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DIRECTED POLYMERS IN RANDOM ENVIRONMENT ARE
DIFFUSIVE AT WEAK DISORDER

BY FRANCIS COMETS1 AND NOBUO YOSHIDA2

Université Paris 7 and Kyoto University

In this paper we consider directed polymers in random environment with
discrete space and time. For transverse dimension at least equal to 3, we prove
that diffusivity holds for the path in the full weak disorder region, that is,
where the partition function differs from its annealed value only by a non-
vanishing factor. Deep inside this region, we also show that the quenched
averaged energy has fluctuations of order 1. In complete generality (arbitrary
dimension and temperature), we prove monotonicity of the phase diagram in
the temperature.

1. Introduction. In this classical model the polymer is a long chain of size n

in the 1 + d-dimensional space, which is directed: It stretches in the first direction
of Z

1+d , and therefore is modeled as a graph {(t,ωt )}nt=1, where ω = (ωt )t∈N is a
nearest neighbor path in Z

d . We introduce the probability space (�,F ,P ), which
consists of the set � of all nearest neighbor paths in Z

d , the cylindrical σ -field
F and the distribution P of the d-dimensional simple random walk with ω0 = 0.
On the other hand, the environment describes locations which can be favorable or
hostile to the monomers: it is given by independent identically distributed random
variables η = {η(n, x);n ∈ N, x ∈ Z

d} with all finite exponential moments, defined
on a probability space (H,G,Q). The polymer is attracted by large positive values
of the environment, and repelled by large negative ones. Further motivations for the
model can be found in the physics literature [14, 23], and a rigorous survey in [10].
All these ingredients are incorporated in the polymer measure with environment η:

µn(dω) = Z−1
n exp{βHn(ω)}P(dω),(1.1)

with

Hn(ω) =
n∑

t=1

η(t,ωt ).

Here, β > 0 denotes the “temperature inverse” and prescribes how strongly the
polymer path ω interacts with the medium, and the “partition function” Zn =
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P [exp{βHn(ω)}] is the normalizing constant making µn a probability measure
on the path space. Here, and in the sequel, P [X] stands for the P -expectation of a
random variable X on (�,F ,P ). Note that the measure µn depends on n,β and
on the environment η. We denote by λ the function

λ(β) = lnQ[exp{βη(t, x)}] ∈ R, β ∈ R.(1.2)

Consistently with the notation P [X], Q[Y ] stands for the Q-expectation of a ran-
dom variable Y on (H,G,Q). We assume that λ(·) is finite on the whole real line.

REMARK 1.1. The definition (1.1) makes perfect sense for real β’s. However,
considering negative β merely amounts to considering −η with |β| as the inverse
temperature. Without loss of generality, we will restrict ourselves to positive β ,
which will help us simplify the statements of some results in this paper, for exam-
ple, Theorem 3.2 below.

The issue is to understand the asymptotics of the polymer ω as n → ∞ under
the measure µn, for typical realization of the environment. In particular, one would
like to determine the exponent ξ = ξ(d,β) ∈ [1/2,1) such that

|ωn| is of order nξ

as n → ∞. Another—but related—quantity of interest is the exponent χ =
χ(d,β) ∈ [0,1/2] for the fluctuations of the normalizing constant, that is, such
that

lnZn − an is of order nχ for some constant an

as n → ∞. (Natural choices for an are the mean or the median of lnZn.) These
exponents ξ,χ depend also on the distribution of the environment η.

The ground state of the model, defined as the limit when β → ∞, is the so-
called oriented last passage percolation model. For the ground state, it is be-
lieved that the exponents ξ(d,∞),χ(d,∞) are universal, more precisely, that
they have the same value for all distributions of η. Recently, Johansson, together
with Baik and Deift, rigourously calculated the values of these exponents in di-
mension d = 1 and for specific distributions for η. More precisely, in dimension
d = 1 and for exponential and geometric distributions, it is proven in [19] that
χ(1,∞) = 1/3, together with the Tracy–Widom law for limit fluctuations. Also,
for a one-dimensional Poissonized model, χ(1,∞) = 1/3 is obtained in [3], to-
gether with the Tracy–Widom limit, though ξ(1,∞) = 2/3 is proved in [20]: the
path is superdiffusive, in contrast with the underlying simple random walk which
is diffusive (corresponding to ξ = 1/2).

A number of predictions, conjectures and numerical estimates can be found in
the physical literature [23], on the values on such exponents, and relations between
them. In particular, for all β ∈ (0,∞], the scaling relation

χ = 2ξ − 1
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is believed to hold in complete generality. This relation can be derived at a heuris-
tic level as a scaling in the Kardar–Parisi–Zhang equation [22], where status is,
unfortunately, not clear at a mathematical level. Instead, partial results have been
obtained rigourously in specific situations [7, 24, 26, 29]. In fact, much is still
open, especially for d ≥ 2.

Bolthausen [5] placed the polymer model in the framework of martingales, and
noticed that the almost-sure limit of the rescaled partition function is subject to a
dichotomy:

lim
n

Zn

QZn


> 0, Q-a.s.,
or
= 0, Q-a.s.

(1.3)

A natural manner for measuring the disorder due to the random environment
is to call weak disorder the first case and strong disorder the second one. Note
that weak disorder can be defined as the region where χ = 0 and an = nλ(β). The
terminology is justified by observing that the former case happens in large enough
dimension for small β (including β = 0) and the latter case for large β and general
unbounded environment. More precisely, a series of papers [1, 5, 18, 31] lead to
the following.

THEOREM A. Assume d ≥ 3 and β small enough so that

P(∃n > 0 :ωn = 0) < exp{−[λ(2β) − 2λ(β)]}.(1.4)

Then, weak disorder holds and, for almost every realization of the environment,
the rescaled path,

ω(n) = (
ωnt/

√
n

)
t≥0,(1.5)

converges in law to the Brownian motion with diffusion matrix d−1Id .

This result was quite a surprise for both mathematics and physics communities
who did not expect that diffusivity could take place!

The second moment method was used to derive the theorem. The assumption
on β is equivalent to the martingale Zn/QZn being bounded in L2, and it is far
from being necessary: A weaker quantitative condition for weak disorder is ob-
tained in [4] using size-biasing. Fifteen years were necessary to improve on it: The
next result is a criterion for weak disorder, where the critical quantity is

In = µ⊗2
n−1(ωn = ω̃n),

that is, the probability for two polymers ω and ω̃ independently sampled from the
polymer measure in the same environment, to meet at time n.
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THEOREM B ([6] for the Gaussian case, [9] for the general case). For
nonzero β , it holds{

lim
n

(Zn/QZn) = 0
}

=
{∑

n

In = ∞
}
, Q-a.s.

