ξ).(17)

A similar theorem holds for the bulk.

THEOREM 2 (Bulk). Let Pk be the probability measure induced on (C([0,2];
R

k+1),C) by the random walks {S(t) : t ∈ [0,2]} and let {hk}k>0 and {Nk}k>0
satisfy (14). Then

lim
k→∞Pk(Dk|Ak ∩ Bk) = FSine(η).(18)

The proofs have a two-step strategy. The first step is to show that under the con-
ditions of the theorems, the process S(t) is well approximated by nonintersecting
Brownian bridge processes starting and ending at the same positions. This proof
relies on the Komlos–Major–Tusnady (KMT) theorem. The second step is to com-
pute the limiting distributions of the nonintersecting Brownian bridge processes
and prove that these distributions are indeed FTW or FSine. This process is quite
similar to the one discussed in Section 1.1.1, with the minor change that the Brown-
ian bridge processes start and end at equally spaced locations, rather than at the
same location. This change results in a Coulomb-gas density with the so-called
Stieltjes–Wigert potential instead of the quadratic potential which appears in the
GUE case. Such a nonintersecting Brownian bridge process was also considered
in [24, 26] and the connection to the Stieltjes–Wigert potential was made in [26]
in order to compute the partition function and the limiting density of states. How-
ever, the edge and bulk scaling limits of the system had not been worked out. This
paper obtains the asymptotics of the orthogonal polynomials with respect to the
Stieltjes–Wigert weight by using the Riemann–Hilbert method. As a consequence,
the edge and bulk scaling limits are obtained.

The above theorems are proved under the condition that Nk is large compared
to k + 1, the number of particles. This assumption ensures that the Brownian ap-
proximation of the random walks has a smaller effect than the nonintersecting
condition. Although it is believed that the condition on Nk is technical, it is not
clear under which conditions on the random variables one has Nk = O(k). For ex-
ample, when {Y j

l } are Bernoulli, these results were proven even when Nk = O(k)

(see Section 1.1.3 above). This is because there is an integrability in this problem:
the Karlin–McGregor argument applies directly because intersecting paths must
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be incident at some time. It is a challenge to find the optimal scaling such that a
result of this nature holds for more general random variables. In other words, in
what scaling regime does the exact Karlin–McGregor calculation essentially not
matter?

This paper is organized as follows. The approximation by the Brownian bridge
process is proved in Section 2. The asymptotic analysis of the Brownian bridge
process (appearing in Section 2) is carried out in Section 3. Some other consider-
ations such as finite-dimensional distributions and the modifications necessary to
study random variables without finite moment generating functions are discussed
in Section 4.

2. Approximation by a Brownian bridge process. Let {Xt }t≥0 be the
R

k+1-valued stochastic process Xt = (X0(t), . . . ,Xk(t)), where Xj(t) = xj + B
j
t

for a family of k + 1 independent standard Brownian motions B
j
t . The proof in

this section relies on the Komlos–Major–Tusnady coupling of Brownian motions
and random walks [38, 39] which can be stated in our setting as follows. With
increments of the form {Y j

l }k,Nk

j=0,l=1 described in the Introduction, there exists a
coupling such that

P

(
sup

0≤l≤Nk

∣∣∣∣Si

(
2l

Nk

)
− Xi

(
2l

Nk

)∣∣∣∣> 1√
Nk

(c logNk + x)

)
≤ e−ax(19)

for some fixed a, c > 0 which depend only on the properties of the moment gener-
ating functions of the {Y j

l }k,Nk

j=0,l=1. Alternatively, (19) can be written as

P

(
sup

0≤l≤Nk

∣∣∣∣Si

(
2l

Nk

)
− Xi

(
2l

Nk

)∣∣∣∣> c logNk√
Nk

+ y

)
≤ e−ay

√
Nk .(20)

This fact immediately implies that

P

(
sup

0≤i≤k

sup
0≤l≤Nk

∣∣∣∣Si

(
2l

Nk

)
− Xi

(
2l

Nk

)∣∣∣∣> c logNk√
Nk

+ y

)
(21)

≤ (k + 1)e−ay
√

Nk .

Let {S(t)}t∈[0,2] be the (k + 1)-dimensional random walk process defined in
the Introduction and let {Xt } be the KMT-coupled (k + 1)-dimensional Brown-
ian process on the same probability spaces (�(k),F (k),P

(k)). We can assume
that the probability space which holds S and X is large enough to hold a third
process Zt = (Z0(t), . . . ,Zk(t)), where the Zi(t) are standard Brownian bridge
processes with initial and terminal conditions specified by Zi(0) = Zi(2) = xi .
Let FS

k ,FX
k ,FZ

k :C([0,2],R
k+1) → R be defined by

FS
k (y) = 1Ak∩Bk∩Ck

(y)

E1Ak∩Bk
(S)

,(22)
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FX
k (y) = 1Ak∩Bk∩Ck

(y)

E1Ak∩Bk
(X)

,(23)

FZ
k (y) = 1Ak∩Bk∩Ck

(y)

E1Ak∩Bk
(Z)

.(24)

Let GS
k ,GX

k ,GZ
k :C([0,2],R

k+1) → R be defined by

GS
k (y) = 1Ak∩Bk∩Dk

(y)

E1Ak∩Bk
(S)

,(25)

GX
k (y) = 1Ak∩Bk∩Dk

(y)

E1Ak∩Bk
(X)

,(26)

GZ
k (y) = 1Ak∩Bk∩Dk

(y)

E1Ak∩Bk
(Z)

.(27)

Theorems 1 and 2 will be proven in two steps. The first step is to show that
under the conditions given in the Introduction, the following holds.

PROPOSITION 1. As k → ∞, the random variables FS
k , FZ

k , GS
k and GZ

k sat-
isfy

E
(
FS

k (S) − FZ
k (Z)

)→ 0,(28)

E
(
GS

k (S) − GZ
k (Z)

)→ 0.(29)

As E(F S
k (S)) = Pk(Ck|Ak ∩Bk) and E(GS

k (S)) = Pk(Dk|Ak ∩Bk), it is enough
to prove the following.

