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MULTIVARIABLE APPROXIMATE CARLEMAN-TYPE THEOREMS
FOR COMPLEX MEASURES1

BY ISABELLE CHALENDAR AND JONATHAN R. PARTINGTON

Université Lyon 1 and University of Leeds

We prove a multivariable approximate Carleman theorem on the deter-
mination of complex measures on R

n and R
n+ by their moments. This is a-

chieved by means of a multivariable Denjoy–Carleman maximum principle
for quasi-analytic functions of several variables. As an application, we obtain
a discrete Phragmén–Lindelöf-type theorem for analytic functions on C

n+.

1. Introduction. The main issue discussed in this paper is the determination
of a complex measure on R

n from its moments. This is strongly linked to the theory
of quasi-analytic classes, in which the partial derivatives of a function determine
the function uniquely. Some work in this direction has recently been presented
in [3, 4]. One of the aims of this paper is to present a generalization of some results
from [3], describing the consequences when the moments of two measures differ
by a set of values that does not grow too quickly. Moreover, our results are valid
for complex measures, not just the positive measures discussed in the earlier work.
Analogous results are presented for measures supported on the positive cone R

n+
(all such notation is defined below). An application of this is given in the form of a
discrete Phragmén–Lindelöf-type theorem, generalizing some results of [8] which
apply in the one-dimensional case. This paper also contains a multivariable gener-
alization of [2], where a one-dimensional Denjoy–Carleman maximum principle
as well as an approximate Carleman theorem are proved.

We adopt the conventions N = {0,1,2, . . .}, R+ = {x ∈ R :x > 0}, R− = {x ∈
R :x < 0} and C+ = {z ∈ C : Re z > 0}. Let n be a positive integer. We supply R

n

and C
n with the standard inner product 〈·, ·〉 and corresponding norm ‖ · ‖. We

denote by M(Rn) the set of all positive Borel measures µ on R
n such that∫

Rn
‖x‖d dµ(x) < ∞ for all d ≥ 0

and let Mc(R
n) be the set of all complex Borel measures µ such that |µ| ∈ M(Rn).

For α = (α1, . . . , αn) ∈ N
n, set |α| = α1 + · · · + αn and α! = α1! · · ·αn!. For
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f : Rn → C, f (α) denotes ∂α1

∂x
α1
1

· · · ∂αn

∂x
αn
n

f . As usual, for z = (z1, . . . , zn) ∈ C
n,

zα denotes z
α1
1 · · · zαn

n .
Given a product I = I1 × · · ·× In of subintervals of R (bounded or unbounded)

containing 0, and an n-tuple M = (M(1, k))k≥0, . . . , (M(n, k))k≥0 of sequences
of positive numbers, write CI (M) for the family of all C∞-functions f : I → C

satisfying

∣∣f (α)(x)
∣∣ ≤ cf ρ

|α|
f

n∏
j=1

M(j,αj ), [x ∈ I,α = (α1, . . . , αn) ∈ N
n],(1)

where cf and ρf are constants depending on f .
In the sequel, we will say that a sequence (mk)k≥0 of positive reals is a Carle-

man sequence if

m0 = 1, m2
k ≤ mk−1mk+1 and

∑
k≥1

m
−1/k
k = ∞.

The structure of this paper is as follows. In Section 2, we derive a multivariable
Denjoy–Carleman maximum principle (Theorem 2.3) by means of a multivariable
version of Bernstein’s inequality for functions of exponential type (Theorem 2.2).
This provides an extension of the results in [2].

As an application of the ideas of Section 2, we obtain in Section 3 a multi-
variable approximate Carleman theorem on R

n (Theorem 3.2), which holds even
for complex measures. The methods used include a Paley–Wiener–Schwartz-type
theorem for Fourier transforms of distributions.

In Section 4, we derive analogous results for complex measures supported
on R

n+ (see Theorem 4.1). Even in one dimension, the results provide sharper
forms of Theorem 2.1 of [8]; we then use the methods of [8] to derive a multi-
variable discrete Phragmén–Lindelöf-type theorem which, in the one-dimensional
case, extends Theorem 4.1 of the same paper.

