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LOWER LIMITS AND EQUIVALENCES
FOR CONVOLUTION TAILS

BY SERGUEI FOSS1,2 AND DMITRY KORSHUNOV2

Heriot–Watt University and Sobolev Institute of Mathematics

Suppose F is a distribution on the half-line [0,∞). We study the limits
of the ratios of tails F ∗ F(x)/�F(x) as x → ∞. We also discuss the classes
of distributions S, S(γ ) and S∗.

1. Introduction. Let F be a distribution on the half-line [0,∞) with un-
bounded support, that is, �F(x) ≡ F(x,∞) > 0 for any x. Let a ∈ (0,∞] be the
mean value of F . By the Laplace transform of F at the point γ ∈ R we mean

ϕ(γ ) =
∫ ∞

0
eγ xF (dx) ∈ (0,∞].

Put

γ̂ = sup{γ : ϕ(γ ) < ∞} ∈ [0,∞].
Note that the function ϕ(γ ) is monotone continuous in the interval (−∞, γ̂ ), and
ϕ(γ̂ ) = limγ↑γ̂ ϕ(γ ) ∈ [1,∞].

We distinguish all the distributions on [0,∞) according to the value of γ̂ . If
γ̂ = 0, then we say that the distribution F is heavy-tailed; in that case ϕ(γ ) = ∞
for any γ > 0. If γ̂ > 0, then we call the distribution F light-tailed; this happens
if and only if, for some γ > 0, �F(x) = o(e−γ x) as x → ∞.

The main results of this paper are the following Theorems 1, 2 and 3 which
relate the tail behavior of the convolution F ∗ F to that of F .

THEOREM 1. For any heavy-tailed distribution F ,

lim inf
x→∞

F ∗ F(x)

�F(x)
= 2.

We were motivated by the nice paper of Rudin [12]. Theorem 2∗ of that paper
states that, for any independent stopping time τ , the distribution tail of the sum
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Sτ = ξ1 + · · · + ξτ of i.i.d. random variables with common distribution F satisfies
the relation

lim inf
x→∞

P{Sτ > x}
�F(x)

= Eτ,(1)

provided (i) Eξp = ∞ and (ii) Eτp < ∞ for some positive integer p. Unfortu-
nately, condition (i) rules out a lot of distributions of interest, say, in the theory of
subexponential distributions. For example, log-normal and Weibull-type distribu-
tions do not satisfy (i). Theorem 1 is restricted to the case τ = 2, but here extends
Rudin’s result to the class of all heavy-tailed distributions. The reasons for the re-
striction to τ = 2 come from the proof of Theorem 1 but in fact are rather deep; we
provide more detailed comments in Section 4 which is devoted to the proof. Note
that the case τ = 2 is of genuine interest in itself.

The counterpart of Theorem 1 in the light-tailed case is stated next.

THEOREM 2. Let γ̂ ∈ (0,∞], so that ϕ(γ̂ ) ∈ (1,∞]. If, for any fixed y > 0,

lim inf
x→∞

�F(x − y)

�F(x)
≥ eγ̂ y,(2)

then

lim inf
x→∞

F ∗ F(x)

�F(x)
= 2ϕ(γ̂ ).

The proof follows from Lemmas 7, 8 and 9 in Section 6. It turns out that con-
dition (2) is essential for the conclusion of Theorem 2 to hold; see the counterex-
amples in Section 9. Note also that condition (2) weakens the commonly used
assumption that F ∈ L(γ̂ ); see Section 8. We give here a few simple examples
where conditions of Theorem 2 are satisfied. If �F(x) ∼ c1e

−c2x
2
, then γ̂ = ∞,

ϕ(γ̂ ) = ∞, the condition (2) is met, and we have F ∗ F(x)/�F(x) → ∞ as x → ∞.
If F is the exponential distribution with parameter α, then γ̂ = α, ϕ(γ̂ ) = ∞, the
condition (2) is met, and we again have the convergence F ∗ F(x)/�F(x) → ∞. If
�F(x) = l(x)e−αx where l(x) is positive, slowly varying at infinity, and integrable,
then γ̂ = α and ϕ(γ̂ ) < ∞.

The third theorem may be considered as the final point in a chain of results in
this direction; see [2–4, 7, 10, 11, 13] and the references therein.

THEOREM 3. Let F be any distribution on [0,∞) with unbounded support.
Assume that

F ∗ F(x)

�F(x)
→ c as x → ∞,

where c ∈ (0,∞]. Then c = 2ϕ(γ̂ ).
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The proof of Theorem 3 is given in Section 7. In our proof we use real analytic
and direct probabilistic methods; no Banach algebra technique is involved. We
would like to emphasize that we do not assume that F ∈ L(γ̂ ) or that c is finite.

In Sections 3 and 5 we study local properties of convolutions. Section 8 dis-
cusses the classes of distributions S, S(γ ) and S∗ from the point of view of the
results obtained. In Section 10 we consider briefly the convolution of nonidentical
distributions.