PROPOSITION 2.

lim
k→∞EFZ

k (Z) = FTW(ξ),(30)

lim
k→∞EGZ

k (Z) = FSine(η).(31)

The proof of Proposition 2 is given in Section 3 below. The rest of this section
focuses on the proof of Proposition 1. Proposition 1 is proved in two steps: first,
E(F S

k (S)) is approximated by E(FX
k (X)) and second, E(FX

k (X)) is approximated
by E(FZ

k (Z)). The proof of (29) is handled in a similar way.
Three preliminary lemmas are needed in order to prove Proposition 1. Recall

from (9) that

xi = 2i − k

k
, i = 0, . . . , k.(32)

LEMMA 1. Let a, c > 0 be the constants in the KMT approximation (21). For



NONINTERSECTING RANDOM WALKS 1815

any ρ ≥ 3c logNk√
Nk

,

E|1Ak∩Bk
(S) − 1Ak∩Bk

(X)| ≤ 2(k + 1)e−(1/2)a
√

Nkρ

(33)

+ 32(k + 1)

ρ

√
Nk

π
e−ρ2Nk/64 + 8(2k + 1)ρ,

E|1Bk
(S) − 1Bk

(X)| ≤ (k + 1)e−(1/2)a
√

Nkρ

(34)

+ 16(k + 1)

ρ

√
Nk

π
e−ρ2Nk/64 + 8(k + 1)ρ,

E|1Ck
(S) − 1Ck

(X)| ≤ (k + 1)e−(1/2)a
√

Nkρ

(35)

+ 16(k + 1)

ρ

√
Nk

π
e−ρ2Nk/64 + 8(k + 1)ρ,

E|1Dk
(S) − 1Dk

(X)| ≤ (k + 1)e−(1/2)a
√

Nkρ

(36)

+ 16(k + 1)

ρ

√
Nk

π
e−ρ2Nk/64 + 8(k + 1)ρ.

PROOF. Note that

E|1Ak∩Bk
(S) − 1Ak∩Bk

(X)|
= E|1Ak

(S)1Bk
(S) − 1AK

(X)1Bk
(X)|

(37)
= E

∣∣(1Ak
(S) − 1Ak

(X)
)
1Bk

(S) + (1Bk
(S) − 1Bk

(X)
)
1Ak

(X)
∣∣

≤ E|1Ak
(S) − 1Ak

(X)| + E|1Bk
(S) − 1Bk

(X)|.
We first estimate E|1Ak

(S) − 1Ak
(X)| = P(E), where E = {S ∈ Ak,X /∈ Ak} ∪

{S /∈ Ak,X ∈ Ak}. Recall that Ak = {y0(t) < · · · < yk(t) for t ∈ [0,2]}. Let ρ ≥
3c logNk√

Nk
, where c is the KMT coupling constant. The event E can be expressed

as the disjoint union of the three events E1,E2,E3. The first event E1 is the sub-
set of E consisting of “bad” paths satisfying sup0≤i≤k supt∈[0,2] |Si(t) − Xi(t)| >
c logNk√

Nk
+ρ. The second event E2 is the subset of E \E1 consisting of paths satisfy-

ing mint∈[0,2](Si(t) − Si−1(t)) < 0 for some 1 ≤ i ≤ k while X0(t) < · · · < Xk(t)

for all t ∈ [0,2]. The third event E3 is the subset of E \ E1 consisting of paths such
that mint∈[0,2](Xi(t) − Xi−1(t)) < 0 for some 1 ≤ i ≤ k while S0(t) < · · · < Sk(t)

for all t ∈ [0,2]. In order to estimate P(E1), note that the KMT theorem couples
random walks to Brownian motion at discrete times. Hence, even when X and
S are close at discrete times, “bad paths” may occur if X fluctuates too much in
( 2
Nk

l, 2
Nk

(l + 1)) for some l. (Note that S is simply linearly interpolated for times
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not integral multiple of 2
Nk

.) Thus, from (21) and standard estimate for Brownian
motions,

P(E1) ≤ P

(
sup

0≤i≤k

sup
0≤l≤Nk

∣∣∣∣Si

(
2l

Nk

)
− Xi

(
2l

Nk

)∣∣∣∣> c logNk√
Nk

+ ρ

2

)

+ P

({
sup

0≤i≤k

sup
0≤l≤Nk

∣∣∣∣Si

(
2l

Nk

)
− Xi

(
2l

Nk

)∣∣∣∣≤ c logNk√
Nk

+ ρ

2

}

∩
{

max
s,t∈(2l/Nk,2(l+1)/Nk)

|Xi(t) − Xi(s)| > ρ

2

for some 0 ≤ i ≤ k and for some 0 ≤ l < Nk

})
(38)

≤ (k + 1)e−(1/2)a
√

Nkρ

+ (k + 1)NkP

(
max

t,s∈[0,2/Nk]
|X1(t) − X1(s)| > ρ

2

)

≤ (k + 1)e−(1/2)a
√

Nkρ + 16(k + 1)

ρ

√
Nk

π
e−ρ2Nk/64.

Note that this estimate does not use the fact that E1 is a subset of E . For a path in the
event E2, there exists i ∈ {1,2, . . . , k} such that mint∈[0,2](Si(t)−Si−1(t)) < 0, but
Xi−1(t) < Xi(t) for all t ∈ [0,2] and |Sj (t)−Xj(t)| ≤ c logNk√

Nk
+ρ all t ∈ [0,2] and

j ∈ {0,1, . . . ,Nk}. Therefore, for a path in E2, 0 < mint∈[0,2](Xi(t) − Xi−1(t)) <
2c logNk√

Nk
+ 2ρ ≤ 4ρ. Thus, from a standard Brownian motion argument,

P(E2) ≤ P

(
0 ≤ min

t∈[0,2]
(
Xi(t) − Xi−1(t)

)
< 4ρ for some 1 ≤ i ≤ k

)
(39)

≤ kP

(
0 ≤ min

t∈[0,2]
(
X1(t) − X0(t)

)
< 4ρ

)
≤ 4kρ.