2. A multivariable Denjoy–Carleman maximum principle. We recall the
multivariable Denjoy–Carleman theorem:

THEOREM 2.1 ([4], page 155, and [6]). Let n be a positive integer. For j =
1, . . . , n, set Ij = [−Rj ,Rj ], where Rj > 0 and I = I1 × · · ·× In. Let f ∈ CI (M)

where M is an n-tuple of Carleman sequences. If f (α)(0) = 0 for all α ∈ N
n,

then f is identically equal to 0 on I .

In fact, Theorem 2.1 is a slightly different version of the result given in [4], but
the proof implies the version stated here.

We say that an entire function g : Cn → C is of exponential type at most τ =
(τ1, . . . , τn), where τk > 0 for all k, if for all ε > 0, there is a constant Aε such that

|g(z)| ≤ Aεe
(τ1+ε)|z1|+···+(τn+ε)|zn| for each z = (z1, . . . , zn) ∈ C

n.
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The following multivariable version of Bernstein’s theorem is easily deduced from
the single-variable case:

THEOREM 2.2. Let g : Cn → C be a function of exponential type at most τ =
(τ1, . . . , τn). Then for each k with 1 ≤ k ≤ n, the function ∂g

∂zk
is also of exponential

type at most τ . Further, if g is bounded on R
n, then so is ∂g

∂zk
, and

sup
x∈Rn

∣∣∣∣ ∂g

∂zk

(x)

∣∣∣∣ ≤ τk sup
x∈Rn

|g(x)|.

PROOF. Without loss of generality, we take k = n. For each (z1, . . . , zn−1) ∈
C

n−1, let g(z1,...,zn−1) : C → C be defined by g(z1,...,zn−1)(zn) = g(z1, . . . , zn). Then
for each ε > 0, there is an Aε > 0 such that∣∣g(z1,...,zn−1)(zn)

∣∣ ≤ Aεe
(τ1+ε)|z1|+···+(τn−1+ε)|zn−1|e(τn+ε)|zn|.

Using the Cauchy integral formula for g′
(z1,...,zn−1)

with the circle centered at zn

and of radius 1, we obtain∣∣g′
(z1,...,zn−1)

(zn)
∣∣ ≤ Aεe

(τ1+ε)|z1|+···+(τn−1+ε)|zn−1|e(τn+ε)(|zn|+1)

= Aεe
τn+εe(τ1+ε)|z1|+···+(τn+ε)|zn|.

Clearly this implies that ∂g
∂zn

is of exponential type at most τ . By Bernstein’s the-
orem ([1], Theorems 2.4.1 and 11.1.2) applied to gz1,...,zn−1 , for z1, . . . , zn−1 real,
we obtain

sup
x∈R

∣∣∣∣ ∂g

∂zn

(z1, . . . , zn−1, x)

∣∣∣∣ ≤ τn sup
x∈R

|g(z1, . . . , zn−1, x)|,

from which the result follows. �

THEOREM 2.3. Let f ∈ CI (M), where I = R
n and M is an n-tuple of Carle-

man sequences. Suppose that there exist C1, . . . ,Cn > 0 such that for each ε > 0,
there is a constant Aε such that∣∣f (α)(0)

∣∣ ≤ Aε(C1 + ε)α1 · · · (Cn + ε)αn for all α ∈ N
n.

Then

sup
x∈Rn

∣∣f (α+β)(x)
∣∣ ≤ C

β1
1 · · ·Cβn

n sup
x∈Rn

∣∣f (α)(x)
∣∣ for all α,β ∈ N

n.

PROOF. Define h : Cn → C by

h(z) = ∑
α∈Nn

1

α!f
(α)(0)zα.
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Thus for each ε > 0, we have

|h(z)| ≤ ∑
α∈Nn

Aε(C1 + ε)α1 · · · (Cn + ε)αn
1

α! |z1|α1 · · · |zn|αn

= Aεe
(C1+ε)|z1|+···+(Cn+ε)|zn|.