2. Characterization of heavy-tailed distributions. In the sequel we need the
following existence result which generalizes a lemma by Rudin ([12], page 989)
onto the whole class of heavy-tailed distributions. Fix any δ ∈ (0,1].

LEMMA 1. If a random variable ξ ≥ 0 has a heavy-tailed distribution, then
there exists a function h : R+ → R+ such that:

(i) h is subadditive, that is, h(x) ≤ h(y) + h(x − y) for any 0 ≤ y ≤ x;
(ii) h(x) = o(x) as x → ∞;

(iii) Eeh(ξ) ≤ 1 + δ;
(iv) Eξeh(ξ) = ∞.

PROOF. The proof is a straightforward modification of the corresponding
lemma of [12]. Put x0 = 0. Choose x1 ≥ 2 so that �F(x1) < δ/2. Choose ε1 > 0
so that

E{eε1ξ ; ξ ≤ x1} < 1.

By induction we construct an increasing sequence xn and a decreasing sequence
εn > 0 such that xn ≥ 2n and �F(xn) < δ/2n for any n ≥ 1, and

E{eεnξ ; ξ ∈ (xn−1, xn]} = δ/2n−1 for any n ≥ 2.

For n = 1 this is already done. Make the induction hypothesis for some n ≥ 2. Due
to heavy-tailedness, there exists xn+1 ≥ 2n+1 so large that �F(xn+1) < δ/2n+1 and

E{eεnξ ; ξ ∈ (xn, xn+1]} ≥ δ.

Since �F(xn) < δ/2n, we can find εn+1 ∈ (0, εn) such that

E{eεn+1ξ ; ξ ∈ (xn, xn+1]} = δ/2n.

Our induction hypothesis now holds with n + 1 in place of n as required.
Define h(0) = 0, h(x) = εnx if x ∈ (xn−1, xn], n ≥ 1. This function is subad-

ditive. Indeed, for any 0 ≤ y ≤ x, we have y ∈ (xi, xi+1], x − y ∈ (xj , xj+1] and
x ∈ (xn, xn+1] for some i, j and n where i, j ≤ n. Then

h(y) + h(x − y) = εiy + εj (x − y) ≥ εny + εn(x − y) = εnx = h(x),

due to the monotonicity of εn. Note that the function h(x) is not monotone.
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Next,

Eeh(ξ) = E{eε1ξ ; ξ ≤ x1} +
∞∑

n=2

E{eεnξ ; ξ ∈ (xn−1, xn]}

≤ 1 +
∞∑

n=2

δ/2n−1 = 1 + δ.

On the other hand,

Eξeh(ξ) =
∞∑

n=1

E{ξeεnξ ; ξ ∈ (xn−1, xn]}

≥
∞∑

n=2

xn−1E{eεnξ ; ξ ∈ (xn−1, xn]}

≥
∞∑

n=2

2n−1δ/2n−1 = ∞.

Note also that necessarily limn→∞ εn = 0 [otherwise lim infx→∞ h(x)/x > 0 and
ξ is light-tailed], and (ii) follows. The proof of the lemma is complete. �

3. Heavy tails: local properties. Lemma 1 provides a useful tool for proving
upper bounds in lower limit assertions for convolution of densities.

Let µ be a σ -finite measure on [0,∞). Suppose that the distribution F on
[0,∞) is absolutely continuous with respect to µ, and let f (x) be the correspond-
ing density, that is, the Radon–Nikodym derivative of F with respect to µ. Con-
sider i.i.d. random variables ξ1, ξ2, . . . with common distribution F and an inde-
pendent stopping time τ . Assume that the distribution of the randomly stopped
sum Sτ = ξ1 + · · · + ξτ has a density f ∗τ (x) with respect to µ. In the present sec-
tion we are interested in the limiting behavior of the ratio f ∗τ (x)

f (x)
as x → ∞; more

precisely, the next lemma deals with the “lim inf” for that ratio and generalizes
Theorem 4 of [12].

LEMMA 2. If F is heavy-tailed, then

lim inf
x→∞

f ∗τ (x)

f (x)
≤ Eτ,

provided τ is light-tailed, that is, Eeκτ < ∞ for some κ > 0.