A similar argument yields that

P(E3) ≤ P

(
−4ρ < min

t∈[0,2]
(
Xi(t) − Xi−1(t)

)
< 0 for some 1 ≤ i ≤ k

)
(40)

≤ kP

(
−4ρ < min

t∈[0,2]
(
X1(t) − X0(t)

)
< 0

)
≤ 4kρ.

Therefore,

E|1Ak
(S) − 1Ak

(X)|
= P(E1) + P(E2) + P(E3)(41)

≤ (k + 1)e−(1/2)a
√

Nkρ + 16(k + 1)

ρ

√
Nk

π
e−ρ2Nk/64 + 8kρ.
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We now estimate E|1Bk
(S) − 1Bk

(X)| = P(F ), where F = {S ∈ Bk,X /∈
Bk} ∪ {S /∈ Bk,X ∈ Bk}. As before, we express F as F1 ∪ F2 ∪ F3, a disjoint
union. The first event, F1, is the subset of F consisting of the same bad paths
as in E1. The event F2 is the intersection of F \ F1 and {S ∈ Bk,X /∈ Bk}
and the event F3 is the intersection of F \ F1 and {S /∈ Bk,X ∈ Bk}. The ar-
gument for E1 implies that the same bound (38) applies to P(F1). For a path
in F2, there exists i ∈ {0,1, . . . , k} such that Xi(2) /∈ [xi − hk, xi + hk]. But as
Si(2) ∈ [xi − hk, xi + hk] and |Si(2) − Xi(2)| ≤ 2 logNk√

Nk
+ ρ ≤ 2ρ, we find that

Xi(2) ∈ (xi + hk, xi + hk + 2ρ] or Xi(2) ∈ [xi − hk − 2ρ,xi − hk). Therefore,

P(F2) ≤ (k + 1)P
(
X0(2) ∈ [−2ρ,2ρ])≤ 4(k + 1)ρ.(42)

A similar argument yields the same bound for P(F3). Therefore, (34) is proved, as
is (33), by using (37) and (41). An almost identical argument proves (35) and (36).

�

Denote by pt(a, b) = 1√
2πt

e−(a−b)2/(2t) the standard heat kernel in one di-
mension. The theorem of Karlin and McGregor [36] for nonintersecting Brown-
ian motions implies that the joint probability density function ft (y0, . . . , yk) of
(k + 1)-dimensional Brownian motion X(t) at time t satisfying X0(s) < X1(s) <

· · · < Xk(s) for s ∈ [0, t] is equal to

ft (y0, . . . , yk) = det(pt (xi, yj ))
k
i,j=0,(43)

where xi = Xi(0). The following lemma establishes a lower bound for this density
when yi = xi for all i.

LEMMA 2. For t > 0,

det(pt (xi, xj ))
k
i,j=0 ≥ 1

(2πt)(k+1)/2 e−2(k+1)(k+2)/(3tk)

(
2√
tk

)k(k+1)

.(44)

In particular, for all sufficiently large k,

det(p2(xi, xj ))
k
i,j=0 ≥ k−k2

.(45)

PROOF. As xi = 2i−k
k

, we have

det(pt (xi, xj ))
k
i,j=0 = det

(
1√
2πt

e−1/(2t)(xi−xj )2
)k

i,j=0
(46)

= e
−2
∑k

j=0 j2

(2πt)(k+1)/2 det
(
e2ij/(tk2))k

i,j=0.

It is an exercise to show that for k ≥ 1,

det
(
e2ij/(tk2))k

i,j=0 =
[

k∏
l=1

δl(l−1)/2

][
k∏

j=1

(δj − 1)k+1−j

]
,(47)
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where δ = e4/(tk2). Using (47) and the fact that δ − 1 > 4
tk2 > 0, we obtain

det(pt (xi, xj ))
k
i,j=0

= 1

(2πt)(k+1)/2 e−2(k+1)(k+2)/(3tk)
k∏

j=1

(δj − 1)k+1−j

(48)

≥ 1

(2πt)(k+1)/2 e−2(k+1)(k+2)/(3tk)(δ − 1)k(k+1)/2

≥ 1

(2πt)(k+1)/2 e−2(k+1)(k+2)/(3tk)

(
4

tk2

)k(k+1)/2

.

This completes the proof of Lemma 2. �

The following lemma will be used to control the difference between a condi-
tioned version of the process X and the process Z.

LEMMA 3. If hk ≤ (2k)−2k2
, then for sufficiently large k,

∣∣∣∣det(p1(yi, xj ))

det(p2(xi, xj ))
−
∫ hk−hk

· · · ∫ hk−hk
det(p1(yi, xj + sj )) ds0 · · · dsk∫ hk−hk

· · · ∫ hk−hk
det(p2(xi, xj + sj )) ds0 · · · dsk

∣∣∣∣≤ 1

k
,(49)

uniformly in (y0, . . . , yk) ∈ R
k+1.

PROOF. The conclusion of this lemma is a consequence of several elementary
determinant estimates. First, note that if A = (aij )

k
i,j=0 is a (k+1)×(k+1) matrix

with entries |aij | ≤ 1, then for the matrix I ij given by (I ij )mn = δimδjn, we have

|det(A) − det(A + εI ij )| ≤ εk!.(50)

Using a Lipschitz estimate for the Gaussian density, equation (50) implies that for
any t ≥ 1√

2πe
, any h > 0 and any (a0, . . . , ak), (b0, . . . , bk) ∈ R

k+1,

∣∣∣∣det(pt (ai, bj )) − 1

(2h)k+1

∫ h

−h
· · ·
∫ h

−h
det
(
pt(ai + si, bj )

)
ds0 · · ·dsk

∣∣∣∣
(51)

≤ 2h(k + 1)2k!.
A simple algebraic manipulation now yields that the left-hand side of (49) equals∣∣∣∣det(p1(yi, xj ))

det(p2(xi, xj ))
· Q2

det(p2(xi, xj )) + Q2
+ Q1

det(p2(xi, xj )) + Q2

∣∣∣∣,(52)
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where

Q1 = 1

(2hk)k+1

∫
[−hk,hk]k+1

[
det(p1(yi, xj ))

(53)
− det

(
p1(yi, xj + sj )

)]
ds0 · · ·dsk,

Q2 = 1

(2hk)k+1

∫
[−hk,hk]k+1

[
det
(
p2(xi, xj + sj )

)
(54)

− det(p2(xi, xj ))
]
ds0 · · ·dsk.