That is, h is an entire function of exponential type at most (C1, . . . ,Cn). For β ∈
N

n, we have

h(β)(z) = ∑
α∈Nn

f (α)(0)

α!
∂β

∂zβ
(zα) = ∑

γ∈Nn

f (β+γ )(0)
zγ

γ ! ,

writing α = β + γ . Therefore,∣∣h(β)(z)
∣∣ ≤ Aε

∑
γ∈Nn

(C1 + ε)β1+γ1 · · · (Cn + ε)βn+γn |z1|γ1 · · · |zn|γn
1

γ !
≤ Aε(C1 + ε)β1 · · · (Cn + ε)βne(C1+ε)|z1|+···+(Cn+ε)|zn|.

So given R > 0, we have

sup
x∈[−R,R]n

∣∣h(β)(x)
∣∣ ≤ Aε(C1 + ε)β1 · · · (Cn + ε)βneR((C1+ε)+···+(Cn+ε)).

Note that since (M(j, k + 1)/M(j, k))k≥0 is an increasing sequence for each j ,
we have M(j,1)βj ≤ M(j,βj ). Hence,

sup
x∈[−R,R]n

∣∣h(β)(x)
∣∣ ≤ Aε

n∏
j=1

(Cj + ε)βj

M(j,1)βj
eR((C1+ε)+···+(Cn+ε))

n∏
j=1

M(j,βj )

≤ Aεe
R((C1+ε)+···+(Cn+ε))ρ|β|

n∏
j=1

M(j,βj ),

where ρ = max{(Cj + ε)/(M(j,1)) : 1 ≤ j ≤ n}. Therefore, h ∈ C[−R,R]n(M) and
so f −h ∈ C[−R,R]n(M), with (f −h)(α)(0) = 0 for each α ∈ N

n. By Theorem 2.1,
f − h vanishes identically on [−R,R]n. This holds for all R > 0 and so f ≡ h

on R
n.

By repeatedly applying Theorem 2.3, we obtain that h(α) is of exponential type
at most (C1, . . . ,Cn) and that

sup
x∈Rn

∣∣h(α+β)(x)
∣∣ ≤ C

β1
1 · · ·Cβn

n sup
x∈Rn

∣∣h(α)(x)
∣∣.

Since h|Rn = f , the result follows. �

The following corollary is immediate and shows that Theorem 2.3 is an exten-
sion of Theorem 2.1:

COROLLARY 2.4. Let f satisfy the hypotheses of Theorem 2.3 and suppose
that lim sup|α|→∞ |f (α)(0)|1/|α| = 0. Then f is constant.
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3. An extension of the multivariable Carleman theorem on R
n. The fol-

lowing multivariable Carleman theorem is proved by De Jeu in [3]:

THEOREM 3.1. Suppose that µ1,µ2 ∈ M(Rn) satisfy

s(α) :=
∫

Rn
xα dµ1(x) =

∫
Rn

xα dµ2(x) for all α ∈ N
n(2)

and that the conditions
∞∑

m=1

s(2mej )
−1/(2m) = ∞, j = 1, . . . , n,

hold, where ej is the j th canonical basis vector of R
n. Then µ1 = µ2.

As an application of the ideas of the previous section, we obtain the following
multivariable approximate Carleman theorem. Note that it applies even to complex
measures and, in the case n = 1, it provides a strong generalization of [9].

THEOREM 3.2. Let C1, . . . ,Cn > 0. Suppose that µ1,µ2 ∈ Mc(R
n) satisfy∫

Rn
xα dµ1(x) =

∫
Rn

xα dµ2(x) + c(α) for all α ∈ N
n,

where for all ε > 0, there exists a constant Aε > 0 such that

|c(α)| ≤ Aε(C1 + ε)α1 · · · (Cn + ε)αn

holds for all α ∈ N
n. Let

s(α) =
∫

Rn
xα d(|µ1| + |µ2|)(x).

Suppose that the conditions
∞∑

m=1

s(2mej )
−1/(2m) = ∞, j = 1, . . . , n,(3)

hold. Then µ1 = µ2 + σ , where σ is a complex measure on R
n supported on

[−C1,C1] × · · · × [−Cn,Cn].
We immediately deduce the following strengthened version of Theorem 3.1:

COROLLARY 3.3. Let µ1 and µ2 satisfy the hypotheses of Theorem 3.2,
with c(α) satisfying lim sup|α|→∞ |c(α)|1/|α| = 0. Then µ1 = µ2 + aδ0 for
some a ∈ C. If, in addition, µ1 and µ2 are probability measures, then µ1 = µ2.