Lemma 2 implies a corollary for “local subexponentiality” which can be found
in Section 8.
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PROOF OF LEMMA 2. Assume the contrary, that is, there exist δ > 0 and x0
such that

f ∗τ (x) ≥ (Eτ + δ)f (x) for all x > x0.(3)

Since Eeκτ < ∞,

Eτ(1 + ε)τ−1 ≤ Eτ + δ/2(4)

for some sufficiently small ε > 0. By Lemma 1, there exists a subadditive function
h(x) > 0 such that Eeh(ξ1) ≤ 1 + ε and Eξ1e

h(ξ1) = ∞. For any random variable ζ

and positive t , put ζ [t] = min{ζ, t}. Then

E(ξ
[t]
1 + · · · + ξ [t]

τ )eh(ξ1+···+ξτ )

Eξ
[t]
1 eh(ξ1)

=
∞∑

n=1

E(ξ
[t]
1 + · · · + ξ [t]

n )eh(ξ1+···+ξn)

Eξ
[t]
1 eh(ξ1)

P{τ = n}

=
∞∑

n=1

n
Eξ

[t]
1 eh(ξ1+···+ξn)

Eξ
[t]
1 eh(ξ1)

P{τ = n}

≤
∞∑

n=1

n
Eξ

[t]
1 eh(ξ1)+···+h(ξn)

Eξ
[t]
1 eh(ξ1)

P{τ = n},

by subadditivity. Hence,

E(ξ
[t]
1 + · · · + ξ [t]

τ )eh(ξ1+···+ξτ )

Eξ
[t]
1 eh(ξ1)

≤
∞∑

n=1

n
Eξ

[t]
1 eh(ξ1)(Eeh(ξ2))n−1

Eξ
[t]
1 eh(ξ1)

P{τ = n}
(5)

≤
∞∑

n=1

n(1 + ε)n−1P{τ = n}

≤ Eτ + δ/2,

by (4). On the other hand, since (ξ1 + · · · + ξτ )
[t] ≤ ξ

[t]
1 + · · · + ξ [t]

τ ,

E(ξ
[t]
1 + · · · + ξ [t]

τ )eh(ξ1+···+ξτ )

Eξ
[t]
1 eh(ξ1)

≥ E(ξ1 + · · · + ξτ )
[t]eh(ξ1+···+ξτ )

Eξ
[t]
1 eh(ξ1)

(6)

=
∫ ∞

0 x[t]eh(x)f ∗τ (x)µ(dx)∫ ∞
0 x[t]eh(x)f (x)µ(dx)

.
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Since Eξ1e
h(ξ1) = ∞,∫ ∞

0
x[t]eh(x)f (x)µ(dx) → ∞ as t → ∞.

Therefore, it follows from (3) that

lim inf
t→∞

∫ ∞
0 x[t]eh(x)f ∗τ (x)µ(dx)∫ ∞

0 x[t]eh(x)f (x)µ(dx)
≥ Eτ + δ.

Substituting this into (6), we get a contradiction to (5) for sufficiently large t . The
proof is complete. �

4. Heavy tails: proof of Theorem 1. First we restate in Lemma 3 below The-
orem 1∗ of [12] in terms of probability distributions and stopping times. This result
also follows immediately from the inequality (20).

LEMMA 3. For any distribution F on [0,∞) and any independent stopping
time τ ,

lim inf
x→∞

F ∗τ (x)

�F(x)
≥ Eτ.

It follows from Lemma 3 that it is sufficient to prove the upper bound in Theo-
rem 1. We first discuss briefly the case where the function h defined in Lemma 1
may be chosen to be additionally increasing. Here the proof of the required upper
bound may proceed analogously to that of Lemma 2, working with tails rather than
densities. The right-hand side of (6) is replaced by∫ ∞

0 x[t]eh(x)F ∗τ (dx)∫ ∞
0 x[t]eh(x)F (dx)

which, after integration by parts, is equal to∫ ∞
0 F ∗τ (x) d(x[t]eh(x))∫ ∞

0
�F(x)d(x[t]eh(x))

.

Thus, as in the proof of Lemma 2, we make the contrary assumption that there
exist δ > 0 and x0 such that

F ∗τ (x) ≥ (Eτ + δ)�F(x) for all x > x0.

The argument leading to a contradiction now proceeds as in the earlier proof: for
the increasing function h(x), as t → ∞,∫ ∞

0
F ∗τ (x) d

(
x[t]eh(x)) ≥ (

Eτ + δ + o(1)
) ∫ ∞

0
�F(x)d

(
x[t]eh(x))

= (
Eτ + δ + o(1)

) ∫ ∞
0

x[t]eh(x)F (dx).
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However, it is not clear that the function introduced in the statement of Lemma 1
may always be chosen to be monotone—the function constructed in the proof does
not possess this property. Therefore we now use a different and novel approach
which starts from the observation that the integrated tail distribution FI (see below)
has a density with respect to Lebesgue measure. We apply Lemma 2 to that density.
Then, in Lemma 5, we show how to use the properties of the density of FI in order
to prove Theorem 1. For that to work, we restrict our consideration to the case
τ ≡ 2.

DEFINITION 1. For any distribution F on [0,∞) with finite mean a, define
the integrated tail distribution FI by

FI (B) = 1

a

∫
B

�F(x)dx.

The distribution FI has the decreasing density �F(x)/a. It is clear that both the
distributions F and FI are either heavy-tailed or not together. The next lemma is
about the lower limit for the convolution of densities of integrated tail distributions.