Using the estimates (45) and (51), we obtain

det(p2(xi, xj )) + Q2 ≥ k−k2 − 2hk(k + 1)2k! ≥ 1
2k−k2

(55)

for sufficiently large k. Hence, again using (51),∣∣∣∣ Q1

det(p2(xi, xj )) + Q2

∣∣∣∣≤ 2hk(k + 1)2k!kk2
.(56)

On the other hand, as det(p1(xi, yj )) is the density function for (y0, . . . , yk) ∈
R

k+1
> , where R

k+1
> = {(y0, . . . , yk) ∈ R

k+1 :y0 < · · · < yk} corresponding to the
probability of k + 1 Brownian motions starting from (x0, . . . , xk) and ending at
(y0, . . . , yk) at time 1 without having intersected, it is clearly less than the same
type of probability density function when a nonintersection condition is not im-
posed. Therefore,

det(p1(xi, yj )) ≤
k∏

i=0

1√
2π

e−(1/2)(xi−yi)
2 ≤ 1(57)

and hence∣∣∣∣det(p1(yi, xj ))

det(p2(xi, xj ))
· Q2

det(p2(xi, xj )) + Q2

∣∣∣∣≤ 2hk(k + 1)2k!k2k2
.(58)

Since hk is assumed to be less than or equal to (2k)−2k2
, (49) follows. �

PROOF OF PROPOSITION 1. Two estimates will be needed. Note that∣∣E(FS
k (S) − FZ

k (Z)
)∣∣≤ E|FS

k (S) − FX
k (X)| + ∣∣E(FX

k (X) − FZ
k (Z)

)∣∣.(59)

The first term on the right-hand side of (59) is estimated as follows:

E|FS
k (S) − FX

k (X)|
= E

∣∣∣∣ 1Ak∩Bk∩Ck
(S)

E1Ak ∩ Bk(S)
− 1Ak∩Bk∩Ck

(X)

E1Ak∩Bk
(X)

∣∣∣∣
= E

∣∣(1Ak∩Bk∩Ck
(S)
(
E1Ak∩Bk

(X) − E1Ak∩Bk
(S)
)

(60)
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+ (1Ak∩Bk∩Ck
(S) − 1Ak∩Bk∩Ck

(X)
)
E1Ak∩Bk

(S)
)

× (E1Ak∩Bk
(S)E1Ak∩Bk

(X))−1∣∣
≤ |E1Ak∩Bk

(X) − E1Ak∩Bk
(S)|

E1Ak∩Bk
(X)

+ E

∣∣∣∣(1Ak∩Bk∩Ck
(S) − 1Ak∩Bk∩Ck

(X))

E1Ak∩Bk
(X)

∣∣∣∣
≤ 2E|1Ak∩Bk

(S) − 1Ak∩Bk
(X)| + E|1Ck

(S) − 1Ck
(X)|

E1Ak∩Bk
(X)

.

By setting ρ = N
−1/4
k in Lemma 1, for sufficiently large k, it is easy to check

that

E|1Ak∩Bk
(S) − 1Ak∩Bk

(X)| ≤ 20k

N
1/4
k

,

(61)

E|1Ck
(S) − 1Ck

(X)| ≤ 20k

N
1/4
k

.

On the other hand, by using (45) and the argument leading to (55), for sufficiently
large k,

E1Ak∩Bk
(X)

= (2hk)
k+1 det(p2(xi, xj ))

+ (E1Ak∩Bk
(X) − (2hk)

k+1 det(p2(xi, xj ))
)

(62)
= (2hk)

k+1 det(p2(xi, xj ))

+
∫
[−hk,hk]k+1

(
det
(
p2(xi, xj + sj )

)− det(p2(xi, xj ))
)
ds0 · · ·dsk

≥ (2hk)
k+1

2kk2 .

Hence, from (61), for sufficiently large k,

E|FS
k (S) − FX

k (X)| ≤ 120kk2+1

(2hk)k+1N
1/4
k

→ 0(63)

as k → ∞. For the second term of (59), note that the Karlin–McGregor formula
for nonintersecting Brownian motions implies that [cf. (43) above] the density
function of the nonintersecting Brownian bridge process Z evaluated at time 1 is
equal to

f (y0, . . . , yk) = det(p1(xi, yj ))
k
i,j=0 det(p1(yi, xj ))

k
i,j=0

det(p2(xi, xj ))
k
i,j=0

.(64)
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Similarly, the density of the nonintersecting Brownian motion X evaluated at
time t is equal to

f (y0, . . . , yk)
(65)

=
∫
[−hk,hk]k+1 det(p1(xi, yj ))

k
i,j=0 det(p1(yi, xj + sj ))

k
i,j=0 ds0 · · ·dsk∫

[−hk,hk]k+1 det(p2(xi, xj + sj )) ds0 · · ·dsk
.