The proof of Theorem 3.2 will require two preliminary results, which we now
present. The one-dimensional version of the first result can be found in [7] and its
extension follows by an inductive argument.
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THEOREM 3.4. Suppose that h : Cn → C is of exponential type at most τ =
(τ1, . . . , τn) and that |h| is bounded on R

n by a constant D ≥ 0. Then

|h(z)| ≤ Deτ1| Im z1|+···+τn| Im zn| for all z = (z1, . . . , zn) ∈ C
n.(4)

The next result is a version of the Paley–Wiener–Schwartz theorem and is a
special case of Theorem 7.3.1 on page 181 of [5].

THEOREM 3.5. Let τ1, . . . , τn > 0. If an entire function h : Cn → C satis-
fies (4), then it is the Fourier transform of a distribution supported on [−τ1, τ1] ×
· · · × [−τn, τn].

We are now ready for the proof of Theorem 3.2.

PROOF OF THEOREM 3.2. For all m ≥ 0 and j = 1, . . . , n, define

M(j,m) = 1

m0

∫
Rn

|xj |m d(|µ1| + |µ2|)(x),

where m0 = (|µ1| + |µ2|)(Rn). Clearly, M(j,0) = 1, and on applying Hölder’s
inequality, we obtain

M(j,m)2 ≤ M(j,m − 1)M(j,m + 1) for all m ≥ 1.

Moreover, note that

M(j,m) = 1

m0

∫
R

|xj |m dν(xj ),

where

dν(xj ) =
∫
(x1,...,xj−1,xj+1,...,xn)∈Rn−1

d(|µ1| + |µ2|)(x1, . . . , xn).

Hence, using the calculations from [2], page 93, it follows that

∞∑
m=1

M(j,m)−1/m = ∞ for each j = 1, . . . , n.

In other words, M := (M(1, k)k≥0, . . . ,M(n, k)k≥0) is an n-tuple of Carleman
sequences.

Define f : Rn → C by

f (w) = 1

m0

∫
Rn

e−i〈w,x〉 d(µ1 − µ2)(x),

so that

f (α)(w) = 1

m0

∫
Rn

(−ix1)
α1 · · · (−ixn)

αne−i〈w,x〉 d(µ1 − µ2)(x),
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where α = (α1, . . . , αn) and x = (x1, . . . , xn). Therefore, we have

∣∣f (α)(w)
∣∣ ≤ 1

m0

∫
Rn

|x1|α1 · · · |xn|αn d(|µ1| + |µ2|)(x).

Using the generalized Hölder inequality, we obtain∣∣f (α)(w)
∣∣ ≤ M(1, nα1)

1/n · · ·M(1, nαn)
1/n.

Now, for each j = 1, . . . , n, set M̃(j,αj ) = M(j,nαj )
1/n. It is clear that

M̃(j,0) = 1. Moreover, for all k ≥ 0, M̃(j, k)2 ≤ M̃(j, k − 1)M̃(j, k + 1) since
(
M(j,m+1)
M(j,m)

)m≥0 is increasing. The fact that
∑∞

m=1 M̃(j,m)−1/m = ∞ follows from

Lemma 2.2 of [3] and the fact that (M(j,m)1/m)m≥1 is increasing. At this stage,
we have proved that M̃ := ((M̃(1, k))k≥0, . . . , (M̃(n, k))k≥0) is an n-tuple of Car-
leman sequences and that f ∈ CRn(M̃).

Now, note that f (α)(0) = (−i)|α|
m0

c(α). Therefore, for all ε > 0, there exists
Aε > 0 such that ∣∣f (α)(0)

∣∣ ≤ Aε(C1 + ε)α1 · · · (Cn + ε)αn.

As in the proof of Theorem 2.3, there is an entire function h : Cn → C of exponen-
tial type at most (C1, . . . ,Cn) such that h|Rn = f and |h(z)| ≤ 1 for all z ∈ R

n. By
Theorem 3.4, we deduce

|h(z)| ≤ eC1| Im(z1)|+···+Cn| Im(zn)| for all z = (z1, . . . , zn) ∈ C
n.