The result is obtained by writing the semi-martingale decomposition of
lnZn/QZn, and studying separately the terms. The above criterion is a refined
(conditional) second moment condition, and the criterion can also be used to ob-
tain quantitative information on the polymer measure itself, on its concentration
and localization [9] in the strong disorder regime.

In the present paper we first establish the monotonicity in β concerning the
dichotomy (1.3):

THEOREM 1.1. There exists a critical value βc = βc(d) ∈ [0,∞] with

βc = 0, for d = 1,2,

0 < βc ≤ ∞, for d ≥ 3,

such that the weak disorder holds if β ∈ {0}∪ (0, βc) and the strong disorder holds
if β > βc.

We also prove monotonicity for the Lyapunov exponent, see Theorem 3.2. This
result implies the absence of re-entrant phase transition in the phase diagram of the
model. The theorem follows from a correlation inequality [15], a natural ingredient
which, however, appears here for the first time (as far as we know) in the field of
directed polymers.

Now we will focus on the regime of weak disorder. There, it is natural to expect
that diffusive behavior takes place in the whole weak disorder region, not only
under the stronger assumption (1.4). Our main result is indeed the following:

THEOREM 1.2. Assume d ≥ 3 and weak disorder. Then, for all bounded con-
tinuous functions F on the path space,

lim
n

µn

[
F

(
ω(n))] = EF(B)

in probability, where ω(n) is the rescaled path defined by (1.5) and B is the Brown-
ian motion with diffusion matrix d−1Id . In particular, this holds for all β ∈ [0, βc).

Incidentally, the statement shows that the scaling relation between exponents
does hold in the full weak disorder region, with ξ = 1/2 and χ = 0.

In this paper we also consider the fluctuations of extensive thermodynamic
quantities other than the partition function: we show that these are typically of
order 1—like lnZn itself—but we can prove this result only in part of the weak
disorder region:
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THEOREM 1.3. Assume d ≥ 3 and (1.4). Then, the energy averaged over the
path

µn[Hn] − nλ′(β) converges Q-a.s. to a finite random variable

as n → ∞. A similar result holds for the entropy of µn with respect to P ; see (6.5).

In the proof of Theorem 1.2 we introduce an infinite time horizon measure on
the path space which is a natural limit of the sequence µn. This measure is a
time inhomogeneous Markov chain which depends on the environment. We cannot
prove the central limit theorem for this Markov chain directly, but we need to
average over the environment. In order to prove convergence in probability with
respect to the environment, we use again a second moment method by introducing
a second independent copy of the polymer before performing this average. All
through, we use the convergence of the series

∑
In as a main technical quantitative

ingredient.
To prove Theorem 1.3, we use analytic functions arguments. The crucial esti-

mate is a bound on the second moment of some complex random variable, this
explains why we do assume (1.4). It is well known that analytic martingales are
powerful tools to study disordered systems (e.g., Section 5 of [8]) in the regime of
bounded second moment.

Our paper is organized as follows. After recalling some notation and basic facts,
we prove the existence of the critical temperature, together with characterization of
the weak disorder phase that we will use further on (Section 3). We then introduce
the Markov chain depending on the environment in Section 4. Section 5 deals with
Gaussian behavior of the polymer, and Section 6 with limits of energy and entropy.
In the last section, we illustrate the results in the case of Bernoulli environment,
emphasizing their relations with (last passage) oriented percolation.

2. Notation and known facts. Let

ζ̄n(ω,β) = exp{βHn(ω) − nλ(β)}.
Then, for all β ,

Wn = Zn exp{−nλ(β)} = Zn/Q[Zn] = P [ζ̄n(ω,β)]
is a positive martingale with respect to the σ -fields Gn = σ {η(s, x), s ≤ n,x ∈ Z

d}.
By the martingale convergence theorem, it follows that

lim
n→∞Wn = W∞, Q-a.s.,

where W∞ is a nonnegative random variable. It is easy to see that the event
{W∞ > 0} is in the tail σ -field of {Gn, n ≥ 0}, hence, it is trivial by Kolmogorov 0–1
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law. This shows the dichotomy weak disorder versus strong disorder in (1.3),
which reads, in our new notation,

Q{W∞ > 0} =


1 ⇐⇒ weak disorder,
or
0 ⇐⇒ strong disorder.

(2.1)

It is well known [6, 9] that the weak disorder can happen if the transverse di-
mension is large enough, that is, d ≥ 3. For d ≥ 3,

πd := P [∃n > 0 :ωn = 0] ∈ (0,1),(2.2)

and (1.4) can be rephrased as

λ(2β) − 2λ(β) < − lnπd 
⇒ W∞ > 0, Q-a.s.

For x ∈ Z
d , let P x be the law of the simple random walk in Z

d starting at x. If θn,x

denotes the shift operator given by

θn,xη : (t, y) �→ η(n + t, x + y),

then we have, by definition of Wn,

Wn ◦ θ0,x = P x[ζ̄n].
By definition of Wn again, and by the simple Markov property, we have also

Wn ◦ θ0,x = P x[
exp{βη(1,ω1) − λ(β)}Wn−1 ◦ θ1,ω1

]
(2.3)

and, hence,

W∞ ◦ θ0,x = P x[
exp{βη(1,ω1) − λ(β)}W∞ ◦ θ1,ω1

]
(2.4)

by taking the limit as n → ∞.

3. Characterizations of the weak disorder phase and monotonicity. We
start by gathering some useful characterizations of weak disorder, which should
be compared to those in the case where Z

d is replaced by a regular tree ([21],
page 134). Before stating the next proposition, we make a remark. For δ ∈ (0,1),
(Wδ

n) is a uniformly integrable random variable. Therefore,

lim
n→∞Q[Wδ

n ] = Q[Wδ∞].(3.1)

PROPOSITION 3.1. The following statements are equivalent for any δ ∈ (0,1):

(a1) The martingale Wn is uniformly integrable.
(a2) The martingale Wn is L1-convergent.
(b1) Weak disorder holds, that is, W∞ > 0, Q-a.s.
(b2) The limit (3.1) is positive.
(c1) There exists a process

(Xn, en) = (
(Xn,x)x∈Zd , (en,x)x∈Zd

)
, n ∈ N,
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with values in (RZ
d
)2 such that

(en)n∈N

law= (
exp{βη(n, ·) − λ(β)})n∈N

,(3.2)

for all (n, x) ∈ N × Z
d, Q[Xn,x] = 1,(3.3)

for all (n, x) ∈ N × Z
d, Xn,x = P x[

en+1,ω1Xn+1,ω1

]
,(3.4)

for all n ∈ N, Xn is independent of e1, . . . , en.(3.5)

(c2) There exists a nonnegative random field X = (Xx)x∈Zd on Z
d such that

Q[Xx] = 1 for all x ∈ Z
d and such that

X
law= (

P x[
eω1Xω1

])
x∈Zd

holds for any R
Z

d
-valued random variable e = (ex)x∈Zd , independent of X, and

e
law= exp

(
βη(1, ·) − λ(β)

)
.