LEMMA 4. For any heavy-tailed distribution F with a ∈ (0,∞],
lim inf
x→∞

1
�F(x)

∫ x

0
�F(x − y)�F(y)dy = 2a.

PROOF. First, the “lim inf” is not smaller than 2a, because the monotonicity
of the distribution tail implies the inequality

1
�F(x)

∫ x

0
�F(x − y)�F(y)dy ≥ 2

∫ x/2

0
�F(y)dy → 2a.

Second, in the case a < ∞, applying Lemma 2 to the integrated tail distribution FI

whose density with respect to Lebesque measure is equal to �F(x)/a, we get in the
special case τ ≡ 2 that the “lim inf” is at most aEτ = 2a. The proof is complete.

�

LEMMA 5. For any heavy-tailed distribution F ,

lim inf
x→∞

F ∗ F(x)

�F(x)
≤ 2.

PROOF. We start with the case of infinite mean, that is a = ∞. Let ξ1 and ξ2 be
two independent random variables with common distribution F . For any positive t ,
since (ξ1 + ξ2)

[t] ≤ ξ
[t]
1 + ξ

[t]
2 ,

2 = Eξ
[t]
1 + Eξ

[t]
2

Eξ
[t]
1

≥ E(ξ1 + ξ2)
[t]

Eξ
[t]
1

=
∫ t

0 F ∗ F(y)dy∫ t
0

�F(y)dy
.(7)
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Suppose, contrary to the assertion of the lemma, that

lim inf
x→∞

F ∗ F(x)

�F(x)
> 2.(8)

Since a = ∞,
∫ t

0
�F(y)dy → ∞ as t → ∞. It then follows from the assumption

(8) that

lim inf
t→∞

∫ t
0 F ∗ F(y)dy∫ t

0
�F(y)dy

> 2,

which contradicts (7). This completes the proof in the case a = ∞ (a more com-
plicated variant of the proof in this case may be found in [12]).

Now suppose a < ∞. Consider the distribution G defined by its tail �G(x) =
(�F(x − 1) + �F(x))/2. Let b denote the mean of G. By Lemma 4, for some xn →
∞,

lim
n→∞

1
�G(xn)

∫ xn

0
�G(xn − y)�G(y)dy = 2b.(9)

For any fixed positive t ,∫ x

0
�G(x − y)�G(y)dy

= 2
∫ x/2

0
�G(x − y)�G(y)dy

≥ 2�G(x)

∫ x/2

0
�G(y)dy + 2

(�G(x − t) − �G(x)
) ∫ x/2

t

�G(y)dy

∼ 2�G(x)b + 2
(�G(x − t) − �G(x)

) ∫ ∞
t

�G(y)dy

as x → ∞. Then, by (9), �G(xn − t) ∼ �G(xn) as n → ∞. Equivalently, for any
fixed integer t ≥ 1,

�F(xn − t − 1) + �F(xn − t) ∼ �F(xn − t) + �F(xn − t + 1).

This implies the equivalence �F(xn − t − 1) ∼ �F(xn − t + 1) and, therefore,

�F(xn − t − 1) ∼ �F(xn).

It follows that we can choose a sufficiently slowly increasing integer sequence
tn → ∞ such that 2tn ≤ xn and

�F(xn − tn − 1) ∼ �F(xn) as n → ∞.(10)

Indeed, there exists an increasing sequence {N(k)} such that, for any k ∈ N,

�F(xn − k − 1)

�F(xn)
≤ 1 + 1

k
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for all n ≥ N(k). Now let tn = min(k, [xn/2]) for N(k) ≤ n < N(k + 1).
It follows from (10) that, as n → ∞,

∫ tn

0
�G(xn − y)�G(y)dy =

∫ xn

xn−tn

�G(xn − y)�G(y)dy ∼ �G(xn)b.

Together with (9) this implies the relation
∫ xn−tn

tn

�G(xn − y)�G(y)dy = o(�G(xn)) = o(�F(xn)).

In particular,
∫ xn−tn

tn

�F(xn − y − 1)�F(y − 1) dy = o(�F(xn))(11)

as n → ∞, due to (10). By (10) we have as well
∫ xn

xn−tn

�F(xn − y)F (dy) ≤ F(xn − tn, xn] = o(�F(xn)).(12)

The inner integral in the convolution formula for F ∗ F can be estimated in the
following way:

∫ xn−tn

tn

�F(xn − y)F (dy) ≤
[xn−tn]∑
k=tn

∫ k+1

k

�F(xn − y)F (dy)

≤
[xn−tn]∑
k=tn

�F(xn − k − 1)�F(k)

≤
[xn−tn]∑
k=tn

∫ k+1

k

�F(xn − y − 1)�F(y − 1) dy(13)

≤
∫ xn−tn+1

tn

�F(xn − y − 1)�F(y − 1) dy

= o(�F(xn)),

by the estimate (11). It follows from (12), (13) and (10) that
∫ xn

0
�F(xn − y)F (dy) =

∫ tn

0
�F(xn − y)F (dy) + o(�F(xn))

∼ �F(xn) as n → ∞.