Hence, using Theorem 3.5, h is the Fourier–Laplace transform of a distribution u

supported on [−C1,C1] × · · · × [−Cn,Cn]. Thus, f is just the Fourier transform
of u. But f was defined as the Fourier transform of µ1−µ2

m0
. So, by the uniqueness

theorem for Fourier transforms of tempered distributions on R
n, u = µ1−µ2

m0
. In

particular, µ1 −µ2 is supported on [−C1,C1]× · · · × [−Cn,Cn], as required. �

Here is a corollary involving a weaker condition than (2) but valid only under a
restrictive condition on the measures µ1 and µ2:

COROLLARY 3.6. Let C1, . . . ,Cn > 0. Suppose that µ1,µ2 ∈ M(Rn) satisfy
µ1 ≥ µ2 and that

s(j,m) :=
∫

Rn
xm
j dµ1(x) =

∫
Rn

xm
j dµ2(x) + c(j,m) for all m ∈ N,(5)

where for all ε > 0, there exists a constant Aε > 0 such that

|c(j,m)| ≤ Aε(Cj + ε)αm

for all m ∈ N. Suppose further that the conditions
∞∑

m=1

s(j,2m)−1/(2m) = ∞, j = 1, . . . , n,
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hold. Then µ1 = µ2 + σ , where σ is a positive measure on R
n supported on

[−C1,C1] × · · · × [−Cn,Cn].
PROOF. Following the lines of the proof of Theorem 3.2, since µ1 − µ2 ≥ 0,

we first obtain ∣∣f (α)(w)
∣∣ ≤ 1

m0

∫
Rn

|x1|α1 · · · |xn|αn d(µ1 − µ2)(x)

and then, using the generalized Hölder inequality, it follows that∣∣f (α)(w)
∣∣ ≤ M(1, nα1)

1/n · · ·M(1, nαn)
1/n.

The proof ends in the same way as the proof of Theorem 3.2. �

REMARK 3.1. If in Theorem 3.2 we take µ1 and µ2 to be in M(Rn) rather
than in Mc(R

n), then, clearly, we may replace condition (3) by
∞∑

m=1

s̃(2mej )
−1/(2m) = ∞, j = 1, . . . , n,

where

s̃(α) =
∫

Rn
xα dµ1(x).

4. An approximate multivariable Carleman theorem on R
n+ with applica-

tions.

4.1. An extension of the multivariable Carleman theorem on R
n+.

THEOREM 4.1. Let C1, . . . ,Cn > 0. Suppose that µ1,µ2 ∈ Mc(R
n+) satisfy∫

R
n+

xα dµ1(x) =
∫

R
n+

xα dµ2(x) + c(α) for all α ∈ N
n,

where for all ε > 0, there exists a constant Aε > 0 such that

|c(α)| ≤ Aε(C1 + ε)α1 · · · (Cn + ε)αn

holds for all α ∈ N
n. Let

s(α) =
∫

R
n+

xα d(|µ1| + |µ2|)(x).

Suppose further that the conditions
∞∑

m=1

s(mej )
−1/(2m) = ∞, j = 1, . . . , n,(6)

hold. Then µ1 = µ2 + σ , where σ is a complex measure on R
n+ supported on

[0,C1] × · · · × [0,Cn].
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PROOF. We define measures ν1 and ν2 on R
n by

dνk(t1, . . . , tn) = dµk(t
2
1 , . . . , t2

n) for k = 1,2.

If α ∈ N
n satisfies α = 2β for some β ∈ N

n, then

s′(α) :=
∫

Rn
tαd(|ν1| + |ν2|)(t) = 2

∫
R

n+
xβd(|µ1| + |µ2|)(x),

otherwise s′(α) = 0. We write∫
Rn

tα dν1(t) =
∫

Rn
tα dν2(t) + c′(α).

Note that

|c′(α)| ≤ Aε(C1 + ε)α1/2 · · · (Cn + ε)αn/2

for all α ∈ N
n. Also

∞∑
m=1

s′(2mej )
−1/(2m) =

∞∑
m=1

(2s(mej ))
−1/(2m) = ∞, j = 1, . . . , n.