REMARK 3.1. Statements (a1), (a2), (b1) and (b2) are natural. We will see
in Sections 4 and 5 that (c1) is actually an important feature of the weak disorder
phase, allowing us to construct the Markov chain µ in (4.2). The somewhat similar
condition (c2) is in the flavor of “condition (γ )” in [21], Théorème 1.

PROOF OF PROPOSITION 3.1. (a1) ⇐⇒ (a2): This follows from standard
martingale convergence results [13].

(b1) ⇐⇒ (b2): This is obvious from the dichotomy (either W∞ = 0, Q-a.s., or
W∞ > 0, Q-a.s.).

(a2) 
⇒ (b1): The L1-convergence implies Q[W∞] = 1, and, hence, (b1) by
the dichotomy.

(b1) 
⇒ (c1): Set

Xn,x = W∞ ◦ θn,x/Q[W∞], en,x = exp{βη(n, x) − λ(β)}.(3.6)

We then have (3.2), (3.3) and (3.5). Moreover, we obtain (3.4) by (2.4).
(c1) 
⇒ (a1): We will prove the uniform integrability by showing that

(Q[X0,0|G̃n])n≥1
law= (Wn)n≥1,(3.7)

where G̃n = σ [e1, . . . , en]. Iterating (3.4), we see from Markov property that

X0,0 = P
[
e1,ω1 . . . en,ωnXn,ωn

]
.

Taking the Q-expectation conditionally on G̃n, and observing (3.3) and (3.5), we
arrive at

Q[X0,0|G̃n] = P x[
e1,ω1 . . . en,ωnQ

[
Xn,ωn

]] = P x[
e1,ω1 . . . en,ωn

]
,

which proves (3.7).
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(b1) 
⇒ (c2): Define Xn = (Xn,x)x∈Zd and en = (en,x)x∈Zd by (3.6). We prove
that X1 is what we look for. Since X1 is independent of e1, we have(

P x[
eω1X1,ω1

])
x∈Zd

law= (
P x[

e1,ω1X1,ω1

])
x∈Zd

= (W∞ ◦ θ0,x/Q[W∞])x∈Zd

law= X1,

where we have used (2.4) on the second line.
(c2) 
⇒ (c1): Suppose that en = (en,x)x∈Zd (n ∈ N) are independent of X and

(en)n∈N

law= (
exp

(
βη(n, ·) − λ(β)

))
n∈N

.

We define Xn = (Xn,x)x∈Zd (n ∈ N) recursively by

X0 = X, Xn+1,x = P x[
en,ω1Xn,ω1

]
.

By the construction, (Xn, en), n = 0,1,2, . . . , is a stationary process. Hence, the
sequence of laws

ρn(ds0 · · ·dsn) = Q
(
(Xn−j , en−j ) ∈ dsj , j = 0, . . . , n

)
, n ∈ N,

is consistent. Therefore, by Kolmogorov’s extension theorem, there is a process
(Xn, en), n = 0,1,2, . . . , such that

Q
(
(Xj , ej ) ∈ dsj , j = 0, . . . , n

) = Q
(
(Xn−j , en−j ) ∈ dsj , j = 0, . . . , n

)
,

n ∈ N.

Then, (3.2) and (3.3) are obvious, while the recursion for Xn implies (3.4). Finally,
we see (3.5) from the fact that X0 and e0, . . . , en−1 are independent. �

We now turn to the monotonicity of the phase transition. We define the
Lyapunov exponent by

ψ(β) = − lim
n↗∞

1

n
Q[lnWn] = λ(β) − lim

n↗∞
1

n
Q[lnZn].(3.8)

The limit exists by subadditivity [9], Proposition 1.5. We see from Jensen’s
inequality that ψ(β) is nonnegative. Moreover, ψ is continuous in β , since
limn↗∞ 1

n
Q[lnZn] is convex in β .

THEOREM 3.2. (a) There exists a critical value βc = βc(d) ∈ [0,∞] with

βc = 0, for d = 1,2,(3.9)

0 < βc ≤ ∞, for d ≥ 3,(3.10)

such that

Q{W∞ > 0} =
{

1, if β ∈ {0} ∪ (0, βc),
0, if β > βc.

(3.11)
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(b) The Lyapunov exponent ψ(β) is nondecreasing in β ∈ [0,∞). In particular,
there exists β

ψ
c = β

ψ
c (d) with

βc ≤ βψ
c ≤ ∞,(3.12)

such that

ψ(β)

{
= 0, if β ∈ R ∩ [0, β

ψ
c ],

> 0, if β ∈ R\[0, β
ψ
c ].(3.13)

REMARK 3.2. It is natural to expect that βc = β
ψ
c , that is, the absence of the

intermediate phase. However, this is an open problem at the moment, as well as
whether weak or strong disorder holds at the critical value βc.

Theorem 3.2 is a consequence of the monotonicity described in part (b) of the
following lemma.

LEMMA 3.3. (a) Assume that φ : (0,∞) −→ R is C1 and that there are con-
stants C,p ∈ [1,∞), such that

|φ′(u)| ≤ Cup + Cu−p for all u > 0.

Then, φ(Wn),
∂φ(Wn)

∂β
∈ L1(Q), Qφ(Wn) is C1 in β ∈ R, and

∂

∂β
Qφ(Wn) = Q

∂

∂β
φ(Wn).

(b) Suppose, in addition, that φ is concave on (0,∞). Then,

Q
∂

∂β
φ(Wn) ≤ 0 for β ≥ 0.(3.14)

PROOF. (a) Let I = [0, β1] (0 < β1 < ∞) and

Xn = ∂Wn

∂β
= P [(Hn − nλ′)ζ̄n].

We first check that, for all n,

sup
β∈I

Wn, sup
β∈I

W−1
n , sup

β∈I

|Xn| ∈ Lp(Q) for all p ∈ [1,∞),(∗1)

and, thereby, that

sup
β∈I

∣∣∣∣∂φ(Wn)

∂β

∣∣∣∣ ∈ L1(Q).(∗2)
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For (∗1), we have

W−p
n ≤ P [ζ̄n]−p

≤ P [ζ̄−p
n ]

≤ epnλP exp

(
pβ

∑
1≤s≤n

|η(s,ωs)|
)
.