Therefore,∣∣E(FX
k (X) − FZ

k (Z)
)∣∣

=
∣∣∣∣E
(

1Ak∩Bk∩Ck
(X)

E1Ak∩Bk
(X)

− 1Ak∩Bk∩Ck
(Z)

E1Ak∩Bk
(Z)

)∣∣∣∣
≤
∫

R
k+1
>

∣∣∣∣
(∫

[−hk,hk]k+1
det(p1(xi, yj ))

(66)

× det
(
p1(yi, xj + sj )

)
ds0 · · ·dsk

)

×
(∫

[−hk,hk]k+1
det
(
p2(xi, xj + sj )

)
ds0 · · ·dsk

)−1

− det(p1(xi, yj ))det
(
p1(yi, xj )

)
det(p2(xi, xj ))

∣∣∣∣dy0 · · ·dyk.

By using Lemma 3 and (57), this implies that
∣∣E(FX

k (X) − FZ
k (Z)

)∣∣≤ 1

k

∫
R

k+1
>

|det(p1(xi, yj ))|dy0 · · ·dyk

(67)

≤ 1

k

∫
R

k+1
>

[
k∏

i=0

1√
2π

e−(xi−yi)
2/2

]
dy0 · · ·dyk ≤ 1

k
.

The proof of (29) is exactly the same. This completes the proof of Proposition 1.
�

3. Asymptotics of a Brownian bridge process. We prove Proposition 2 in
this section. Together with the results of Section 2, this completes the proofs of
Theorem 1 and Theorem 2.

From the density formula of Karlin and McGregor for a nonintersecting Brown-
ian bridge processes [36] [cf. (43)],

E(FZ
k (Z)) = 1

det(p2(xi, xj ))
k
i,j=0

(68)

×
∫

R
k+1
>

[det(p1(xi, yj ))
k
i,j=0]2

k∏
j=0

(
1 − H1(yj )

)
dyj ,
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where xi = 2i−k
k

and

H1(y) = 1
(
√

2k+ξ/(
√

2k1/6),∞)
(y).(69)

Also,

E(GZ
k (Z)) = 1

det(p2(xi, xj ))
k
i,j=0

(70)

×
∫

R
k+1
>

[det(p1(xi, yj ))
k
i,j=0]2

k∏
j=0

(
1 − H2(yj )

)
dyj ,

where

H2(y) = 1[−η/
√

k+1,η/
√

k+1](y).(71)

We need the limit of (68) and (70) as k → ∞.
In the discussion below, H(y) denotes either H1 or H2. Indeed, the algebra

below works for arbitrary bounded functions H(y). Using the formula for pt and
the definition of xi , an elementary algebraic manipulation using Vandermode de-
terminants yields that (68) and (70) are equal to

C′
k ·
∫

Rk+1

∏
0≤i<j≤k

(e2yj /k − e2yi/k)2
k∏

j=0

(
1 − H(yj )

)
e
−y2

j −2yj dyj ,(72)

where C′
k is the normalization constant so that (72) becomes 1 when H(y) ≡ 0:

C′
k = e−(k+1)(k+2)/(3k)

det(p2(xi, xj ))
k
i,j=0(k + 1)!(2π)k+1

.(73)

Note that the integration domain is changed to R
k+1 by using the symmetry of the

integrand. A similar calculation for the case when the assumption that the particles
start at equally-spaced locations and arrive at (y0, . . . , yk) at time 1 (without any
assumption regarding what happens after time 1) can be found in equation (4.7) of
[24]. Introducing the change of variables yj = k

2 loguj − 1, (72) becomes

Ck ·
∫

R
k+1+

∏
0≤i<j≤k

(uj − ui)
2

k∏
j=0

(
1 − Ĥ(uj )

) 1

uj

e−(k2/4)(loguj )2
duj ,(74)

where

Ĥ(u) = H

(
k

2
logu − 1

)
(75)

and the normalization constant is given by

Ck = kk+1e−(k+1)(k+2)/(3k)

det(p2(xi, xj ))
k
i,j=0(k + 1)!(2π)k+1

.(76)
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This is the standard β = 2 ensemble in random matrix theory on the real half-line
R+ with the weight

w(u) = 1

u
e−(k2/4)(logu)2 = e−(k2/4)(logu)2−logu.(77)

Note that w(u) = o(u−m) for any m ≥ 0 as u → +∞, and w(u) = o(um) for any
m ≥ 0 as u ↓ 0.

With the change of variables u = e−2/k2
x, (77) becomes

w(u)du = c · e−(k2/4)(logx)2
dx, c = e1/k2

.(78)

This is, up to a constant, the Stieltjes–Wigert weight, which is defined as

π−1/2ke−k2(logx)2
(79)

(see, e.g., Section 2.7 of [51] or Section 3.27 of [37]). The moments for the
Stieltjes–Wigert weight is an example of an indeterminate moment problem;
hence, there are several weights that have the same moments as the weight (79).
Another interesting feature of the Stieltjes–Wigert weight (79) is that the corre-
sponding orthogonal polynomials (called Stieltjes–Wigert polynomials) are exam-
ples of so-called q-polynomials with q = e−1/(2k2) (see, e.g., Section 3.27 of [37]).
The connection between the nonintersecting Brownian bridge process Z and the
Stieltjes–Wigert weight was first observed in [26]; the Stieltjes–Wigert weight also
appears in [28].

Various β = 2 matrix ensembles of the form (74) (on both the real line and sub-
sets of the real line) have been analyzed asymptotically and it has been proven that
the local statistics of the “eigenvalues” (or the particles u0, . . . , uk) are generically
independent of the potential w. For example, such “universality” is proved when
w(x) = e−(k+1)V (x) for an analytic weight V on R or R+ satisfying certain growth
conditions as x → ±∞ (and as x → 0 for weights on R+) (e.g., [11, 21, 40, 44])
and when w(x) = e−Q(x), where Q(x) is a polynomial (e.g., [20]). However, the
asymptotic analysis of the ensemble with the weight given in (77) above does not
seem to appear in the literature. It is well known [see (80) below] that the asymp-
totics of β = 2 ensembles amount to the asymptotic analysis of the corresponding
orthogonal polynomials. For our case, we need the asymptotics of the orthogonal
polynomials of degree k and k + 1 with respect to the weight (77) as k → ∞;
note that the weight also varies as k increases. The asymptotics of Stieltjes–Wigert
polynomials were recently studied in [29] and [55], but in different asymptotic
regimes: the degree goes to infinity while the weight is fixed. Therefore, the analy-
sis of this section seems to yield new results for asymptotics of Stieltjes–Wigert
polynomials. Nevertheless, the asymptotic analysis of the orthogonal polynomi-
als and the ensemble (74) with varying weight (77) can be done in a very similar
way to the analysis in [20, 21] using the Deift–Zhou steepest-descent method for
related Riemann–Hilbert problems (RHP’s), which is now one of standard tools
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for asymptotic analysis of orthogonal polynomials. We note that [55] also used the
Deift–Zhou method (for a different asymptotic regime) and our analysis has some
overlap with the analysis of [55]. In this section, we present only a sketch of the
analysis.