Hence, F ∗ F(xn) ∼ 2�F(xn) which concludes the proof of Lemma 5. �
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5. Light tails: local properties. Let µ be either Lebesgue measure on [0,∞)

or the counting measure on nonnegative integers. Suppose that the distribution F

on [0,∞) is absolutely continuous with respect to µ, and let f (x) be the corre-
sponding density. Let τ be an independent stopping time. Then the distribution of
the sum Sτ = ξ1 + · · · + ξτ has density f ∗τ (x) with respect to µ.

LEMMA 6. If 0 < γ̂ < ∞ and ϕ(γ̂ ) < ∞, then

lim inf
x→∞

f ∗τ (x)

f (x)
≤ Eτϕτ−1(γ̂ ),

provided Ee(γ̂+κ)τ < ∞ for some κ > 0.

PROOF. Apply the exponential change of measure with parameter γ̂ and con-
sider the distribution G with the density g(x) = eγ̂ xf (x)/ϕ(γ̂ ). Consider also an
independent random variable η with the distribution

P{η = n} = ϕn(γ̂ )P{τ = n}/Eϕτ (γ̂ ).

The density g∗η(x) of the distribution G∗η is equal to
∞∑

n=1

g∗n(x)P{η = n} = 1

Eϕτ (γ̂ )

∞∑
n=1

eγ̂ xf ∗n(x)P{τ = n} = eγ̂ xf ∗τ (x)

Eϕτ (γ̂ )
.

It follows from the definition of γ̂ that the distribution G is heavy-tailed. In addi-
tion, Eeκη < ∞. Hence, by Lemma 2,

lim inf
x→∞

g∗η(x)

g(x)
≤ Eη = Eτϕτ (γ̂ )

Eϕτ (γ̂ )
.

Therefore,

lim inf
x→∞

f ∗τ (x)

f (x)
= Eϕτ−1(γ̂ ) lim inf

x→∞
g∗η(x)

g(x)
≤ Eτϕτ−1(γ̂ ),

which completes the proof. �

6. Light tails: proof of Theorem 2. We start with the lower bound.

LEMMA 7. Let γ be a positive number. If, for any fixed y,

lim inf
x→∞

�F(x − y)

�F(x)
≥ eγy,(14)

then

lim inf
x→∞

F ∗ F(x)

�F(x)
≥ 2ϕ(γ );

the case ϕ(γ ) = ∞ is not excluded.
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PROOF. For x > 2t , we have the inequality

F ∗ F(x) ≥ 2
∫ t

0
�F(x − y)F (dy) = 2�F(x)

∫ t

0

�F(x − y)

�F(x)
F (dy).(15)

Now by condition (14) and Fatou’s lemma,

lim inf
x→∞

F ∗ F(x)

�F(x)
≥ 2

∫ t

0
lim inf
x→∞

�F(x − y)

�F(x)
F (dy) ≥ 2

∫ t

0
eγyF (dy).

Letting t → ∞ we arrive at conclusion of the lemma. �

The following auxiliary lemma compares the tail behavior of the convolution
tail and that of the exponentially transformed distribution.

LEMMA 8. Let the distribution F and the number γ ≥ 0 be such that ϕ(γ ) <

∞. Let the distribution G be the result of the exponential change of measure with
parameter γ , that is, G(du) = eγuF (du)/ϕ(γ ). Then

lim inf
x→∞

G ∗ G(x)

�G(x)
≥ 1

ϕ(γ )
lim inf
x→∞

F ∗ F(x)

�F(x)

and

lim sup
x→∞

G ∗ G(x)

�G(x)
≤ 1

ϕ(γ )
lim sup
x→∞

F ∗ F(x)

�F(x)
.

PROOF. Put

ĉ ≡ lim inf
x→∞

F ∗ F(x)

�F(x)
.

By Lemma 3, ĉ ∈ [2,∞]. For any fixed c ∈ (0, ĉ), there exists x0 > 0 such that, for
any x > x0,

F ∗ F(x) ≥ c�F(x).(16)

Integration by parts yields

G ∗ G(x) = 1

ϕ2(γ )

∫ ∞
x

eγy(F ∗ F)(dy)

(17)

= 1

ϕ2(γ )

[
eγ xF ∗ F(x) +

∫ ∞
x

F ∗ F(y)deγy

]
.

Using also (16) we get, for x > x0,

G ∗ G(x) ≥ c

ϕ2(γ )

[
eγ x �F(x) +

∫ ∞
x

�F(y)deγy

]

= c

ϕ2(γ )

∫ ∞
x

eγyF (dy) = c

ϕ(γ )
�G(x).
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Letting c ↑ ĉ, we obtain the first conclusion of the lemma. The proof of the second
conclusion follows similarly. �

REMARK 1. For γ < 0, the statements of Lemma 8 need not hold. The reason
is that, for γ < 0, the function eγy is decreasing and while the first term in brackets
in (17) is positive the second one is negative.