The property (∗1) claimed for W−1
n is obvious from the above expression.

W
p
n and |Xn|p are bounded similarly.
The claim (∗2) follows from (∗1) and from∣∣∣∣∂φ(Wn)

∂β

∣∣∣∣ = |φ′(Wn)Xn| ≤ (CWp
n + CW−p

n )|Xn|.

It is now easy to conclude part (a) of the lemma. Since φ(Wn) is C1 in β ∈ R, we
have

φ(Wn(β1)) = φ(1) +
∫ β1

0

∂φ(Wn)

∂β
dβ for all β1 ∈ R.

The properties claimed in part (a) of the lemma follow from this expression,
(∗1) and Fubini’s theorem.

(b) We have

Q
∂

∂β
φ(Wn) = Q[φ′(Wn)Xn] = P

[
Q[φ′(Wn)(Hn − nλ′)ζ̄n]].

Now, for a fixed path ω, the probability measure ζ̄n dQ is product, and therefore
satisfies the FKG inequality ([25], page 78). The function Hn − nλ′ is increasing
in η, while φ′(Wn) is decreasing since φ is concave. These imply

Q[φ′(Wn)(Hn − nλ′)ζ̄n] ≤ Q[φ′(Wn)ζ̄n]Q[(Hn − nλ′)ζ̄n] = 0,

and, hence, (3.14). �

PROOF OF THEOREM 3.2. (a) By applying Lemma 3.3 to φ(x) = xδ

(0 < δ < 1), it follows that the limit (3.1) is nonincreasing in β ∈ [0,∞). This,
together with Proposition 3.1, implies the existence of the values βc with the prop-
erty (3.11). We then see (3.9) from [9], Theorem 1.3(b), and (3.10) from Theo-
rem A.

(b) By applying Lemma 3.3 to φ(x) = logx, it follows that the limit (3.8) is
nondecreasing in β ∈ [0,∞). This, together with the continuity of ψ , implies the
existence of the values β

ψ
c with the property (3.13). We then see (3.12) from the

obvious fact that ψ(β) > 0 implies W∞ = 0, Q-a.s. �
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4. The weak disorder polymer measure and its long time behavior. As
a general fact, the measure µn is a (time-inhomogeneous) Markov chain, with
transition probabilities

µn(ωi+1 = y|ωi = x)

= exp{βη(i + 1, y) − λ}Wn−i−1 ◦ θi+1,y

Wn−i ◦ θi,x

P (ω1 = y|ω0 = x)

for 0 ≤ i < n, and µn(ωi+1 = y|ωi = x) = P(ω1 = y|ω0 = x) for i ≥ n. Indeed,
one can check that, for any path x[0,m] = (x0, . . . , xm) of length m ≤ n,

µn

(
ω[0,m] = x[0,m]

) = ζ̄m

Wn−m ◦ θm,xm

Wn

P
(
ω[0,m] = x[0,m]

)
.(4.1)

In the weak disorder regime, we denote by µ the (random, time-inhomogeneous)
Markov chain starting at 0 with transition probabilities

µ(ωi+1 = y|ωi = x)
(4.2)

= exp{βη(i + 1, y) − λ}W∞ ◦ θi+1,y

W∞ ◦ θi,x

P (ω1 = y|ω0 = x).

In other respects, for A ∈ F∞, the limit

µ∞(A) := lim
n→∞µn(A)

exists by the martingale convergence theorem for both numerator and denominator
of µn(A).

The problem is that it is not clear if the previous limit defines, for a.e. η, a prob-
ability measure on F∞. But the Markov chain µ does. In the next result we relate
these two objects µ∞,µ, and we show that the latter yields a nice description of
the limit, in a precise sense.

PROPOSITION 4.1. Assume weak disorder. Then,

µ(A) = µ∞(A), Q-a.s. for A ∈ ⋃
n≥1

Fn.(4.3)

As a result,

Q

{
lim

n↗∞µn = µ weakly
}

= 1.(4.4)

Moreover,

Qµ(A) = Qµ∞(A) ∀A ∈ F∞,(4.5)

P � Qµ � P on F∞.(4.6)

To prove Proposition 4.1, the following simple observation is useful.
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LEMMA 4.2. Suppose {Am,n}m,n≥1 ⊂ F∞ are such that

lim
m↗∞ sup

n
P (Am,n) = 0.

Then

lim
m↗∞ sup

n
Qµn(Am,n) = lim

m↗∞ sup
n

Qµ∞(Am,n) = 0.

PROOF. We prove that limm supn Qµn(Am,n) = 0, the proof of the other one
being similar. For δ > 0,

Qµn(Am,n) ≤ Q
[
µn(Am,n)1Wn≥δ

] + Q[Wn ≤ δ].
We have

sup
n

Q
[
µn(Am,n)1Wn≥δ

] ≤ δ−1 sup
n

Q[Wnµn(Am,n)]

= δ−1 sup
n

P (Am,n),

which vanishes as m ↗ ∞. On the other hand, since W−1
n converges Q-a.s., their

distributions are tight:

lim
δ↘0

sup
n

Q[Wn ≤ δ] = 0.

These prove the lemma. �

PROOF OF PROPOSITION 4.1. The first statement (4.3) follows from (4.1).
The second statement (4.4) follows from (4.3) by noting that the set of continuous
functions on � contains a dense countable set of cylindrical functions.

To see (4.5), we note that the averaged limit Qµ∞(A) is a probability measure
on F∞. Indeed, it is clearly finitely additive by definition, and we have also, by
Lemma 4.2, limm Qµ∞(Am) = 0 for any sequence (Am)m in F∞ which decreases
to ∅. Therefore, we have (4.5) since the two probability measures Qµ and Qµ∞
coincide on any Fn.

We see from Lemma 4.2 that Qµ � P . To show the converse, assume that
Qµ(A) ≡ Qµ∞(A) = 0. Then, µ∞(A) = 0 a.s. and µn(A) → 0 a.s. This implies
that Wnµn(A) tends a.s. to 0 and, combined with the uniform integrability of (Wn),
it also implies that this sequence is itself uniformly integrable [recall µn(A) ≤ 1].
Therefore, Wnµn(A) tends to 0 in L1(Q), that is,

P(A) = Q[Wnµn(A)] → 0,

which is the desired result. �

As a direct consequence, the polymer path inherits under µ the a.s. behavior of
the simple random walk:
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REMARK 4.1. Assume weak disorder. Then, for Q-a.e. environment and
µ-a.e. path,

lim sup
n→∞

ωn√
2n ln lnn

= 1 (iterated logarithm law),

lim
n

1

lnn

∑
j≤n

1

j
δωj /

√
j = N

(
0,

1

d
Id

)
(a.s. central limit theorem).