It is a standard result in random matrix theory (see, e.g., [41, 52]) that (74)
equals

det(1 − KkĤ),(80)

where

Kk(x, y) =
√

w(x)w(y)
γk

γk+1

pk+1(x)pk(y) − pk(x)pk+1(y)

x − y
(81)

is the Christoffel–Darboux kernel in which pn(x) = γnx
n + · · · is the nth ortho-

normal polynomial with respect to w. Hence,

E(FZ
k (Z)) = det(1 − KkĤ1),

(82)
E(GZ

k (Z)) = det(1 − KkĤ2).

Let Y(z) be the solution to the following Riemann–Hilbert problem: Y(x) is the
2 × 2-matrix-valued function on C \ �R+ satisfying

• Y(z) is analytic for z ∈ C \ �R+, Y±(z) = limε↓0 Y(z ± iε) is continuous for
z ∈ R+ and Y(z) is bounded as z → 0;

• for z ∈ R+,

Y+(z) = Y−(z)

(
1 w(z)

0 1

)
;(83)

• Y(z)z−(k+1)σ3 = (I+O(z−1)) uniformly as z → ∞ such that z ∈ C\�R+, where
σ3 = (1 0

0 −1

)
.

There is a unique solution Y to this RHP and, in particular, the (11) and (21) entries
of Y(z) are given by Y11(z) = γ −1

k+1pk+1(z) and Y21(z) = −2πiγkpk(z) [25]. Note
that the existence of Y under the condition that Y(z) is bounded as z → 0 (rather
than, e.g., that Y12(z) = O(z−1), as in, say, [54]) is due to the fact that w(x) → 0
faster than any polynomial as x → 0. Thus, the Christoffel–Darboux kernel can be
written as, by using the fact that det Y(z) = 1,

Kk(x, y) =
√

w(x)w(y)
1

2πi(x − y)
(0 1 )Y−1(y)Y(x)

(
1
0

)
.(84)

One of the main ingredient in analyzing the RHP for orthogonal polynomi-
als asymptotically is the so-called equilibrium measure and the corresponding
“g-function.” Let ψ(x)dx be a measure on R+ = supp(w) with total mass∫

ψ(x)dx = k + 1.(85)
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Define the “G-function”

G(z) =
∫

log(z − x)ψ(x)dx, z ∈ C \ �R+,(86)

where log represents the log function on the standard branch so that logu =
log |u| + i arg(u), where | arg(u)| < π . It is customary to define ψ to be the prob-
ability measure and define the g-function as in (86) [hence, G(z) = (k + 1)g(z)],
but in this paper, we use the above convention since it simplifies some formulas
below. Note that

G+(x) + G−(x) = 2
∫

log |x − y|ψ(y)dy, x ∈ R+.(87)

We look for G satisfying the following two conditions: there exists a constant �

such that

• G+(x) + G−(x) + log(w(x)) − � = 0 for x ∈ supp(ψ),
• G+(x) + G−(x) + log(w(x)) − � < 0 for x ∈ R+ \ supp(ψ).

For such G, the measure ψ is called the equilibrium measure.
Using the standard procedure to solve this variational problem (see, e.g., [19,

47]), one can compute the equilibrium measure for the weight (77).

LEMMA 4. For the weight (77), the support of the equilibrium measure is
[a,b], where

√
a = e(2k+1)/k2 −

√
e(4k+2)/k2 − e2/k,

(88) √
b = e(2k+1)/k2 +

√
e(4k+2)/k2 − e2/k.

The equilibrium measure is, for x ∈ [a,b],

ψ(x) = 1

2π

√
(b − x)(x − a)h(x), h(z) = 1

2πi

∮
C

−(log(w(s)))′

(s − z)R(s)
ds,(89)

where R(z) = ((z − a)(z − b))1/2 denotes the principal branch of the square root
function and the simple closed contour C contains z and [a,b], inside does not
touch (−∞,0] and is oriented counterclockwise. A residue calculation yields that

ψ(x) = k2

2πx
arctan

(√
(b − x)(x − a)√

ab + x

)
, x ∈ [a,b].(90)

We remark that a and b are sometimes called the Mhaskar–Rakhmanov–Saff
numbers. The above a and b are obtained in [55]: with αn and βn as in (2.2) and
(2.3) of [55], we have

a = (
e−1/(2k2)αn

)|k �→k/2,n=k+1, b = (
e−1/(2k2)βn

)|k �→k/2,n=k+1.(91)
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Given this ψ , G(z) is defined as in (86) and � is defined as � = 2G(b) −
log(w(b)) = 2G(a) − log(w(a)). The function h(z) in (89) is analytic in z ∈
C \ (−∞,0]. A residue calculation yields that

h(z) = k2

2zR(z)
log
(√

ab + z − R(z)√
ab + z + R(z)

)
, z ∈ C \ (−∞,0],(92)

where log denotes the principal branch of logarithm. For a computation below, we
note that as k → ∞,

√
a = 1 −

√
2

k
+ 2

k
+ O(k−3/2),

(93)
√

b = 1 +
√

2

k
+ 2

k
+ O(k−3/2).