LEMMA 9. If 0 < γ̂ < ∞ and ϕ(γ̂ ) < ∞, then

lim inf
x→∞

F ∗ F(x)

�F(x)
≤ 2ϕ(γ̂ )

and

lim sup
x→∞

F ∗ F(x)

�F(x)
≥ 2ϕ(γ̂ ).

PROOF. We apply the exponential change of measure with parameter γ̂ and
consider the distribution G(du) = eγ̂ uF (du)/ϕ(γ̂ ). Again from the definition
of γ̂ , the distribution G is heavy-tailed. Hence,

lim sup
x→∞

G ∗ G(x)

�G(x)
≥ lim inf

x→∞
G ∗ G(x)

�G(x)
= 2,

by Theorem 1. The result now follows from Lemma 8 with γ = γ̂ . �

7. Convolution tail equivalent distributions: proof of Theorem 3. In the
case where F is heavy-tailed we have γ̂ = 0 and ϕ(γ̂ ) = 1. By Theorem 1, c = 2
as required.

In the case γ̂ ∈ (0,∞) and ϕ(γ̂ ) < ∞, the desired conclusion follows from
Lemma 9.

Finally, consider the case ϕ(γ̂ ) = ∞. Fix an arbitrary γ ∈ (0, γ̂ ). Then ϕ(γ ) <

∞. Consider the distribution G(du) = eγuF (du)/ϕ(γ ). Then Lemma 8 shows
that

G ∗ G(x) ∼ c

ϕ(γ )
�G(y).

This equivalence and Lemma 3 imply the inequality c/ϕ(γ ) ≥ 2. Since ϕ(γ ) ↑
ϕ(γ̂ ) = ∞ as γ ↑ γ̂ , we obtain c = ∞. The proof is complete.

8. Corollaries for the classes S , S(γ ) and S∗. In this section we continue to
consider distributions on [0,∞) only.

DEFINITION 2. A distribution F with unbounded support is called long-tailed
(F ∈ L) if, for any fixed y, �F(x + y) ∼ �F(x) as x → ∞. Clearly, any long-tailed
distribution is heavy-tailed.
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DEFINITION 3. A distribution F with unbounded support belongs to the class
S of subexponential distributions if F ∗ F(x) ∼ 2�F(x) as x → ∞. It is known
from [1] that S ⊂ L.

DEFINITION 4. A distribution F with finite mean a belongs to the class S∗ if∫ x

0
�F(x − y)�F(y)dy ∼ 2a�F(x) as x → ∞.

It is known (see [8]) that F ∈ S∗ implies F ∈ S and FI ∈ S. The converse impli-
cation is not true, in general; see [5].

Theorem 1 implies the following result related to the definition of S.

THEOREM 4. Let the distribution F on [0,∞) be heavy-tailed. If, for some
c ∈ (0,∞), F ∗ F(x) ∼ c�F(x) as x → ∞, then F ∈ S.

Theorem 4 generalizes the main theorem of [10] where it was additionally as-
sumed that F is long-tailed. This result, for long-tailed distribution, was first for-
mulated by Chover, Ney and Wainger ([3], page 664); the corresponding proof,
based on Banach algebra techniques, contains some holes; see the comments by
Rogozin and Sgibnev ([11], Section 4) on the matter. A further attempted proof
by Cline ([4], Theorem 2.9) also contains a gap [in the proof of Lemma 2.3(ii);
in particular, it was not proved in line −7 on page 351 that one can choose t0 in-
dependently of n]. To the best of our knowledge, the only paper which states the
same result as Theorem 4 is that of Teugels ([13], Theorem 1(i)), but the proof
there is incorrect in line −5 on page 1002 and in lines 11–12 on page 1003.

From Lemma 4 we get the following result for the class S∗.

THEOREM 5. Let the distribution F on [0,∞) be heavy-tailed. If, for some
c ∈ (0,∞), ∫ x

0
�F(x − y)�F(y)dy ∼ c�F(x) as x → ∞,

then F has a finite mean and F ∈ S∗.

DEFINITION 5. A distribution F with unbounded support belongs to the class
S(γ ), γ ≥ 0, if the following conditions hold:

(i) ϕ(γ ) < ∞;
(ii) for any fixed y, �F(x + y)/�F(x) → e−γy as x → ∞;

(iii) F ∗ F(x) ∼ 2ϕ(γ )�F(x) as x → ∞.

It follows that if F ∈ S(γ ), then γ̂ = γ < ∞. Further, the class S(0) coincides
with the class S; see Definition 3 above.

In the following theorem we observe a lifting property for the class S(γ ), which
for the case β = γ was originally proved by Embrechts and Goldie ([7], Theo-
rem 3.1).
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THEOREM 6. If F ∈ S(γ̂ ), then, for any β ∈ [0, γ̂ ], the distribution G(du) =
eβuF (du)/ϕ(β) ∈ S(γ̂ − β). In particular, the distribution G(du) = eγ̂ uF (du)/

ϕ(γ̂ ) is subexponential.