Regarding (4.3), we have a more quantitative statement concerning the varia-
tional norm ‖ν − ν′‖Fm = 2 sup{ν(A) − ν′(A);A ∈ Fm}.

PROPOSITION 4.3. In the weak disorder case,

lim
k→∞ sup

m
Q

[‖µm+k − µ‖Fm

] = 0.

REMARK 4.2. In particular, the central limit theorem for µn would follow
from the one for µ, but we could not prove the latter directly.

PROOF OF PROPOSITION 4.3. We start to prove that

sup
m

Q
[
W∞‖µm+k − µ‖Fm

] → 0, k → ∞.(4.7)

From (4.1) and the similar relation for µ, for m,k ≥ 0, it holds

W∞‖µm+k − µ‖Fm = W∞P

[
ζ̄m

∣∣∣∣Wk ◦ θm,ωm

Wm+k

− W∞ ◦ θm,ωm

W∞

∣∣∣∣]

= 1

Wm+k

P
[
ζ̄m

∣∣W∞Wk ◦ θm,ωm − Wm+kW∞ ◦ θm,ωm

∣∣]
≤ |W∞ − Wm+k| + P

[
ζ̄m

∣∣Wk ◦ θm,ωm − W∞ ◦ θm,ωm

∣∣].
The Q-expectation of the first term in the right-hand side vanishes as k → ∞,
though, for the second one,

Q
(
P

[
ζ̄m

∣∣Wk ◦ θm,ωm − W∞ ◦ θm,ωm

∣∣])
= Q

(
P

[
ζ̄mQ

(∣∣Wk ◦ θm,ωm − W∞ ◦ θm,ωm

∣∣|Gm

)])
= Q

(
P

[
ζ̄m‖Wk − W∞‖L1(Q)

])
= ‖Wk − W∞‖L1(Q)

k→∞−→ 0.

This proves (4.7). Now, it suffices to write

Q
[‖µm+k − µ‖Fm

] = Q
[‖µm+k − µ‖Fm

(
1W∞>δ + 1W∞≤δ

)]
≤ δ−1Q

[
W∞‖µm+k − µ‖Fm

] + 2Q[W∞ ≤ δ],
and to optimize over positive δ’s. �
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5. Central limit theorems. Let (W,F W,P W) be the d-dimensional Wiener
space:

W = {w ∈ C([0,1] → R
d);w(0) = 0}

with the topology induced by the uniform norm ‖w‖ = sup0≤t≤1 |wt |, let F W be
the Borel σ -field and P W the Wiener measure. For n = 1,2, . . . , we define the
diffusive rescaling ω �→ ω(n) (� → W) by

ω
(n)
t = ωnt/

√
n, 0 ≤ t ≤ 1,(5.1)

where (ωt )t∈R+ ∈ W is the linear interpolation of (ωn)n∈Z+ ∈ �. This section is
devoted to the proof of the following:

THEOREM 5.1. Assume d ≥ 3 and weak disorder. Then, for all F ∈ Cb(W),

lim
n↗∞µn

[
F

(
ω(n))] = P W

[
F

(
w/

√
d

)]
,(5.2)

lim
n↗∞µ

[
F

(
ω(n))] = P W

[
F

(
w/

√
d

)]
,(5.3)

in Q-probability. In particular, these hold for all β ∈ [0, βc).

REMARK 5.1. Since F is bounded, the convergence in Q-probability claimed
for (5.2) and (5.3) is equivalent to Lp(Q)-convergence for any finite p.

As a first step, we start with the following weaker statement, whose proof is also
much simpler:

PROPOSITION 5.2. Assume that weak disorder holds. Then,

lim
n↗∞Qµn

(
ω(n) ∈ ·) = P W

(
w/

√
d ∈ ·) weakly,(5.4)

lim
n↗∞Qµ

(
ω(n) ∈ ·) = P W

(
w/

√
d ∈ ·) weakly.(5.5)

REMARK 5.2. (i) As can be seen from the proof below, (5.5) is true for any
probability measure R with R � P instead of Qµ.

(ii) Of course, it is unnecessary to state and prove Proposition 5.2 separately.
However, the role of Lemma 5.3 below is made clearer in this way.

PROOF OF PROPOSITION 5.2. We write F(w) = F(w) − P W[F(·/√d )] for
F ∈ Cb(W). We introduce the set BL(W) of bounded Lipschitz functional on W

by

BL(W) = {F : W → R; ‖F‖BL ≡ ‖F‖ + ‖F‖L < ∞},
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where ‖F‖ = supw∈W |F(w)| and

‖F‖L = sup
{
F(w) − F(w̃)

‖w − w̃‖ ; (w, w̃) ∈ W × W,w �= w̃

}
.

Step 1: Proof of (5.5). As is well known, (5.5) is equivalent to that

lim
n↗∞Qµ

[
F

(
ω(n))] = 0 for all F ∈ BL(W);(5.6)

see for example, [11], page 310, Theorem 11.3.3. To show (5.6), we make use of
an almost sure central limit theorem for the simple random walk in the following
form. If {Nk}k≥1 ⊂ Z+ is an increasing sequence such that infk≥1 Nk+1/Nk > 1,
then, for any fixed F ∈ BL(W),

lim
n↗∞

1

n

∑
1≤k≤n

F
(
ω(Nk)

) = 0, P -a.s.(5.7)

This follows from the argument in [2], pages 98–100. Now, for any convergent
subsequence of an = Qµ[F(ω(n))], we can find a further subsequence aNk

with
infk≥1 Nk+1/Nk > 1. The point is that, by (4.6), (5.7) holds with “P -a.s.” replaced
by “Qµ-a.s.” Thus, by integrating, we obtain that

lim
n↗∞

1

n

∑
1≤k≤n

aNk
= 0.

Therefore, we necessarily have (5.6).
Step 2: Now we want to move from µ to µn in order to get (5.4). As before, we

need only to prove that

lim
n↗∞Qµn

[
F

(
ω(n))] = 0 for all F ∈ BL(W).(5.8)

For 0 ≤ k ≤ n, we write

Qµn

∣∣[F (
ω(n))]∣∣ ≤ Qµn

∣∣F (
ω(n)) − F

(
ω(n−k))∣∣

+ ‖F‖ sup
m

Q
[‖µm+k − µ‖Fm

]
+ Qµ

∣∣[F (
ω(n−k))]∣∣.