We also remark that with x = 1 + 2w√
k

, for w = O(1), as k → ∞, at least formally,

ψ(x)dx ∼ k

π

√
2 − w2 dw, w ∈ [−√

2,
√

2
]
,(94)

which is precisely Wigner’s semicircle. This last calculation is not going to be used
below, but it provides an intuitive reason as to why the ensemble (74) [and (72)]
has the same asymptotics as the Gaussian unitary ensemble, not only locally, but
also globally.

Set

M(z) = e−(1/2)�σ3Y(z)e−G(z)σ3e(1/2)�σ3(95)

for z ∈ C \ �R+. Using the analyticity of G for z ∈ R+ \ [a,b] and the variational
conditions, M(z) solves the following, equivalent, RHP:

• M(z) is analytic for z ∈ C \ �R+, M±(z) is continuous for z ∈ R+ and M(z) is
bounded as z → 0;

• for z ∈ R+, M+(z) = M−(z)VM(z), where

VM(z) =
(

eG−(z)−G+(z) 1
0 eG+(z)−G−(z)

)
, z ∈ (a,b),(96)

VM(z) =
(

1 e2G(z)+log(w(z))−�

0 1

)
, z ∈ R+ \ (a,b);(97)

• M(z) = I + O(z−1) as z → ∞.

The nonunit terms in the jump matrix can be expressed in a unifying way. Set

H(z) = G(z) + 1
2 log(w(z)) − 1

2�, z ∈ C \ ((−∞,0] ∪ [a,b]).(98)
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Noting the variational condition, we find that for z ∈ (a,b),

G+(z) − G−(z) = 2G+(z) + log(w(z)) − � = 2H+(z)
(99)

= −(2G−(z) + log(w(z)) − �
)= −2H−(z).

Hence, G+(z) − G−(z) has an analytic continuation both above and the below the
real axis. Therefore, the jump matrix VM equals

VM(z) =
(

e−2H+(z) 1
0 e−2H−(z)

)
, z ∈ (a,b),(100)

VM(z) =
(

1 e2H(z)

0 1

)
, z ∈ R+ \ (a,b).(101)

Using the definition of G and Lemma 4, one can check that

H ′(z) = 1
2R(z)h(z).(102)

We now scale the RHP for M so that the interval (a,b) becomes (−1,1). In
other words, instead of moving the interval as the support of the equilibrium mea-
sure, we will fix the support. In that way, we can use the analysis of [20, 21] more
directly. Define

N(z) = M
(

b − a
2

z + b + a
2

)
.(103)

Set � = (−b+a
b−a ,∞) and set

Ĥ (z) = H

(
b − a

2
z + b + a

2

)
.(104)

The matrix N solves the following RHP:

• N(z) is analytic for z ∈ C \ �, N±(z) is continuous for z ∈ � and N(z) is
bounded as z → −b+a

b−a ;
• for z ∈ �, N+(z) = N−(z)VN(z), where

VN(z) =
(

e−2Ĥ+(z) 1
0 e−2Ĥ−(z)

)
, z ∈ (−1,1),(105)

VN(z) =
(

1 e2Ĥ (z)

0 1

)
, z ∈ � \ (−1,1);(106)

• N(z) = I + O(z−1) as z → ∞.

Note the factorization for z ∈ (−1,1),(
e−2Ĥ+(z) 1

0 e−2Ĥ−(z)

)
=
(

1 0
e−2Ĥ−(z) 1

)(
0 1

−1 0

)(
1 0

e−2Ĥ+(z) 1

)
,(107)
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FIG. 1. Contours for N.

where we use the fact that Ĥ+(z) + Ĥ−(z) = 0 for z ∈ (−1,1). Let �j , j =
0,1, . . . ,4, and �j , j = 1, . . . ,4, be the contours and open regions given in Fig-
ure 1. Contours are oriented from left to right. Define

Q(z) =




N(z), z ∈ �1 ∪ �4,

N(z)

(
1 0

−e−2Ĥ (z) 1

)
, z ∈ �2,

N(z)

(
1 0

e−2Ĥ (z) 1

)
, z ∈ �3.

(108)

Then Q+(z) = Q−(z)VQ(z) for z in �0, . . . ,�4, where

VQ(z) =
(

0 1
−1 0

)
, z ∈ �0,(109)

VQ(z) =
(

1 0
e−2Ĥ (z) 1

)
, z ∈ �1 ∪ �2,(110)

VQ(z) =
(

1 e2Ĥ (z)

0 1

)
, z ∈ �3 ∪ �4.(111)

The off-diagonal terms of VQ on �1 ∪ · · · ∪ �4 converge to 0 as the following
lemma implies.

LEMMA 5. There exist δ0 > 0 and k0 > 0 such that for k ≥ k0,

Re[Ĥ (x + iy)] ≥ 2k|y|
√

1 − x2 for −1 ≤ x ≤ 1 and −δ0 ≤ y ≤ δ0.(112)

For any δ > 0,

Ĥ (x) ≤ −kδ3/2 for −b + a
b − a

< x ≤ −1 − δ and x ≥ 1 + δ(113)

when k ≥ k0, and

lim
k→∞

∫
(�3∪�4)∩{|z−1|>δ}∩{|z+1|>δ}

e2Ĥ (x) dx = 0.(114)
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Hence, VQ → V∞ for a constant matrix V∞ defined as

V∞(z) =
(

0 1
−1 0

)
, z ∈ �0,(115)

and V∞(z) = I for z ∈ �1 ∪ · · · ∪ �4, where the convergence VQ → V∞ is in
L∞(�0 ∪ · · · ∪ �4) and also in L2((�0 ∪ · · · ∪ �4)∩ {|z − 1| > δ} ∩ {|z + 1| > δ})
for an arbitrary, but fixed, δ > 0. Let

β(z) =
(

z − 1

z + 1

)1/4

,(116)

where the branch cut is [−1,1] and β(z) ∼ 1 as z → +∞ on the real line, and
define

Q∞(z) = 1
2

(
β + β−1 −i(β − β−1)

i(β − β−1) β + β−1

)
(117)

for z ∈ C \ �0. Then Q∞(z) is the solution to the RHP for the Q∞+ = Q∞− V∞ and
Q∞(z) → I as z → ∞. The convergence VQ → V∞ is not uniform near the points
z = ±1, hence it is not true that Q(z) → Q∞(z) for all z and one therefore needs
local parametrix for z in a neighborhood of ±1.