PROOF. First note that the inverse implication does not in general hold
(see [7], Theorem 3.1). The main reason for this is pointed out in Remark 1 above.

The Laplace transform of G at the point γ̂ − β is equal to ϕ(γ̂ )/ϕ(β). By
Lemma 8, the distribution G satisfies property (iii) of Definition 5 with γ replaced
by γ̂ − β . For the case β = γ̂ this completes the proof. Now consider the case
β < γ̂ : we require to prove (ii). Integration by parts yields

e(γ̂−β)x �G(x)

= 1

ϕ(β)

[
eγ̂ x �F(x) + e(γ̂−β)xβ

∫ ∞
x

�F(y)eβy dy

]

= 1

ϕ(β)

[
eγ̂ x �F(x) + e(γ̂−β)xβ �F(x)eβx

∫ ∞
x

�F(y)eγ̂ y

�F(x)eγ̂ x
e(β−γ̂ )(y−x) dy

]

∼ 1

ϕ(β)

[
eγ̂ x �F(x) + eγ̂ xβ �F(x)

∫ ∞
x

e(β−γ̂ )(y−x) dy

]

as x → ∞, since β − γ̂ < 0 and by the dominated convergence theorem. Hence,

e(γ̂−β)x �G(x) ∼ 1

ϕ(β)

[
eγ̂ x �F(x) + eγ̂ x β

γ̂ − β
�F(x)

]
= 1

ϕ(β)
eγ̂ x �F(x)

γ̂

γ̂ − β
,

which implies that for any fixed t , e(γ̂−β)x �G(x) ∼ e(γ̂−β)(x+t)�G(x + t) as x → ∞.
The proof is complete. �

We would like to formulate the following hypothetically equivalent definition
of the class S(γ ) which instead of properties (i) and (ii) from Definition 5 assumes
only that γ is the right convergence point of the Laplace transform.

CONJECTURE 1. The distribution F on [0,∞) with unbounded support be-
longs to the class S(γ ) if and only if:

(a) γ = γ̂ ;
(b) for some c ∈ [2,∞), F ∗ F(x) ∼ c�F(x) as x → ∞.

For γ > 0 we have neither a proof of the conjecture nor a counterexample. We
can prove only the following weakened version of this statement.

THEOREM 7. The distribution F on [0,∞) with unbounded support belongs
to the class S(γ ) if and only if:

(a) and (b) of Conjecture 1 hold;
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(c) condition (14) holds.

Theorem 7, with the condition (c) replaced by the stronger requirement

�F(x − y)

�F(x)
→ eγ x for all y > 0,

was proved by Rogozin and Sgibnev [11]. The proofs of earlier assertions of this
latter result by Chover, Ney and Wainger [3] and by Cline [4] are incomplete for
the reasons mentioned after Theorem 4 above. Cline’s version of the result [4] was
referenced by Pakes [9] in his study of distributions on the whole real line. Theo-
rem 7 is close in spirit to an assertion of Teugels ([13], Theorem 1(ii)). However,
Embrechts and Goldie ([7], Section 3) showed that this assertion is incorrect.

PROOF OF THEOREM 7. By Theorem 3, c = 2ϕ(γ ) < ∞. Thus it suffices
to prove that the condition (ii) of Definition 5 is satisfied. Suppose that, on the
contrary, there exist y > 0, δ > 0, and a sequence xn → ∞ such that, for any
n ≥ 1,

�F(xn − y)

�F(xn)
≥ eγy + 3δ.

Since the function �F(xn − y) is increasing in y, there exists y0 > y such that, for
any n ≥ 1 and t ∈ [y, y0],

�F(xn − t)

�F(xn)
≥ eγ t + 2δ.

Choose any z so that F(z + y, z + y0] ≡ �F(z + y) − �F(z + y0) > 0. Since

lim inf
n→∞

�F(xn)

�F(xn + z)
≥ eγ z

by the condition (14), for all sufficiently large n and t ∈ [z + y, z + y0],
�F(xn + z − t)

�F(xn + z)
= �F(xn + z − t)

�F(xn)

�F(xn)

�F(xn + z)
≥ eγ t + δ.

Together with (14), (15) and Fatou’s lemma this implies

lim inf
n→∞

F ∗ F(xn + z)

�F(xn + z)
≥ 2ϕ(γ ) + 2δF [z + y, z + y0].

The latter sum exceeds 2ϕ(γ ). This contradicts the equality c = 2ϕ(γ ) and thus
completes the proof. �

We now consider the local properties of convolutions. For simplicity we study
the lattice case only. Hereinafter denote by F {n} the distribution mass at the
point n.
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DEFINITION 6. A distribution F on Z+ with unbounded support belongs to
the class Slattice(γ ), γ ≥ 0, if the following conditions hold:

(i) ϕ(γ ) < ∞;
(ii) F {n + 1}/F {n} → e−γ as n → ∞;

(iii) F ∗ F {n} ∼ 2ϕ(γ )F {n} as n → ∞.