As n → ∞ and for fixed k, the first and the last bounds vanish. In fact, we
apply (5.5) to see that the last bound vanishes. For the first one, we note that F is
uniformly continuous and that

sup
ω∈�

max
0≤t≤1

∣∣ω(n)
t − ω

(n−k)
t

∣∣ = O
(
k/

√
n

)
.

Finally, letting k → ∞, the middle bound vanishes due to Proposition 4.3. This
proves (5.4). �

The following lemma is key to proving Theorem 5.1.



DIFFUSIVE DIRECTED POLYMERS 1761

LEMMA 5.3. For all B ∈ F ⊗2∞ , the following limit exists a.s. in the weak dis-
order region:

µ(2)∞ (B) = lim
n→∞µ⊗2

n (B).(5.9)

Moreover,

µ(2)∞ (B) = µ⊗2(B) ∀B ∈ ⋃
n≥1

F ⊗2
n ,(5.10)

Qµ(2)∞ (B) = Q[µ⊗2(B)] ∀B ∈ F ⊗2∞ ,(5.11)

Qµ⊗2 � P ⊗2 on F ⊗2∞ .(5.12)

REMARK 5.3. It is tempting to think of µ
(2)∞ as “µ⊗2∞ ,” but since we do not

know if µ∞ is a.s. σ -additive, the notation is not appropriate.

PROOF OF LEMMA 5.3. Recall from Theorem B (Theorem 2.1 in [9]) that
the random series

∑
n In either converges almost surely or diverges almost surely,

according to weak or strong disorder. We therefore have that∑
n

In < ∞, Q-a.s.,(5.13)

which will be the crucial estimate in the present proof.
We start by proving that the limit (5.9) exists. For a sequence (an)n≥0 (ran-

dom or nonrandom), we set �an = an − an−1 for n ≥ 1. For B ∈ F ⊗2∞ fixed,

Xn
def= P ⊗2[ζ̄n(ω)ζ̄n(ω̃)1B] is a submartingale. The proof is based on Doob’s de-

composition of the process Xn. We start by writing

Xn = P ⊗2(B) + Mn + An,(5.14)

with Mn a martingale, M0 = A0 = 0, and An the increasing process defined by its
increments

�An = Q[�Xn|Gn−1]
= Q

[
P ⊗2[ζ̄n−1(ω)ζ̄n−1(ω̃)1B{e(n,ωn)e(n, ω̃n) − 1}]|Gn−1

]
= cP ⊗2[

ζ̄n−1(ω)ζ̄n−1(ω̃)1B1ωn=ω̃n

]
= cW 2

n−1µ
⊗2
n−1(B ∩ {ωn = ω̃n})(5.15)

≤ cW 2
n−1In,(5.16)

where e(n, x) = exp{βη(n, x) − λ(β)} and the constant c = exp{λ(2β) −
2λ(β)} − 1 is finite. Hence, the increasing process converges,

An ↗ A∞ ≤ c

(
sup
k

Wk

)2 ∑
k

Ik < ∞, Q-a.s.(5.17)
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We prove that the martingale (Mn) converges Q-a.s. by showing that

〈M〉∞ ≤ 4C

(
sup
k

Wk

)4 ∑
k

Ik < ∞, Q-a.s.(5.18)

with a constant C = C(β). Introducing

ϕn(ω, ω̃) = e(n,ωn)e(n, ω̃n) − 1 − c1ωn=ω̃n
,

we have, by (5.14) and (5.15),

�Mn = P ⊗2[ζ̄n−1(ω)ζ̄n−1(ω̃)ϕn(ω, ω̃)1B]
(5.19)

= W 2
n−1µ

⊗2
n−1[ϕn(ω, ω̃)1B],

and hence,

�〈M〉n = Q[(�Mn)
2|Gn−1]

(5.20)
= W 4

n−1µ
⊗4
n−1

[
Q[ϕn(ω

1,ω2)ϕn(ω
3,ω4)]1B×B

]
,

where ω1, . . . ,ω4 are independent copies of the path ω. Note that Q[ϕn(ω, ω̃)] = 0

and that C
def= sup{Q[ϕn(ω, ω̃)2];n,ω, ω̃} is a finite constant depending only on β .

We see from these and the Schwarz inequality that

�〈M〉n ≤ C
∑

i=1,2
j=3,4

W 4
n−1µ

⊗4
n−1[{ωi

n = ωj
n} ∩ (B × B)](5.21)

≤ 4CW 4
n−1In,(5.22)

leading to (5.18). This proves that Xn, as well as µ⊗2
n (B) = W−2

n Xn, converges
Q-a.s.

As for (5.10), it follows from (4.1) directly that µ
(2)∞ and µ⊗2 coincide on cylin-

dric events.
As in (4.5), the claims (5.11) and (5.12) boil down to proving that

lim
m→∞Qµ(2)∞ (Bm) = 0,

for any {Bm} ⊂ F ⊗2 with limm→∞ P ⊗2(Bm) = 0. It is enough to prove that

lim
m→∞µ(2)∞ (Bm) ≡ lim

m→∞ lim
n→∞µ⊗2

n (Bm) = 0 in Q-probability,

and, hence, that

lim
m→∞ sup

n
X(m)

n = 0 in Q-probability,(5.23)

where X
(m)
n = P ⊗2[ζ̄n(ω)ζ̄n(ω̃)1Bm]. Let

X(m)
n = P ⊗2(Bm) + M(m)

n + A(m)
n
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be the submartingale decomposition as (5.14). Of course, limm↗∞ P ⊗2[Bm] = 0.
Observe that, similarly to (5.17), it follows from (5.15) that

A(m)
n ≤ c

(
sup
k

Wk

)2

P ⊗2(
S1Bm

)
,

where

S = ∑
n≥1

ζ̄ (ω,n − 1)ζ̄ (ω̃, n − 1)1ωn=ω̃n
.

Now, the weak disorder assumption (5.13) states that this variable S is P ⊗2-
integrable for Q-almost every environment. Therefore,

lim
m↗∞A(m)∞ = 0, Q-a.s.(5.24)

For M
(m)
n , we see from (5.21), (5.22) and the weak disorder assumption (5.13) that

lim
m↗∞

〈
M(m)〉

∞ = 0, Q-a.s.(5.25)

This implies that

lim
m↗∞ sup

n

∣∣M(m)
n

∣∣ = 0 in Q-probability.(5.26)

In fact, let τ(�) = inf{n ≥ 0; 〈M(m)〉n+1 > �}. Then,

Q

{
sup
n

∣∣M(m)
n

∣∣ ≥ ε

}
≤ Q

{〈
M(m)〉

∞ > �
} + Q

{
sup
n

∣∣M(m)
n

∣∣ ≥ ε, τ (�) = ∞
}
.