Let �(z) be the matrix-valued function constructed from the Airy function and
its derivatives, as defined in Proposition 7.3 of [20]. Let ε > 0. For z ∈ Ur :=
{z : |z − 1| < ε}, set

Sr (z) = E(z)�
((−3

2Ĥ (z)
)2/3)

e−Ĥ (z)σ3,(118)

where

E(z) = √
πe(π/6)i

(
1 −1
−i −i

)
(119)

×
((−3

2Ĥ (z)
)1/6

β(z)−1 0

0
(−3

2Ĥ (z)
)−1/6

β(z)

)
.

Note that E(z) is analytic in Ur if ε is chosen sufficiently small. The matrix Sl(z)

is defined in a similar way for z ∈ Ul := {z : |z + 1| < ε}. Define

Qpar(z) =



Q∞(z), z ∈ C \ Ur ∪ Ul ∪ �,

Sr (z), z ∈ Ur \ �,

Sl(z), z ∈ Ul \ �.

(120)

From the basic theory of RHP, the estimate in Lemma 5 and the same argument as
in [20], one can check that the jump matrix for Q−1

parQ converges to the identity in

L2 ∩ L∞. Hence,

Q(z) = (
I + O(k−1)

)
Qpar(z).(121)

This holds uniformly for z outside an open neighborhood of the contours � ∪
∂Ur ∪ ∂Ul . But a simple deformation argument implies that the result is extended
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to z on the contours (see [20]). Hence, by reversing the transformations Y → M →
N → Q [see (95), (103) and (108)], the asymptotics of Y(z) for all z ∈ C are
obtained.

By substituting the asymptotics of Y into (84), edge and bulk scaling limits of
the Kk are obtained; see [15, 18, 21] for details. For x0 such that

√
k(x0 − 1) lies

in a compact subset of (
√

k(a − 1),
√

k(b − 1)), for all ξ, η in a compact subset
of R,

1

ψ(x0)
Kk

(
x0 + ξ

ψ(x)
, x + η

ψ(x0)

)
→ S(ξ, η)(122)

in trace norm for ξ, η ∈ R, where

S(ξ, η) = sin(π(ξ − η))

π(ξ − η)
.(123)

Here, we may replace ψ(x0) by Kk(x0, x0). The error is O(k−1), uniformly for
ξ, η in a compact set. The convergence is also in trace norm in the Hilbert space
L2((−η,η)) for a fixed η > 0. From (82), by taking x0 = e2/k , the limit (30) in
Proposition 2 is obtained.

At the edge of the support of ψ(x), set

Bk =
[
−1

2

√
b − ah(b)

]2/3

∼ k7/6
√

2
.(124)

As k → ∞,

1

Bk

Kk

(
b + ξ

Bk

, b + η

Bk

)
→ A(ξ, η)(125)

in trace norm in the Hilbert space L2((ξ,∞)) for a fixed ξ , where

A(ξ, η) = Ai(ξ)Ai′(η) − Ai′(ξ)Ai(η)

ξ − η
(126)

is the Airy kernel. Hence, from (82), the limit (31) in Proposition 2 is obtained.

4. Generalizations and discussions. We comment on three issues in this sec-
tion: the case in which the moment generating function does not exist, finite-
dimensional distributions and the connection of this work to q-orthogonal poly-
nomials.

No moment generating function. In this paper, we have assumed the existence
of the moment generating function for the random variable increments of non-
intersecting random walks. This is simply to improve the estimates. For the case
E|Xj

i |2+δ < ∞, δ > 0, there is a version of the KMT theorem which provides anal-
ogous estimates to those used in Section 2. As one would expect for this case, Nk
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must grow more rapidly in k. Another method for achieving results similar to those
of this paper is to use Skorohod embedding in order to embed the nonintersecting
random walks into Brownian motions. In order to achieve this, one must assume
that E|Xj

i |4 < ∞.

Finite-dimensional distributions. The results of this paper focus on the limit-
ing distributions of nonintersecting random walks at the fixed time t = 1. It is also
interesting to consider finite-dimensional distributions of the process, that is, in the
correct scaling t1, . . . , tn ∈ [1−Ak−1/3,1+Ak−1/3], the finite-dimensional distri-
butions of the fluctuations of the top random walk should converge to those of the
Airy process. A similar, but differently scaled, result should also be true “in bulk”;
see, for example, [1, 46, 53] and references therein concerning the Airy process and
other processes from random matrix theory. The methods of Section 2 are certainly
applicable to this problem, however, the convergence of the finite-dimensional dis-
tributions of the nonintersecting Brownian bridges to Airy/sine processes does not
follow immediately from the analysis of Section 3. However, one can use a dif-
ferent approach based on the method of Eynard and Mehta [14, 23]. In this ap-
proach, an inversion of a matrix is crucial. After the completion of the present
paper, Widom communicated to the authors how to invert the matrix. Work in this
direction will appear in a future paper.

Stieltjes–Wigert weight and q-orthogonal polynomials. In Section 3, the
Riemann–Hilbert problems for the orthogonal polynomials with respect to the
Stieltjes–Wigert weight (79) was analyzed in the Plancherel–Rotach asymptotic
regime. The analysis yields the asymptotics of the Stieltjes–Wigert polynomi-
als in the entire complex plane. Since Stieltjes–Wigert polynomials are exam-
ples of q-polynomials, this result also yields an asymptotic result for certain
q-polynomials.

Acknowledgments. The authors would like to thank Percy Deift and Harold
Widom for useful discussions.
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