Hence, by Theorem 3.2, ν1 = ν2 + σ ′, where σ ′ is a complex measure supported
on [−√

C1,
√

C1 ] × · · · × [−√
Cn,

√
Cn ]. It follows that µ1 − µ2 is supported on

[0,C1] × · · · × [0,Cn]. �

The following corollary is immediate, and provides the multivariable Carleman
theorem for R

n+ proved in [3], Theorem. 5.1:

COROLLARY 4.2. Let µ1 and µ2 satisfy the hypotheses of Theorem 4.1, with
c(α) satisfying lim sup|α|→∞ |c(α)|1/|α| = 0. Then µ1 = µ2 + aδ0 for some a ∈ C.
If, in addition, µ1 and µ2 are probability measures, then µ1 = µ2.

REMARK 4.1. If in Theorem 4.1 we take µ1 and µ2 to be in M(Rn+) rather
than in Mc(R

n+), then, clearly, we may replace condition (6) by

∞∑
m=1

s̃(mej )
−1/(2m) = ∞, j = 1, . . . , n,

where

s̃(α) =
∫

R
n+

xα dµ1(x).
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4.2. A discrete Phragmén–Lindelöf theorem. In this section, we present an
application of Theorem 4.1; in the case n = 1, we obtain a generalization of [8],
Theorem 4.1, including a simplification of the original one-dimensional proof.

We begin with an n-dimensional Phragmén–Lindelöf theorem, a stronger form
of which can be found in [10]. See also [11].

THEOREM 4.3 ([10], page 303). Let f : Cn+ → C be continuous and holomor-
phic on C

n+ and let a > 0. Suppose that |f | is bounded by M on the set (iR)n and
that for all ε > 0, there is a constant cε > 0 such that

|f (z)| ≤ cεe
(a+ε)‖z‖ for all z ∈ C

n+,

where ‖ · ‖ denotes any norm on C
n. Then

|f (z)| ≤ Mea‖Re z‖ for all z ∈ C
n+.

The following theorem is of interest even in the case n = 1 which we discuss
separately later:

THEOREM 4.4. Let C1, . . . ,Cn ≥ 1. Let f : Cn+ → C be continuous and holo-
morphic on C

n+ and bounded on each of the sets

Ek := {z = (z1, . . . , zn) ∈ C
n+ : 0 ≤ Re zk ≤ 1} for k = 1, . . . , n.

For α ∈ N
n, define

M(α) = sup{|f (z)| : 0 ≤ Re z1 ≤ α1, . . . ,0 ≤ Re zn ≤ αn}.
Suppose that M(α) < ∞ for all α and that

∞∑
m=1

M(mej )
−1/(2m) = ∞, j = 1, . . . , n.(7)

If for every ε > 0, there is a constant Aε > 0 such that

|f (α)| ≤ Aε(C1 + ε)α1 · · · (Cn + ε)αn,

then

|f (z)| ≤ M(0)C
Re z1
1 · · ·CRe zn

n for all z ∈ C
n+.

In particular, if lim|α|→∞ |f (α)|1/|α| ≤ 1, then |f | is bounded by M(0) on C
n+.

PROOF. For z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn) with xk, yk ∈ R (k =
1, . . . , n) and for all α ∈ N

n, set

g(z) = f (z)

(1 + z1) · · · (1 + zn)
.



394 I. CHALENDAR AND J. R. PARTINGTON

Let

B(α) = sup
0≤x1≤α1,...,0≤xn≤αn

(∫
Rn

|g(z)|2 dy1 · · ·dyn

)1/2

.

Then

B(α) ≤ sup
0≤x1≤α1,...,0≤xn≤αn

(∫
Rn

|f (z)|2dy1 · · ·dyn

|1 + z1|2 · · · |1 + zn|2
)1/2

(8)
= M(α)πn/2.

Let us write Re z = (x1, . . . , xn) and Im z = (y1, . . . , yn). It follows from (8) that
there exists a function � ∈ L2(Rn) such that

g(i Im z) =
∫

Rn
�(σ)e〈i Im z,σ 〉 dσ.