Clearly, the first term on the right-hand side vanishes as m ↗ ∞ and so does the
second term, as can be seen from the following application of Doob’s inequality:

Q

{
sup
n

∣∣M(m)
n

∣∣ ≥ ε, τ (�) = ∞
}

≤ Q

{
sup
n

∣∣M(m)
n∧τ(�)

∣∣ ≥ ε

}
≤ 4ε−2Q

[〈
M(m)〉

τ(�)

]
≤ 4ε−2Q

[〈
M(m)〉

∞ ∧ �
]
.

By (5.24) and (5.26), we conclude (5.23). �

PROOF OF THEOREM 5.1. We write F(w) = F(w) − P W[F(·/√d )] for
F ∈ Cb(W). We begin by proving (5.3). Repeating the same argument as in step 1
of the proof of Proposition 5.2, but using (5.12) instead of (4.6), we obtain

lim
n↗∞Qµ⊗2[

G
(
ω(n), ω̃(n))] = (P W)⊗2[

G
(
w/

√
d, w̃/

√
d

)]
(5.27)

for any G ∈ Cb(W × W). Now, if we take G(w, w̃) = F(w)F (w̃), then (5.27)
reads

lim
n↗∞Q

[(
µ

[
F

(
ω(n))])2] = 0,
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which proves (5.3).
To obtain (5.2) from (5.3), we show that

lim
n↗∞Q

∣∣µn

[
F

(
ω(n))]∣∣ = 0 for all F ∈ Cb(W).

This can be done by exactly the same approximation procedure as we used to
deduce (5.4) from (5.5), see step 2 in the proof of Proposition 5.2. �

6. An analytic family of martingales. For β complex, Q[expβη(n, x)] is
well defined, but we also want its logarithm to be holomorphic. Let U0 be the open
set in the complex plane given by

U0 = connected component of 0 in {β ∈ C;Q[expβη(n, x)] /∈ R−}.
Then, U0 is a neighborhood of the real axis, and λ(β) = logQ[expβη(n, x)] is an
analytic function on U0. Define, for n ≥ 0 and β ∈ U0,

Wn(β) = P

[
exp

(
β

n∑
t=1

η(t,ωt ) − nλ(β)

)]
.(6.1)

Then, for all β ∈ U0, the sequence (Wn(β), n ≥ 0) is a (Gn)n-martingale with
complex values, and for fixed n, Wn(β) is an analytic function of β ∈ U0.

In view of the implication below (2.2), we introduce, for d ≥ 3, the real subset

U1 = {β ∈ R :λ(2β) − 2λ(β) < − lnπd},(6.2)

which is the set of β ∈ R such that the martingale (Wn)n is L2-bounded. It is an
open interval such that 0 ∈ U1 ⊂ {β ∈ R;W∞(β) > 0}, Q-a.s.

PROPOSITION 6.1. Assume d ≥ 3. Define U2 as the connected component of
the set

{β ∈ U0 :λ(2 Reβ) − 2 Reλ(β) < − lnπd},
which contains the origin. Then, U2 is a complex neighborhood of U1, such that,
as n → ∞,

Wn(β) → W∞(β), Q-a.s.,

where the convergence holds in the sense of analytic function. In particular, the
limit W∞(β) is holomorphic in U2, and Q-a.s.,

dk

dβk
Wn(β) → dk

dβk
W∞(β),

uniformly on compacts of U2 (k ≥ 0).
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PROOF. From (ez) = ez and Q[f ] = Q[f ], we see that λ(β) = λ(β), and that

Q[|Wn(β)|2] = Q
[
P [exp{βHn(ω) − nλ(β)}]P [exp{βHn(ω̃) − nλ(β)}]]

= P ⊗2[
Q[exp{βHn(ω) + βHn(ω̃) − 2nReλ(β)}]]

(6.3)

= P ⊗2

[
exp

{
[λ(2 Reβ) − 2 Reλ(β)]

n∑
t=1

1ωt=ω̃t

}]

↗ P ⊗2

[
exp

{
[λ(2 Reβ) − 2 Reλ(β)]

∞∑
t=1

1ωt=ω̃t

}]
< ∞

if β ∈ U2.
Now, let a point β ∈ U2, a radius r > 0 be such that the closed disk

D(β, r) ⊂ U2. Choosing ρ > r such that D(β,ρ) ⊂ U2, we obtain, by Cauchy’s
integral formula, for all β ′ ∈ D(β, r),

Wn(β
′) = 1

2iπ

∫
∂D(β,ρ)

Wn(z)

z − β ′ dz =
∫ 1

0

Wn(β + ρe2iπu)ρe2iπu

(β + ρe2iπu) − β ′ du,

hence,

Xn := sup{|Wn(β
′)|;β ′ ∈ D(β, r)} ≤ ρ

∫ 1

0

|Wn(β + ρe2iπu)|
ρ − r

du.

Letting C = (ρ/(ρ − r))2, we obtain, by the Schwarz inequality,

(Q[Xn])2 ≤ CQ

[∫ 1

0
|Wn(β + ρe2iπu)|2 du

]
≤ C sup{Q[|Wn(β

′′)|2];n ≥ 1, β ′′ ∈ D(β,ρ)}
< ∞,

in view of (6.3). Notice now that Xn, a supremum of positive submartingales, is
itself a positive submartingale. Since supQ[Xn] < ∞, Xn converges Q-a.s. to a fi-
nite limit X∞. Finally, sup{|Wn(β

′)|;β ′ ∈ D(β, r)} < ∞ a.s., and Wn is uniformly
bounded on compact subsets of U2 on a set of environments of full probability. On
this set, (Wn,n ≥ 0) is a normal sequence [28] which has a unique limit on the real
axis: Since U2 is connected, the sequence converges to some limit W∞, which is
holomorphic on U2, and the derivatives also converge to those of W∞. �

Note that we do not know that W∞(β) �= 0 for general β ∈ U2, except for
β ∈ U1—and, of course, for some complex neighborhood around U1. We draw
now some consequences for real β’s. We write µn = µ

β
n to recall the dependence

on the temperature.
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THEOREM 6.2. Assume d ≥ 3. Then W∞ and lnW∞ are analytic (real) func-
tions of β ∈ U1. Moreover, as n → ∞,

µβ
n [Hn] − nλ′(β) → (lnW∞)′(β),(6.4)

though, for the entropy h(µ
β
n |P) = µ

β
n [ln(dµ

β
n/dP )],

h(µβ
n |P) − n[βλ′(β) − λ(β)] → β(lnW∞)′(β) − lnW∞(β),(6.5)

for all β ∈ U1.
On the other hand, for Q-a.e. environment,

the law of
Hn − nλ′(β)√

n
under µn converges to the Gaussian N

(
0, λ′′(β)

)
,

where λ′′(β) > 0.