THEOREM 8. A lattice distribution F belongs to the class Slattice(γ̂ ) if and
only if:

(i) lim infx→∞ F {n − 1}/F {n} ≥ eγ̂ ;
(ii) F ∗ F {n} ∼ cF {n} as n → ∞ for some c ∈ (0,∞).

PROOF. This theorem generalizes the corresponding assertions by Chover,
Ney and Wainger [2] and by Embrechts ([6], Theorem 2.8). To prove Theorem
8 first note that c = 2ϕ(γ̂ ) with necessity and this fact correlates with Theorem 3.
Indeed, Lemmas 2 and 6 with τ ≡ 2 and counting measure for µ imply c ≤ 2ϕ(γ̂ ).
Further, the estimate

F ∗ F {n}
F {n} =

n∑
k=0

F {k}F {n − k}
F {n} ≥ 2

[n/2]∑
k=0

F {k}F {n − k}
F {n}

implies c ≥ 2ϕ(γ̂ ), due to condition (i) of the theorem. Now it suffices to establish
the condition (ii) of Definition 6. Suppose that, on the contrary, there exist δ > 0
and a sequence ni → ∞ such that, for any i ≥ 1,

F {ni − 1}
F {ni} ≥ eγy + δ.

Then arguments similar to those of the proof of Theorem 7 lead to c > 2ϕ(γ ). This
contradiction completes the proof. �

9. Counterexamples. Let F be an atomic distribution at the points xn, n =
0,1, . . . , with masses pn, that is, F {xn} = pn. Suppose that x0 = 1 and that xn+1 >

2xn for every n. Then the tail of the convolution F ∗F at the point xn −1 is equal to

F∗F(xn − 1) = (F×F)
([xn,∞) × [0,∞)

) + (F×F)
([0, xn−1] × [xn,∞)

)
∼ 2�F(xn − 1) as n → ∞.

Hence,

lim
n→∞

F ∗ F(xn − 1)

�F(xn − 1)
= 2.

From this equality and Lemma 3

lim inf
x→∞

F ∗ F(x)

�F(x)
= 2.(18)

We now consider three particular cases.
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EXAMPLE 1. Let xn = 3n, n = 0,1, . . . , and pn = ce−γ̂ 3n
3−n, where γ̂ > 0

and c is the normalizing constant. We have ϕ(γ̂ ) = 3c/2 ∈ (1,∞) and ϕ(γ ) = ∞
for any γ > γ̂ . In this example

lim inf
x→∞

F ∗ F(x)

�F(x)
= 2 < 2ϕ(γ̂ ).

Clearly, the condition (2) is violated for this distribution.

EXAMPLE 2. Let xn = 3n, n = 0,1, . . . , and pn = ce−γ̂ 3n
. In this example we

have ϕ(γ ) < ∞ for any γ < γ̂ and ϕ(γ̂ ) = ∞. Nevertheless, the relation (18) still
holds.

EXAMPLE 3. Let pn = ce−x2
n . In this example we have ϕ(γ ) < ∞ for any γ ,

that is, γ̂ = ∞. But again the relation (18) remains valid.

10. Convolutions of nonidentical distributions.

THEOREM 9. Let F1 and F2 be two distributions on [0,∞). If the distribution
F1 is heavy-tailed, then

lim inf
x→∞

F1 ∗ F2(x)

�F1(x) + �F2(x)
= 1.(19)

PROOF. For any two distributions F1 and F2 on [0,∞),

F1 ∗ F2(x) ≥ (F1 × F2)
(
(x,∞) × [0, x]) + (F1 × F2)

([0, x] × (x,∞)
)

= �F1(x)F2(x) + F1(x)�F2(x)(20)

∼ �F1(x) + �F2(x) as x → ∞,

which implies that the left-hand side of (19) is at least 1. Assume now that it is
strictly greater than 1. Then there exists ε > 0 such that, for all sufficiently large x,

F1 ∗ F2(x)

�F1(x) + �F2(x)
≥ 1 + 2ε.(21)

Consider the distribution G = (F1 + F2)/2. This distribution is heavy-tailed. By
Theorem 1 we get

lim inf
x→∞

G ∗ G(x)

�G(x)
= 2.(22)

On the other hand, (21) and (20) imply that, for all sufficiently large x,

G ∗ G(x) = F1 ∗ F1(x) + F2 ∗ F2(x) + 2F1 ∗ F2(x)

4

≥ 2(1 − ε)�F1(x) + 2(1 − ε)�F2(x) + 2(1 + 2ε)(�F1(x) + �F2(x))

4

= 2(1 + ε/2)�G(x),
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which contradicts (22). The proof is complete. �
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