Moreover, its analytic extension to C
n+ is given by

g(z) =
∫

Rn
�(σ)e〈z,σ 〉 dσ.

Applying the multivariable Plancherel theorem, we obtain∫
Rn

|g(z)|2 dy1 · · ·dyn = (2π)n
∫

Rn
|�(σ)|2e2〈Re z,σ 〉 dσ

and thus

B(α)2 ≥ (2π)n
∫

Rn
|�(σ)|2e2〈α,σ 〉 dσ.(9)

Let


(t1, . . . , tn) = �(log t1, . . . , log tn) for t = (t1, . . . , tn) ∈ R
n+.

We have

g
(
z + (1, . . . ,1)

) =
∫

Rn
�(σ)e〈z+(1,...,1),σ 〉 dσ.

Using the change of variables σ = (σ1, . . . , σn) = (log t1, . . . , log tn), this becomes

g
(
z + (1, . . . ,1)

) =
∫

R
n+


(t)t
z1+1
1 · · · tzn+1

n

dt

t1 · · · tn =
∫

R
n+


(t)t
z1
1 · · · tzn

n dt.

For α ∈ N
n, set

C(α) =
∫

R
n+

t
α1
1 · · · tαn

n |
(t)|dt
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and note that

C(α) =
∫

Rn
e

∑n
k=1(αk+1)σk |�(σ)|dσ

=
∫

R
n−

e〈α,σ 〉|�(σ)|e
∑n

k=1 σk dσ

+
∫

R
n+

e
∑n

k=1(αk+2)σk |�(σ)|e−∑n
k=1 σk dσ

≤
(∫

R
n−

e2〈α,σ 〉|�(σ)|2 dσ

)1/2(∫
R

n−
e2

∑n
k=1 σk dσ

)1/2

+
(∫

R
n+

e2
∑n

k=1(αk+2)σk |�(σ)|2 dσ

)1/2(∫
R

n+
e−2

∑n
k=1 σk dσ

)1/2

.

By (9) and (8) we obtain

C(α) ≤ B(α)(2π)−n/22−n/2 + B
(
α + (2, . . . ,2)

)
(2π)−n/22−n/2

≤ 2(4π)−n/2B
(
α + (2, . . . ,2)

) ≤ 21−nM
(
α + (2, . . . ,2)

)
,

and hence, using (7), we have

∞∑
m=1

C(mej )
−1/(2m) = ∞, j = 1, . . . , n.

Clearly, |g(z)| ≤ |f (z)| for all z ∈ C
n+, and so for every ε > 0, there is a constant

Aε > 0 such that

|g(α)| ≤ |f (α)| ≤ M(α) ≤ Aε(C1 + ε)α1 · · · (Cn + ε)αn.

Applying Theorem 4.1, we see that 
 is supported on [0,C1] × · · · × [0,Cn], and
so � is supported on Dn := (−∞, logC1] × · · · × (−∞, logCn]. Hence, we have

g(z) =
∫
Dn

�(σ)e〈z,σ 〉 dσ.

Since f (z) = (z1 + 1) · · · (zn + 1)g(z), it follows from the Cauchy–Schwarz in-
equality and the fact that f is bounded on each set Ek that

|f (z)| ≤ K(|z| + 1)nC
Re z1
1 · · ·CRe zn

n

for some K > 0; also, sup{|f (z)| : z ∈ (iR)n} = M(0). The conclusion is now an
immediate consequence of Theorem 4.3 on taking a = 1 and ‖z‖ = ∑n

k=1(logCk +
δ)|zk| and letting δ > 0 tend to zero. �

The following result generalizes [8], Theorem 4.1, which treats the special case
when (f (m))m≥1 is bounded. It follows immediately from Theorem 4.4.
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COROLLARY 4.5. Let f : C+ → C be continuous and holomorphic on C+.
For m ∈ N, define

M(m) = sup{|f (z)| : 0 ≤ Re z ≤ m}.
Suppose that M(m) < ∞ for all m and that

∞∑
m=1

M(m)−1/(2m) = ∞.

If lim supm→∞ |f (m)|1/m ≤ 1, then |f | is bounded by M(0) on C+.
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