COMMENT. The average energy for the polymer measure, µβ
n [Hn], scales like

the annealed one nλ′(β), but it has fluctuations of order one in this part of the weak
disorder region. The entropy also has O(1) fluctuations. On the other hand, the last
result shows that, due to variations from a path to another, the fluctuations of the
energy under the polymer measure are normal and of order of magnitude O(

√
n ).

PROOF OF THEOREM 6.2. We have the identities

(lnWn)
′(β) = µβ

n [Hn] − nλ′(β),

h(µβ
n |P) = βµβ

n [Hn] − nλ′(β) − lnWn(β).

In view of Proposition 6.1, (lnWn)
′(β) = (Wn)

′(β)/Wn(β) converges a.s. to
(W∞)′(β)/W∞(β) = (lnW∞)′(β) for β ∈ U1, which is the first result (6.4). The
second one (6.5) follows easily. In order to prove the last one, we show the stronger
statement that, for Q-a.e. environment,

µn

[
exp

{
u(Hn − nλ′(β))√

n

}]
→ exp

{
λ′′(β)u2

2

}
as n → ∞ for all u ∈ R and β ∈ U2. Write the left-hand side as

Wn(β + un−1/2)

Wn(β)
× exp{n[λ(β + un−1/2) − λ(β) − un−1/2λ′(β)]}.

Since Wn → W∞ locally-uniformly on U1, and since λ is smooth, the right-hand
side converges Q-a.s. to [W∞(β)/W∞(β)] × exp{λ′′(β)u2/2} as n → ∞. �
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7. Bernoulli environment. Let p ∈ (0,1). In this section we focus on the
Bernoulli case, where

η(t, x) =
{

0
−1

with Q-probability
{

p,

1 − p.

In this case, λ(β) = ln[p + (1 − p)e−β ].
Consider also the site, oriented Bernoulli percolation (see [12, 16]), as fol-

lows: Call a site (t, x) ∈ N × Z
d open if η(t, x) = 0, and closed if η(t, x) = −1.

Write (n, x) →η (k, z) if there exists an oriented open path ((t,ωt );n ≤ t ≤ k)

from (n, x) to (k, z), that is, some path ((t,ωt );n ≤ t ≤ k) with nearest neigh-
bors vertices ωt and ωt+1 and η(t,ωt ) = 0 for all t , and ωn = x,ωk = z. Write
(n, x) →η ∞ if there exists an infinite oriented open path starting at (n, x),
and denote by C the set of sites (n, x) such that (n, x) →η ∞ and ‖x‖1 ≤ n,
‖x‖1 = n modulo 2. The set C is called the infinite cluster. It is well known that
there exists some percolation threshold �pc(d) ∈ (0,1) such that, for p > �pc(d)

and d ≥ 1, C is Q-a.s. nonempty, and C is Q-a.s. empty for p < �pc(d). It is
known (Theorem 2 in [17]) that C is a.s. connected, in the sense that a.s. on the
set {(n, x) →η ∞, (m,y) →η ∞}, there exists some (k, z) →η ∞ such that both
(n, x) →η (k, z) and (m,y) →η (k, z). Let H ∗

n be the maximum value of Hn over
all paths ω starting from (0,0). In the last passage percolation problem, one is
interested in the almost-sure limit

τ = lim
n↗∞−H ∗

n /n

(called the time constant), which exists and is constant by subadditivity [12, 16],
and is nonnegative. For directed polymers, on the other hand, the a.s.-limit ψ(β) =
ψ(β,p) of −(1/n) lnWn(β) exists, is constant by subadditivity and concentra-
tion [9], and is nonnegative.

We have a commutative diagram, with β,n tending to +∞:

− 1

nβ
lnWn(β)

β

n

−H ∗
n

n

n

ψ(β)

β

β

τ.

The proofs of the horizontal limits are easy and left to the reader. We have τ = 0
for p > �pc(d) by definition of the percolation threshold, and τ > 0 for p < �pc(d)

in view of the exponential tails of the cluster of the origin [27]. Let us introduce
another critical value,

pψ
c = inf{p ∈ [0,1] :ψ(β;p) = 0, ∀β > 0},(7.1)
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and recall πd from (2.2). We have

πd ≥ pψ
c ≥ �pc(d).(7.2)

Indeed, it holds that

ψ(β)

β
= λ(β)

β
− lim

n

1

nβ
lnP [expβHn] ≥ λ(β)

β
+ τ,

which becomes strictly positive in the limit β → ∞ if p < �pc(d). This proves the
second inequality in our claim (7.2). Now, the first one follows from the observa-
tion that [0,∞[⊂ U1 holds if p > πd (see Example 2.1.1 in [10], e.g.).

From now on, we assume that d ≥ 3 and

p > πd,

which implies that weak disorder holds for all β ≥ 0 and also τ = 0. There are
strong analogies between our limiting fluctuations from the previous section for the
directed polymer model and the first passage time in oriented percolation. We now
elaborate on these relations.

We have the identities

lim
β→+∞µβ

n [Hn] = lim
β→+∞

1

β
lnWn = H ∗

n ,(7.3)

lim
n→+∞H ∗

n = H ∗∞ := −dist(0,C) ∈ (−∞,0].(7.4)

Here, 0 is the origin in Z
+×Z

d , and dist is the chemical “distance” given, for s ≤ t ,
by dist((s, x), (t, y)) = inf{∑s<u≤t η(u, xu)}, where the infimum is taken over ori-
ented nearest neighbor paths ((u, xu); s < u ≤ t) with xs = x, xt = y. We note that
the convergence

µβ
n [Hn − nλ′(β)] n−→(lnW∞)′(β)

in (6.4) parallels that of (7.4), in the sense that µ
β
n(Hn) and H ∗

n , which relates
via (7.3), both have order one fluctuations.

As a related remark, let us recall the local limit theorem of Sinai [30]. Deep
inside the region U1,

P [exp{βHn(ω)}|ωn = x] = W∞ × W∞ ◦ θ←
n,x + Rn,x,

where θ←
n,x is given by θ←

n,x(η(·, ·)) : (u, y) �→ η(n − u,x + y), and the error term
Rn,x → 0 in L1 uniformly in x : |x| ≤ An1/2. The local limit theorem parallels the
following observation in the percolation model:

H ∗,x
n

def= inf{Hn(ω);ω0 = 0,ωn = x} = −dist(0,C) − dist
(
(n, x),C

) + oQ(1)

for x not too large.
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